JP6323873B2 - Electrode for measuring secondary battery operand using soft X-ray - Google Patents

Electrode for measuring secondary battery operand using soft X-ray Download PDF

Info

Publication number
JP6323873B2
JP6323873B2 JP2014164810A JP2014164810A JP6323873B2 JP 6323873 B2 JP6323873 B2 JP 6323873B2 JP 2014164810 A JP2014164810 A JP 2014164810A JP 2014164810 A JP2014164810 A JP 2014164810A JP 6323873 B2 JP6323873 B2 JP 6323873B2
Authority
JP
Japan
Prior art keywords
electrode
thin film
active material
soft
current collector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014164810A
Other languages
Japanese (ja)
Other versions
JP2016040763A (en
Inventor
朝倉 大輔
大輔 朝倉
英司 細野
英司 細野
松田 弘文
弘文 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2014164810A priority Critical patent/JP6323873B2/en
Publication of JP2016040763A publication Critical patent/JP2016040763A/en
Application granted granted Critical
Publication of JP6323873B2 publication Critical patent/JP6323873B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Analysing Materials By The Use Of Radiation (AREA)
  • Cell Electrode Carriers And Collectors (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池電極の充放電機構解明に不可欠な電子状態解析に関するものである。また、本発明は、薄膜構造を持つリチウムイオン二次電池電極に関するものである。   The present invention relates to an electronic state analysis indispensable for elucidating a charge / discharge mechanism of a lithium ion secondary battery electrode. The present invention also relates to a lithium ion secondary battery electrode having a thin film structure.

リチウムイオン二次電池用正極として広く用いられているLiCoO2、LiMn2O4、LiFePO4等の材料は、車載用等の大型用途に関しては充放電容量等の性能が不十分であり、より高性能な新規正極材料の開発・探索が進められている。また、負極材料においてはカーボン系材料が一般的となっているが、並行してFe2O3やCoO等の3d遷移金属酸化物等の研究も進められている。 Materials such as LiCoO 2 , LiMn 2 O 4 , and LiFePO 4 that are widely used as positive electrodes for lithium ion secondary batteries have insufficient performance such as charge / discharge capacity for large-scale applications such as in-vehicle use. Development and search for new high performance cathode materials are underway. In addition, carbon-based materials are generally used as negative electrode materials, but studies on 3d transition metal oxides such as Fe 2 O 3 and CoO are also being conducted in parallel.

このような、遷移金属化合物系電極材料の高性能化を図るためには、既存材料の充放電機構を解明することが重要であり、充放電反応中の遷移金属元素の酸化還元反応の追跡を目的とした電子状態解析が広く行われている。電子状態解析の手法としては、放射光硬X線吸収分光などが主流となっているが、この方法は、充放電に最も重要な遷移金属3d−酸素2p混成軌道の情報を詳しく解明することが苦手である。
一方で、このような情報を得ることが可能な放射光軟X線吸収分光や軟X線発光分光の適用も進められているが、この方法では、真空中に試料、即ち電極を置く必要があり、電解液を伴う充放電動作下(オペランド)測定は、そのままでは不可能である。
In order to improve the performance of such transition metal compound-based electrode materials, it is important to elucidate the charge / discharge mechanism of existing materials, and it is necessary to track the oxidation-reduction reaction of transition metal elements during the charge / discharge reaction. The intended electronic state analysis is widely performed. As a method of electronic state analysis, synchrotron radiation hard X-ray absorption spectroscopy is the mainstream, but this method can elucidate the information of the transition metal 3d-oxygen 2p hybrid orbital, which is the most important for charge and discharge. I'm not good at it.
On the other hand, the application of synchrotron radiation soft X-ray absorption spectroscopy and soft X-ray emission spectroscopy capable of obtaining such information is also in progress. However, in this method, it is necessary to place a sample, that is, an electrode in a vacuum. Yes, measurement under the charge / discharge operation with the electrolyte (operand) is not possible as it is.

近年、軟X線を透過させつつ、真空槽と大気圧槽の隔離が可能なSi3N4を主体とする薄膜窓材を用いることで、燃料電池触媒や液体試料などの試料について、大気圧下のオペランド軟X線吸収/発光分光分析を可能とする技術が開発された[非特許文献1、2、3]。
しかしながら、電解液を伴うリチウムイオン二次電池、およびその電極材料については、この方法を適用した例はない。これは、このような方法が可能であるためには、分析対象の試料が軟X線透過性の窓材に密着されていることが必要であるのに対し、リチウムイオン二次電池の電極材料については、充放電に際し、電極活物質が窓材から剥がれやすいことが原因として挙げられる。これには、リチウムイオン二次電池特有の、有機電解液や金属Liの反応性の高さや、印加電圧の範囲が広いこと等が関連していると考えられる。
一方で、リチウムイオン二次電池においては、上述の二次電池構成部材の高い反応性に起因して、構成部材界面に各種反応相が形成され、二次電池特性に影響を及ぼしていることから、二次電池を動作させた状態で、構成部材の電子状態の解析を行うことが本質的に重要であり、軟X線を用いたオペランド分析を可能とする技術が待望されていた。
In recent years, by using a thin-film window material mainly composed of Si 3 N 4 that can transmit soft X-rays and can be separated from a vacuum chamber and an atmospheric pressure chamber, atmospheric pressure can be applied to samples such as fuel cell catalysts and liquid samples. The following technologies have been developed that enable the operand soft X-ray absorption / emission spectroscopy [Non-Patent Documents 1, 2, 3].
However, there is no example in which this method is applied to a lithium ion secondary battery with an electrolytic solution and its electrode material. This is because, in order for such a method to be possible, the sample to be analyzed needs to be in close contact with a soft X-ray transmissive window material, whereas the electrode material of a lithium ion secondary battery In the case of charging / discharging, the electrode active material is easily peeled off from the window material. This is considered to be related to the high reactivity of the organic electrolyte and metal Li, the wide range of applied voltage, etc., which are peculiar to lithium ion secondary batteries.
On the other hand, in a lithium ion secondary battery, various reaction phases are formed at the component member interface due to the high reactivity of the above-described secondary battery component member, which affects the secondary battery characteristics. In the state where the secondary battery is operated, it is essential to analyze the electronic state of the structural member, and a technique that enables operand analysis using soft X-rays has been awaited.

特開2008-261650JP2008-261650

H. Niwa et al., Electrochem. Commun. 35 (2013) 57.H. Niwa et al., Electrochem. Commun. 35 (2013) 57. T. Tokushima et al., Chem. Phys. Lett. 460 (2008) 387.T. Tokushima et al., Chem. Phys. Lett. 460 (2008) 387. J. Guo and Y. Luo, J. Electron Spectrosc. Relat. Phenom. 177 (2010) 181.J. Guo and Y. Luo, J. Electron Spectrosc. Relat. Phenom. 177 (2010) 181. J. Chen et al., Adv. Mater. 17 (2005) 582.J. Chen et al., Adv. Mater. 17 (2005) 582. C. T. Cherian et al., J. Mater. Chem. 22 (2012) 12198.C. T. Cherian et al., J. Mater. Chem. 22 (2012) 12198. W. Yang et al., Phys. Rev. B 80 (2009) 014508.W. Yang et al., Phys. Rev. B 80 (2009) 014508.

本発明は、リチウムイオン二次電池電極の電気化学オペランド軟X線吸収/発光分光の実現を可能とする、Si3N4薄膜を用いた薄膜電極を提供することを課題とする。 It is an object of the present invention to provide a thin film electrode using a Si 3 N 4 thin film that can realize electrochemical operand soft X-ray absorption / emission spectroscopy of a lithium ion secondary battery electrode.

リチウムイオン電池において電気化学オペランド軟X線吸収/発光分光を行うには、上述のとおり遷移金属酸化物等の電極活物質が軟X線透過性の窓材に密着されていることが必要である。具体的には、電極活物質の電気化学オペランド分析を行うための軟X線透過性の窓材には、Si3N4層の電極活物質と接する側に電極活物質の電気化学反応により生じる電流を取り出すための金属集電体層が積層されており、電極活物質が当該金属集電体層に密着していることが必要とされる。
電極活物質を当該Si3N4薄膜窓材上に配置された金属集電体層に密着させるためには、燃料電池に関する従来技術のように電極活物質のスラリーを塗布、乾燥させるのではなく、当該金属集電体上に直接、遷移金属酸化物等の電極活物質を、熱処理を伴う成膜によって得ることが重要である。
一方、集電体を設けた上記軟X線透過性窓材においては、軟X線を十分に透過させるために集電体(金属薄膜)の厚さを薄くし透過率を上げる必要がある。例えば、特許文献1にあるような既製品として販売されている軟X線透過性窓材は、密着層としてCrやTiの単層を用いたSi3N4(150nm)/Cr or Ti(3nm)/Au(10nm)の三層構造を有している。しかしながら、このような従来の窓材は、熱処理によってSi3N4/Cr or Ti界面の密着性が低下し得、これにより、この界面に空気が入り込むことによってCr or Tiが酸化し、また、Au自体は酸化しないものの、Au原子の拡散や移動が生じ、厚さ10 nmのAu層の均一性が低下することによって、結果としてAu層の電気抵抗が大きく増大することが容易に想像され、上述の熱処理を必要とするリチウムイオン電池のオペランド分析用電極の集電体として使用するのは困難である。一方で、集電体となるAuなどの金属膜を100-200nmのように厚く製膜することで、熱処理によって生じうるCr or Tiの酸化とCr or Ti/Au界面近傍でのAuの拡散等に起因する抵抗増加は抑制されると考えられるが、これにより軟X線の透過率が大きく減少し、オペランド測定用の窓としての役割を果たさない。
In order to perform electrochemical operand soft X-ray absorption / emission spectroscopy in a lithium ion battery, it is necessary that an electrode active material such as a transition metal oxide is in close contact with a soft X-ray transparent window material as described above. . Specifically, a soft X-ray transparent window material for performing an electrochemical operand analysis of an electrode active material is generated by an electrochemical reaction of the electrode active material on the side in contact with the electrode active material of the Si 3 N 4 layer. It is necessary that the metal current collector layer for taking out the current is laminated and the electrode active material is in close contact with the metal current collector layer.
In order to make the electrode active material adhere to the metal current collector layer disposed on the Si 3 N 4 thin film window material, a slurry of the electrode active material is not applied and dried as in the prior art related to fuel cells. It is important to obtain an electrode active material such as a transition metal oxide directly on the metal current collector by film formation with heat treatment.
On the other hand, in the soft X-ray transmissive window member provided with the current collector, it is necessary to reduce the thickness of the current collector (metal thin film) and increase the transmittance in order to sufficiently transmit the soft X-rays. For example, a soft X-ray transparent window material sold as an off-the-shelf product as disclosed in Patent Document 1 is Si 3 N 4 (150 nm) / Cr or Ti (3 nm using a single layer of Cr or Ti as an adhesion layer. ) / Au (10 nm). However, such a conventional window material can reduce the adhesion of the Si 3 N 4 / Cr or Ti interface due to heat treatment, and as a result, Cr or Ti is oxidized when air enters the interface, Although Au itself does not oxidize, it is easily imagined that the electrical resistance of the Au layer increases greatly as a result of the diffusion and movement of Au atoms and the decrease in uniformity of the 10 nm thick Au layer, It is difficult to use as a current collector for an operand analysis electrode of a lithium ion battery that requires the above-described heat treatment. On the other hand, by forming a thick metal film such as Au as a current collector to a thickness of 100-200 nm, oxidation of Cr or Ti that may occur due to heat treatment, diffusion of Au near the Cr or Ti / Au interface, etc. Although it is considered that the increase in resistance due to is suppressed, the soft X-ray transmittance is greatly reduced and does not serve as a window for operand measurement.

また、特許文献1にあるような既製品の軟X線透過性窓材は、厚さが160nm程度しかなく、上記熱処理に際し容易に破損することが考えられるので、オペランド測定用電極を作成するには、Siウェハ/Si3N4/集電体/活物質膜を、熱処理を含む工程で作製した後に、集電体/活物質膜を損なわないようにSi面から湿式エッチングし、Si3N4の窓を作製する必要がある。したがって、湿式エッチングに用いる塩基性溶液に対して集電体/活物質膜を保護しながらSiをエッチングすることが求められる。 In addition, an off-the-shelf soft X-ray transmissive window material as disclosed in Patent Document 1 has a thickness of only about 160 nm and can be easily damaged during the heat treatment. After the Si wafer / Si 3 N 4 / current collector / active material film was fabricated in a process including heat treatment, wet etching was performed from the Si surface so as not to damage the current collector / active material film, and Si 3 N 4 windows need to be made. Therefore, it is required to etch Si while protecting the current collector / active material film against a basic solution used for wet etching.

本発明者らは、Siウェハ/Si3N4薄膜上に金属層との密着性が高いAl2O3をスパッタ成膜させ、その上に電子ビーム蒸着法を使ってTi(10-20 nm)層を成膜し、次いでAu(10-20nm)層を成膜することで、上記熱処理による活物質作製後の金属集電体の抵抗増加を抑制することができることを見出した。 The present inventors sputter-deposited Al 2 O 3 having high adhesion with a metal layer on a Si wafer / Si 3 N 4 thin film, and Ti (10-20 nm) thereon using an electron beam evaporation method. ) Layer, and then an Au (10-20 nm) layer was found to suppress the increase in resistance of the metal current collector after the active material was produced by the heat treatment.

また、本発明者らは、熱処理後の電極に対し、耐塩基性が強いポリエチレン等のポリマーシートと、エポキシ樹脂と変成シリコーンポリマーとの化学反応形接着剤とを用いることで、集電体/活物質膜側を保護しながらSiをエッチングし窓部の加工を行うことで、集電体/活物質膜を損なわずに軟X線透過用の窓部を作成することに成功した。   In addition, the present inventors use a polymer sheet such as polyethylene having a strong base resistance and a chemically reactive adhesive between an epoxy resin and a modified silicone polymer for the electrode after heat treatment, thereby providing a current collector / By etching Si and processing the window while protecting the active material film side, we succeeded in creating a soft X-ray transmission window without damaging the current collector / active material film.

本出願は、上記知見に基づくものであり、具体的には、以下の発明を提供するものである。
(1)Siウェハ/Si3N4薄膜上に作成された、Al2O3/Ti/Auという三層構造を有する、電極活物質焼成後にも低抵抗を示す薄膜集電体。
(2)Siウェハ/Si3N4薄膜上にAl2O3、Ti、Auを順次成膜することを特徴とする、(1)に記載の薄膜集電体の作製方法。
(3)(1)に記載の薄膜集電体上に電極活物質前駆体を被覆した後、高温焼成して電極活物質層を設けることを特徴とする、電池用薄膜電極の作製方法。
(4)(3)の方法により作成された、電池用薄膜電極。
(5)電極活物質がリチウムイオン電池の正極用活物質である、(4)に記載の電池用薄膜電極。
(6)電極活物質がリチウムイオン電池の負極用活物質である、(4)に記載の電池用薄膜電極。
(7)(4)に記載の薄膜電極のSiウェハをSi3N4層が露出するまでエッチングすることによって形成された軟X線透過性の窓部を有することを特徴とする、電気化学オペランド軟X線吸収/発光分光用電極。
(8)(4)に記載の薄膜電極のSi側表面の窓体形成部位を除く部分を保護しながら、当該窓体形成部位のSiウェハをSi3N4層が露出するまでエッチングすることによって、軟X線透過性の窓部を形成することを特徴とする、電気化学オペランド軟X線吸収/発光分光用電極の作製方法。
The present application is based on the above findings, and specifically provides the following inventions.
(1) A thin film current collector produced on a Si wafer / Si 3 N 4 thin film and having a three-layer structure of Al 2 O 3 / Ti / Au and exhibiting low resistance even after electrode active material firing.
(2) The method for producing a thin film current collector according to (1), wherein Al 2 O 3 , Ti, and Au are sequentially formed on a Si wafer / Si 3 N 4 thin film.
(3) A method for producing a thin-film electrode for a battery, wherein the electrode active material precursor is coated on the thin-film current collector according to (1) and then fired at a high temperature to provide an electrode active material layer.
(4) A thin film electrode for a battery prepared by the method of (3).
(5) The thin film electrode for a battery according to (4), wherein the electrode active material is an active material for a positive electrode of a lithium ion battery.
(6) The thin film electrode for a battery according to (4), wherein the electrode active material is an active material for a negative electrode of a lithium ion battery.
(7) An electrochemical operand comprising a soft X-ray transparent window formed by etching the thin film electrode Si wafer according to (4) until the Si 3 N 4 layer is exposed. Electrode for soft X-ray absorption / emission spectroscopy.
(8) By etching the Si wafer at the window forming portion until the Si 3 N 4 layer is exposed, while protecting the portion other than the window forming portion on the Si side surface of the thin film electrode described in (4) A method for producing an electrode for electrochemical operand soft X-ray absorption / emission spectroscopy, comprising forming a soft X-ray transparent window.

本発明により、リチウムイオン電池電極材料の電気化学オペランド軟X線吸収/発光分光が可能となった。電気化学オペランド測定という実環境下で、軟X線吸収/発光分光を用いることで、従来の電子状態解析よりもはるかに豊富かつ正確な情報を得ることが可能となった。このように、本発明によって、様々な電極材料のオペランド電子状態解析が可能となる。   The present invention enables electrochemical operand soft X-ray absorption / emission spectroscopy of lithium ion battery electrode materials. By using soft X-ray absorption / emission spectroscopy in an actual environment of electrochemical operand measurement, it has become possible to obtain much richer and more accurate information than conventional electronic state analysis. Thus, according to the present invention, it is possible to analyze operand electronic states of various electrode materials.

電気化学オペランド軟X線吸収/発光分光用電極の作製工程を示す図。The figure which shows the preparation process of the electrode for electrochemical operand soft X-ray absorption / emission spectroscopy. 完成した電気化学オペランド軟X線吸収/発光分光用電極の構造を示す図。The figure which shows the structure of the electrode for the completed electrochemical operand soft X-ray absorption / emission spectroscopy. エッチング前に、Siウェハ/Si3N4薄膜/集電体/電極活物質をポリエチレンシートと接着剤で保護した状態の模式図。Before etching, schematic view of a state in which the protective Si wafer / Si 3 N 4 film / current collector / electrode active material with a polyethylene sheet and the adhesive. エッチング後の完成した電極の模式図。The schematic diagram of the completed electrode after an etching. Siウェハ/Si3N4(150nm)/Al2O3(5nm)/Ti(20nm)/Au(15nm) 基板のAu層上に作成したFe2O3薄膜の第1サイクル〜第3サイクルのサイクリックボルタンメトリー曲線。Si wafer / Si 3 N 4 (150 nm) / Al 2 O 3 (5 nm) / Ti (20 nm) / Au (15 nm) First to third cycles of Fe 2 O 3 thin film formed on the Au layer of the substrate Cyclic voltammetry curve. 完成したFe2O3電極に対して行った電気化学オペランド軟X線発光分光スペクトル。Electrochemical operand soft X-ray emission spectroscopy performed on the completed Fe 2 O 3 electrode.

本発明の薄膜電極における軟X線透過部(窓部)は、Si3N4/Al2O3/Ti/Au/電極活物質で表される膜構造を有する。各層の膜厚は、軟X線吸収/発光分光が実用的に行える範囲で、最適値を考慮した。Si3N4については、窓の機械的強度を保持する上で、市販品と同等の150 nm 以上が望ましい。Ti層については15-20nm程度、Au層については10-20nm程度の膜厚が好ましい。Ti層の密着性を上げる役割のAl2O3層は、Al2O3層が維持できる範囲でできるだけ薄い方が好ましく、最適値として5nmを選んだ。 The soft X-ray transmission part (window part) in the thin film electrode of the present invention has a film structure represented by Si 3 N 4 / Al 2 O 3 / Ti / Au / electrode active material. The thickness of each layer was determined in consideration of an optimum value within a range where soft X-ray absorption / emission spectroscopy can be practically performed. For Si 3 N 4 , 150 nm or more equivalent to a commercial product is desirable in order to maintain the mechanical strength of the window. The thickness is preferably about 15-20 nm for the Ti layer and about 10-20 nm for the Au layer. The Al 2 O 3 layer that plays the role of improving the adhesion of the Ti layer is preferably as thin as possible within the range that the Al 2 O 3 layer can be maintained, and 5 nm was selected as the optimum value.

仮に、Mn 2p吸収端の軟X線吸収/発光分光を行う場合、その光子エネルギーは640eV程度であり、集電体層の各膜厚がSi3N4(150nm)/Al2O3(5nm)/Ti(20nm)/Au(10nm)の窓を用いるとすると、35%の軟X線が透過することになる。Auを20nmにした場合でも、27%程度の透過率となる。Tiを除く他の3d遷移金属元素の2p吸収端励起においても、同様の窓を用いたときに、30%前後の透過率がある。この程度の透過率があれば、軟X線吸収/発光分光を実用的な範囲で行うことが出来る。 If soft X-ray absorption / emission spectroscopy at the Mn 2p absorption edge is performed, the photon energy is about 640 eV, and each film thickness of the current collector layer is Si 3 N 4 (150 nm) / Al 2 O 3 (5 nm ) / Ti (20 nm) / Au (10 nm) windows, 35% of soft X-rays are transmitted. Even when Au is 20 nm, the transmittance is about 27%. Even in the 2p absorption edge excitation of other 3d transition metal elements except Ti, there is a transmittance of around 30% when a similar window is used. With such a transmittance, soft X-ray absorption / emission spectroscopy can be performed within a practical range.

熱処理による電極活物質作成後は、Al2O3/Ti/Auの集電体層の各層間において、ある程度の原子移動・拡散が起こるものと考えられるが、上述の膜厚の範囲では、電気化学測定を阻害するような、Au面における電気抵抗の大幅な増大は無い。 After the electrode active material is prepared by heat treatment, it is considered that a certain amount of atomic migration / diffusion occurs between the Al 2 O 3 / Ti / Au current collector layers. There is no significant increase in electrical resistance at the Au surface that would interfere with chemical measurements.

本発明で作成する電極活物質は、LiMn2O4に代表される正極活物質や、Fe2O3のような負極材料を想定しているが、これらの材料と同様に数百℃以下の高温熱処理を含むゾル―ゲル法で作成可能な物質全般に適用可能と考えられる。
このような電極活物質の前駆体としては、金属アルコキシドや金属有機酸塩などが挙げられ、また、これに対応する電極活物質としては、LiCoO2, LiFePO4, LiV3O8, Li2FeSiO4などが挙げられる。
The electrode active material prepared in the present invention assumes a positive electrode active material typified by LiMn 2 O 4 and a negative electrode material such as Fe 2 O 3 . It can be applied to all materials that can be made by the sol-gel method including high temperature heat treatment.
Examples of such electrode active material precursors include metal alkoxides and metal organic acid salts, and corresponding electrode active materials include LiCoO 2 , LiFePO 4 , LiV 3 O 8 , Li 2 FeSiO. 4 and so on.

このような方法により作成された電極活物質は、通常50-100 nm程度の膜厚になるが、目的に応じて、膜厚を制御しても良い。   The electrode active material prepared by such a method usually has a film thickness of about 50-100 nm, but the film thickness may be controlled according to the purpose.

熱処理によって電極活物質の作成を行った後に、窓部のSiウェハを、塩基性溶液を用いた湿式エッチングによって除去する。この際、Siウェハ側の表面にも存在しているSi3N4層を、削り取ってから湿式エッチングを行う。 After the electrode active material is prepared by heat treatment, the Si wafer in the window is removed by wet etching using a basic solution. At this time, wet etching is performed after the Si 3 N 4 layer also existing on the surface on the Si wafer side is scraped off.

エッチングを行う際に、電極活物質および集電体側、および、Siウェハ側の窓部より外縁側を、ポリエチレンシートと接着剤を使って保護する。   When performing the etching, the outer edge side of the electrode active material and current collector side and the window portion on the Si wafer side is protected with a polyethylene sheet and an adhesive.

ポリエチレンシートと接着剤には、耐塩基性が強いものを選択する。   For the polyethylene sheet and the adhesive, those having strong base resistance are selected.

本発明で作成した薄膜電極を用いて電気化学オペランド軟X線発光分光測定を行う際、公知のセル(非特許文献1)を利用することを前提としているが、これと組み合わせる電解液、および対電極については、一般的なリチウムイオン二次電池の評価試験に用いられる公知のものを使用することができる。   When performing the electrochemical operand soft X-ray emission spectrometry using the thin film electrode prepared in the present invention, it is assumed that a known cell (Non-patent Document 1) is used. About an electrode, the well-known thing used for the evaluation test of a general lithium ion secondary battery can be used.

本発明では、第一にリチウムイオン二次電池用の電気化学オペランド軟X線発光分光測定を念頭に置いているが、リチウムイオン電池電極材料と類似の方法で合成可能なナトリウムイオン電池電極材料や、固液界面での反応を利用した他のデバイス、例えば、燃料電池等様々な触媒反応をともなうデバイスへの適用も可能と考えられる。   In the present invention, firstly, an electrochemical operand soft X-ray emission spectroscopic measurement for a lithium ion secondary battery is considered, but a sodium ion battery electrode material that can be synthesized by a method similar to a lithium ion battery electrode material, It is also possible to apply to other devices utilizing reactions at the solid-liquid interface, such as devices with various catalytic reactions such as fuel cells.

また、本発明は、電解液を使ったリチウムイオン二次電池だけではなく、固体電解質を使った全固体型リチウムイオン二次電池にも使用可能である。   Further, the present invention can be used not only for a lithium ion secondary battery using an electrolytic solution but also for an all solid state lithium ion secondary battery using a solid electrolyte.

以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明はこれら実施例によって何ら制限されず、本発明の要旨を逸脱しない範囲で各種の材料変更、設計変更、設定調整等が可能であることは言うまでもない。   Hereinafter, the present invention will be described in more detail with reference to examples. It goes without saying that it is possible.

実施例1.電極基板の作製
<Siウェハ/Si3N4薄膜/薄膜集電体の作製>
Si3N4(150nm)で表面が被覆されたSiウェハをカットし、その片面について、プラズマアッシャー処理の後、Al2O3を5nmスパッタ、その後プラズマアッシャー処理の後、Tiを20nm、電子ビーム蒸着、続けてAuを10-20nm電子ビーム蒸着することで、集電体を作製(図1)。Au面内での電気抵抗は、0.1Ωから数Ω程度の十分に低い抵抗を示す。
Example 1. Production of electrode substrate < Production of Si wafer / Si 3 N 4 thin film / thin film current collector>
A Si wafer whose surface is coated with Si 3 N 4 (150 nm) is cut, and one side of the wafer is subjected to plasma ashing, then Al 2 O 3 is sputtered to 5 nm, and after plasma ashing, Ti is 20 nm, an electron beam. A current collector was produced by vapor deposition followed by 10-20 nm electron beam vapor deposition of Au (FIG. 1). The electrical resistance in the Au plane shows a sufficiently low resistance of about 0.1Ω to several Ω.

<LiMn2O4, LiNi0.5Mn1.5O4, Fe2O3のスピンコート用溶液の作製>
以下に、各溶液の作成法を示す。
・LiMn2O4:Liの式量で0.1mol/l、Mnの式量で0.2mol/lの溶液を調整する。無水酢酸リチウム、酢酸マンガン四水和物の各粉末を、9mlの2メトキシエタノール・1mlのモノエタノールアミン混合溶液に溶かす。室温で十分に撹拌を行った後、さらに80℃にて2時間撹拌する。
・LiNi0.5Mn1.5O4:Liの式量で0.1mol/l、Niの式量で0.05mol/l、Mnの式量で0.15mol/lの溶液を調整する。無水酢酸リチウム、酢酸ニッケル四水和物、酢酸マンガン四水和物の各粉末を、9mlの2メトキシエタノール・1mlのモノエタノールアミン混合溶液に溶かす。室温で十分に撹拌を行った後、さらに80℃にて2時間撹拌する。
・Fe2O3:Feの式量で0.2mol/lの溶液を調整する。クエン酸鉄アンモニウム粉末を、2mlのイオン交換水に溶かす。この溶液に、8mlの2メトキシエタノールを加え、室温にて十分に撹拌する。
<Preparation of LiMn 2 O 4 , LiNi 0.5 Mn 1.5 O 4 , Fe 2 O 3 solution for spin coating>
Below, the preparation methods of each solution are shown.
-LiMn 2 O 4 : Prepare a 0.1 mol / l solution with a formula weight of Li and 0.2 mol / l with a formula weight of Mn. Each powder of anhydrous lithium acetate and manganese acetate tetrahydrate is dissolved in 9 ml of a mixed solution of 2 methoxyethanol and 1 ml of monoethanolamine. After sufficiently stirring at room temperature, the mixture is further stirred at 80 ° C. for 2 hours.
LiNi 0.5 Mn 1.5 O 4 : Prepare a solution of 0.1 mol / l in the formula amount of Li, 0.05 mol / l in the formula amount of Ni, and 0.15 mol / l in the formula amount of Mn. Dissolve each powder of anhydrous lithium acetate, nickel acetate tetrahydrate, and manganese acetate tetrahydrate in 9 ml of a mixed solution of 2 methoxyethanol and 1 ml of monoethanolamine. After sufficiently stirring at room temperature, the mixture is further stirred at 80 ° C. for 2 hours.
・ Fe 2 O 3 : Prepare a 0.2 mol / l solution with the formula weight of Fe. Dissolve the iron iron citrate powder in 2 ml of ion exchange water. To this solution, add 8 ml of 2 methoxyethanol and stir well at room temperature.

<熱処理による電極活物質の作製>
作成したSiウェハ/Si3N4薄膜/薄膜集電体のAu側に両端をマスクした上で、これらの溶液をスピンコートし、乾燥後、空気中で熱処理。LiMn2O4およびLiNi0.5Mn1.5O4は600℃にて10分間焼成。Fe2O3は550℃にて10分間焼成。図2に、当該焼成後、後述のエッチング処理を施し、完成した膜構造体の模式図を示す。エッチングを施す側から順に、Si/Si3N4/集電体/電極活物質となる(なお、膜構造体のSi側にもSi3N4層が存在する)。走査型電子顕微鏡を用いて膜厚を観察した結果、活物質層は50-100nm程度の厚みとなっている。
<Production of electrode active material by heat treatment>
Both ends are masked on the Au side of the prepared Si wafer / Si 3 N 4 thin film / thin film collector, and these solutions are spin-coated, dried, and heat-treated in air. LiMn 2 O 4 and LiNi 0.5 Mn 1.5 O 4 were fired at 600 ° C. for 10 minutes. Fe 2 O 3 was baked at 550 ° C for 10 minutes. FIG. 2 shows a schematic view of a completed film structure after the baking and after-mentioned etching treatment. In order from the side to be etched, Si / Si 3 N 4 / current collector / electrode active material (Si 3 N 4 layer also exists on the Si side of the film structure). As a result of observing the film thickness using a scanning electron microscope, the active material layer has a thickness of about 50-100 nm.

熱処理前の集電体の構造はAl2O3/Ti/Auの三層構造であるが、熱処理後は各層間における原子移動・拡散がある程度起こっていると考えられる。しかし、熱処理後においても、スピンコート時にマスクを施したAuが露出している部分での電気抵抗は、数Ω〜30Ω程度であり、電気化学測定に支障のない低抵抗を維持している。 The structure of the current collector before the heat treatment is a three-layer structure of Al 2 O 3 / Ti / Au, but it is considered that atomic migration / diffusion occurs between the layers to some extent after the heat treatment. However, even after the heat treatment, the electric resistance in the portion where the masked Au is exposed at the time of spin coating is about several Ω to 30 Ω, and a low resistance that does not hinder electrochemical measurement is maintained.

<窓部のパターンニング>
熱処理まで終えた膜構造体に対し、Si側に窓部(3mm×0.3mm)のパターンニングを行う(図3上図A)。フォトリソグラフィー、あるいは、ダイヤペンなどを使った掘削処理によってSi側の表面のSi3N4を除去。
<Window patterning>
Patterning of the window (3 mm × 0.3 mm) is performed on the Si side of the film structure after the heat treatment (upper figure A in FIG. 3). Si 3 N 4 on the Si side surface is removed by photolithography or excavation using a diamond pen.

<エッチング処理のためのマスキング>
上述の窓部のパターンニングを行った膜構造体に対し、図3に示すように、市販のポリエチレンシート(生産日本社製、ユニパック、厚さ0.04mm)とエポキシ樹脂(100%)のA剤と変成シリコーンポリマー(100%)のB剤とからなる市販のエポキシ樹脂系接着剤(セメダイン社製、EP001N)を使って、電極側(図3下図)、およびSi側のエッチングを行う窓部の周囲を覆う(図3上図B)。ポリエチレンシートの4辺は、シーラーを用いた切断によって圧着・密閉される(図3上図C)。エッチングを行う窓部の周囲については、耐塩基性が強いエポキシ樹脂と変成シリコーンポリマーとの化学反応形接着剤を用いることで、膜構造体とシートの接着を行う。
<Masking for etching process>
As shown in FIG. 3, the above-mentioned film structure subjected to the window patterning is made of a commercially available polyethylene sheet (manufactured by Nippon Shokubai Co., Ltd., Unipack, thickness 0.04 mm) and an epoxy resin (100%) A agent. And window side for etching on the electrode side (bottom of Fig. 3) and Si side using commercially available epoxy resin adhesive (EP001N, manufactured by Cemedine) consisting of B agent of modified silicone polymer (100%) The surrounding area is covered (upper view B in FIG. 3). The four sides of the polyethylene sheet are pressure-bonded and sealed by cutting with a sealer (upper figure C in FIG. 3). About the circumference | surroundings of the window part which etches, a membrane structure and a sheet | seat are adhere | attached by using the chemical reaction type adhesive agent of the epoxy resin and modified silicone polymer with strong base resistance.

<エッチング処理>
90℃の80ml水酸化テトラメチルアンモニウム・920mlイオン交換水混合溶液を使って、エッチングを行う。個体差があるが、Si除去の所要時間は12〜14時間程度を要する。エッチング終了後、ポリエチレンシートと接着剤を除去し、水とアセトンを使って洗浄する。
<Etching treatment>
Etching is performed using a mixed solution of 80 ml tetramethylammonium hydroxide and 920 ml ion-exchanged water at 90 ° C. Although there are individual differences, the time required for removing Si is about 12 to 14 hours. After the etching is completed, the polyethylene sheet and the adhesive are removed and washed with water and acetone.

図4に完成した電極基板の模式図を示す。中央部は、エッチングによってSi層が除去され、Si3N4/集電体/電極活物質の層構造が得られる(図4上図A)。エッチングを行った部分は、可視光が確認できる程度に透けている(図4下図B)。また、図4下図にあるように基板左右の部分は、電極活物質を積層していないAuが露出した部分であり、集電体として機能する。 FIG. 4 shows a schematic diagram of the completed electrode substrate. In the central part, the Si layer is removed by etching, and a layer structure of Si 3 N 4 / current collector / electrode active material is obtained (upper figure A in FIG. 4). The etched portion is transparent to the extent that visible light can be confirmed (B in FIG. 4). Further, as shown in the lower diagram of FIG. 4, the left and right portions of the substrate are exposed portions of Au on which no electrode active material is laminated, and function as a current collector.

実施例2.電極基板のサイクリックボルタンメトリー(CV)試験
対極にリチウム金属、電解液に1MのLiClO4を溶解したエチレンカーボネート/ジエチルカーボネート溶液を使用した2極式の電気化学セルに、Fe2O3膜を作製した基板を取り付け、0.5mV/sの電圧掃引速度、3.2V-0.6Vのカットオフ電圧でサイクリックボルタンメトリー(CV)試験を行った。
Example 2 Cyclic voltammetry (CV) test of electrode substrate Preparation of Fe 2 O 3 film in a bipolar electrochemical cell using lithium metal as the counter electrode and ethylene carbonate / diethyl carbonate solution with 1M LiClO 4 dissolved in the electrolyte A cyclic voltammetry (CV) test was performed at a voltage sweep rate of 0.5 mV / s and a cutoff voltage of 3.2 V to 0.6 V.

図5にFe2O3膜のCV試験の結果を示す。0.78Vで下向きに生じているピークが、Fe2O3の「Fe2O3 + 6Li+ + 6e- → 3Li2O + 2Fe」の合金化反応、1.3-2.3V付近の上下のピークがLi+のインターカレーション反応に対応する。また、第1サイクルと比較し、第2、第3サイクルで、合金化反応のピークが減少した。これらの結果は、一般的な固相法等で作成したFe2O3に対する標準的な充放電試験の結果と同等である(非特許文献4、5)。
したがって、CV曲線の形状、および、合金化反応とインターカレーション反応の反応電位から、活物質であるFe2O3ができていることが確認できた。同時に、この薄膜集電体の電気抵抗は、電池動作に支障のない程度に低いことが確認された。
FIG. 5 shows the result of the CV test of the Fe 2 O 3 film. Peak occurring downwardly 0.78V is, of Fe 2 O 3 "Fe 2 O 3 + 6Li + + 6e - → 3Li 2 O + 2Fe " alloying reaction, the upper and lower peak around 1.3-2.3V is Li Corresponds to the + intercalation reaction. In addition, the peak of the alloying reaction decreased in the second and third cycles compared to the first cycle. These results are equivalent to the results of a standard charge / discharge test for Fe 2 O 3 prepared by a general solid phase method or the like (Non-Patent Documents 4 and 5).
Therefore, it was confirmed from the shape of the CV curve and the reaction potential of the alloying reaction and intercalation reaction that Fe 2 O 3 as an active material was formed. At the same time, it was confirmed that the electrical resistance of the thin film current collector was low enough not to hinder battery operation.

実施例3.電極基板の電気化学オペランド軟X線発光分光測定試験
Fe2O3膜に対し、実際に電気化学オペランド軟X線発光分光測定を実施した。実験は、(財)高輝度光科学研究センターの大型放射光施設SPring-8の軟X線ビームラインにて行った。充放電は、上記と同様のCV測定にて実施した。
Example 3 FIG. Electrochemical Operand Soft X-ray Emission Spectrometry Test of Electrode Substrate
Electrochemical operand soft X-ray emission spectrometry was actually performed on the Fe 2 O 3 film. The experiment was conducted with the soft X-ray beam line at SPring-8, a large synchrotron radiation facility at the Research Center for High-Intensity Optical Science. Charging / discharging was performed by CV measurement similar to the above.

図6にFe2O3膜の電気化学オペランド軟X線発光分光スペクトルを示す。このスペクトルはFe 2p吸収端エネルギーの光子(709.8eV)で励起したときの2p→3d→2p遷移による発光スペクトルであり、Fe 3d占有軌道を反映したものである。開放端電位では、3d軌道間の電子遷移に対応する領域(706-709eV)の強度が高く、この遷移を有するFe2+およびFe3+の共存を示唆する形状である。これに対し、充電時(0.1V)では、706-709eVの強度が減少し、Fe0+、即ち金属Fe的な形状に変化する(非特許文献6)。
このように、作動中の電池の電極材料について、上述のCV測定から予想される通りの電子状態変化が、軟X線発光スペクトルにおいても観測された。さらに、この軟X線発光スペクトルに対して、3d軌道の結晶場分裂や隣接原子との電荷移動効果等をパラメータとして取り入れた理論計算によるフィッティングを行うことで、硬X線吸収分光などでは得ることが出来ない3d軌道のより詳細な情報を得ることが可能となる。
FIG. 6 shows an electrochemical operand soft X-ray emission spectrum of the Fe 2 O 3 film. This spectrum is an emission spectrum due to the 2p → 3d → 2p transition when excited by a photon (709.8 eV) of the Fe 2p absorption edge energy, and reflects the Fe 3d occupied orbit. At the open end potential, the region corresponding to the electron transition between 3d orbitals (706-709eV) has a high intensity, suggesting the coexistence of Fe 2+ and Fe 3+ having this transition. On the other hand, at the time of charging (0.1 V), the intensity of 706-709 eV decreases and changes to Fe 0+ , that is, a metallic Fe shape (Non-patent Document 6).
Thus, for the electrode material of the battery in operation, the electronic state change as expected from the above CV measurement was also observed in the soft X-ray emission spectrum. Furthermore, this soft X-ray emission spectrum can be obtained by hard X-ray absorption spectroscopy, etc. by performing fitting by theoretical calculation that incorporates 3d orbital crystal field splitting and charge transfer effects with adjacent atoms as parameters. It is possible to obtain more detailed information about 3d orbits that cannot be performed.

本発明によって、従来技術では不可能だった軟X線領域での二次電池電極に対する電気化学オペランド電子状態解析が可能になり、電極材料における充放電メカニズムの解明が進み、高性能材料開発につながる知見が得られると予想される。また、高温熱処理による合成が可能な電極材料の多くに、本発明の適用が期待される。二次電池電極以外の固液界面での反応を利用したデバイスへの応用も期待できる。   The present invention makes it possible to analyze the electrochemical operand electronic state of the secondary battery electrode in the soft X-ray region, which was impossible with the prior art, and to elucidate the charge / discharge mechanism in the electrode material, leading to the development of high-performance materials. Knowledge is expected to be obtained. The application of the present invention is expected to many electrode materials that can be synthesized by high-temperature heat treatment. Applications to devices using reactions at solid-liquid interfaces other than secondary battery electrodes can also be expected.

Claims (6)

Siウェハ/Si3N4薄膜上に作成された、Al2O3/Ti/Auという三層構造を有する、電極活物質焼成後にも低抵抗を示す薄膜集電体。 A thin film current collector produced on a Si wafer / Si 3 N 4 thin film and having a three-layer structure of Al 2 O 3 / Ti / Au and exhibiting low resistance even after electrode active material firing. Siウェハ/Si3N4薄膜上にAl2O3、Ti、Auを順次成膜することを特徴とする、請求項1に記載の薄膜集電体の作製方法。 The method for producing a thin film current collector according to claim 1, wherein Al 2 O 3 , Ti, and Au are sequentially formed on the Si wafer / Si 3 N 4 thin film. 請求項1に記載の薄膜集電体上に電極活物質前駆体を被覆した後、高温焼成して電極活物質層を設けることを特徴とする、電池用薄膜電極の作製方法。   A method for producing a thin film electrode for a battery, comprising: coating a thin film current collector according to claim 1 with an electrode active material precursor; 電極活物質がリチウムイオン電池の正極用活物質である、請求項に記載の電池用薄膜電極の作製方法 The manufacturing method of the thin film electrode for batteries of Claim 3 whose electrode active material is an active material for positive electrodes of a lithium ion battery. 電極活物質がリチウムイオン電池の負極用活物質である、請求項に記載の電池用薄膜電極の作製方法 The manufacturing method of the thin film electrode for batteries of Claim 3 whose electrode active material is an active material for negative electrodes of a lithium ion battery. 請求項に記載の薄膜集電体上に電極活物質前駆体を被覆した後、高温焼成して電極活物質層を設けることにより薄膜電極を作製し、当該薄膜電極のSi側表面の窓体形成部位を除く部分を保護しながら、当該窓体形成部位のSiウェハをSi3N4層が露出するまでエッチングすることによって、軟X線透過性の窓部を形成することを特徴とする、電気化学オペランド軟X線吸収/発光分光用電極の作製方法。 A thin film electrode is produced by coating an electrode active material precursor on the thin film current collector of claim 1 and then firing at a high temperature to provide an electrode active material layer, and a window on the Si side surface of the thin film electrode. It is characterized by forming a soft X-ray transmissive window by etching the Si wafer of the window forming part while protecting the part excluding the forming part until the Si 3 N 4 layer is exposed. Electrochemical operand: A method for producing electrodes for soft X-ray absorption / emission spectroscopy.
JP2014164810A 2014-08-13 2014-08-13 Electrode for measuring secondary battery operand using soft X-ray Active JP6323873B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014164810A JP6323873B2 (en) 2014-08-13 2014-08-13 Electrode for measuring secondary battery operand using soft X-ray

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014164810A JP6323873B2 (en) 2014-08-13 2014-08-13 Electrode for measuring secondary battery operand using soft X-ray

Publications (2)

Publication Number Publication Date
JP2016040763A JP2016040763A (en) 2016-03-24
JP6323873B2 true JP6323873B2 (en) 2018-05-16

Family

ID=55541047

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014164810A Active JP6323873B2 (en) 2014-08-13 2014-08-13 Electrode for measuring secondary battery operand using soft X-ray

Country Status (1)

Country Link
JP (1) JP6323873B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108398446B (en) * 2018-05-04 2023-11-28 中国科学技术大学 In-situ device for testing synchrotron radiation X-ray absorption spectrum of battery electrode material
JP7264342B2 (en) * 2018-12-26 2023-04-25 国立研究開発法人産業技術総合研究所 Secondary battery electrode for operand measurement
CN110993882B (en) * 2019-10-21 2021-04-13 中船重工黄冈水中装备动力有限公司 Preparation method for battery plate net hanging composite
JP7300181B2 (en) * 2020-03-27 2023-06-29 ユウラシア真空技術株式会社 BATTERY MANAGEMENT SYSTEM AND BATTERY MANAGEMENT METHOD

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5299072A (en) * 1976-02-16 1977-08-19 Nippon Telegr & Teleph Corp <Ntt> Mask for x-ray exposure
ATE526679T1 (en) * 2006-12-27 2011-10-15 Asahi Glass Co Ltd REFLECTION MASK BLANK FOR EUV LITHOGRAPHY
JP5515307B2 (en) * 2009-02-03 2014-06-11 ソニー株式会社 Thin-film solid lithium ion secondary battery

Also Published As

Publication number Publication date
JP2016040763A (en) 2016-03-24

Similar Documents

Publication Publication Date Title
Nakai et al. Investigation of the solid electrolyte interphase formed by fluoroethylene carbonate on Si electrodes
Li et al. Electrochemical kinetics of the Li [Li0. 23Co0. 3Mn0. 47] O2 cathode material studied by GITT and EIS
Liu et al. Conductive surface modification with aluminum of high capacity layered Li [Li0. 2Mn0. 54Ni0. 13Co0. 13] O2 cathodes
Yoon et al. Capacity fading mechanisms of silicon nanoparticle negative electrodes for lithium ion batteries
Dedryvère et al. Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium
Lu et al. Failure mechanism of graphite/LiNi0. 5Mn1. 5O4 cells at high voltage and elevated temperature
Singh et al. Electrochemical and structural investigations on ZnO treated 0.5 Li2MnO3-0.5 LiMn0. 5Ni0. 5O2 layered composite cathode material for lithium ion battery
Xu et al. Improving the performance of graphite/LiNi0. 5Mn1. 5O4 cells at high voltage and elevated temperature with added lithium bis (oxalato) borate (LiBOB)
Wang et al. Study of Mn Dissolution from LiMn2 O 4 Spinel Electrodes Using Rotating Ring-Disk Collection Experiments
Srur-Lavi et al. Studies of the electrochemical behavior of LiNi0. 80Co0. 15Al0. 05O2 electrodes coated with LiAlO2
Zheng et al. Quantitative characterization of the surface evolution for LiNi0. 5Co0. 2Mn0. 3O2/graphite cell during long-term cycling
Park et al. Passivating ability of surface film derived from vinylene carbonate on tin negative electrode
Ma et al. A new anion receptor for improving the interface between lithium-and manganese-rich layered oxide cathode and the electrolyte
Ryu et al. Electrochemical behaviors of silicon electrode in lithium salt solution containing alkoxy silane additives
Klee et al. Improved Surface Stability of C+ M x O y@ Na3V2 (PO4) 3 Prepared by Ultrasonic Method as Cathode for Sodium-Ion Batteries
JP6323873B2 (en) Electrode for measuring secondary battery operand using soft X-ray
Zhang et al. Surface modification of Li1. 2Mn0. 54Ni0. 13Co0. 13O2 cathode material with Al2O3/SiO2 composite for lithium-ion batteries
Kleiner et al. On the Origin of Reversible and Irreversible Reactions in LiNixCo (1− x)/2Mn (1− x)/2O2
Gellert et al. Charge transfer across the interface between LiNi0. 5Mn1. 5O4 high-voltage cathode films and solid electrolyte films
Zhai et al. The synergic effects of Zr doping and Li2TiO3 coating on the crystal structure and electrochemical performances of Li-rich Li1. 2Ni0. 2Mn0. 6O2
Quilty et al. elucidating cathode degradation mechanisms in LiNi0. 8Mn0. 1Co0. 1O2 (NMC811)/graphite cells under fast charge rates using operando synchrotron characterization
Parmar et al. Electrochemical response and structural stability of the Li+ ion battery cathode with coated LiMn2O4 nanoparticles
Li et al. High precision coulometry study of LiNi0. 5Mn1. 5O4/Li coin cells
Cho et al. Effect of Ni/Mn Ordering on Elementary Polarizations of LiNi0. 5Mn1. 5O4 Spinel and Its Nanostructured Electrode
Jin et al. Kinetic study of high voltage spinel cathode material in a wide temperature range for lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20171220

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180109

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180403

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180405

R150 Certificate of patent or registration of utility model

Ref document number: 6323873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250