WO2016121687A1 - Method for evaluating state of occlusion of lithium, method for manufacturing electrode, device for evaluating state of occlusion of lithium, and electrode manufacturing system - Google Patents

Method for evaluating state of occlusion of lithium, method for manufacturing electrode, device for evaluating state of occlusion of lithium, and electrode manufacturing system Download PDF

Info

Publication number
WO2016121687A1
WO2016121687A1 PCT/JP2016/052006 JP2016052006W WO2016121687A1 WO 2016121687 A1 WO2016121687 A1 WO 2016121687A1 JP 2016052006 W JP2016052006 W JP 2016052006W WO 2016121687 A1 WO2016121687 A1 WO 2016121687A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
active material
electrode active
light
electrode
Prior art date
Application number
PCT/JP2016/052006
Other languages
French (fr)
Japanese (ja)
Inventor
直井 雅也
雅裕 井上
Original Assignee
Jsr株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jsr株式会社 filed Critical Jsr株式会社
Priority to JP2016572018A priority Critical patent/JPWO2016121687A1/en
Publication of WO2016121687A1 publication Critical patent/WO2016121687A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/27Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G13/00Apparatus specially adapted for manufacturing capacitors; Processes specially adapted for manufacturing capacitors not provided for in groups H01G4/00 - H01G11/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1393Processes of manufacture of electrodes based on carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a method for evaluating an occlusion state of lithium, an electrode manufacturing method, an apparatus for evaluating an occlusion state of lithium, and an electrode manufacturing system.
  • nonaqueous electrolyte secondary batteries represented by lithium ion secondary batteries have been developed as power storage devices.
  • a lithium ion capacitor is known as an electricity storage device corresponding to an application that requires high energy density characteristics and high output characteristics.
  • Patent Document 1 is characterized by measuring an open circuit potential between a metal serving as a lithium supply source and an electrode doped with lithium. A free doping method has been proposed.
  • Patent Document 2 discloses a method in which lithium is occluded in the negative electrode active material layer by a so-called roll-to-roll method.
  • a first aspect of the present disclosure provides a method of irradiating a layer containing an electrode active material that occludes lithium with light containing visible light and evaluating the occlusion state of lithium from the reflected light.
  • a second aspect of the present disclosure provides an electrode manufacturing method including a step based on the evaluation method according to the first aspect.
  • a third aspect of the present disclosure includes: (1) an irradiation unit that irradiates light containing visible light onto a layer containing an electrode active material that occludes lithium; and (2) a layer containing an electrode active material that occludes lithium.
  • An apparatus for evaluating the occlusion state of lithium in an electrode active material is provided, which includes a measurement unit that receives the reflected light and measures information related to the reflected light.
  • the fourth aspect of the present disclosure provides an apparatus for causing the electrode active material of the electrode to occlude lithium and an electrode manufacturing system including the apparatus according to the third aspect.
  • the occlusion amount of lithium in the electrode active material can be measured accurately and extremely simply.
  • the evaluation method and apparatus of the present disclosure it is possible to measure the amount of occlusion of lithium at an arbitrary position in the electrode surface in an electrode having a large area, so that the lithium occlusion amount in the electrode surface is uniform. Sex can also be evaluated. Therefore, the evaluation method and apparatus of the present disclosure are extremely useful for evaluating batteries such as lithium ion secondary batteries and lithium ion capacitors, or electrodes of capacitors.
  • the electrode manufacturing method and manufacturing system of the present disclosure are extremely useful for manufacturing a battery such as a lithium ion secondary battery and a lithium ion capacitor, or an electrode of a capacitor.
  • the layer containing the electrode active material (hereinafter also referred to as “electrode active material layer”) is not particularly limited in form, but usually a slurry containing an electrode active material and a binder is prepared, and this is used. It is formed on the current collector by applying and drying on the current collector.
  • Other forms of the electrode active material layer include an electrode active material deposited on a current collector by a physical method such as vapor deposition or sputtering, an electrode active material occluded with an alkali metal, and a cake made of an organic solvent. Examples thereof include a layer formed with a bar or the like.
  • the electrode active material is not particularly limited as long as it is an electrode active material used for a battery or a capacitor utilizing insertion / extraction of lithium ions, and may be a negative electrode active material or a positive electrode active material. Good.
  • Examples of the negative electrode active material include carbon materials such as graphite, graphitizable carbon, non-graphitizable carbon, and composite carbon materials in which graphite particles are coated with a carbide of pitch or resin; alloying with lithium such as Si and Sn is possible. Or a metal containing a semimetal or an oxide thereof.
  • Specific examples of the carbon material include carbon materials described in JP2013-258392A.
  • Specific examples of a material containing a metal, a semimetal, or an oxide thereof that can be alloyed with lithium include materials described in JP-A-2005-123175 and JP-A-2006-107795.
  • the positive electrode active material examples include transition metal oxides such as manganese oxide and vanadium oxide; sulfur-based active materials such as sulfur alone and metal sulfides.
  • the evaluation method of the present disclosure is suitable for evaluating a layer containing a negative electrode active material, and suitable for evaluating a layer containing a carbon material as an electrode active material.
  • a method of directly contacting the electrode active material layer and a lithium supply source in an organic solvent containing lithium ions including lithium ions
  • Electrochemical contact between an electrode having an electrode active material layer and a lithium source in an organic solvent contact between an electrode active material layer and a lithium supply source without using an organic solvent containing lithium ions, lithium ions
  • JP-A-63-10462 and JP-A-64-14870 Specific examples of the method of electrochemically contacting an electrode having an electrode active material layer and a lithium supply source in an organic solvent containing lithium ions are described in JP-A-63-10462 and JP-A-64-14870. This is disclosed in Japanese Patent Laid-Open No. 9-293499. Specific examples of the method for bringing the electrode active material layer into contact with the lithium supply source without using the organic solvent containing lithium ions are disclosed in Japanese Patent Application Laid-Open Nos. 2007-214109 and 2008-29395. Yes. A specific example of the method of directly contacting the electrode active material particles and the lithium supply source in the organic solvent containing lithium ions is disclosed in JP 2012-209195 A and the like.
  • An evaluation method is a method in which an electrode having an electrode active material layer and an lithium supply source are brought into electrochemical contact in an organic solvent containing lithium ions, or an electrode active material without using an organic solvent containing lithium ions It is suitable for evaluating the occlusion state of lithium in an electrode in which lithium is occluded by contacting the layer with a lithium supply source, and in particular, an electrode having an electrode active material layer and an lithium supply in an organic solvent containing lithium ions It is suitable for evaluating the occlusion state of lithium in an electrode in which lithium is occluded by a method in which the source is brought into electrochemical contact.
  • the occlusion state of lithium in an electrode including an active material in which lithium is occluded is preferably 30% or more, more preferably 50% or more, particularly preferably 70% or more with respect to the theoretical capacity. Suitable for Moreover, it is suitable for evaluating the occlusion state of lithium in an electrode including an active material in which 95% or less of lithium is occluded with respect to the theoretical capacity.
  • lithium in the description of “occlude lithium” and “occlusion of lithium” in the present disclosure, there is a case where intercalation is performed in a lithium ion state or a case where a lithium alloy is formed. included. Therefore, “lithium” in the description of “occlude lithium” or the like means lithium as an element. “Occlusion” is a concept that includes intercalation, alloying, and the like, and means that it contains a lithium element.
  • the visible light used in the evaluation method of the present disclosure is not particularly limited as long as it is an electromagnetic wave in the visible region (360 to 830 nm), and may be multiwavelength or single wavelength. It is preferably a monochromatic light having a wavelength or a wavelength whose reflected light intensity or reflectivity changes functionally with occlusion of lithium, and more preferably a multi-wavelength.
  • the visible light used in the evaluation method of the present disclosure has a single wavelength, it is preferable to select one monochromatic light in the range of 600-780 nm, and in particular, select one monochromatic light in the range of 650-780 nm. It is preferable.
  • the multi-wavelength visible light is preferably white light or contains two types of monochromatic light having different wavelengths.
  • the reflectance (or reflected light intensity) at two wavelengths is measured, and the difference between them is measured. This is because the influence of the fluctuation on the evaluation result can be reduced by obtaining the ratio or the ratio.
  • the two types of monochromatic light having different wavelengths are preferably two types of monochromatic light having wavelengths different from each other by 50 nm or more, particularly monochromatic light in the range of 380 to 500 nm and monochromatic light in the range of 600 to 780 nm. It is preferable to include.
  • the light source include a halogen lamp and a xenon lamp as a white light source, and an LED as a monochromatic light source.
  • monochromatic light means light having a half width of 50 nm or less.
  • monochromatic light in the range of 600-780 nm means that the wavelength showing the maximum intensity in the spectrum of monochromatic light is in the range of 600-780 nm.
  • the evaluation method of the present disclosure it is preferable to irradiate light including visible light in an environment provided with a light-shielding portion so as to reduce the influence of disturbance light, and evaluate the occlusion state of lithium from the reflected light.
  • the intensity or reflectance of reflected light may be measured and the result may be used, or the color value or color difference value may be measured from the reflected light and the result may be used.
  • a reflectance that is not easily affected by fluctuations in irradiation light.
  • reflected light intensity or reflectance it is preferable to use reflected light intensity or reflectance at one or two or more different wavelengths.
  • the reflected light intensity or reflectance at two specific wavelengths can be measured and evaluated using the difference or ratio. it can.
  • the reflected light is dispersed, and then the spectral reflection intensity or spectral reflectance at one specific wavelength is measured, or the spectral reflectance at two wavelengths is measured, and the difference or It is preferable to evaluate the occlusion state of lithium by determining the ratio.
  • the specific wavelength is preferably a specific wavelength in the range of 600 to 780 nm, and particularly preferably a specific wavelength in the range of 650 to 780 nm.
  • the two wavelengths are preferably two wavelengths different from each other by 50 nm or more, particularly a specific wavelength in the range of 380-500 nm and a specific wavelength in the range of 600-780 nm. It is preferable. Since the spectral reflection intensity and the spectral reflectivity vary depending on the degree of flatness of the surface of the electrode active material layer, etc., in order to accurately measure the amount of occlusion of lithium, the spectral reflectivity at two wavelengths is measured and the difference between them is measured. Alternatively, it is preferable to determine the ratio, and it is particularly preferable to measure the spectral reflectance at two wavelengths and determine the difference.
  • the difference in spectral reflectance and the rate of change of the ratio are large. It is preferable to measure the spectral reflectance and obtain the difference.
  • the occlusion state of lithium can be evaluated by measuring the reflected light intensity or reflectance.
  • the irradiation light includes two types of monochromatic light having different wavelengths
  • the occlusion state of lithium can be evaluated by measuring the reflectance and obtaining the difference or ratio.
  • the irradiation light is preferably two types of monochromatic light having wavelengths different from each other by 50 nm or more, and particularly preferably includes monochromatic light in the range of 380 to 500 nm and monochromatic light in the range of 600 to 780 nm. .
  • Reflection intensity and reflectivity vary depending on the degree of flatness of the active material layer surface. Therefore, in order to accurately measure the amount of occlusion of lithium, it is necessary to irradiate light containing two types of monochromatic light having different wavelengths. It is preferable to measure the reflectance of the light and to determine the difference or ratio. In particular, it is possible to irradiate light containing two types of monochromatic light having different wavelengths, measure the reflectance, and obtain the difference. preferable. When comparing the electrode active material layer before lithium occlusion with the electrode active material layer with high lithium occlusion, the difference in reflectance and the rate of change of the ratio are large. It is preferable to irradiate light including light, measure the reflectance, and obtain the difference.
  • the occlusion rate of lithium can be obtained by applying the reflectance difference between the specific wavelengths obtained as described above to a calibration curve prepared in advance.
  • the occlusion rate of lithium can be traced while occluding lithium in the electrode active material.
  • the calibration curve can be prepared by measuring the difference in reflectance between specific wavelengths in the same manner for an electrode active material layer with a known lithium occlusion rate and plotting the result.
  • the electrode active material layer with a known lithium occlusion rate is prepared, for example, by passing a direct current between an electrode having an electrode active material layer and a lithium supply source in an organic solvent containing lithium ions. Can do.
  • the occlusion rate of lithium is determined by the energization amount and the irreversible capacity of the electrode.
  • the above calibration curve is prepared for each type of electrode active material and the composition of the electrode active material layer. There is a need to.
  • the lithium occlusion in the surface of the electrode active material layer is measured by measuring a difference in reflectance between specific wavelengths as described above at a plurality of locations of the electrode active material layer having a large area. The amount uniformity can be evaluated.
  • the evaluation method of the present disclosure is suitable for evaluating an electrode active material layer constituting a negative electrode of a battery or a capacitor. More specifically, it is suitable for the evaluation of the electrode active material layer constituting the negative electrode of a lithium ion capacitor, lithium air battery, or lithium sulfur battery, and particularly suitable for the evaluation of the electrode active material layer constituting the negative electrode of the lithium ion capacitor. ing. [Method for producing electrode]
  • the manufacturing method of the electrode of this indication includes the process of evaluating the occlusion state of lithium in an electrode active material by the evaluation method of this indication.
  • the electrode is not particularly limited as long as it is a battery or capacitor electrode that utilizes insertion / extraction of lithium ions, but is preferably the negative electrode of the battery or capacitor, and is a lithium ion capacitor, lithium sulfur battery or A negative electrode of a lithium air battery is more preferable, and a negative electrode of a lithium ion capacitor is particularly preferable.
  • the manufacturing method of the electrode of this indication is not specifically limited, (A) The process of forming an electrode active material layer, (B) The process of occluding lithium in an electrode active material, and (C) Evaluation of this indication It is preferable that the method includes a step of evaluating the occlusion state of lithium in the electrode active material.
  • the electrode active material layer is usually produced by preparing a slurry containing an electrode active material and a binder, applying the slurry on a current collector, and drying the slurry.
  • the electrode active material those already exemplified in the above “method for evaluating the occlusion state of lithium” can be used.
  • binder examples include rubber-based binders such as styrene-butadiene rubber (SBR) and NBR; fluorine-based resins such as polytetrafluoroethylene and polyvinylidene fluoride; polypropylene, polyethylene, and JP 2009-246137 A And fluorine-modified (meth) acrylic binders as disclosed in the above.
  • rubber-based binders such as styrene-butadiene rubber (SBR) and NBR
  • fluorine-based resins such as polytetrafluoroethylene and polyvinylidene fluoride
  • polypropylene polyethylene
  • fluorine-modified (meth) acrylic binders as disclosed in the above.
  • the electrode active material layer further includes a conductive agent such as carbon black, graphite, vapor-grown carbon fiber, metal powder; carboxyl methyl cellulose, its Na salt or ammonium salt, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol Further, a thickener such as oxidized starch, phosphorylated starch, or casein may be contained.
  • a conductive agent such as carbon black, graphite, vapor-grown carbon fiber, metal powder
  • carboxyl methyl cellulose, its Na salt or ammonium salt methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol
  • a thickener such as oxidized starch, phosphorylated starch, or casein may be contained.
  • the thickness of the electrode active material layer is not particularly limited, but is usually 5 to 500 ⁇ m, preferably 10 to 200 ⁇ m, particularly preferably 10 to 100 ⁇ m.
  • the density of the electrode active material layer is preferably 1.50 to 2.00 g / cc, particularly preferably 1.60 to 1.90 g / cc when the electrode is used in a lithium ion secondary battery. In the case of an electrode used for an ion capacitor, it is preferably 0.50 to 1.50 g / cc, particularly preferably 0.70 to 1.20 g / cc.
  • the current collector copper, nickel, stainless steel and the like are preferable as the negative electrode current collector, while aluminum, stainless steel and the like are preferable as the positive electrode current collector.
  • the thickness of the current collector is usually 5 to 50 ⁇ m for both positive and negative electrodes.
  • (C) Process may be performed in parallel with (B) process, or may be performed after (B) process. Moreover, it is preferable to perform (C) process in the environment provided with the light-shielding part so that the influence of disturbance light may become small.
  • the manufacturing method of the present disclosure is suitable for manufacturing a negative electrode of a battery or a capacitor, but a battery or a capacitor including a negative electrode manufactured by the manufacturing method of the present disclosure separately manufactures a negative electrode manufactured by the manufacturing method of the present disclosure. It can manufacture by accommodating in the exterior body with the made positive electrode. In addition to the positive electrode and the negative electrode, an electrolyte capable of generating lithium ions is supplied into the exterior body. The electrolyte is usually used in the state of an electrolytic solution dissolved in a solvent.
  • Examples of the electrolyte capable of generating lithium ions include LiClO4, LiAsF6, LiBF4, LiPF6, LiN (C2F5SO2) 2, LiN (CF3SO2) 2, LiN (FSO2) 2, LiC4BO8, and the like. These can be used alone or in admixture of two or more.
  • an aprotic organic solvent is preferable.
  • Examples include ethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like.
  • ionic liquids such as quaternary imidazolium salts, quaternary pyridinium salts described in JP-A-11-307121, and quaternary pyrrolidinium salts described in JP2012-142340A can also be used. These organic solvents can be used alone or in admixture of two or more.
  • the concentration of the electrolyte in the electrolytic solution is preferably 0.1 mol / L or more, and more preferably in the range of 0.5 to 1.5 mol / L in order to reduce the internal resistance due to the electrolytic solution. preferable.
  • the electrolyte also contains additives such as vinylene carbonate, vinyl ethylene carbonate, 1-fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethylsulfone, and the like. It may be.
  • the electrolyte is usually prepared and used in a liquid state as described above, but a gel or solid electrolyte may be used. In this case, for example, leakage can be suppressed.
  • a separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact.
  • the nonwoven fabric or porous film which uses a cellulose rayon, polyethylene, a polypropylene, polyamide, polyester, a polyimide etc. as a raw material can be mentioned, for example.
  • a wound cell or the like in which a laminated body in which a strip-like positive electrode and a negative electrode are wound through a separator is housed in a rectangular or cylindrical container can be given.
  • the apparatus 1 mainly includes an irradiation unit 10, a measurement unit 20, a shielding unit 30, and an evaluation unit 40.
  • the shielding part 30 does not need to be provided.
  • the irradiation unit 10 irradiates the electrode 50 to be evaluated with visible light as irradiation light, and is disposed inside the shielding unit 30 together with the electrode 50 and the measurement unit 20.
  • the wavelength of the visible light applied to the electrode 50 by the irradiating unit 10 is not particularly limited, but is preferably multi-wavelength light or monochromatic light (hereinafter referred to as multi-wavelength light) included in a wavelength region of at least 600 to 780 nm. And monochromatic light is also simply referred to as “light”.), More preferably, light included in the wavelength range of 380 to 500 nm and light included in the wavelength range of 600 to 780 nm. In particular, it preferably has at least light included in a wavelength region of 380 to 500 nm and light included in a wavelength region of 650 to 780 nm.
  • a light source that emits white light using a halogen lamp, a xenon lamp, or the like may be used, or a plurality of monochromatic lights that use LEDs (light emitting diodes) or the like may be emitted. It may be an aggregate of the light sources. In the present embodiment, description will be made by applying to an example of a light source that emits white light using a pulsed xenon lamp.
  • the irradiation unit 10 will be described by applying to an example in which the evaluation unit 40 does not control the start or stop of irradiation of visible light, the intensity, wavelength, or irradiation direction of irradiation light.
  • the start and stop of visible light irradiation, the intensity, wavelength, and irradiation direction of irradiation light may be controlled by the unit 40, and the form is not particularly limited.
  • the measuring unit 20 detects the reflected light of the electrode 50 irradiated with the irradiated light, and measures the reflectance of the reflected light (corresponding to information related to the reflected light). Note that the measurement unit 20 may measure the intensity, color value, or color difference value of the detected reflected light in addition to the above-described reflectance as the information related to the reflected light. In the present embodiment, description will be made by applying to an example in which the reflectance is less affected by the fluctuation of the irradiation light compared to the intensity, color value, and color difference value.
  • the measurement unit 20 is provided with a spectroscopic unit (not shown) that splits the incident reflected light.
  • the spectroscopic means in the spectroscopic unit include a prism, a diffraction grating, and an optical filter.
  • description will be made by applying to an example in which a planar diffraction grating is used as a spectroscopic means.
  • the white standard sample is irradiated with white light, and the spectral spectrum of the reflected light is stored in the measuring unit 20. Description will be made by applying to an example in which white light is irradiated and the reflectance is measured from the spectrum of the reflected light and the spectrum of the standard sample stored in advance.
  • the measurement unit 20 is configured to measure the reflectance of light separated by the spectroscopic unit (hereinafter also referred to as “spectral reflectance”) and output a measurement signal related to the spectral reflectance to the evaluation unit 40.
  • Configurations for outputting measurement signals include configurations using wired communication that outputs measurement signals via cables, configurations using wireless communication that outputs measurement signals using radio waves, etc., and measurement signals using information recording media. An example of a configuration to output can be given. In the present embodiment, description will be made by applying the configuration in which the measurement signal is output to an example in which wired communication is performed.
  • the above-described spectroscopic unit may not be provided in the measurement unit 20.
  • the measurement unit 20 will be described by applying to an example in which the evaluation unit 40 does not control the timing of performing reflectance measurement, measurement signal output, or the like. The timing for measuring the rate, outputting the measurement signal, and the like may be controlled.
  • the shielding unit 30 can accommodate the irradiation unit 10, the electrode 50, and the measurement unit 20 inside, and suppresses the incidence of light from the outside to the inside. In other words, when the reflectance of reflected light is measured by the measurement unit 20, the influence of disturbance light is suppressed.
  • the shielding part 30 what has a various structure using a well-known material can be used, and the form is not specifically limited.
  • the evaluation unit 40 evaluates the occlusion state of lithium in the electrode 50 based on the measurement signal input from the measurement unit 20.
  • the evaluation unit 40 is a computer system having a CPU (Central Processing Unit), ROM, RAM, hard disk, input / output interface, and the like.
  • the control program stored in the ROM or the like causes the CPU to function as the calculation unit 41, causes the input / output interface or the like to function as the transmission / reception unit 42, and causes the hard disk or the like to function as the storage unit 43. .
  • the calculation unit 41 performs calculation for evaluating the occlusion state of lithium in the electrode 50 based on the measurement signal.
  • Calculation processing for creating a calibration curve by fitting a curve or quadratic curve, calculation processing for obtaining a correlation coefficient (R 2 ) in the created calibration curve, and calculation processing for determining the lithium occlusion rate based on the created calibration curve The explanation is applied to an example.
  • a calibration curve having a correlation coefficient (R 2 ) equal to or greater than a certain value is stored in the storage unit 43.
  • the transmission / reception unit 42 receives the measurement signal output from the measurement unit 20. Furthermore, when outputting the evaluation result by the calculating part 41 to the outside, or displaying on the display etc., the signal regarding an evaluation result is also output.
  • the evaluation unit 40 controls the irradiation unit 10 and the measurement unit 20
  • a signal for performing the control is output to the irradiation unit 10 and the measurement unit 20.
  • the storage unit 43 stores information on the calibration curve input from the outside, the value of the correlation coefficient (R 2 ) obtained by the calculation unit 41, the measurement signal input via the transmission / reception unit 42, and the like. It is. Further, when stored information or the like becomes necessary in the above-described calculation processing, it is also output to the calculation unit 41.
  • the electrode manufacturing system of the present disclosure includes an apparatus for causing the electrode active material to store lithium and the evaluation apparatus of the present disclosure.
  • a device for inserting lithium into the electrode active material is not particularly limited.
  • a device for directly contacting the electrode active material layer and a lithium supply source in an organic solvent containing lithium ions examples include an apparatus for electrochemically contacting an electrode having an electrode active material layer in an organic solvent containing and a lithium supply source, and an apparatus for contacting an electrode active material layer and a lithium supply source without using an organic solvent containing lithium ions. It is done.
  • Specific examples thereof include the examples of JP-A-5-41249, the examples of JP-A-10-308212, the examples of JP-A-2007-214109, the examples of JP-A-2007-280926, and the JP-A-2008. Examples disclosed in JP-A No. 1244007, JP 2012-49543 A, JP 2012-49544 A, and the like.
  • a slurry containing the electrode active material or the like is usually prepared, and this is applied onto the current collector and dried to form an electrode active material layer on the current collector.
  • the formed electrode precursor is manufactured.
  • a device for forming the electrode active material layer on the current collector a known device can be employed.
  • the evaluation apparatus of the present disclosure includes a light shielding unit or the evaluation apparatus of the present disclosure is installed in an environment including the light shielding unit so that the influence of disturbance light is reduced.
  • the manufacturing system of this indication is suitable for manufacture of the negative electrode of a battery or a capacitor. More specifically, it is suitable for the production of negative electrodes for lithium ion capacitors, lithium air batteries, and lithium sulfur batteries, and is particularly suitable for the production of negative electrodes for lithium ion capacitors.
  • a negative electrode precursor was prepared by forming six locations each.
  • the negative electrode active material layer unformed portion having a width of 18 mm extending along the longitudinal direction at one end portion of the long side of the current collector, and both ends of the short side of the current collector and the negative electrode active material layer are short.
  • a negative electrode active material layer-unformed portion having a width of 10 mm extending in the direction was provided.
  • the negative electrode active material layer includes graphite (active material), carboxymethylcellulose, acetylene black (conductive agent), a binder, and a dispersant (88: 3: 5: 3: 1 in mass ratio).
  • a lithium electrode was prepared by attaching six lithium metal plates of 50 mm ⁇ 50 mm and 1 mm thickness as a lithium supply source on a copper plate of 2 mm with an interval of 12 mm between each other. Two such lithium electrodes were produced.
  • the lithium electrodes were arranged on both sides of the negative electrode precursor so that the negative electrode active material layer and the lithium metal plate faced through a separator made of a polypropylene nonwoven fabric having a thickness of 1 mm. Under the present circumstances, the negative electrode precursor and the lithium electrode were arrange
  • the negative electrode precursor, the separator and the lithium electrode were sandwiched and fixed by a resin holding part, and inserted into a SUS chamber equipped with a liquid level sensor. At this time, a negative electrode precursor or the like was inserted so that the negative electrode active material layer unformed portion having a width of 18 mm provided at the end of the long side of the current collector was positioned on the upper side in the chamber. Thereafter, the inside of the chamber was decompressed through a resin decompression pipe connected to the lower portion of the chamber using a scroll type dry vacuum pump. After reducing the pressure in the chamber to 100 Pa, the cock provided in the decompression pipe was closed.
  • the leak valve provided at the top of the chamber was opened, and the chamber internal pressure was returned to atmospheric pressure.
  • the negative electrode precursor and the lithium electrode were connected to a DC power source with a current / voltage monitor via a doping electrode provided in the upper part of the chamber, and a current of 300 mA was applied.
  • the energization time was set so that the lithium occlusion rate was 40% with respect to the theoretical capacity of graphite (372 mAh / g).
  • the irreversible capacity was estimated in advance by measuring the discharge capacity of the negative electrode after occlusion of lithium. As described above, a negative electrode for a lithium ion capacitor in which lithium was occluded was manufactured.
  • the obtained negative electrode was taken out from the chamber, and the spectral reflectance was measured at 10 points of the negative electrode active material layer using a spectrocolorimeter (CM-700d manufactured by Konica Minolta Co., Ltd.).
  • CM-700d manufactured by Konica Minolta Co., Ltd.
  • the light applied to the negative electrode active material layer is white light using a pulse xenon lamp as a light source.
  • the measurement is performed by bringing the spectrocolorimeter into contact with the negative electrode active material layer, the influence of ambient light is extremely small.
  • the measured data is transmitted to a personal computer, and the difference between the spectral reflectance at a wavelength of 700 nm and the spectral reflectance at a wavelength of 440 nm (spectral reflectance at a wavelength of 700 nm ⁇ spectral reflection at a wavelength of 440 nm) for seven types of negative electrodes with different lithium storage rates. Rate, hereinafter also referred to as “spectral reflectance difference”).
  • the obtained results were plotted with the horizontal axis representing the lithium occlusion rate and the vertical axis representing the spectral reflectance difference, and a calibration curve was obtained by fitting a Gaussian distribution curve.
  • the correlation coefficient (R 2 ) when a Gaussian distribution curve was fitted was 0.989.
  • the dispersion (standard deviation) in the spectral reflectance difference when the five measurement points were measured five times (measured 25 times in total) was 0.12. .
  • the correlation coefficient (R2) was 0.615.
  • the dispersion (standard deviation) in spectral reflectance at a wavelength of 700 nm when five measurement points were measured five times (total 25 measurements) was 0.22. there were.

Abstract

A layer containing an electrode active material that has occluded lithium is irradiated with light that includes visible light, and the state of occlusion of lithium is evaluated from the reflected light or reflectivity thereof.

Description

リチウムの吸蔵状態を評価する方法、電極の製造方法、リチウムの吸蔵状態を評価するための装置および電極の製造システムMethod for evaluating lithium storage state, electrode manufacturing method, apparatus for evaluating lithium storage state, and electrode manufacturing system 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2015年1月30日に日本国特許庁に出願された日本国特許出願第2015-17055号に基づく優先権を主張するものであり、日本国特許出願第2015-17055号の全内容を本国際出願に参照により援用する。 This international application claims priority based on Japanese Patent Application No. 2015-17055 filed with the Japan Patent Office on January 30, 2015. The entire contents are incorporated by reference into this international application.
 本開示は、リチウムの吸蔵状態を評価する方法、電極の製造方法、リチウムの吸蔵状態を評価するための装置および電極の製造システムに関する。 The present disclosure relates to a method for evaluating an occlusion state of lithium, an electrode manufacturing method, an apparatus for evaluating an occlusion state of lithium, and an electrode manufacturing system.
 近年、電子機器の小型化・軽量化の進歩は目覚ましく、それに伴い、当該電子機器の駆動用電源として用いられる電池に対しても小型化・軽量化の要求が一層高まっている。このような小型化・軽量化の要求を満足するために、リチウムイオン二次電池に代表される非水電解質二次電池が蓄電デバイスとして開発されている。また、高エネルギー密度特性及び高出力特性を必要とする用途に対応する蓄電デバイスとして、リチウムイオンキャパシタが知られている。 In recent years, the progress of downsizing and weight reduction of electronic devices has been remarkable, and accordingly, the demand for downsizing and weight reduction of batteries used as power sources for driving the electronic devices has further increased. In order to satisfy such demands for reduction in size and weight, nonaqueous electrolyte secondary batteries represented by lithium ion secondary batteries have been developed as power storage devices. Moreover, a lithium ion capacitor is known as an electricity storage device corresponding to an application that requires high energy density characteristics and high output characteristics.
 このような蓄電デバイスにおいては、様々な目的のために、予めリチウムを電極に吸蔵させるプロセス(一般にプレドープと呼ばれている)が採用されている。リチウムを電極に吸蔵させる方法としては様々な方法が知られているが、例えば、特許文献1では、リチウム供給源となる金属とリチウムがドーピングされる電極間の開路電位を測定することを特徴とするフリードーピング方法が提案されている。また、特許文献2では、所謂ロールツーロール方式により、リチウムを負極活物質層に吸蔵させる方法が開示されている。 In such an electricity storage device, a process (generally called pre-doping) in which lithium is occluded in advance by an electrode is employed for various purposes. Various methods are known for inserting lithium into the electrode. For example, Patent Document 1 is characterized by measuring an open circuit potential between a metal serving as a lithium supply source and an electrode doped with lithium. A free doping method has been proposed. Patent Document 2 discloses a method in which lithium is occluded in the negative electrode active material layer by a so-called roll-to-roll method.
特開2012-28729号公報JP 2012-28729 A 特開2007-280926号公報JP 2007-280926 A
 特許文献1で提案されているような方法では、リチウムの吸蔵量を正確に測定することが困難であった。また、面積の大きい電極において、電極面内のリチウム吸蔵量の均一性を評価することが不可能であった。更に、特許文献1で提案されている方法では、ロールツーロール方式等による電極の製造ラインを構築しようとした場合、製造ラインへの適合性に乏しい。 In the method proposed in Patent Document 1, it is difficult to accurately measure the amount of occlusion of lithium. Further, it has been impossible to evaluate the uniformity of the amount of occlusion of lithium in the electrode surface in an electrode having a large area. Furthermore, in the method proposed in Patent Document 1, when an electrode production line by a roll-to-roll method or the like is to be constructed, the adaptability to the production line is poor.
 本開示の一局面では、未だ十分に確立されていないリチウムの吸蔵状態を評価する方法を提供することが望ましい。 In one aspect of the present disclosure, it is desirable to provide a method for evaluating an occlusion state of lithium that has not been sufficiently established.
 
 本開示の第1の態様は、リチウムを吸蔵した電極活物質を含む層に可視光線を含む光を照射し、その反射光からリチウムの吸蔵状態を評価する方法を提供する。

A first aspect of the present disclosure provides a method of irradiating a layer containing an electrode active material that occludes lithium with light containing visible light and evaluating the occlusion state of lithium from the reflected light.
 本開示の第2の態様は、上記第1の態様に係る評価する方法に基づく工程を含む電極の製造方法を提供する。
 本開示の第3の態様は、(1)リチウムを吸蔵した電極活物質を含む層に可視光線を含む光を照射する照射部、及び(2)前記リチウムを吸蔵した電極活物質を含む層からの反射光を受光し、反射光に関する情報を測定する測定部を備える電極活物質中のリチウムの吸蔵状態を評価するための装置を提供する。
A second aspect of the present disclosure provides an electrode manufacturing method including a step based on the evaluation method according to the first aspect.
A third aspect of the present disclosure includes: (1) an irradiation unit that irradiates light containing visible light onto a layer containing an electrode active material that occludes lithium; and (2) a layer containing an electrode active material that occludes lithium. An apparatus for evaluating the occlusion state of lithium in an electrode active material is provided, which includes a measurement unit that receives the reflected light and measures information related to the reflected light.
 本開示の第4の態様は、電極の電極活物質にリチウムを吸蔵させるための装置、及び第3の態様に係る装置を備える電極の製造システムを提供する。 The fourth aspect of the present disclosure provides an apparatus for causing the electrode active material of the electrode to occlude lithium and an electrode manufacturing system including the apparatus according to the third aspect.
 本開示の第1の態様に係る評価方法および第3の態様に係る装置を用いることで、電極活物質中のリチウムの吸蔵量を正確且つ極めて簡便に測定することができる。また、本開示の評価方法および装置を用いれば、面積の大きい電極において、電極面内の任意の箇所におけるリチウムの吸蔵量を測定することが可能となるため、電極面内のリチウム吸蔵量の均一性を評価することもできる。したがって、本開示の評価方法および装置は、リチウムイオン二次電池、リチウムイオンキャパシタ等の電池又はキャパシタの電極の評価に極めて有用である。 </ RTI> By using the evaluation method according to the first aspect of the present disclosure and the apparatus according to the third aspect, the occlusion amount of lithium in the electrode active material can be measured accurately and extremely simply. In addition, if the evaluation method and apparatus of the present disclosure are used, it is possible to measure the amount of occlusion of lithium at an arbitrary position in the electrode surface in an electrode having a large area, so that the lithium occlusion amount in the electrode surface is uniform. Sex can also be evaluated. Therefore, the evaluation method and apparatus of the present disclosure are extremely useful for evaluating batteries such as lithium ion secondary batteries and lithium ion capacitors, or electrodes of capacitors.
 本開示の第2の態様に係る電極の製造方法および第4の態様に係る製造システムを用いることで、製造される電極におけるリチウムの吸蔵量が一定になり、面積の大きい電極において、電極面内のリチウム吸蔵量の均一性が高くなる。したがって、本開示の電極の製造方法および製造システムは、リチウムイオン二次電池、リチウムイオンキャパシタ等の電池又はキャパシタの電極の製造に極めて有用である。 By using the electrode manufacturing method according to the second aspect of the present disclosure and the manufacturing system according to the fourth aspect, the amount of occlusion of lithium in the manufactured electrode becomes constant, and in the electrode having a large area, The uniformity of the amount of occlusion of lithium increases. Therefore, the electrode manufacturing method and manufacturing system of the present disclosure are extremely useful for manufacturing a battery such as a lithium ion secondary battery and a lithium ion capacitor, or an electrode of a capacitor.
本開示のリチウムの吸蔵状態を評価する装置の構成を説明する摸式図である。It is a model diagram explaining the structure of the apparatus which evaluates the occlusion state of lithium of this indication.
 1…装置、10…照射部、20…測定部 1 ... Device, 10 ... Irradiation part, 20 ... Measurement part
 以下、本開示について詳細に説明する。
〔リチウムの吸蔵状態を評価する方法〕
 電極活物質を含む層(以下「電極活物質層」ともいう。)は、その形態が特に限定されるものではないが、通常、電極活物質及びバインダー等を含有するスラリーを調製し、これを集電体上に塗布し乾燥させることにより、集電体上に形成される。電極活物質層の他の形態としては、蒸着、スパッタリング等の物理的手法により電極活物質を集電体上に堆積させたもの、アルカリ金属を吸蔵した電極活物質及び有機溶媒からなるケーキをアプリケーターバー等で層状にしたもの等が挙げられる。
Hereinafter, the present disclosure will be described in detail.
[Method for evaluating the occlusion state of lithium]
The layer containing the electrode active material (hereinafter also referred to as “electrode active material layer”) is not particularly limited in form, but usually a slurry containing an electrode active material and a binder is prepared, and this is used. It is formed on the current collector by applying and drying on the current collector. Other forms of the electrode active material layer include an electrode active material deposited on a current collector by a physical method such as vapor deposition or sputtering, an electrode active material occluded with an alkali metal, and a cake made of an organic solvent. Examples thereof include a layer formed with a bar or the like.
 電極活物質は、リチウムイオンの挿入/脱離を利用する電池又はキャパシタに用いられる電極活物質であれば特に限定されるものではなく、負極活物質であっても、正極活物質であってもよい。 The electrode active material is not particularly limited as long as it is an electrode active material used for a battery or a capacitor utilizing insertion / extraction of lithium ions, and may be a negative electrode active material or a positive electrode active material. Good.
 負極活物質としては、例えば、黒鉛、易黒鉛化炭素、難黒鉛化炭素、黒鉛粒子をピッチや樹脂の炭化物で被覆した複合炭素材料等の炭素材料;Si、Sn等のリチウムと合金化が可能な金属や半金属又はこれらの酸化物を含む材料等が挙げられる。炭素材料の具体例としては、特開2013-258392号公報に記載の炭素材料が挙げられる。リチウムと合金化が可能な金属や半金属又はこれらの酸化物を含む材料の具体例としては、特開2005-123175号公報、特開2006-107795号公報に記載の材料が挙げられる。 Examples of the negative electrode active material include carbon materials such as graphite, graphitizable carbon, non-graphitizable carbon, and composite carbon materials in which graphite particles are coated with a carbide of pitch or resin; alloying with lithium such as Si and Sn is possible. Or a metal containing a semimetal or an oxide thereof. Specific examples of the carbon material include carbon materials described in JP2013-258392A. Specific examples of a material containing a metal, a semimetal, or an oxide thereof that can be alloyed with lithium include materials described in JP-A-2005-123175 and JP-A-2006-107795.
 正極活物質としては、マンガン酸化物、バナジウム酸化物等の遷移金属酸化物;硫黄単体、金属硫化物等の硫黄系活物が挙げられる。
 本開示の評価方法は、負極活物質を含む層の評価に適しており、また、電極活物質として炭素材料を含む層の評価に適している。
Examples of the positive electrode active material include transition metal oxides such as manganese oxide and vanadium oxide; sulfur-based active materials such as sulfur alone and metal sulfides.
The evaluation method of the present disclosure is suitable for evaluating a layer containing a negative electrode active material, and suitable for evaluating a layer containing a carbon material as an electrode active material.
 電極活物質にリチウムを吸蔵させる方法としては、様々な方法が知られているが、例えば、リチウムイオンを含む有機溶媒中で電極活物質層とリチウム供給源を直接接触させる方法、リチウムイオンを含む有機溶媒中で電極活物質層を有する電極とリチウム供給源を電気化学的に接触させる方法、リチウムイオンを含む有機溶媒を使用せずに電極活物質層とリチウム供給源を接触させる方法、リチウムイオンを含む有機溶媒中で電極活物質粒子とリチウム供給源を直接接触させる方法が挙げられる。上記リチウムイオンを含む有機溶媒中で電極活物質層とリチウム供給源を直接接触させる方法の具体例としては、特開平5-41249号公報、特開2007-280926号公報等に開示されている。上記リチウムイオンを含む有機溶媒中で電極活物質層を有する電極とリチウム供給源を電気化学的に接触させる方法の具体例としては、特開昭63-10462号公報、特開昭64-14870号公報、特開平9-293499号公報等に開示されている。上記リチウムイオンを含む有機溶媒を使用せずに電極活物質層とリチウム供給源を接触させる方法の具体例としては、特開2007-214109号公報、特開2008-293954号公報等に開示されている。上記リチウムイオンを含む有機溶媒中で電極活物質粒子とリチウム供給源を直接接触させる方法の具体例としては、特開2012-209195号公報等に開示されている。本開示の評価方法は、リチウムイオンを含む有機溶媒中で電極活物質層を有する電極とリチウム供給源を電気化学的に接触させる方法、又はリチウムイオンを含む有機溶媒を使用せずに電極活物質層とリチウム供給源を接触させる方法によりリチウムを吸蔵させた電極におけるリチウムの吸蔵状態を評価するのに適しており、特に、リチウムイオンを含む有機溶媒中で電極活物質層を有する電極とリチウム供給源を電気化学的に接触させる方法によりリチウムを吸蔵させた電極におけるリチウムの吸蔵状態を評価するのに適している。 Various methods are known for occluding lithium in the electrode active material. For example, a method of directly contacting the electrode active material layer and a lithium supply source in an organic solvent containing lithium ions, including lithium ions Electrochemical contact between an electrode having an electrode active material layer and a lithium source in an organic solvent, contact between an electrode active material layer and a lithium supply source without using an organic solvent containing lithium ions, lithium ions And a method in which the electrode active material particles and the lithium source are brought into direct contact in an organic solvent containing. Specific examples of the method for directly contacting the electrode active material layer and the lithium supply source in the organic solvent containing lithium ions are disclosed in JP-A-5-41249, JP-A-2007-280926, and the like. Specific examples of the method of electrochemically contacting an electrode having an electrode active material layer and a lithium supply source in an organic solvent containing lithium ions are described in JP-A-63-10462 and JP-A-64-14870. This is disclosed in Japanese Patent Laid-Open No. 9-293499. Specific examples of the method for bringing the electrode active material layer into contact with the lithium supply source without using the organic solvent containing lithium ions are disclosed in Japanese Patent Application Laid-Open Nos. 2007-214109 and 2008-29395. Yes. A specific example of the method of directly contacting the electrode active material particles and the lithium supply source in the organic solvent containing lithium ions is disclosed in JP 2012-209195 A and the like. An evaluation method according to the present disclosure is a method in which an electrode having an electrode active material layer and an lithium supply source are brought into electrochemical contact in an organic solvent containing lithium ions, or an electrode active material without using an organic solvent containing lithium ions It is suitable for evaluating the occlusion state of lithium in an electrode in which lithium is occluded by contacting the layer with a lithium supply source, and in particular, an electrode having an electrode active material layer and an lithium supply in an organic solvent containing lithium ions It is suitable for evaluating the occlusion state of lithium in an electrode in which lithium is occluded by a method in which the source is brought into electrochemical contact.
 本開示の評価方法は、理論容量に対して好ましくは30%以上、より好ましくは50%以上、特に好ましくは70%以上のリチウムを吸蔵させた活物質を含む電極におけるリチウムの吸蔵状態を評価するのに適している。また、理論容量に対して95%以下のリチウムを吸蔵させた活物質を含む電極におけるリチウムの吸蔵状態を評価するのに適している。 In the evaluation method of the present disclosure, the occlusion state of lithium in an electrode including an active material in which lithium is occluded is preferably 30% or more, more preferably 50% or more, particularly preferably 70% or more with respect to the theoretical capacity. Suitable for Moreover, it is suitable for evaluating the occlusion state of lithium in an electrode including an active material in which 95% or less of lithium is occluded with respect to the theoretical capacity.
 なお、本開示における「リチウムを吸蔵」や「リチウムの吸蔵」との記載で示される範囲には、リチウムイオンの状態でインターカレーション(Intercalation)している場合や、リチウム合金を形成する場合が含まれる。したがって、「リチウムを吸蔵」等との記載における「リチウム」とは、元素としてのリチウムであることを意味するものである。また、「吸蔵」とは、インターカレーションや、合金化等を含む概念であり、リチウム元素を含有していることを意味するものである。 In addition, in the range indicated by the description of “occlusion of lithium” and “occlusion of lithium” in the present disclosure, there is a case where intercalation is performed in a lithium ion state or a case where a lithium alloy is formed. included. Therefore, “lithium” in the description of “occlude lithium” or the like means lithium as an element. “Occlusion” is a concept that includes intercalation, alloying, and the like, and means that it contains a lithium element.
 本開示の評価方法において用いられる可視光線としては、可視領域(360~830nm)にある電磁波であれば特に限定されるものではなく、多波長であっても単波長であってもよいが、多波長であるか、リチウム吸蔵に伴い反射光強度又は反射率が関数的に変化する波長の単色光であることが好ましく、特には多波長であることが好ましい。本開示の評価方法において用いられる可視光線が単波長である場合、600-780nmの範囲にある一の単色光を選択することが好ましく、特に650-780nmの範囲にある一の単色光を選択することが好ましい。上記の範囲内においては、リチウム吸蔵前の電極活物質層とリチウム吸蔵率の高い電極活物質層とを比較した場合に、反射率(あるいは反射光強度)の変化率が大きくなる傾向にあるからである。上記多波長の可視光線としては、白色光であるか、波長が相互に異なる2種の単色光を含んでいることが好ましい。このような照射光を用いれば、電極活物質層表面の平坦性の程度によって反射光強度や反射率が変動した場合、2種の波長における反射率(あるいは反射光強度)を測定し、その差や比を求めることにより、その変動が評価結果に与える影響を低減できるからである。また、照射光として白色光を用いれば、反射光から色彩値や色差値を測定して評価することも可能になるからである。波長が相互に異なる2種の単色光としては、波長が相互に50nm以上異なる2種の単色光が好ましく、特に、380-500nmの範囲にある単色光と600-780nmの範囲にある単色光を含んでいることが好ましい。光源としては、白色光の光源としてハロゲンランプ、キセノンランプ等が、単色光の光源としてLED等が挙げられる。なお、本開示において、単色光とは、半値幅が50nm以下の光を意味するものとする。また、本開示において、例えば600-780nmの範囲にある単色光とは、単色光のスペクトルにおいて最大の強度を示す波長が600-780nmの範囲内にあることを意味するものとする。 The visible light used in the evaluation method of the present disclosure is not particularly limited as long as it is an electromagnetic wave in the visible region (360 to 830 nm), and may be multiwavelength or single wavelength. It is preferably a monochromatic light having a wavelength or a wavelength whose reflected light intensity or reflectivity changes functionally with occlusion of lithium, and more preferably a multi-wavelength. When the visible light used in the evaluation method of the present disclosure has a single wavelength, it is preferable to select one monochromatic light in the range of 600-780 nm, and in particular, select one monochromatic light in the range of 650-780 nm. It is preferable. Within the above range, when the electrode active material layer before lithium occlusion is compared with the electrode active material layer having a high lithium occlusion rate, the rate of change in reflectance (or reflected light intensity) tends to increase. It is. The multi-wavelength visible light is preferably white light or contains two types of monochromatic light having different wavelengths. When such irradiation light is used, when the reflected light intensity or reflectance varies depending on the degree of flatness of the electrode active material layer surface, the reflectance (or reflected light intensity) at two wavelengths is measured, and the difference between them is measured. This is because the influence of the fluctuation on the evaluation result can be reduced by obtaining the ratio or the ratio. Further, when white light is used as the irradiation light, it is possible to measure and evaluate the color value and color difference value from the reflected light. The two types of monochromatic light having different wavelengths are preferably two types of monochromatic light having wavelengths different from each other by 50 nm or more, particularly monochromatic light in the range of 380 to 500 nm and monochromatic light in the range of 600 to 780 nm. It is preferable to include. Examples of the light source include a halogen lamp and a xenon lamp as a white light source, and an LED as a monochromatic light source. In the present disclosure, monochromatic light means light having a half width of 50 nm or less. Further, in the present disclosure, for example, monochromatic light in the range of 600-780 nm means that the wavelength showing the maximum intensity in the spectrum of monochromatic light is in the range of 600-780 nm.
 本開示の評価方法においては、外乱光の影響が小さくなるよう、遮光部を備えた環境下で可視光線を含む光を照射し、その反射光からリチウムの吸蔵状態を評価することが好ましい。 In the evaluation method of the present disclosure, it is preferable to irradiate light including visible light in an environment provided with a light-shielding portion so as to reduce the influence of disturbance light, and evaluate the occlusion state of lithium from the reflected light.
 本開示の評価方法においては、反射光の強度又は反射率を測定し、その結果を利用しても、反射光から色彩値又は色差値を測定し、その結果を利用してもよい。中でも、照射光の揺らぎの影響を受け難い反射率を利用することが好ましい。反射光強度又は反射率を利用する場合、1種又は相互に異なる2種以上の波長における反射光強度又は反射率を利用することが好ましい。相互に異なる複数種の波長における反射光強度又は反射率を利用する場合、例えば、特定の2種の波長における反射光強度又は反射率を測定し、その差や比を利用して評価することができる。 In the evaluation method of the present disclosure, the intensity or reflectance of reflected light may be measured and the result may be used, or the color value or color difference value may be measured from the reflected light and the result may be used. Among these, it is preferable to use a reflectance that is not easily affected by fluctuations in irradiation light. When using reflected light intensity or reflectance, it is preferable to use reflected light intensity or reflectance at one or two or more different wavelengths. When using reflected light intensity or reflectance at a plurality of different wavelengths, for example, the reflected light intensity or reflectance at two specific wavelengths can be measured and evaluated using the difference or ratio. it can.
 照射光が白色光を含む場合、反射光を分光し、次いで特定の一の波長における分光反射強度又は分光反射率を測定するか、又は2種の波長における分光反射率を測定し、その差又は比を求めることにより、リチウムの吸蔵状態を評価することが好ましい。上記特定の一の波長としては、600-780nmの範囲にある特定の波長であることが好ましく、特に650-780nmの範囲にある特定の波長であることが好ましい。上記の範囲内においては、リチウム吸蔵前の電極活物質層とリチウム吸蔵率の高い電極活物質層とを比較した場合に、反射率(あるいは反射光強度)の変化率が大きくなる傾向にあるからである。また、上記2種の波長としては、相互に50nm以上異なる2種の波長であることが好ましく、特に、380-500nmの範囲にある特定の波長と600-780nmの範囲にある特定の波長であることが好ましい。電極活物質層表面の平坦性の程度等によって分光反射強度及び分光反射率は変動するため、リチウムの吸蔵量を正確に測定するには、2種の波長における分光反射率を測定し、その差又は比を求めるが好ましく、特に、2種の波長における分光反射率を測定し、その差を求めることが好ましい。リチウム吸蔵前の電極活物質層とリチウム吸蔵率の高い電極活物質層とを比較した場合に、分光反射率の差及び比の変化率が大きいことから、上記の範囲内にある2種の波長おいて分光反射率を測定し、その差等を求めることが好ましい。 When the irradiation light includes white light, the reflected light is dispersed, and then the spectral reflection intensity or spectral reflectance at one specific wavelength is measured, or the spectral reflectance at two wavelengths is measured, and the difference or It is preferable to evaluate the occlusion state of lithium by determining the ratio. The specific wavelength is preferably a specific wavelength in the range of 600 to 780 nm, and particularly preferably a specific wavelength in the range of 650 to 780 nm. Within the above range, when the electrode active material layer before lithium occlusion is compared with the electrode active material layer having a high lithium occlusion rate, the rate of change in reflectance (or reflected light intensity) tends to increase. It is. The two wavelengths are preferably two wavelengths different from each other by 50 nm or more, particularly a specific wavelength in the range of 380-500 nm and a specific wavelength in the range of 600-780 nm. It is preferable. Since the spectral reflection intensity and the spectral reflectivity vary depending on the degree of flatness of the surface of the electrode active material layer, etc., in order to accurately measure the amount of occlusion of lithium, the spectral reflectivity at two wavelengths is measured and the difference between them is measured. Alternatively, it is preferable to determine the ratio, and it is particularly preferable to measure the spectral reflectance at two wavelengths and determine the difference. When comparing the electrode active material layer before lithium occlusion with the electrode active material layer with high lithium occlusion, the difference in spectral reflectance and the rate of change of the ratio are large. It is preferable to measure the spectral reflectance and obtain the difference.
 一方、照射光に含まれる可視光線が単色光である場合、その反射光強度又は反射率を測定することにより、リチウムの吸蔵状態を評価することができる。また、照射光が、波長が相互に異なる2種の単色光を含む場合、それらの反射率を測定し、その差又は比を求めることにより、リチウムの吸蔵状態を評価することができる。かかる場合、照射光としては、波長が相互に50nm以上異なる2種の単色光が好ましく、特に380-500nmの範囲にある単色光と600-780nmの範囲にある単色光を含んでいることが好ましい。活物質層表面の平坦性の程度によって反射強度及び反射率は変動するため、リチウムの吸蔵量を正確に測定するには、波長が相互に異なる2種の単色光を含む光を照射し、それらの反射率を測定し、その差又は比を求めることが好ましく、特に、波長が相互に異なる2種の単色光を含む光を照射し、それらの反射率を測定し、その差を求めることが好ましい。リチウム吸蔵前の電極活物質層とリチウム吸蔵率の高い電極活物質層とを比較した場合に、反射率の差及び比の変化率が大きいことから、上記の波長範囲内にある2種の単色光を含む光を照射し、それらの反射率を測定し、その差等を求めることが好ましい。 On the other hand, when the visible light contained in the irradiation light is monochromatic light, the occlusion state of lithium can be evaluated by measuring the reflected light intensity or reflectance. In addition, when the irradiation light includes two types of monochromatic light having different wavelengths, the occlusion state of lithium can be evaluated by measuring the reflectance and obtaining the difference or ratio. In such a case, the irradiation light is preferably two types of monochromatic light having wavelengths different from each other by 50 nm or more, and particularly preferably includes monochromatic light in the range of 380 to 500 nm and monochromatic light in the range of 600 to 780 nm. . Reflection intensity and reflectivity vary depending on the degree of flatness of the active material layer surface. Therefore, in order to accurately measure the amount of occlusion of lithium, it is necessary to irradiate light containing two types of monochromatic light having different wavelengths. It is preferable to measure the reflectance of the light and to determine the difference or ratio. In particular, it is possible to irradiate light containing two types of monochromatic light having different wavelengths, measure the reflectance, and obtain the difference. preferable. When comparing the electrode active material layer before lithium occlusion with the electrode active material layer with high lithium occlusion, the difference in reflectance and the rate of change of the ratio are large. It is preferable to irradiate light including light, measure the reflectance, and obtain the difference.
 本開示においては、以上のようにして得られた特定の波長間での反射率の差等を、予め作成しておいた検量線に当てはめることにより、リチウムの吸蔵率を求めることができる。かかる評価方法を適用すれば、電極活物質にリチウムを吸蔵させながら、リチウムの吸蔵率を追跡することができる。上記検量線は、リチウムの吸蔵率が既知の電極活物質層について、特定の波長間での反射率の差等を同様に測定し、その結果をプロットすることにより作成することができる。上記リチウムの吸蔵率が既知の電極活物質層は、例えば、リチウムイオンを含む有機溶媒中で、電極活物質層を有する電極とリチウム供給源との間に直流電流を通電することにより作成することができる。その際、リチウムの吸蔵率は、通電量と電極の不可逆容量によって決まる。なお、電極活物質の種類、電極活物質層の組成によって、リチウム吸蔵に伴う色相の変化の態様が異なることから、上記検量線は、電極活物質の種類及び電極活物質層の組成毎に作成する必要がある。 In the present disclosure, the occlusion rate of lithium can be obtained by applying the reflectance difference between the specific wavelengths obtained as described above to a calibration curve prepared in advance. When such an evaluation method is applied, the occlusion rate of lithium can be traced while occluding lithium in the electrode active material. The calibration curve can be prepared by measuring the difference in reflectance between specific wavelengths in the same manner for an electrode active material layer with a known lithium occlusion rate and plotting the result. The electrode active material layer with a known lithium occlusion rate is prepared, for example, by passing a direct current between an electrode having an electrode active material layer and a lithium supply source in an organic solvent containing lithium ions. Can do. At that time, the occlusion rate of lithium is determined by the energization amount and the irreversible capacity of the electrode. In addition, since the aspect of the change of the hue accompanying lithium occlusion differs depending on the type of electrode active material and the composition of the electrode active material layer, the above calibration curve is prepared for each type of electrode active material and the composition of the electrode active material layer. There is a need to.
 また、本開示においては、面積の大きい電極活物質層の複数の箇所について、上記のようにして特定の波長間での反射率の差等を測定することにより、電極活物質層面内のリチウム吸蔵量の均一性を評価することができる。 Further, in the present disclosure, the lithium occlusion in the surface of the electrode active material layer is measured by measuring a difference in reflectance between specific wavelengths as described above at a plurality of locations of the electrode active material layer having a large area. The amount uniformity can be evaluated.
 本開示の評価方法は、電池又はキャパシタの負極を構成する電極活物質層の評価に適している。より具体的には、リチウムイオンキャパシタ、リチウム空気電池、リチウム硫黄電池の負極を構成する電極活物質層の評価に適しており、特にリチウムイオンキャパシタの負極を構成する電極活物質層の評価に適している。
〔電極の製造方法〕
 本開示の電極の製造方法は、本開示の評価方法により電極活物質中のリチウムの吸蔵状態を評価する工程を含むことを特徴とする。電極としては、リチウムイオンの挿入/脱離を利用する電池又はキャパシタの電極であれば特に限定されるものではないが、電池又はキャパシタの負極であることが好ましく、リチウムイオンキャパシタ、リチウム硫黄電池又はリチウム空気電池の負極であることがより好ましく、特にリチウムイオンキャパシタの負極であることが好ましい。
The evaluation method of the present disclosure is suitable for evaluating an electrode active material layer constituting a negative electrode of a battery or a capacitor. More specifically, it is suitable for the evaluation of the electrode active material layer constituting the negative electrode of a lithium ion capacitor, lithium air battery, or lithium sulfur battery, and particularly suitable for the evaluation of the electrode active material layer constituting the negative electrode of the lithium ion capacitor. ing.
[Method for producing electrode]
The manufacturing method of the electrode of this indication includes the process of evaluating the occlusion state of lithium in an electrode active material by the evaluation method of this indication. The electrode is not particularly limited as long as it is a battery or capacitor electrode that utilizes insertion / extraction of lithium ions, but is preferably the negative electrode of the battery or capacitor, and is a lithium ion capacitor, lithium sulfur battery or A negative electrode of a lithium air battery is more preferable, and a negative electrode of a lithium ion capacitor is particularly preferable.
 本開示の電極の製造方法は、特に限定されるものではないが、(A)電極活物質層を形成する工程、(B)電極活物質にリチウムを吸蔵させる工程及び(C)本開示の評価方法により前記電極活物質中のリチウムの吸蔵状態を評価する工程を含んでいることが好ましい。 Although the manufacturing method of the electrode of this indication is not specifically limited, (A) The process of forming an electrode active material layer, (B) The process of occluding lithium in an electrode active material, and (C) Evaluation of this indication It is preferable that the method includes a step of evaluating the occlusion state of lithium in the electrode active material.
 (A)工程において、電極活物質層は、通常、電極活物質及びバインダー等を含有するスラリーを調製し、これを集電体上に塗布し、乾燥させることにより製造される。
 電極活物質としては、上記「リチウムの吸蔵状態を評価する方法」において既に例示したものを使用することができる。
In the step (A), the electrode active material layer is usually produced by preparing a slurry containing an electrode active material and a binder, applying the slurry on a current collector, and drying the slurry.
As the electrode active material, those already exemplified in the above “method for evaluating the occlusion state of lithium” can be used.
 上記バインダーとしては、例えば、スチレン-ブタジエンゴム(SBR)、NBR等のゴム系バインダー;ポリ四フッ化エチレン、ポリフッ化ビニリデンなどのフッ素系樹脂;ポリプロピレン、ポリエチレンの他、特開2009-246137号公報に開示されているようなフッ素変性(メタ)アクリル系バインダーが挙げられる。 Examples of the binder include rubber-based binders such as styrene-butadiene rubber (SBR) and NBR; fluorine-based resins such as polytetrafluoroethylene and polyvinylidene fluoride; polypropylene, polyethylene, and JP 2009-246137 A And fluorine-modified (meth) acrylic binders as disclosed in the above.
 電極活物質層には、更に、カーボンブラック、黒鉛、気相成長炭素繊維、金属粉末等の導電剤;カルボキシルメチルセルロース、そのNa塩又はアンモニウム塩、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ヒドロキシプロピルセルロース、ポリビニルアルコール、酸化スターチ、リン酸化スターチ、又はカゼイン等の増粘剤などが含有されていてもよい。 The electrode active material layer further includes a conductive agent such as carbon black, graphite, vapor-grown carbon fiber, metal powder; carboxyl methyl cellulose, its Na salt or ammonium salt, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, hydroxypropyl cellulose, polyvinyl alcohol Further, a thickener such as oxidized starch, phosphorylated starch, or casein may be contained.
 電極活物質層の厚さは、特に限定されるものではないが、通常5~500μm、好ましくは10~200μm、特に好ましくは10~100μmである。電極活物質層の密度は、リチウムイオン二次電池に用いる電極である場合、好ましくは1.50~2.00g/ccであり、特に好ましくは1.60~1.90g/ccであり、リチウムイオンキャパシタに用いる電極である場合、好ましくは0.50~1.50g/ccであり、特に好ましくは0.70~1.20g/ccである。 The thickness of the electrode active material layer is not particularly limited, but is usually 5 to 500 μm, preferably 10 to 200 μm, particularly preferably 10 to 100 μm. The density of the electrode active material layer is preferably 1.50 to 2.00 g / cc, particularly preferably 1.60 to 1.90 g / cc when the electrode is used in a lithium ion secondary battery. In the case of an electrode used for an ion capacitor, it is preferably 0.50 to 1.50 g / cc, particularly preferably 0.70 to 1.20 g / cc.
 集電体の材質としては、負極集電体として銅、ニッケル、ステンレス等が好ましく、一方、正極集電体として、アルミニウム、ステンレス等が好ましい。集電体の厚みは、正負極どちらであっても、通常5~50μmである。 As the material of the current collector, copper, nickel, stainless steel and the like are preferable as the negative electrode current collector, while aluminum, stainless steel and the like are preferable as the positive electrode current collector. The thickness of the current collector is usually 5 to 50 μm for both positive and negative electrodes.
 (B)工程としては、特に限定されるものではなく、公知の方法を採用することがでる。その具体的態様は、既に上記「リチウムの吸蔵状態を評価する方法」で示した通りである。 (B) The process is not particularly limited, and a known method can be adopted. The specific embodiment is as already described in the above “method for evaluating the occlusion state of lithium”.
 (C)工程は、(B)工程と併行して行っても、(B)工程の後に行ってもよい。また、(C)工程は、外乱光の影響が小さくなるよう、遮光部を備えた環境下で行うことが好ましい。 (C) Process may be performed in parallel with (B) process, or may be performed after (B) process. Moreover, it is preferable to perform (C) process in the environment provided with the light-shielding part so that the influence of disturbance light may become small.
 本開示の製造方法は電池又はキャパシタの負極の製造に好適であるが、本開示の製造方法により製造された負極を備える電池又はキャパシタは、本開示の製造方法により製造された負極を、別途製造された正極と共に外装体内に収納することにより製造することができる。外装体内には、正極及び負極の他、リチウムイオンを生成することができる電解質が供給される。上記電解質は、通常、溶媒中に溶解された電解液の状態で用いられる。リチウムイオンを生成することができる電解質としては、例えば、LiClO4、LiAsF6、LiBF4、LiPF6、LiN(C2F5SO2)2、LiN(CF3SO2)2、LiN(FSO2)2、LiC4BO8等が挙げられる。これらは、単独で又は2種以上を混合して使用することができる。 The manufacturing method of the present disclosure is suitable for manufacturing a negative electrode of a battery or a capacitor, but a battery or a capacitor including a negative electrode manufactured by the manufacturing method of the present disclosure separately manufactures a negative electrode manufactured by the manufacturing method of the present disclosure. It can manufacture by accommodating in the exterior body with the made positive electrode. In addition to the positive electrode and the negative electrode, an electrolyte capable of generating lithium ions is supplied into the exterior body. The electrolyte is usually used in the state of an electrolytic solution dissolved in a solvent. Examples of the electrolyte capable of generating lithium ions include LiClO4, LiAsF6, LiBF4, LiPF6, LiN (C2F5SO2) 2, LiN (CF3SO2) 2, LiN (FSO2) 2, LiC4BO8, and the like. These can be used alone or in admixture of two or more.
 電解質を溶解させるための溶媒としては、非プロトン性の有機溶媒が好ましく、具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネート、γ-ブチロラクトン、アセトニトリル、ジメトキシエタン、テトラヒドロフラン、ジオキソラン、塩化メチレン、スルホラン等を挙げることができる。また、特開平11-307121号公報に記載の4級イミダゾリウム塩、4級ピリジニウム塩、特開2012-142340号公報に記載の4級ピロリジウム塩等のイオン液体を使用することもできる。これらの有機溶媒は、単独で又は2種以上を混合して使用することができる。 As the solvent for dissolving the electrolyte, an aprotic organic solvent is preferable. Specifically, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, methyl ethyl carbonate, γ-butyrolactone, acetonitrile, dimethoxy Examples include ethane, tetrahydrofuran, dioxolane, methylene chloride, sulfolane and the like. Further, ionic liquids such as quaternary imidazolium salts, quaternary pyridinium salts described in JP-A-11-307121, and quaternary pyrrolidinium salts described in JP2012-142340A can also be used. These organic solvents can be used alone or in admixture of two or more.
 電解液中の電解質の濃度は、電解液による内部抵抗を小さくするため、0.1モル/L以上にすることが好ましく、0.5~1.5モル/Lの範囲内にすることがより好ましい。また、電解液には、ビニレンカーボネート、ビニルエチレンカーボネート、1-フルオロエチレンカーボネート、1-(トリフルオロメチル)エチレンカーボネート、無水コハク酸、無水マレイン酸、プロパンスルトン、ジエチルスルホン等の添加剤が含有されていてもよい。 The concentration of the electrolyte in the electrolytic solution is preferably 0.1 mol / L or more, and more preferably in the range of 0.5 to 1.5 mol / L in order to reduce the internal resistance due to the electrolytic solution. preferable. The electrolyte also contains additives such as vinylene carbonate, vinyl ethylene carbonate, 1-fluoroethylene carbonate, 1- (trifluoromethyl) ethylene carbonate, succinic anhydride, maleic anhydride, propane sultone, diethylsulfone, and the like. It may be.
 電解質は、上記のように通常は液状に調製されて使用されるが、ゲル状又は固体状の電解質を使用してもよい。この場合、例えば漏液を抑制することができる。
 電解質が電解液の状態で用いられる場合、正極と負極の間には、通常、正極と負極とが物理的に接触しないようにするためにセパレータが設けられる。セパレータとしては、例えば、セルロースレーヨン、ポリエチレン、ポリプロピレン、ポリアミド、ポリエステル、ポリイミド等を原料とする不織布又は多孔質フィルムを挙げることができる。
The electrolyte is usually prepared and used in a liquid state as described above, but a gel or solid electrolyte may be used. In this case, for example, leakage can be suppressed.
When the electrolyte is used in the state of an electrolyte, a separator is usually provided between the positive electrode and the negative electrode so that the positive electrode and the negative electrode are not in physical contact. As a separator, the nonwoven fabric or porous film which uses a cellulose rayon, polyethylene, a polypropylene, polyamide, polyester, a polyimide etc. as a raw material can be mentioned, for example.
 以上のようにして製造される電池又はキャパシタの構造としては、例えば、板状の正極と負極とがセパレータを介して各々3層以上積層された積層体が外装フィルム内に封入された積層型セル、帯状の正極と負極とがセパレータを介して捲回された積層体が角型又は円筒型の容器に収納された捲回型セル等を挙げることができる。
〔リチウムの吸蔵状態を評価するための装置〕
 本開示のリチウムの吸蔵状態を評価する方法を用いて、リチウムを吸蔵した電極活物質を含む電極50におけるリチウムの吸蔵状態を評価するための装置1について図1を参照しながら説明する。装置1には、図1に示すように、照射部10と、測定部20と、遮蔽部30と、評価部40と、が主に設けられている。なお、本実施形態では装置1に遮蔽部30が設けられている例に適用して説明するが、遮蔽部30が設けられていなくてもよい。
As the structure of the battery or capacitor manufactured as described above, for example, a laminated cell in which a laminate in which three or more plate-like positive electrodes and negative electrodes are laminated via a separator is enclosed in an exterior film A wound cell or the like in which a laminated body in which a strip-like positive electrode and a negative electrode are wound through a separator is housed in a rectangular or cylindrical container can be given.
[Equipment for evaluating the occlusion state of lithium]
The apparatus 1 for evaluating the lithium occlusion state in the electrode 50 including the electrode active material that occludes lithium using the method for evaluating the occlusion state of lithium according to the present disclosure will be described with reference to FIG. As shown in FIG. 1, the apparatus 1 mainly includes an irradiation unit 10, a measurement unit 20, a shielding unit 30, and an evaluation unit 40. In addition, although this embodiment is applied and demonstrated to the example with which the shielding part 30 is provided in the apparatus 1, the shielding part 30 does not need to be provided.
 照射部10は、評価対象である電極50に照射光として可視光線を照射するものであり、電極50、測定部20とともに遮蔽部30の内部に配置されるものである。照射部10が電極50に照射する可視光線は、その波長が特に限定されるものではないが、好ましくは、少なくとも600-780nmの波長域に含まれる多波長光または単色光(以下、多波長光および単色光を総称して単に「光」とも表記する。)を有するものであり、より好ましくは、380-500nmの波長域に含まれる光、および、600-780nmの波長域に含まれる光を少なくとも有するものであり、特に好ましくは、380-500nmの波長域に含まれる光、および、650-780nmの波長域に含まれる光を少なくとも有するものである。 The irradiation unit 10 irradiates the electrode 50 to be evaluated with visible light as irradiation light, and is disposed inside the shielding unit 30 together with the electrode 50 and the measurement unit 20. The wavelength of the visible light applied to the electrode 50 by the irradiating unit 10 is not particularly limited, but is preferably multi-wavelength light or monochromatic light (hereinafter referred to as multi-wavelength light) included in a wavelength region of at least 600 to 780 nm. And monochromatic light is also simply referred to as “light”.), More preferably, light included in the wavelength range of 380 to 500 nm and light included in the wavelength range of 600 to 780 nm. In particular, it preferably has at least light included in a wavelength region of 380 to 500 nm and light included in a wavelength region of 650 to 780 nm.
 照射部10における可視光線を発生させる光源としては、ハロゲンランプ、キセノンランプなどを用いた白色光を出射する光源を用いてもよいし、LED(発光ダイオード)等を用いた単色光を出射する複数の光源の集合体であってもよい。本実施形態では、パルスキセノンランプを用いた白色光を出射する光源である例に適用して説明する。 As a light source that generates visible light in the irradiation unit 10, a light source that emits white light using a halogen lamp, a xenon lamp, or the like may be used, or a plurality of monochromatic lights that use LEDs (light emitting diodes) or the like may be emitted. It may be an aggregate of the light sources. In the present embodiment, description will be made by applying to an example of a light source that emits white light using a pulsed xenon lamp.
 なお、本実施形態において照射部10は、評価部40により可視光線の照射の開始や停止、照射光の強度や波長や照射方向などが制御されないものである例に適用して説明するが、評価部40により可視光線の照射の開始や停止、照射光の強度や波長や照射方向などが制御させるものであってもよく、その形態が特に限定されるものではない。 In the present embodiment, the irradiation unit 10 will be described by applying to an example in which the evaluation unit 40 does not control the start or stop of irradiation of visible light, the intensity, wavelength, or irradiation direction of irradiation light. The start and stop of visible light irradiation, the intensity, wavelength, and irradiation direction of irradiation light may be controlled by the unit 40, and the form is not particularly limited.
 測定部20は、照射光が照射された電極50の反射光を検知し、反射光の反射率(反射光に関する情報に相当)を測定するものである。なお、測定部20は、反射光に関する情報として、上述の反射率の他に、検知した反射光の強度、色彩値または色差値を測定するものであってもよい。本実施形態では、強度、色彩値および色差値と比較して、照射光の揺らぎの影響が小さな反射率を測定するものである例に適用して説明する。 The measuring unit 20 detects the reflected light of the electrode 50 irradiated with the irradiated light, and measures the reflectance of the reflected light (corresponding to information related to the reflected light). Note that the measurement unit 20 may measure the intensity, color value, or color difference value of the detected reflected light in addition to the above-described reflectance as the information related to the reflected light. In the present embodiment, description will be made by applying to an example in which the reflectance is less affected by the fluctuation of the irradiation light compared to the intensity, color value, and color difference value.
 照射光が白色光の本実施形態では、測定部20には、入射した反射光を分光する分光部(図示せず)が設けられている。分光部における分光手段としては、プリズム、回折格子、光学フィルタ等が挙げられる。本実施形態では、平面回折格子を分光手段とする例に適用して説明する。また、本実施形態では、評価対象となる試料を評価する前に、白色の標準試料に白色光を照射し、その反射光の分光スペクトルを測定部20が記憶した後、評価対象となる試料に白色光を照射し、その反射光の分光スペクトルと予め記憶されている標準試料の分光スペクトルから反射率を測定する例に適用して説明する。 In the present embodiment in which the irradiation light is white light, the measurement unit 20 is provided with a spectroscopic unit (not shown) that splits the incident reflected light. Examples of the spectroscopic means in the spectroscopic unit include a prism, a diffraction grating, and an optical filter. In the present embodiment, description will be made by applying to an example in which a planar diffraction grating is used as a spectroscopic means. Moreover, in this embodiment, before evaluating the sample to be evaluated, the white standard sample is irradiated with white light, and the spectral spectrum of the reflected light is stored in the measuring unit 20. Description will be made by applying to an example in which white light is irradiated and the reflectance is measured from the spectrum of the reflected light and the spectrum of the standard sample stored in advance.
 測定部20は、分光部により分光された光の反射率(以下「分光反射率」とも表記する。)を測定し、分光反射率に関する測定信号を評価部40に出力するように構成されている。測定信号を出力する構成としては、ケーブルなどを介して測定信号を出力する有線通信による構成や、電波などを用いて測定信号を出力する無線通信による構成や、情報記録媒体を用いて測定信号を出力する構成などを例示することができる。本実施形態では、測定信号を出力する構成が、有線通信である例に適用して説明する。 The measurement unit 20 is configured to measure the reflectance of light separated by the spectroscopic unit (hereinafter also referred to as “spectral reflectance”) and output a measurement signal related to the spectral reflectance to the evaluation unit 40. . Configurations for outputting measurement signals include configurations using wired communication that outputs measurement signals via cables, configurations using wireless communication that outputs measurement signals using radio waves, etc., and measurement signals using information recording media. An example of a configuration to output can be given. In the present embodiment, description will be made by applying the configuration in which the measurement signal is output to an example in which wired communication is performed.
 なお、照射光が一の単色光であるか又は相互に波長が異なる2種の単色光からなる場合には、上述の分光部が測定部20に設けられていなくてもよい。
 また、本実施形態において測定部20は、評価部40により反射率の測定や、測定信号の出力等を行うタイミングなどが制御されないものである例に適用して説明するが、評価部40により反射率の測定や、測定信号の出力等を行うタイミングなどが制御させるものであってもよい。
Note that when the irradiation light is a single monochromatic light or two types of monochromatic lights having different wavelengths, the above-described spectroscopic unit may not be provided in the measurement unit 20.
Further, in the present embodiment, the measurement unit 20 will be described by applying to an example in which the evaluation unit 40 does not control the timing of performing reflectance measurement, measurement signal output, or the like. The timing for measuring the rate, outputting the measurement signal, and the like may be controlled.
 遮蔽部30は、照射部10、電極50および測定部20を内部に収納可能であり、外部から内部へ光の入射を抑制するものである。言い換えると、測定部20により反射光の反射率を測定する際に、外乱光による影響を抑制するものである。なお、遮蔽部30としては、公知の材料を用いた種々の構成を有するものを用いることができ、その形態は特に限定されるものではない。 The shielding unit 30 can accommodate the irradiation unit 10, the electrode 50, and the measurement unit 20 inside, and suppresses the incidence of light from the outside to the inside. In other words, when the reflectance of reflected light is measured by the measurement unit 20, the influence of disturbance light is suppressed. In addition, as the shielding part 30, what has a various structure using a well-known material can be used, and the form is not specifically limited.
 評価部40は、測定部20から入力された測定信号に基づき、電極50におけるリチウムの吸蔵状態の評価を行うものである。評価部40は、CPU(中央演算処理ユニット)、ROM、RAM、ハードディスク、入出力インタフェース等を有するコンピュータシステムである。ROM等に記憶されている制御プログラムは、CPUを演算部41として機能させるものであり、入出力インタフェース等を送受信部42として機能させるものであり、ハードディスク等を記憶部43として機能させるものである。 The evaluation unit 40 evaluates the occlusion state of lithium in the electrode 50 based on the measurement signal input from the measurement unit 20. The evaluation unit 40 is a computer system having a CPU (Central Processing Unit), ROM, RAM, hard disk, input / output interface, and the like. The control program stored in the ROM or the like causes the CPU to function as the calculation unit 41, causes the input / output interface or the like to function as the transmission / reception unit 42, and causes the hard disk or the like to function as the storage unit 43. .
 演算部41は、測定信号に基づき、電極50におけるリチウムの吸蔵状態を評価する演算を行うものである。本実施形態では、波長が700nmにおける分光反射率と、波長が440nmにおける分光反射率との差を求める演算処理、横軸をリチウム吸蔵率、縦軸を分光反射率の差としたグラフにおいてガウシアン分布曲線や2次曲線を当てはめて検量線を作成する演算処理、作成した検量線において相関係数(R)を求める演算処理、作成した検量線に基づいてリチウム吸蔵率を判定する演算処理を行う例に適用して説明する。なお、相関係数(R)が一定値以上の検量線は、記憶部43に記憶される。 The calculation unit 41 performs calculation for evaluating the occlusion state of lithium in the electrode 50 based on the measurement signal. In this embodiment, a Gaussian distribution in a graph in which the difference between the spectral reflectance at a wavelength of 700 nm and the spectral reflectance at a wavelength of 440 nm is calculated, the horizontal axis is the lithium occlusion rate, and the vertical axis is the spectral reflectance difference. Calculation processing for creating a calibration curve by fitting a curve or quadratic curve, calculation processing for obtaining a correlation coefficient (R 2 ) in the created calibration curve, and calculation processing for determining the lithium occlusion rate based on the created calibration curve The explanation is applied to an example. A calibration curve having a correlation coefficient (R 2 ) equal to or greater than a certain value is stored in the storage unit 43.
 送受信部42は、測定部20から出力された測定信号が入力されるものである。さらに、演算部41による評価結果を外部に出力する場合や、ディスプレイ等に表示する場合に、評価結果に関する信号を出力するものでもある。また、評価部40によって照射部10や測定部20の制御を行う場合には、制御を行う信号を照射部10や測定部20に向けて出力するものである。 The transmission / reception unit 42 receives the measurement signal output from the measurement unit 20. Furthermore, when outputting the evaluation result by the calculating part 41 to the outside, or displaying on the display etc., the signal regarding an evaluation result is also output. When the evaluation unit 40 controls the irradiation unit 10 and the measurement unit 20, a signal for performing the control is output to the irradiation unit 10 and the measurement unit 20.
 記憶部43は、外部から入力された検量線の情報や、演算部41において求められた相関係数(R)の値や、送受信部42を介して入力された測定信号などを記憶するものである。また、記憶されている情報などが、上述の演算処理において必要となった際に、演算部41へ出力するものでもある。
〔電極の製造システム〕
 本開示の電極の製造システムは、電極活物質にリチウムを吸蔵させるための装置、及び本開示の評価装置を備える。
The storage unit 43 stores information on the calibration curve input from the outside, the value of the correlation coefficient (R 2 ) obtained by the calculation unit 41, the measurement signal input via the transmission / reception unit 42, and the like. It is. Further, when stored information or the like becomes necessary in the above-described calculation processing, it is also output to the calculation unit 41.
[Electrode manufacturing system]
The electrode manufacturing system of the present disclosure includes an apparatus for causing the electrode active material to store lithium and the evaluation apparatus of the present disclosure.
 電極活物質にリチウムを吸蔵させるための装置としては、特に限定されるものではないが、例えば、リチウムイオンを含む有機溶媒中で電極活物質層とリチウム供給源を直接接触させる装置、リチウムイオンを含む有機溶媒中で電極活物質層を有する電極とリチウム供給源を電気化学的に接触させる装置、リチウムイオンを含む有機溶媒を使用せずに電極活物質層とリチウム供給源を接触させる装置が挙げられる。その具体的態様は、特開平5-41249号公報の実施例、特開平10-308212号公報、特開2007-214109号公報の実施例、特開2007-280926号公報の実施例、特開2008-124007号公報の実施例、特開2012-49543号公報、特開2012-49544号公報等に開示されている。 A device for inserting lithium into the electrode active material is not particularly limited. For example, a device for directly contacting the electrode active material layer and a lithium supply source in an organic solvent containing lithium ions, Examples include an apparatus for electrochemically contacting an electrode having an electrode active material layer in an organic solvent containing and a lithium supply source, and an apparatus for contacting an electrode active material layer and a lithium supply source without using an organic solvent containing lithium ions. It is done. Specific examples thereof include the examples of JP-A-5-41249, the examples of JP-A-10-308212, the examples of JP-A-2007-214109, the examples of JP-A-2007-280926, and the JP-A-2008. Examples disclosed in JP-A No. 1244007, JP 2012-49543 A, JP 2012-49544 A, and the like.
 電極活物質にリチウムを吸蔵させる前には、通常、電極活物質等を含有するスラリーを調製し、これを集電体上に塗布し乾燥させることにより、集電体上に電極活物質層が形成された電極前駆体が製造される。集電体上に電極活物質層を形成させる装置としては、公知の装置を採用することができる。 Prior to occluding lithium in the electrode active material, a slurry containing the electrode active material or the like is usually prepared, and this is applied onto the current collector and dried to form an electrode active material layer on the current collector. The formed electrode precursor is manufactured. As a device for forming the electrode active material layer on the current collector, a known device can be employed.
 外乱光の影響が小さくなるよう、本開示の評価装置が遮光部を備えているか、本開示の評価装置が遮光部を備えた環境下に設置されていることが好ましい。
 本開示の製造システムは、電池又はキャパシタの負極の製造に適している。より具体的には、リチウムイオンキャパシタ、リチウム空気電池、リチウム硫黄電池の負極の製造に適しており、特にリチウムイオンキャパシタの負極の製造に適している。
It is preferable that the evaluation apparatus of the present disclosure includes a light shielding unit or the evaluation apparatus of the present disclosure is installed in an environment including the light shielding unit so that the influence of disturbance light is reduced.
The manufacturing system of this indication is suitable for manufacture of the negative electrode of a battery or a capacitor. More specifically, it is suitable for the production of negative electrodes for lithium ion capacitors, lithium air batteries, and lithium sulfur batteries, and is particularly suitable for the production of negative electrodes for lithium ion capacitors.
 以下、実施例を挙げて、本開示の実施の形態をさらに具体的に説明する。但し、本開示は、下記実施例に限定されない。なお、以下の実施例は、気温23℃、露点-40℃に制御された空気環境下で行った。
<リチウムキャパシタ用負極の製造及び検量線の作成>
 70mm×382mm、厚さ15μm、表面粗さRa=0.1μmの銅箔からなる集電体の両面に、52mm×52mm、厚さ40μmの負極活物質層を集電体の長手方向に沿ってそれぞれ6カ所形成することにより負極前駆体を作製した。この際、集電体の長辺の一方の端部を長手方向に沿って延びる幅18mmの負極活物質層未形成部と、集電体の短辺の両端部及び負極活物質層間を短手方向に延びる幅10mmの負極活物質層未形成部を設けた。なお、負極活物質層は、黒鉛(活物質)、カルボキシメチルセルロース、アセチレンブラック(導電剤)、バインダー及び分散剤(質量比で88:3:5:3:1)を含む。
Hereinafter, embodiments of the present disclosure will be described more specifically with reference to examples. However, the present disclosure is not limited to the following examples. The following examples were carried out in an air environment controlled at an air temperature of 23 ° C. and a dew point of −40 ° C.
<Manufacture of negative electrode for lithium capacitor and creation of calibration curve>
A negative electrode active material layer having a thickness of 52 mm × 52 mm and a thickness of 40 μm is provided along the longitudinal direction of the current collector on both sides of a current collector made of a copper foil having a thickness of 70 mm × 382 mm, a thickness of 15 μm, and a surface roughness Ra = 0.1 μm. A negative electrode precursor was prepared by forming six locations each. At this time, the negative electrode active material layer unformed portion having a width of 18 mm extending along the longitudinal direction at one end portion of the long side of the current collector, and both ends of the short side of the current collector and the negative electrode active material layer are short. A negative electrode active material layer-unformed portion having a width of 10 mm extending in the direction was provided. Note that the negative electrode active material layer includes graphite (active material), carboxymethylcellulose, acetylene black (conductive agent), a binder, and a dispersant (88: 3: 5: 3: 1 in mass ratio).
 リチウム供給源として50mm×50mm、厚さ1mmのリチウム金属板6枚を、厚さ2mmの銅板上に相互に12mmの間隔をあけて貼り付けることによりリチウム極を作製した。このようなリチウム極を2個作製した。 A lithium electrode was prepared by attaching six lithium metal plates of 50 mm × 50 mm and 1 mm thickness as a lithium supply source on a copper plate of 2 mm with an interval of 12 mm between each other. Two such lithium electrodes were produced.
 厚さ1mmのポリプロピレン製不織布からなるセパレータを介して、上記負極活物質層と上記リチウム金属板が対向するよう、上記負極前駆体の両面に上記リチウム極を配置した。この際、対向する負極活物質層とリチウム金属板の中心位置がほぼ一致するよう、負極前駆体とリチウム極を配置した。 The lithium electrodes were arranged on both sides of the negative electrode precursor so that the negative electrode active material layer and the lithium metal plate faced through a separator made of a polypropylene nonwoven fabric having a thickness of 1 mm. Under the present circumstances, the negative electrode precursor and the lithium electrode were arrange | positioned so that the negative electrode active material layer and center position of a lithium metal plate may correspond substantially.
 上記負極前駆体、セパレータ及びリチウム極を樹脂製の保持部で挟んで固定し、液面センサーを備えたSUS製のチャンバー内に挿入した。この際、上記集電体の長辺の端部に設けた幅18mmの負極活物質層未形成部がチャンバー内の上側に位置するよう負極前駆体等を挿入した。その後、スクロール型ドライ真空ポンプを使用し、チャンバーの下部に接続されている樹脂製の減圧用配管を介してチャンバー内を減圧した。チャンバー内を100Paまで減圧した後、減圧用配管に備えられたコックを閉じた。 The negative electrode precursor, the separator and the lithium electrode were sandwiched and fixed by a resin holding part, and inserted into a SUS chamber equipped with a liquid level sensor. At this time, a negative electrode precursor or the like was inserted so that the negative electrode active material layer unformed portion having a width of 18 mm provided at the end of the long side of the current collector was positioned on the upper side in the chamber. Thereafter, the inside of the chamber was decompressed through a resin decompression pipe connected to the lower portion of the chamber using a scroll type dry vacuum pump. After reducing the pressure in the chamber to 100 Pa, the cock provided in the decompression pipe was closed.
 次いで、チャンバーの下部に接続されている樹脂製の電解液供給用配管を介して、1.2MのLiPF6と3質量%の1-フルオロエチレンカーボネートを含む溶液(溶媒はエチレンカーボネート/エチルメチルカーボネート/ジメチルカーボネート=3/4/3(体積比)の混合溶媒)を供給した。上記LiPF6等を含む溶液の液面が活物質層の上端より5mm上に達したところで、電解液供給用配管に備えられたコックを閉じた。 Next, a solution containing 1.2 M LiPF6 and 3% by mass of 1-fluoroethylene carbonate (solvent is ethylene carbonate / ethyl methyl carbonate / solvent) through a resin electrolyte supply pipe connected to the lower part of the chamber. Dimethyl carbonate = 3/4/3 (volume ratio) mixed solvent). When the liquid level of the solution containing LiPF6 and the like reached 5 mm above the upper end of the active material layer, the cock provided in the electrolyte supply pipe was closed.
 次いで、チャンバーの上部に備えられたリークバルブを開き、チャンバー内圧を大気圧まで戻した。次いで、チャンバーの上部に備えられたドープ用電極を介して、上記負極前駆体及びリチウム極を、電流・電圧モニター付き直流電源に接続し、300mAの電流を通電した。通電時間は、不可逆容量を考慮した上、黒鉛の理論容量(372mAh/g)に対してリチウムの吸蔵率が40%になる時間を設定した。なお、不可逆容量は、リチウムを吸蔵させた後の負極の放電容量を測定することにより予め見積もっておいた。以上のようにしてリチウムを吸蔵させたリチウムイオンキャパシタ用負極を製造した。 Next, the leak valve provided at the top of the chamber was opened, and the chamber internal pressure was returned to atmospheric pressure. Next, the negative electrode precursor and the lithium electrode were connected to a DC power source with a current / voltage monitor via a doping electrode provided in the upper part of the chamber, and a current of 300 mA was applied. In consideration of the irreversible capacity, the energization time was set so that the lithium occlusion rate was 40% with respect to the theoretical capacity of graphite (372 mAh / g). The irreversible capacity was estimated in advance by measuring the discharge capacity of the negative electrode after occlusion of lithium. As described above, a negative electrode for a lithium ion capacitor in which lithium was occluded was manufactured.
 得られた負極をチャンバー内から取り出し、分光測色計(コニカミノルタ株式会社製CM-700d)を用いて、負極活物質層の10カ所について分光反射率を測定した。なお、この際、負極活物質層に照射した光は、パルスキセノンランプを光源とする白色光である。また、上記分光測色計を負極活物質層に接触させて測定を行っているため、外乱光の影響は極めて小さい。 The obtained negative electrode was taken out from the chamber, and the spectral reflectance was measured at 10 points of the negative electrode active material layer using a spectrocolorimeter (CM-700d manufactured by Konica Minolta Co., Ltd.). At this time, the light applied to the negative electrode active material layer is white light using a pulse xenon lamp as a light source. Moreover, since the measurement is performed by bringing the spectrocolorimeter into contact with the negative electrode active material layer, the influence of ambient light is extremely small.
 通電時間を長く設定したこと以外は上記と同様にして、リチウムの吸蔵率が70%、80%、85%、90%、95%、100%の負極をそれぞれ製造し、分光反射率を測定した。 Except that the energization time was set longer, in the same manner as described above, negative electrodes with lithium storage rates of 70%, 80%, 85%, 90%, 95%, and 100% were produced, and the spectral reflectance was measured. .
 測定したデータをパーソナルコンピューターに送信し、リチウムの吸蔵率が異なる7種の負極について、波長700nmにおける分光反射率と波長440nmにおける分光反射率の差(波長700nmにおける分光反射率-波長440nmにおける分光反射率、以下「分光反射率差」ともいう。)を求めた。横軸をリチウム吸蔵率、縦軸を分光反射率差として、得られた結果をプロットし、ガウシアン分布曲線を当てはめたものを検量線とした。ガウシアン分布曲線を当てはめた際の相関係数(R)は、0.989であった。また、リチウムの吸蔵率が85%の負極において、5カ所の測定ポイントをそれぞれ5回測定(合計25回測定)したときの分光反射率差のばらつき(標準偏差)は、0.12であった。 The measured data is transmitted to a personal computer, and the difference between the spectral reflectance at a wavelength of 700 nm and the spectral reflectance at a wavelength of 440 nm (spectral reflectance at a wavelength of 700 nm−spectral reflection at a wavelength of 440 nm) for seven types of negative electrodes with different lithium storage rates. Rate, hereinafter also referred to as “spectral reflectance difference”). The obtained results were plotted with the horizontal axis representing the lithium occlusion rate and the vertical axis representing the spectral reflectance difference, and a calibration curve was obtained by fitting a Gaussian distribution curve. The correlation coefficient (R 2 ) when a Gaussian distribution curve was fitted was 0.989. Further, in the negative electrode having an occlusion rate of lithium of 85%, the dispersion (standard deviation) in the spectral reflectance difference when the five measurement points were measured five times (measured 25 times in total) was 0.12. .
 一方、横軸をリチウム吸蔵率、縦軸を波長700nmにおける分光反射率として、得られた結果をプロットし、ガウシアン分布曲線を当てはめたところ、相関係数(R2)は、0.615であった。また、リチウムの吸蔵率が85%の負極において、5カ所の測定ポイントをそれぞれ5回測定(合計25回測定)したときの波長700nmにおける分光反射率のばらつき(標準偏差)は、0.22であった。なお、横軸をリチウム吸蔵率、縦軸を波長700nmにおける分光反射率として、リチウム吸蔵率が40%、70%、80%、85%の場合の結果をプロットし、2次曲線当てはめたところ、相関係数(R)は、0.948であった。
<リチウム吸蔵率の評価>
 上記<リチウムキャパシタ用負極の製造及び検量線の作成>において、負極前駆体及びリチウム極を外部短絡させたこと以外は上記と同様にして、リチウムを吸蔵させたリチウムイオンキャパシタ用負極を製造し、分光反射率を測定し、分光反射率差を求めた。また、同条件にて別途製造した負極について放電容量を測定した。得られた分光反射率差を上記検量線に当てはめることにより求められるリチウム吸蔵率は、放電容量より求められるリチウム吸蔵率と一致していた。
On the other hand, when the obtained results were plotted with the horizontal axis representing the lithium occlusion rate and the vertical axis representing the spectral reflectance at a wavelength of 700 nm and a Gaussian distribution curve was fitted, the correlation coefficient (R2) was 0.615. . In addition, in a negative electrode having an occlusion rate of 85%, the dispersion (standard deviation) in spectral reflectance at a wavelength of 700 nm when five measurement points were measured five times (total 25 measurements) was 0.22. there were. When the horizontal axis is the lithium occlusion rate and the vertical axis is the spectral reflectance at a wavelength of 700 nm, the results when the lithium occlusion rate is 40%, 70%, 80%, and 85% are plotted and a quadratic curve is fitted. The correlation coefficient (R 2 ) was 0.948.
<Evaluation of lithium storage rate>
In the above <Manufacture of negative electrode for lithium capacitor and creation of calibration curve>, in the same manner as described above except that the negative electrode precursor and the lithium electrode were externally short-circuited, a negative electrode for lithium ion capacitor having occluded lithium was manufactured, Spectral reflectance was measured and the spectral reflectance difference was determined. Moreover, the discharge capacity was measured about the negative electrode separately manufactured on the same conditions. The lithium storage rate obtained by applying the obtained spectral reflectance difference to the calibration curve was consistent with the lithium storage rate obtained from the discharge capacity.

Claims (14)

  1.  リチウムを吸蔵した電極活物質を含む層に可視光線を含む光を照射し、その反射光からリチウムの吸蔵状態を評価する方法。 A method in which a layer containing an electrode active material that occludes lithium is irradiated with light containing visible light, and the occlusion state of lithium is evaluated from the reflected light.
  2.  リチウムを吸蔵した電極活物質を含む層に可視光線を含む光を照射し、その反射率からリチウムの吸蔵状態を評価する方法。 A method of evaluating the occlusion state of lithium from the reflectance by irradiating a layer containing an electrode active material occluded with lithium with light containing visible light.
  3.  1種又は相互に異なる2種以上の波長における反射率を利用してリチウムの吸蔵状態を評価する、請求項2に記載の方法。 The method according to claim 2, wherein the occlusion state of lithium is evaluated using reflectance at one or two or more different wavelengths.
  4.  リチウムを吸蔵した電極活物質を含む層に白色光を照射し、その反射光を分光し、次いで相互に異なる2種の波長における分光反射率の差又は比を測定することによりリチウムの吸蔵状態を評価する方法。 The layer containing the electrode active material that occludes lithium is irradiated with white light, the reflected light is dispersed, and then the difference or ratio of spectral reflectance at two different wavelengths is measured to determine the occlusion state of lithium. How to evaluate.
  5.  前記相互に異なる2種の波長における分光反射率の差又は比が、相互に50nm以上異なる2種の波長における分光反射率の差又は比である、請求項4に記載の方法。 The method according to claim 4, wherein the difference or ratio of spectral reflectances at two different wavelengths is a difference or ratio of spectral reflectances at two different wavelengths of 50 nm or more.
  6.  前記相互に50nm以上異なる2種の波長における分光反射率の差又は比が、380-500nmの範囲にある特定の波長における分光反射率と600-780nmの範囲にある特定の波長における分光反射率との差又は比である、請求項5に記載の方法。 The difference or ratio of the spectral reflectances at two wavelengths different from each other by 50 nm or more is a spectral reflectance at a specific wavelength in the range of 380-500 nm and a spectral reflectance at a specific wavelength in the range of 600-780 nm. The method of claim 5, wherein the difference or ratio.
  7.  リチウムを吸蔵した電極活物質を含む層に波長が相互に異なる2種の可視領域にある単色光を含む光を照射し、それらの反射率の差を測定することによりリチウムの吸蔵状態を評価する方法。 Evaluate the occlusion state of lithium by irradiating a layer containing an electrode active material that occludes lithium with light containing monochromatic light in two visible regions having different wavelengths and measuring the difference in reflectance between them. Method.
  8.  前記波長が相互に異なる2種の可視領域にある単色光が、波長が相互に50nm以上異なる2種の単色光である、請求項7に記載の方法。 The method according to claim 7, wherein the monochromatic lights in the two visible regions having different wavelengths are two monochromatic lights having wavelengths different from each other by 50 nm or more.
  9.  前記波長が相互に50nm以上異なる2種の可視領域にある単色光が、380-500nmの範囲にある単色光と600-780nmの範囲にある単色光である、請求項8に記載の方法。 The method according to claim 8, wherein the monochromatic light in the two visible regions whose wavelengths are different from each other by 50 nm or more are monochromatic light in the range of 380-500 nm and monochromatic light in the range of 600-780 nm.
  10.  前記リチウムを吸蔵した電極活物質が負極活物質である、請求項1~9のいずれか1項に記載の方法。 The method according to any one of claims 1 to 9, wherein the electrode active material that occludes lithium is a negative electrode active material.
  11.  前記電極活物質が炭素材料を含むものである、請求項1~10のいずれか1項に記載の方法。 The method according to any one of claims 1 to 10, wherein the electrode active material contains a carbon material.
  12.  請求項1~11のいずれか1項に記載の方法により電極活物質中のリチウムの吸蔵状態を評価する工程を含む電極の製造方法。 A method for producing an electrode comprising a step of evaluating the occlusion state of lithium in the electrode active material by the method according to any one of claims 1 to 11.
  13. (1)リチウムを吸蔵した電極活物質を含む層に可視光線を含む光を照射する照射部、及び(2)前記リチウムを吸蔵した電極活物質を含む層からの反射光を受光し、反射光に関する情報を測定する測定部
    を備える電極活物質中のリチウムの吸蔵状態を評価するための装置。
    (1) an irradiation unit that irradiates light containing visible light to a layer containing an electrode active material that occludes lithium; and (2) receives reflected light from the layer containing an electrode active material that occludes lithium, and reflects the reflected light. The apparatus for evaluating the occlusion state of lithium in an electrode active material provided with the measurement part which measures the information regarding.
  14.  電極活物質にリチウムを吸蔵させるための装置、及び請求項13に記載の装置を備える電極の製造システム。 An apparatus for storing lithium in the electrode active material, and an electrode manufacturing system comprising the apparatus according to claim 13.
PCT/JP2016/052006 2015-01-30 2016-01-25 Method for evaluating state of occlusion of lithium, method for manufacturing electrode, device for evaluating state of occlusion of lithium, and electrode manufacturing system WO2016121687A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016572018A JPWO2016121687A1 (en) 2015-01-30 2016-01-25 Method for evaluating lithium storage state, electrode manufacturing method, apparatus for evaluating lithium storage state, and electrode manufacturing system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015017055 2015-01-30
JP2015-017055 2015-01-30

Publications (1)

Publication Number Publication Date
WO2016121687A1 true WO2016121687A1 (en) 2016-08-04

Family

ID=56543300

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2016/052006 WO2016121687A1 (en) 2015-01-30 2016-01-25 Method for evaluating state of occlusion of lithium, method for manufacturing electrode, device for evaluating state of occlusion of lithium, and electrode manufacturing system

Country Status (2)

Country Link
JP (1) JPWO2016121687A1 (en)
WO (1) WO2016121687A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021579A (en) * 2019-07-25 2021-02-18 トヨタ自動車株式会社 Lithium deposition inspection device
EP4138152A4 (en) * 2020-04-13 2024-01-17 Lg Energy Solution Ltd Method for evaluating quality of electrode and method for manufacturing electrode
EP4138151A4 (en) * 2020-04-13 2024-01-17 Lg Energy Solution Ltd Method for evaluating quality of electrode and method for manufacturing electrode

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116251A (en) * 2012-12-12 2014-06-26 Hitachi Maxell Ltd Lithium ion secondary battery, and lithium ion secondary battery control method, state detection method of lithium ion secondary battery
JP2015095320A (en) * 2013-11-11 2015-05-18 日立マクセル株式会社 Lithium ion secondary battery and using method thereof

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07198597A (en) * 1993-12-29 1995-08-01 Kurabo Ind Ltd Photoelectric measuring instrument
JPH11230919A (en) * 1998-02-18 1999-08-27 Yuasa Corp Nondestructive analytical method for electrochemical state of battery
JP2003208922A (en) * 2002-01-10 2003-07-25 Hitachi Ltd Lithium ion secondary battery
JP5878839B2 (en) * 2012-07-26 2016-03-08 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014116251A (en) * 2012-12-12 2014-06-26 Hitachi Maxell Ltd Lithium ion secondary battery, and lithium ion secondary battery control method, state detection method of lithium ion secondary battery
JP2015095320A (en) * 2013-11-11 2015-05-18 日立マクセル株式会社 Lithium ion secondary battery and using method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021021579A (en) * 2019-07-25 2021-02-18 トヨタ自動車株式会社 Lithium deposition inspection device
EP4138152A4 (en) * 2020-04-13 2024-01-17 Lg Energy Solution Ltd Method for evaluating quality of electrode and method for manufacturing electrode
EP4138151A4 (en) * 2020-04-13 2024-01-17 Lg Energy Solution Ltd Method for evaluating quality of electrode and method for manufacturing electrode
US11971344B2 (en) 2020-04-13 2024-04-30 Lg Energy Solution, Ltd. Electrode quality evaluation method and electrode manufacturing method

Also Published As

Publication number Publication date
JPWO2016121687A1 (en) 2017-11-09

Similar Documents

Publication Publication Date Title
US9742042B2 (en) Voltage protection and health monitoring of batteries with reference electrodes
US9379418B2 (en) Battery with reference electrode for voltage monitoring
KR101606316B1 (en) Nonaqueous electrolyte secondary battery
CN105745774A (en) Non-aqueous electrolyte secondary battery
WO2016121687A1 (en) Method for evaluating state of occlusion of lithium, method for manufacturing electrode, device for evaluating state of occlusion of lithium, and electrode manufacturing system
JPWO2017047280A1 (en) Lithium secondary battery and manufacturing method thereof
JP2019160814A (en) Electrode and manufacturing method for the same
JP2014116251A (en) Lithium ion secondary battery, and lithium ion secondary battery control method, state detection method of lithium ion secondary battery
CN111129594A (en) Electrochemical device and electronic device comprising same
Solchenbach et al. Monitoring SEI formation on graphite electrodes in lithium-ion cells by impedance spectroscopy
US9847558B1 (en) Methods and apparatus for real-time characterization of batteries with a reference electrode
CN105122506A (en) Non-aqueous electrolyte secondary cell and method for manufacturing cell
CN111063883A (en) Electrochemical device and electronic device comprising same
JP6994157B2 (en) Non-aqueous electrolyte secondary battery and battery assembly
US20140336975A1 (en) Methods of measuring electrode density and electrode porosity
Wang et al. Application of Advanced Vibrational Spectroscopy in Revealing Critical Chemical Processes and Phenomena of Electrochemical Energy Storage and Conversion
JP2008282798A (en) Manufacturing method of electrochemical device and its electrode, as well as treatment device of electrode of electrochemical device
US20150104699A1 (en) Nonaqueous electrolyte secondary battery
JP2017117748A (en) Battery characteristic evaluation method using nonaqueous electrolyte coin-type battery, and battery characteristic evaluation method of positive electrode active material for nonaqueous electrolyte secondary battery
Portalis et al. Electrochemical impedance spectroscopy investigation on battery materials using a symmetrical cell
CN107078257B (en) Separator for battery, laminated separator, lithium ion secondary battery, and battery pack
Stock et al. Cell teardown and characterization of an automotive prismatic LFP battery
KR20220163934A (en) Lithium-ion cells, battery modules, battery packs and electrical devices
JP2006269173A (en) Battery
JP2012202951A (en) Infrared spectral analysis apparatus and utilization thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16743290

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016572018

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16743290

Country of ref document: EP

Kind code of ref document: A1