JP2012202112A - Structure for constructing exterior wall substrate - Google Patents

Structure for constructing exterior wall substrate Download PDF

Info

Publication number
JP2012202112A
JP2012202112A JP2011067794A JP2011067794A JP2012202112A JP 2012202112 A JP2012202112 A JP 2012202112A JP 2011067794 A JP2011067794 A JP 2011067794A JP 2011067794 A JP2011067794 A JP 2011067794A JP 2012202112 A JP2012202112 A JP 2012202112A
Authority
JP
Japan
Prior art keywords
wall
nail
bearing surface
load
construction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011067794A
Other languages
Japanese (ja)
Inventor
Teruyuki Kato
輝之 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nichiha Corp
Original Assignee
Nichiha Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nichiha Corp filed Critical Nichiha Corp
Priority to JP2011067794A priority Critical patent/JP2012202112A/en
Priority to AU2011239333A priority patent/AU2011239333A1/en
Priority to RU2011144204/03A priority patent/RU2011144204A/en
Priority to TW100140126A priority patent/TW201239170A/en
Priority to US13/288,110 priority patent/US20120240487A1/en
Priority to KR1020110130019A priority patent/KR20120109985A/en
Priority to CN2012100152611A priority patent/CN102691359A/en
Publication of JP2012202112A publication Critical patent/JP2012202112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B2/00Walls, e.g. partitions, for buildings; Wall construction with regard to insulation; Connections specially adapted to walls
    • E04B2/56Load-bearing walls of framework or pillarwork; Walls incorporating load-bearing elongated members
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G23/00Working measures on existing buildings
    • E04G23/02Repairing, e.g. filling cracks; Restoring; Altering; Enlarging
    • E04G23/0218Increasing or restoring the load-bearing capacity of building construction elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/18Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons
    • E04B1/26Structures comprising elongated load-supporting parts, e.g. columns, girders, skeletons the supporting parts consisting of wood
    • E04B2001/2696Shear bracing

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Laminated Bodies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a structure for constructing an exterior wall substrate which can obtain a high wall strength magnification even when using a bearing surface material holding an excellent ventilation performance and which has low-cost and excellent workability; and especially to provide the structure for constructing an exterior wall substrate which can have partly high wall strength magnifications in the outer covering reform of a wooden framework house using the bearing surface material as an exterior wall substrate material, so as to increase the degree of freedom in earthquake-resistant design and to facilitate workability of exterior materials such as a ceramic siding after earthquake strengthening.SOLUTION: A reinforcement material for preventing a punching shear is included between a nailhead of a nail which fixes a bearing surface material of a wall that needs a high wall strength magnification in earthquake-resistant design to a structural material, and the bearing surface material.

Description

本発明は、木造軸組住宅の外装リフォームに際して、住宅の耐震性能を向上させるための外壁下地の施工構造に係るものである。 The present invention relates to a construction structure of an outer wall base for improving the earthquake resistance performance of a house in exterior reform of a wooden frame house.

従来、木造軸組住宅の耐震性能を向上させる方法としては、鉄製のブレース材(筋交い)やフレーム材を建物の外側に取り付け補強する構造がある。しかしながらこのような方法は、外付け施工であるがために、居住しながら工事ができるという利点はあるものの、外壁の外側にブレース材やフレーム材が取り付けられることになるので、住宅としての美観が大きく低下してしまうこととなる。   Conventionally, as a method of improving the seismic performance of a wooden framed house, there is a structure in which an iron brace material (a brace) or a frame material is attached to the outside of a building and reinforced. However, since this method is an external construction, there is an advantage that construction can be done while living, but braces and frame materials are attached to the outside of the outer wall, so the beauty as a house is It will fall greatly.

一方、建物の内部から工事を行って耐震性能を向上させる方法は、既存の外壁をそのまま残して再利用することはできるものの、工事期間中の居住性は大きく損なわれることになり、さらに、せっかく費用をかけて改修工事をしたにもかかわらず、住宅の外観を一新するなどの品質の向上をはかることはできない。 On the other hand, the method of improving the seismic performance by performing construction from the inside of the building can be reused leaving the existing outer wall as it is, but the habitability during the construction period will be greatly impaired, and moreover, Despite costly renovation work, quality improvements such as renovating the exterior of a house cannot be achieved.

ところで、住宅も建築されてから年数が経過すると、居住者のライフスタイルと間取りや内装との間にミスマッチが発生してくる。そこで、居住者のライフスタイルの変化に合わせて建物の内装をリフォームしたいという要望が出され、さらに内装のリフォームに加えて建物の外観も新しくしたいという外装のリフォームの要望も昨今高まっている。
建物の耐震補強に併せて内装のリフォームと外装のリフォームを実施することは、新築の建物を建てることに比べると資源を無駄遣いしないという点で望ましいことである。
By the way, when years have passed since the house was built, a mismatch occurs between the resident's lifestyle and the floor plan and interior. Therefore, there is a demand to renovate the interior of the building in accordance with changes in the lifestyles of residents, and there is also a growing demand for exterior renovation to renew the exterior of the building in addition to the interior renovation.
Implementing interior and exterior renovations in conjunction with seismic reinforcement of buildings is desirable in terms of not wasting resources compared to building new buildings.

ところで、木造軸組住宅において外装のリフォームに合わせて建物の耐震性能を同時に向上させる方法として、耐力面材を外壁下地材に使用する方法が知られている。 By the way, as a method of simultaneously improving the seismic performance of a building in accordance with exterior reform in a wooden framed house, a method of using a load bearing face material as an outer wall base material is known.

この耐力面材を外壁下地材に使用する方法は、既存の外周壁を撤去した後に、躯体の腐朽・劣化の修繕や接合金物の適正な配置をしてから耐力面材を施工し、補強後は窯業系サイディング等の仕上げを行う施工方法である。上記施工方法は多様な施工仕様に対応して耐震補強と外装のリフォームを同時に行うができる施工方法として広く知られている。 The method of using this load-bearing face material as the outer wall base material is to remove the existing outer peripheral wall, repair the decay / deterioration of the frame and arrange the joint hardware properly, and then install the load-bearing face material. Is a construction method for finishing ceramic siding. The above construction method is widely known as a construction method capable of simultaneously performing seismic reinforcement and exterior reforming corresponding to various construction specifications.

特開2010−7454号公報JP 2010-7454 A 特開2006−28805号公報JP 2006-28805 A 特開2003−3676号公報Japanese Patent Laid-Open No. 2003-3676 特開2003−3592号公報Japanese Patent Laid-Open No. 2003-3592

ところで、木造軸組住宅において、耐力面材を外壁下地材に使用して外装のリフォームを行う際には、柱のサイズ、間柱の有無、添え柱といった下地構成の違いや、一般壁部、隅壁部、開口壁部、といった部位の違いなど、既存の建物の様々な施工状況に応じて最適な耐震補強が必要とされる。既存の建物に対する耐震補強はすでに構造体ができあがっている建物に耐震設計をすることになるので新築時の耐震設計とは異なり制約も多く、設計の自由度が制約される中で耐震設計を実施しなければならない。したがって、一部の耐力壁のみに高い壁強さ倍率が必要となる場合がある。 By the way, in a wooden framed house, when remodeling the exterior using a load-bearing face material as the outer wall base material, the difference in the base structure such as the size of the columns, the presence or absence of inter-columns, and auxiliary columns, the general walls, corners Optimal seismic reinforcement is required according to various construction situations of existing buildings, such as the difference in parts such as walls and open walls. The seismic reinforcement for existing buildings will be seismic design for buildings that have already been constructed, so there are many restrictions unlike the seismic design at the time of new construction, and the seismic design is carried out with limited design freedom Must. Therefore, a high wall strength magnification may be required only for some bearing walls.

一部の耐力壁だけ壁強さ倍率を高くする方法としては、必要される壁強さ倍率に応じて耐力面材の種類を変更するなどして、耐力面材の面重量を上げて壁強さ倍率を変更する方法が考えられる。しかしながら耐力面材の種類を部分的に変更する方法は、耐力面材の種類を増やすこととなり施工性を損なうことになる。また、同じ種類の耐力面材を使用しながら厚さを変更することも可能であるが、この方法では壁下地材の不陸を発生させる事になり、この方法も大きく施工性を損なうこととなる。
上記方法以外の壁強さ倍率を高める方法としては、木造軸組住宅の構造材に耐力面材を固定する釘の打ち込み本数を増やす、あるいは釘の太さを太くするという方法が考えられる。しかし、釘の打ち込み本数を増やすことは、耐力面材や構造材の割れを引き起こして施工不良が発生する可能性が高くなる。一方、釘を太くする方法は、釘頭による耐力面材の破壊すなわちパンチングシアが発生して耐力面材が釘で破壊される危険が高まる。特に耐力面材の比重が低い場合は破壊される危険性が高くなる。このように、釘の打ち込み本数を増やす方法あるいは釘の太さを太くする方法によって壁強さ倍率を高めることは容易ではない。
As a method of increasing the wall strength magnification for some of the bearing walls, the wall strength can be increased by increasing the surface weight of the bearing surface by changing the type of the bearing surface according to the required wall strength magnification. A method of changing the magnification is conceivable. However, the method of partially changing the type of the load bearing member increases the number of the load bearing members and impairs the workability. It is also possible to change the thickness while using the same type of load bearing material, but this method will cause unevenness of the wall base material, and this method also greatly impairs workability. Become.
As a method for increasing the wall strength magnification other than the above method, a method of increasing the number of nails to be fixed to the structural member of the wooden frame house or increasing the thickness of the nail is conceivable. However, increasing the number of nails to be driven increases the possibility of failure in construction due to cracks in the bearing material and structural material. On the other hand, the method of increasing the thickness of the nail increases the risk that the bearing surface material is broken by the nail head, that is, punching shear occurs and the bearing surface material is broken by the nail. In particular, when the specific gravity of the load-bearing face material is low, the risk of destruction increases. As described above, it is not easy to increase the wall strength magnification by increasing the number of nails driven or increasing the thickness of the nail.

ところで、耐力面材として要求される性能において、家屋内部の湿気を家の外側に排出するための通気性は重要な性能の一つである。この通気性が良好な耐力面材としては、例えば、針葉樹合板、MDF、火山性ガラス質複層板、パルプ・けい酸質混入セメント板などのように気乾比重が0.6〜1.0前後の比重の低い耐力面材が知られている。しかしながら、これらの耐力面材は低比重であるために釘の保持力が低くパンチングシアも発生しやすいので、高い壁強さ倍率を得ることは容易ではなかった。 By the way, in the performance required as a load-bearing face material, the air permeability for discharging the moisture inside the house to the outside of the house is one of the important performances. Examples of the load bearing surface material having good air permeability include an air-dry specific gravity of 0.6 to 1.0, such as softwood plywood, MDF, volcanic glassy multilayer board, pulp / silicate mixed cement board, and the like. A load-bearing face material with a low specific gravity is known. However, since these bearing members have low specific gravity, the holding power of the nail is low and punching shear is likely to occur, so that it is not easy to obtain a high wall strength magnification.

本発明は、上述したような課題を解決しようとするものであり、高い通気性能を持つ耐力面材を外壁下地材に使用した木造軸組住宅の外装リフォームにおいて、耐震設計の自由度が高くさらに耐震補強後の窯業系サイディング等の外装材の施工性を容易にする外壁下地を得ることを目的としている。 The present invention is intended to solve the above-described problems, and in an exterior renovation of a wooden framed house using a load bearing surface material having high ventilation performance as a base material for an outer wall, the degree of freedom of seismic design is high. The purpose is to obtain an outer wall base that facilitates the workability of exterior materials such as ceramic siding after seismic reinforcement.

上述したような課題を解決するために、
請求項1に記載の発明では、外壁下地材として耐力面材を使用する木造軸組住宅の外装リフォームにおいて、耐震設計によって高い壁強さ倍率が必要される壁の耐力面材を構造材に固定する釘の釘頭と該耐力面材との間に、パンチングシアを防止するための補強材が介在していることを特徴とする外壁下地の施工構造を提案している。
In order to solve the problems described above,
According to the first aspect of the present invention, in a housing renovation of a wooden framed house that uses a load-bearing face material as an outer wall base material, the wall load-bearing face material that requires a high wall strength magnification is fixed to the structural material by seismic design. The construction structure of the outer wall base is characterized in that a reinforcing material for preventing punching shear is interposed between the nail head of the nail and the load bearing surface material.

請求項2に記載の発明では、前記補強材があらかじめ耐力面材に仮留めされている。   In the invention according to claim 2, the reinforcing material is temporarily fixed to the load bearing member in advance.

請求項3に記載の発明では、前記補強材が2つ以上の釘にまたがって連続している。 According to a third aspect of the present invention, the reinforcing material is continuous across two or more nails.

請求項4に記載の発明では、前記耐震設計によって高い壁強さ倍率が必要される壁の耐力面材と高い壁強さ倍率が必要とされない壁の耐力面材の種類と厚さが同一である。 In the invention according to claim 4, the type and thickness of the load bearing face material of the wall that requires a high wall strength magnification and the wall strength face material that does not require a high wall strength magnification by the seismic design are the same. is there.

請求項5に記載の発明では、前記釘の種類と寸法が単一である。 In the invention described in claim 5, the type and size of the nail are single.

請求項6に記載の発明では、前記補強材を、薄板鋼板としている。 In the invention described in claim 6, the reinforcing material is a thin steel plate.

請求項7に記載の発明では、前記補強材を、ガラス繊維シート、炭素繊維シートから選択されるシートとしている。 In the invention according to claim 7, the reinforcing material is a sheet selected from a glass fiber sheet and a carbon fiber sheet.

以下、本発明の作用と効果について説明する。
壁強さ倍率を高めるための手段を評価する判断数値として、釘接合の一面せん断耐力を使用して評価した。耐力面材を側材とする釘接合のせん断耐力を測定する方法として、社団法人ツーバイフォー建築協会「2002年枠組壁工法建築物計算指針」の接合部の基準許容応力および基準剛性(単調加力接合部試験によるもの)を採用して、釘接合の一面せん断耐力を測定した。
The operation and effect of the present invention will be described below.
As a judgment value for evaluating the means for increasing the wall strength magnification, the one-side shear strength of nail bonding was used for evaluation. As a method of measuring the shear strength of a nail joint with a load bearing surface as a side material, the standard allowable stress and standard stiffness (monotonic force joint) of the joint of the “Two-by Four Architecture Association” Was used to measure the shear strength of one side of the nail joint.

この試験では、主材としての構造材1には杉を、側材としての耐力面材2には厚さ9mmの構造用合板、火山性ガラス質複層板(大建工業株式会社製 商品名ダイライトMS)、両面アクリル系樹脂塗装パルプ・けい酸質混入セメント板(ニチハ株式会社製 商品名あんしん)を、そして釘3には、鉄丸釘N50と鉄丸釘N75(JISA5508:2009)を、補強材4としては0.35mmの塗装溶融55%アルミニウム−亜鉛合金めっき鋼板(JISG3322:2008)を使用して試験を行った。
図1は補強材4を使用しない構成で、耐力面材を側材として釘接合のせん断耐力を測定する模式図である。
図2は補強材4を使用した構成で、耐力面材を側材として釘接合のせん断耐力を測定する模式図である。
In this test, cedar is used as the structural material 1 as the main material, 9 mm thick structural plywood and volcanic glassy multilayer board (made by Daiken Kogyo Co., Ltd.) as the load bearing face material 2 as the side material. Dielite MS), double-sided acrylic resin-coated pulp / silicic acid-mixed cement board (trade name Anshin, manufactured by Nichiha Co., Ltd.), and nail 3 with iron round nail N50 and iron round nail N75 (JISA 5508: 2009), As the reinforcing material 4, a test was performed using a 0.35 mm painted molten 55% aluminum-zinc alloy plated steel sheet (JIS G3322: 2008).
FIG. 1 is a schematic diagram for measuring the shear strength of a nail joint using a load bearing surface material as a side material in a configuration in which the reinforcing material 4 is not used.
FIG. 2 is a schematic diagram for measuring the shear strength of the nail joint using the reinforcing material 4 as a side material in the configuration using the reinforcing material 4.

上記の試験結果を表1に記載する。

Figure 2012202112
The test results are shown in Table 1.
Figure 2012202112

補強材4を使用せずにN50の釘3を使用して荷重5を加えた場合、いずれの耐力面材においても、図3に示すように釘頭3aが耐力面材2にくい込んで釘3が抜ける事は発生せずに、釘胴部3bが構造材1から抜け出るという釘接合部の破壊形態である引き抜けが発生した。この時の最大荷重は、構造用合板が1094N、火山性ガラス質複層板が841N、両面アクリル系樹脂塗装パルプ・けい酸質混入セメント板が1220Nであった。 When the load 5 is applied using the N50 nail 3 without using the reinforcing member 4, the nail head 3a is not easily inserted into the load bearing surface 2 as shown in FIG. No pull-out occurred, and the nail body portion 3b pulled out from the structural member 1 and pull-out, which is a fractured form of the nail joint, occurred. The maximum load at this time was 1094N for the structural plywood, 841N for the volcanic glassy multilayer board, and 1220N for the double-sided acrylic resin-coated pulp / silicate mixed cement board.

補強材4を使用せずにN75の釘3を使用して荷重5を加えた場合、いずれの耐力面材においても、図4に示すように釘胴部3bが構造材1から抜け出す前に、釘頭3aが耐力面材2にくい込んで釘3が耐力面材2から抜けていくという釘接合部の破壊形態であるパンチングシアが発生した。この時の最大荷重は、構造用合板が1616N、火山性ガラス質複層板が996N、両面アクリル系樹脂塗装パルプ・けい酸質混入セメント板は1991Nであった。 When a load 5 is applied using an N75 nail 3 without using the reinforcing material 4, before any nail body 3b comes out of the structural material 1 as shown in FIG. Punching shear, which is a fractured form of the nail joint, occurs in which the nail head 3a is inserted into the load bearing surface 2 and the nail 3 comes out of the load bearing surface 2. The maximum load at this time was 1616N for the structural plywood, 996N for the volcanic glassy multilayer board, and 1991N for the double-sided acrylic resin-coated pulp / silicate mixed cement board.

補強材4を使用してN75の釘3を使用して荷重5を加えた場合、いずれの耐力面材においても、図5に示すように釘頭3aは耐力面材2にくい込んで釘3が抜ける事は発生せずに、釘胴部3bが構造材1から抜け出るという釘接合部の破壊形態である引き抜けが発生した。この時の最大荷重は、構造用合板が2338N、火山性ガラス質複層板が1750N、両面アクリル系樹脂塗装パルプ・けい酸質混入セメント板が2262Nであった。 When a load 5 is applied using an N75 nail 3 using the reinforcing material 4, the nail head 3a is inserted into the load bearing surface 2 as shown in FIG. Pulling out, which is a breaking form of the nail joint, in which the nail body portion 3b slips out of the structural material 1 occurred without being pulled out. The maximum load at this time was 2338N for the structural plywood, 1750N for the volcanic glassy multilayer board, and 2262N for the double-sided acrylic resin-coated pulp / silicate mixed cement board.

以上説明したように、本発明に係る外壁下地の施工構造によれば、パンチングシアが発生しやすい耐力面材2と構造材1と釘3との構成であっても、釘頭3aと耐力面材2の間に補強材4を介在させることによって、パンチングシアを防止することができるので高い荷重値の釘接合のせん断耐力を得ることができる。
したがって、木造軸組住宅の外装リフォームにおいて、外壁下地材としての耐力面材を構造材に固定する釘頭と耐力面材との間に、パンチングシアを防止するための補強材が介在している施工構造を、耐震設計の計算によって高い壁強さ倍率が必要とされた壁に採用することで、通気性は良好であるが釘頭による引抜耐力が弱いとされている耐力面材を使用しても高い壁強さ倍率を得ることが可能となる。したがって同じ種類と厚さの耐力面材に一種類の釘を使用しても、不陸のない壁下地を施工することができるので、高い壁強さ倍率の壁と通常の壁強さ倍率の壁を混在させて設計施工することが可能となる。
したがって、本発明の外壁下地の施工構造を使用すれば、壁強さ倍率を高めるために追加の補強金具を使用する必要もなく、不陸もなく平滑面の壁下地をつくることができるので、外装材の施工が容易になる。さらに、通気性のよい耐力面材を使用することができるので、通気性の良い耐力面材を採用して、耐震設計による計算で高い壁強さ倍率にしなければならないとされた壁だけを高い壁強さ倍率とすることができるので、耐震設計の自由度が高く施工性に優れた外壁下地の施工構造をえることができる。
As described above, according to the construction structure of the outer wall base according to the present invention, the nail head 3a and the load bearing surface are configured even with the structure of the load bearing surface material 2, the structural material 1, and the nail 3 that are likely to generate punching shear. By interposing the reinforcing material 4 between the materials 2, punching shear can be prevented, so that a high load value of nail joint shear strength can be obtained.
Therefore, in the exterior renovation of a wooden framed housing, a reinforcing material for preventing punching shear is interposed between the nail head for fixing the load bearing surface material as the outer wall base material to the structural material and the load bearing surface material. By adopting the construction structure for walls that require a high wall strength magnification by the calculation of seismic design, we use load-bearing surface materials that have good air permeability but weak pull-out strength by nail heads. However, a high wall strength magnification can be obtained. Therefore, even if one type of nail is used for the same type and thickness of the bearing surface, it is possible to construct a wall base without unevenness, so that a wall with a high wall strength magnification and a normal wall strength magnification It is possible to design and construct with mixed walls.
Therefore, if the construction structure of the outer wall base of the present invention is used, it is not necessary to use an additional reinforcing bracket to increase the wall strength magnification, and it is possible to create a smooth wall base without unevenness. Construction of exterior materials becomes easy. In addition, it is possible to use a load-bearing face material with good ventilation, so adopt a load-bearing face material with good breathability, and only the walls that have to be made to have a high wall strength magnification as calculated by earthquake-resistant design are high. Since the wall strength magnification can be obtained, it is possible to obtain a construction structure of the outer wall base having a high degree of freedom in seismic design and excellent workability.

補強材4を使用しない構成で、耐力面材を側材として釘接合のせん断耐力を測定する模式図。The schematic diagram which measures the shear strength of a nail joint by using a load bearing surface material as a side material by the structure which does not use the reinforcing material 4. FIG. 補強材4を使用した構成で、耐力面材を側材として釘接合のせん断耐力を測定する模式図。The schematic diagram which measures the shear strength of a nail joint by using a load bearing surface material as a side material by the structure using the reinforcing material 4. FIG. 図1の釘接合のせん断耐力測定において、引き抜けの状態を説明する断面図。Sectional drawing explaining the state of pull-out in the shear strength measurement of the nail joint of FIG. 図1の釘接合のせん断耐力測定において、パンチングシアの状態を説明する断面図。Sectional drawing explaining the state of punching shear in the shear strength measurement of the nail joint of FIG. 図2の釘接合のせん断耐力測定において、引き抜けの状態を説明する断面図。Sectional drawing explaining the state of pull-out in the shear strength measurement of the nail joint of FIG. 木造軸組住宅の軸組を説明する図。The figure explaining the frame of a wooden frame house. 通常施工における、図6の木造軸組に施工した外壁下地材としての耐力面材を説明する図。The figure explaining the load bearing surface material as an outer wall base material constructed | assembled to the wooden frame of FIG. 6 in normal construction. 本願発明の一例であって、高倍率施工における、図6の木造軸組に施工した外壁下地材としての耐力面材を説明する図。It is an example of this invention, Comprising: The figure explaining the load bearing surface material as an outer wall base material constructed | assembled to the wooden frame of FIG. 6 in high magnification construction. 本発明のその他の例であって、高倍率施工における、図6の木造軸組に施工した外壁下地材としての耐力面材を説明する図。It is another example of this invention, Comprising: The figure explaining the load bearing surface material as an outer wall base material constructed | assembled to the wooden frame of FIG. 6 in high magnification construction.

以下、本発明を実施するための最良の形態について、図面にしたがって具体的に説明する。
本発明の外壁下地の施工構造では、既存在来木造軸組住宅の外壁部分を耐震補強し、既存の外壁材を撤去後、外壁下地材としての耐力面材で耐震補強を行い、その後窯業系サイディング等の仕上げ材を施工して外装のリフォームを行う。
耐震補強の設計は、柱サイズや軸組の構成、そして部位別に定められた耐力面材ごとに決められた各施工仕様の壁強さ倍率を用いて耐震設計を行う。
The best mode for carrying out the present invention will be specifically described below with reference to the drawings.
In the construction structure of the outer wall foundation of the present invention, the outer wall portion of the existing conventional wooden framed housing is seismically reinforced, and after the existing outer wall material is removed, the earthquake-resistant reinforcement is performed with the strength face material as the outer wall foundation material, and then the ceramic industry Renovate the exterior by installing finishing materials such as siding.
The seismic reinforcement design is performed using the wall strength magnification of each construction specification determined for each load bearing surface material determined according to the size of the pillar, the structure of the frame, and the part.

図6は、木造軸組住宅の軸組を表す図であって、間柱有りの一般壁部の下地組の説明図であり、8は胴差、9は間柱、10は柱、11は補強金物、12は土台、13は継手である。
はじめに、外装のリフォームを行う住宅のリフォームを施工する箇所の外壁をはがし、躯体を現します。そして土台・柱等が腐朽、劣化している場合は修繕・交換を行う。
本発明では、柱、土台、梁、胴差及び桁の断面寸法は105×105mm以上とし、耐力壁の端部は柱とする。なお間柱の寸法は27×105mm以上とし、耐力面材を継ぐ継手間柱の断面寸法は45×105mm以上とする。
柱の断面寸法が異なる場合は木材、木材等の調整材で外面をあわせることができるが、調整材は鉄丸釘等を使用して柱、間柱に確実に取り付ける。
柱頭と柱脚には事前の耐震補強計画に従って、当該部分の壁倍率(有効倍率)に応じた引き抜け防止措置を講じる。
FIG. 6 is a diagram showing a frame structure of a wooden framed house, and is an explanatory view of a base group of a general wall portion with a space column, 8 is a trunk difference, 9 is a space column, 10 is a column, and 11 is a reinforcement hardware , 12 is a base, and 13 is a joint.
First, peel off the outer wall of the location where the housing renovation is to be performed, and reveal the housing. If the foundations and pillars are damaged or deteriorated, they will be repaired or replaced.
In the present invention, the cross-sectional dimensions of columns, foundations, beams, trunk differences, and girders are 105 × 105 mm or more, and the ends of the bearing walls are columns. In addition, the dimension of the stud is 27 × 105 mm or more, and the cross-sectional dimension of the joint stud that joins the bearing surface is 45 × 105 mm or more.
When the cross-sectional dimensions of the columns are different, the outer surface can be adjusted with an adjusting material such as wood or wood, but the adjusting material is securely attached to the columns and studs using iron round nails.
In accordance with the pre-seismic reinforcement plan for the capital and column base, take measures to prevent pull-out according to the wall magnification (effective magnification) of the relevant part.

図7は通常施工における、図6の間柱有りの一般壁部の下地組に対して耐力面材2を外壁下地材として施工した例であり、耐力面材2をN50の釘3を外周では100mm間隔以下、中通りでは200mm間隔以下で柱10、土台12、胴差8、間柱9等に打ち付ける。この際、釘3の縁端距離(耐力面材端部からの釘打ち位置)は15mm程度とする。柱10、土台12、胴差8等においては、縁端距離に余裕があるので、縁端距離を多めにし、また土台12、柱10等への掛かり代は30mm以上とする。釘3の打ち込みは、下地組のある部分に行い、釘3の打ち込み不足、打ち込み過ぎの無いようにする。 FIG. 7 is an example in which the load bearing face material 2 is constructed as an outer wall foundation material with respect to the foundation set of the general wall portion with the studs in FIG. 6 in the normal construction, and the load bearing face material 2 is made of N50 nail 3 at the outer periphery of 100 mm. It strikes the pillar 10, the base 12, the trunk difference 8, the stud 9 and the like at intervals of 200 mm or less in the middle street. At this time, the edge distance of the nail 3 (nail driving position from the end of the load bearing surface material) is about 15 mm. In the column 10, the base 12, the trunk difference 8, and the like, there is a margin in the edge distance, so the edge distance is increased, and the hanging amount to the base 12, the pillar 10, etc. is 30 mm or more. The nail 3 is driven into a portion of the base set so that the nail 3 is not driven too much or not too much.

図8は高倍率施工における、図6の間柱有りの一般壁部の下地組に対して耐力面材2を外壁下地として施工した例である。補強材4は耐力面材2を平置きにした状態にして養生テープ等で耐力面材2に仮留めをすると施工が容易となる。この際、耐力面材2と補強材4の端部は揃えて仮留めをする。
なお、補強材4の耐力面材2と接する面にあらかじめ接着テープが貼付されていると、養生テープを用いる必要がなく、施工性と施工品質が向上する。
耐力面材2の取り付けは、外周部は補強材4の上からN50の釘3を100mm間隔以下で、中通りでは200mm間隔以下で柱10、土台12、胴差8、間柱9等に打ち付ける。この際、釘3の縁端距離(耐力面材端部からの釘打ち位置)は15mm程度とする。また土台12、柱10等への掛かり代は30mm以上とする。釘3の打ち込みは、下地組のある部分に行い、釘3の打ち込み不足、打ち込み過ぎの無いようにする。
FIG. 8 shows an example in which the load bearing face material 2 is applied as the outer wall base to the base set of the general wall portion with the studs in FIG. 6 in the high magnification construction. The reinforcing member 4 can be easily constructed when the load-bearing face material 2 is placed flat and temporarily secured to the load-bearing face material 2 with a curing tape or the like. At this time, the end portions of the load bearing face material 2 and the reinforcing material 4 are aligned and temporarily fixed.
In addition, when the adhesive tape is previously affixed on the surface which contacts the load-bearing surface material 2 of the reinforcing material 4, it is not necessary to use a curing tape, and workability and construction quality are improved.
The load bearing member 2 is attached to the pillar 10, the base 12, the trunk difference 8, the intermediate pillar 9, and the like with the N50 nail 3 from the top of the reinforcing member 4 at an interval of 100 mm or less, and at an interval of 200 mm or less in the middle street. At this time, the edge distance of the nail 3 (nail driving position from the end of the load bearing surface material) is about 15 mm. In addition, the hanging cost to the base 12, the pillar 10, etc. is 30 mm or more. The nail 3 is driven into a portion of the base set so that the nail 3 is not driven too much or not too much.

耐力面材2は、矩形で所定の規格寸法を有し、耐力壁としての強度ないし機能を備えているものであって、例えばJAS規格に適合する構造用合板やJIS規格に適合するパーティクルボード、MDF、火山性ガラス質複層板、パルプ・けい酸質混入セメント板等からなり、所定の気密性、防湿性を有するものであって、単層板以外にも2種以上の複合板からなるものでもかまわない。
本発明で特に好ましい耐力面材2は、針葉樹合板、MDF、火山性ガラス質複層板、パルプ・けい酸質混入セメント板などのように気乾比重が0.6〜1.0前後の通気性に富んだ耐力面材です。
The load bearing face material 2 is rectangular and has a predetermined standard dimension, and has strength or function as a load bearing wall. For example, a structural plywood conforming to the JAS standard or a particle board conforming to the JIS standard, It consists of MDF, volcanic glassy multilayer board, pulp / silicic acid mixed cement board, etc., and has a predetermined airtightness and moisture-proof property, and it consists of two or more kinds of composite boards in addition to single-layer boards. It doesn't matter.
The load bearing material 2 particularly preferable in the present invention is an air-flowing specific gravity of about 0.6 to 1.0 such as softwood plywood, MDF, volcanic glassy multilayer board, pulp / silicate mixed cement board, and the like. It is a highly resistant bearing material.

補強材4には、鉄、ステンレス、チタン、アルミ、亜鉛合金メッキ鋼板、ホーロー鋼板、クラッド鋼板、ラミネート鋼板(塩ビ鋼板等)、サンドイッチ鋼板(制震鋼板等)(もちろん、これらを各色色調に塗装したカラー金属板を含む)等の厚さが0.1から3.0mm程度の釘を貫通させることが容易な程度の厚さの薄板鋼板が好ましく、さらに補強材4が釘3で耐力面材2に固定される前に、あらかじめ接着剤、両面テープ等で補強材4が耐力面材2に貼着等で仮留めされていると取り扱いがさらに容易である。補強材4を薄板鋼板で形成することは、耐力面材2を躯体に固定したときに、耐震性に優れた耐力壁を形成するのに有効なばかりでなく、耐力面材2が嵩張らず、また重量もさほど大きくならないため、運搬や施工が容易で、かつローコストで耐力壁の耐震性を向上させるものである。 Reinforcing material 4 includes iron, stainless steel, titanium, aluminum, zinc alloy plated steel plate, enamel steel plate, clad steel plate, laminated steel plate (PVC steel plate, etc.), sandwich steel plate (damping steel plate, etc.) (Of course, these are painted in various colors) A thin steel plate having such a thickness that it is easy to penetrate a nail having a thickness of about 0.1 to 3.0 mm is preferable, and the reinforcing material 4 is a nail 3 and a load bearing surface material. When the reinforcing material 4 is temporarily fixed to the load-bearing surface material 2 by sticking or the like in advance with an adhesive, a double-sided tape or the like before being fixed to 2, it is easier to handle. Forming the reinforcing material 4 with a thin steel plate is not only effective for forming a load-bearing wall having excellent earthquake resistance when the load-bearing face material 2 is fixed to the housing, but the load-bearing face material 2 is not bulky. In addition, since the weight does not increase so much, transportation and construction are easy, and the earthquake resistance of the bearing wall is improved at low cost.

補強材4としては、上記薄板鋼板以外にも、ガラス繊維シートや炭素繊維シートなどのように釘が貫通されにくい材料であれば薄板鋼板と同様に使用することができ、同じ強さであれば軽い補強材のほうが作業性は良くなる。 The reinforcing material 4 can be used in the same manner as the thin steel plate as long as the material is not easily penetrated by the nail, such as a glass fiber sheet or a carbon fiber sheet, in addition to the thin steel plate. Workability is better with lighter reinforcements.

補強材4は図8に示すように長尺短尺帯状の各2本の鋼板を組み合わせて形成したものや、または図示しないが鋼板を一体成形したものを、接着剤や両面テープ等で耐力面材2の表面に貼着して耐力面材2に配すると作業性が向上する。
さらに図9に示すように、補強材4として単一の長さの補強材を組み合わせて、接着剤や両面テープ等で耐力面材2の表面に貼着して耐力面材2に配すると補強材4の長さが単一となり材料点数が少なくなる。
As shown in FIG. 8, the reinforcing material 4 is formed by combining two steel strips each having a long and short belt shape, or is formed by integrally forming a steel plate although not shown in the figure. If it sticks to the surface of 2 and distributes to the load-bearing surface material 2, workability | operativity will improve.
Furthermore, as shown in FIG. 9, a reinforcing material having a single length is combined as the reinforcing material 4, and is adhered to the surface of the load-bearing face material 2 with an adhesive or a double-sided tape, and is reinforced when placed on the load-bearing face material 2. The length of the material 4 becomes single and the number of materials is reduced.

本発明の壁下地の壁強さ倍率を表2に示す。通常施工は補強材4を使用しない施工構造であり、高倍率施工は補強材4を使用する施工構造である。施工条件は、耐力面材2はパルプ・けい酸質混入セメント板、釘3はN50を使用して、柱10のサイズは105mm以上とし、間柱9ありで一般壁部に施工した条件である。なお、高倍率施工の補強材4には厚さ0.35mm×幅30mmのJIS G 3322:2008の塗装溶融55%アルミニウム−亜鉛めっき鋼板を使用した。

Figure 2012202112
Table 2 shows the wall strength magnification of the wall foundation of the present invention. The normal construction is a construction structure that does not use the reinforcing material 4, and the high magnification construction is a construction structure that uses the reinforcing material 4. The construction condition is a condition in which the load bearing face material 2 is made of pulp / silicate mixed cement plate, the nail 3 is made of N50, the size of the pillar 10 is 105 mm or more, and the construction is made on the general wall portion with the intermediate pillar 9. In addition, as the reinforcing material 4 for the high magnification construction, a JIS G 3322: 2008 coated molten 55% aluminum-galvanized steel sheet having a thickness of 0.35 mm and a width of 30 mm was used.
Figure 2012202112

高倍率施工は壁強さ倍率7.8kN/mであり、通常施工の壁強さ倍率6.5kN/mと比較して優れた壁強さ倍率を提供した。上記高倍率施工の施工仕様を耐震設計によって高い壁強さ倍率が必要とされる壁に施工する。
以上説明したのは、本発明の外壁下地の施工構造の一実施例にすぎず、本発明はその主旨を超えない限り、上記実施例の記載に限定されるものではない。
The high magnification construction had a wall strength magnification of 7.8 kN / m and provided an excellent wall strength magnification compared to the normal construction wall strength magnification of 6.5 kN / m. The above construction specifications for high-magnification construction are applied to walls that require high wall strength magnification by seismic design.
What has been described above is only one example of the construction structure of the outer wall base of the present invention, and the present invention is not limited to the description of the above examples unless it exceeds the gist thereof.

1 構造材
2 耐力面材
3 釘
3a 釘頭
3b 釘胴部
4 補強材
5 荷重方向
6 構造材内部の釘による空隙部
7 パンチングシア
8 胴差
9 間柱
10 柱
11 補強金物
12 土台
13 継手間柱
DESCRIPTION OF SYMBOLS 1 Structural material 2 Load bearing surface 3 Nail 3a Nail head 3b Nail trunk | drum 4 Reinforcement material 5 Load direction 6 The space | gap part by the nail inside a structural material 7 Punching shear 8 Body difference 9 Column 10 Column 11 Reinforcement metal 12 Base 13 Joint column

以下、本発明の作用と効果について説明する。
壁強さ倍率を高めるための手段を評価する判断数値として、釘接合の一面せん断耐力を使用して評価した。耐力面材を側材とする釘接合のせん断耐力を測定する方法として、社団法人ツーバイフォー建築協会「2002年枠組壁工法建築物構造計算指針」の接合部の基準許容応力および基準剛性(単調加力接合部試験によるもの)を採用して、釘接合の一面せん断耐力を測定した。
The operation and effect of the present invention will be described below.
As a judgment value for evaluating the means for increasing the wall strength magnification, the one-side shear strength of nail bonding was used for evaluation. As a method of measuring the shear strength of a nail joint with a load bearing surface as a side material, the standard allowable stress and standard rigidity (monotonic applied force) of the joint part of the “Two-by Four Architecture Association” “Guideline for Calculation of Building Structures for Frame Construction” The joint shear strength was measured using a joint test.

図6は、木造軸組住宅の軸組を表す図であって、間柱有りの一般壁部の下地組の説明図であり、8は胴差、9は間柱、10は柱、11は補強金物、12は土台、13は継手である。
はじめに、外装のリフォームを行う住宅のリフォームを施工する箇所の外壁をはがし、躯体を現します。そして土台・柱等が腐朽、劣化している場合は修繕・交換を行う。
本発明では、柱、土台、梁、胴差及び桁の断面寸法は105×105mm以上とし、耐力壁の端部は柱とする。なお間柱の寸法は27×105mm以上とし、耐力面材を継ぐ継手間柱の断面寸法は45×105mm以上とする。
柱の断面寸法が異なる場合は木材等の調整材で外面をあわせることができるが、調整材は鉄丸釘等を使用して柱、間柱に確実に取り付ける。
柱頭と柱脚には事前の耐震補強計画に従って、当該部分の壁倍率(有効倍率)に応じた引き抜け防止措置を講じる。
FIG. 6 is a diagram showing a frame structure of a wooden framed house, and is an explanatory view of a base group of a general wall portion with a space column, 8 is a trunk difference, 9 is a space column, 10 is a column, and 11 is a reinforcement hardware , 12 is a base, and 13 is a joint.
First, peel off the outer wall of the location where the housing renovation is to be performed, and reveal the housing. If the foundations and pillars are damaged or deteriorated, they will be repaired or replaced.
In the present invention, the cross-sectional dimensions of columns, foundations, beams, trunk differences, and girders are 105 × 105 mm or more, and the ends of the bearing walls are columns. In addition, the dimension of the stud is 27 × 105 mm or more, and the cross-sectional dimension of the joint stud that joins the bearing surface is 45 × 105 mm or more.
Although if the cross-sectional dimensions of the column are different can match the outer surface in the adjustment member of wood or the like, adjusting material column using Tetsumaru nails, reliably attached to the studs.
In accordance with the pre-seismic reinforcement plan for the capital and column base, take measures to prevent pull-out according to the wall magnification (effective magnification) of the relevant part.

図8は高倍率施工における、図6の間柱有りの一般壁部の下地組に対して耐力面材2を外壁下地として施工した例である。補強材4は耐力面材2を平置きにした状態にして養生テープ等で耐力面材2に仮留めをすると施工が容易となる。この際、耐力面材2と補強材4の端部は揃えて仮留めをする。
なお、補強材4の耐力面材2と接する面にあらかじめ接着テープが貼付されていると、養生テープを用いる必要がなく、施工性と施工品質が向上する。
耐力面材2の取り付けは、外周部は補強材4の上からN50の釘3を100mm間隔以下で、中通りでは200mm間隔以下で柱10、土台12、胴差8、間柱9等に打ち付ける。この際、釘3の縁端距離(耐力面材端部からの釘打ち位置)は15mm程度とする。また土台12、柱10等への掛かり代は30mm以上とする。釘3の打ち込みは、下地組のある部分に行い、釘3の打ち込み不足、打ち込み過ぎの無いようにする。
FIG. 8 shows an example in which the load bearing surface material 2 is applied as the outer wall base material to the base set of the general wall portion with the studs in FIG. 6 in the high magnification construction. The reinforcing member 4 can be easily constructed when the load-bearing face material 2 is placed flat and temporarily secured to the load-bearing face material 2 with a curing tape or the like. At this time, the end portions of the load bearing face material 2 and the reinforcing material 4 are aligned and temporarily fixed.
In addition, when the adhesive tape is previously affixed on the surface which contacts the load-bearing surface material 2 of the reinforcing material 4, it is not necessary to use a curing tape, and workability and construction quality are improved.
The load bearing member 2 is attached to the pillar 10, the base 12, the trunk difference 8, the intermediate pillar 9, and the like with the N50 nail 3 from the top of the reinforcing member 4 at an interval of 100 mm or less, and at an interval of 200 mm or less in the middle street. At this time, the edge distance of the nail 3 (nail driving position from the end of the load bearing surface material) is about 15 mm. In addition, the hanging cost to the base 12, the pillar 10, etc. is 30 mm or more. The nail 3 is driven into a portion of the base set so that the nail 3 is not driven too much or not too much.

Claims (7)

外壁下地材として耐力面材を使用する木造軸組住宅の外装リフォームにおいて、
耐震設計によって高い壁強さ倍率が必要される壁の耐力面材を構造材に固定する釘の釘頭と該耐力面材との間に、パンチングシアを防止するための補強材が介在していることを特徴とする外壁下地の施工構造。
In exterior renovation of wooden framed houses that use load-bearing face materials as outer wall base materials,
Reinforcing material to prevent punching shear is interposed between the nail head of the nail that fixes the wall bearing surface material, which requires a high wall strength magnification due to the seismic design, to the structural material, and the bearing surface material. Construction structure of the outer wall foundation characterized by
前記補強材があらかじめ耐力面材に仮留めされていることを特徴とする請求項1に記載の外壁下地の施工構造 The construction structure of the outer wall base according to claim 1, wherein the reinforcing material is preliminarily secured to the load bearing surface material. 前記補強材が2つ以上の釘にまたがって連続していることを特徴とする請求項1〜2のいずれかに記載の外壁下地の施工構造。 The construction structure of the outer wall base according to claim 1, wherein the reinforcing material is continuous across two or more nails. 前記耐震設計によって高い壁強さ倍率が必要される壁の耐力面材と高い壁強さ倍率が必要とされない壁の耐力面材の種類と厚さが同一であることを特徴とする請求項1〜3のいずれかに記載の外壁下地の施工構造。 2. The type and thickness of a load bearing face material for a wall that requires a high wall strength magnification and a wall strength face material that does not require a high wall strength magnification by the seismic design are the same. The construction structure of the outer wall base | substrate in any one of -3. 前記釘の種類と寸法が単一であることを特徴とする請求項1〜4のいずれかに記載の外壁下地の施工構造。 The construction structure of the outer wall base according to any one of claims 1 to 4, wherein the type and size of the nail are single. 前記補強材を、薄板鋼板とした請求項1〜5のいずれかに記載の外壁下地の施工構造 The construction structure of the outer wall base according to any one of claims 1 to 5, wherein the reinforcing material is a thin steel plate. 前記補強材を、ガラス繊維シート、炭素繊維シートから選択されるシートとした請求項1〜6のいずれかに記載の外壁下地の施工構造
The construction structure of the outer wall base according to any one of claims 1 to 6, wherein the reinforcing material is a sheet selected from a glass fiber sheet and a carbon fiber sheet.
JP2011067794A 2011-03-25 2011-03-25 Structure for constructing exterior wall substrate Pending JP2012202112A (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP2011067794A JP2012202112A (en) 2011-03-25 2011-03-25 Structure for constructing exterior wall substrate
AU2011239333A AU2011239333A1 (en) 2011-03-25 2011-10-26 Installation structure of base of exterior wall
RU2011144204/03A RU2011144204A (en) 2011-03-25 2011-10-31 OUTDOOR WALL MOUNTING DESIGN
TW100140126A TW201239170A (en) 2011-03-25 2011-11-03 Installation structure of base of exterior wall
US13/288,110 US20120240487A1 (en) 2011-03-25 2011-11-03 Installation structure of base of exterior wall
KR1020110130019A KR20120109985A (en) 2011-03-25 2011-12-07 Construction structure of underground outer wall
CN2012100152611A CN102691359A (en) 2011-03-25 2012-01-17 Installation structure of base of exterior wall

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011067794A JP2012202112A (en) 2011-03-25 2011-03-25 Structure for constructing exterior wall substrate

Publications (1)

Publication Number Publication Date
JP2012202112A true JP2012202112A (en) 2012-10-22

Family

ID=46857084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011067794A Pending JP2012202112A (en) 2011-03-25 2011-03-25 Structure for constructing exterior wall substrate

Country Status (7)

Country Link
US (1) US20120240487A1 (en)
JP (1) JP2012202112A (en)
KR (1) KR20120109985A (en)
CN (1) CN102691359A (en)
AU (1) AU2011239333A1 (en)
RU (1) RU2011144204A (en)
TW (1) TW201239170A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003534A (en) * 2016-07-07 2018-01-11 旭化成建材株式会社 Bearing wall and construction method thereof
JP2018096043A (en) * 2016-12-08 2018-06-21 積水化学工業株式会社 Building surface structure
JP2018112008A (en) * 2017-01-12 2018-07-19 積水ハウス株式会社 Face bar
WO2019203148A1 (en) * 2018-04-18 2019-10-24 吉野石膏株式会社 Wooden building load-bearing wall structure and load-bearing wall construction method
JP2020111917A (en) * 2019-01-09 2020-07-27 積水ハウス株式会社 Lower end structure of bearing wall
CN114293759A (en) * 2021-12-28 2022-04-08 中国建筑第八工程局有限公司 Civil engineering bearing equipment

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104727570B (en) * 2015-04-08 2017-08-11 山东工艺美术学院 A kind of multilayer, high-rise steel structure Lateral Resistant System and bearing capacity computation method
JP6454045B1 (en) * 2018-06-13 2019-01-16 旭化成建材株式会社 Bearing wall and its construction method

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116228A (en) * 1997-06-16 1999-01-12 Ig Tech Res Inc Nail head punching shear preventing structure in structural face material
US20030159390A1 (en) * 2001-10-16 2003-08-28 Fonseca Fernando S. Method and apparatus for reinforcing construction sheeting
JP2006177059A (en) * 2004-12-22 2006-07-06 Ig Tech Res Inc Earthquake-proof retrofittingmethod of existing external wall
JP2008038355A (en) * 2006-08-01 2008-02-21 Nippon Steel & Sumikin Coated Sheet Corp Repair structure of existing outer wall
JP2008150849A (en) * 2006-12-18 2008-07-03 Pal Co Ltd External wall structure
JP2010031634A (en) * 2008-06-27 2010-02-12 Structural Quality Assurance Inc Method and structure for anchoring face material to frame, and strip reinforcing member
JP2010144369A (en) * 2008-12-17 2010-07-01 Mitsui Home Co Ltd Wooden framework wall

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5524400A (en) * 1994-04-08 1996-06-11 Schmechel; Douglas A. Wall assembly and method of making the same
US5706626A (en) * 1995-12-14 1998-01-13 Mueller; Lee W. Pre-assembled internal shear panel
US5870870A (en) * 1996-05-15 1999-02-16 Utzman; Charles H. Shear panel joint
US8397454B2 (en) * 1997-11-21 2013-03-19 Simpson Strong-Tie Company, Inc. Building wall for resisting lateral forces
US6598359B1 (en) * 1998-06-08 2003-07-29 Heinrich Wulfert Earthquake-immune curtain wall system
JP3115273B2 (en) * 1998-07-29 2000-12-04 ニチハ株式会社 Construction method and construction structure of building board
AU746655B2 (en) * 1999-12-24 2002-05-02 Nichiha Co., Ltd External wall construction
DE10007269C2 (en) * 2000-02-17 2003-10-02 Horst Knappe Fastening device for the invisible fastening of panels to walls
US8082703B2 (en) * 2002-02-11 2011-12-27 Ei-Land Corporation Force-resisting devices and methods for structures
US7506479B2 (en) * 2004-08-17 2009-03-24 Simpson Strong-Tie Company, Inc. Shear transfer plate
JP4044935B2 (en) * 2005-01-27 2008-02-06 ニチハ株式会社 Exterior wall construction structure
JP3122159U (en) * 2006-03-24 2006-06-01 ニチハ株式会社 Seismic reinforcement structure for buildings
US7743575B2 (en) * 2006-04-24 2010-06-29 Nichiha Co., Ltd. Joint member
NZ549029A (en) * 2006-08-07 2009-06-26 Prestressed Timber Ltd An engineered wood construction system for high performance structures using pre-stressed tendons and replaceable energy dissipaters
JP3129745U (en) * 2006-09-28 2007-03-08 ニチハ株式会社 Ceramic siding and seismic reinforcement structure for buildings using the ceramic siding
US20090151273A1 (en) * 2007-12-12 2009-06-18 Erich Jason Axsom High-strength shear wall sheathing with pre-formed fastener holes
CN201679114U (en) * 2010-05-14 2010-12-22 北京工业大学 Horizontal seam dissipating energy prestress shear wall structure
JP5667389B2 (en) * 2010-07-20 2015-02-12 ニチハ株式会社 Wall structure using load bearing materials in wooden buildings and its construction method.

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH116228A (en) * 1997-06-16 1999-01-12 Ig Tech Res Inc Nail head punching shear preventing structure in structural face material
US20030159390A1 (en) * 2001-10-16 2003-08-28 Fonseca Fernando S. Method and apparatus for reinforcing construction sheeting
JP2006177059A (en) * 2004-12-22 2006-07-06 Ig Tech Res Inc Earthquake-proof retrofittingmethod of existing external wall
JP2008038355A (en) * 2006-08-01 2008-02-21 Nippon Steel & Sumikin Coated Sheet Corp Repair structure of existing outer wall
JP2008150849A (en) * 2006-12-18 2008-07-03 Pal Co Ltd External wall structure
JP2010031634A (en) * 2008-06-27 2010-02-12 Structural Quality Assurance Inc Method and structure for anchoring face material to frame, and strip reinforcing member
JP2010144369A (en) * 2008-12-17 2010-07-01 Mitsui Home Co Ltd Wooden framework wall

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018003534A (en) * 2016-07-07 2018-01-11 旭化成建材株式会社 Bearing wall and construction method thereof
JP2018096043A (en) * 2016-12-08 2018-06-21 積水化学工業株式会社 Building surface structure
JP7008402B2 (en) 2016-12-08 2022-01-25 積水化学工業株式会社 Architectural surface structure
JP2018112008A (en) * 2017-01-12 2018-07-19 積水ハウス株式会社 Face bar
WO2019203148A1 (en) * 2018-04-18 2019-10-24 吉野石膏株式会社 Wooden building load-bearing wall structure and load-bearing wall construction method
JPWO2019203148A1 (en) * 2018-04-18 2021-04-30 吉野石膏株式会社 Bearing wall structure and bearing wall construction method for wooden structures
JP7157475B2 (en) 2018-04-18 2022-10-20 吉野石膏株式会社 Load-bearing wall structure of wooden structure building and load-bearing wall construction method
JP2020111917A (en) * 2019-01-09 2020-07-27 積水ハウス株式会社 Lower end structure of bearing wall
JP7298158B2 (en) 2019-01-09 2023-06-27 積水ハウス株式会社 Lower end structure of bearing wall
CN114293759A (en) * 2021-12-28 2022-04-08 中国建筑第八工程局有限公司 Civil engineering bearing equipment

Also Published As

Publication number Publication date
TW201239170A (en) 2012-10-01
RU2011144204A (en) 2013-05-10
AU2011239333A1 (en) 2012-10-11
CN102691359A (en) 2012-09-26
KR20120109985A (en) 2012-10-09
US20120240487A1 (en) 2012-09-27

Similar Documents

Publication Publication Date Title
JP2012202112A (en) Structure for constructing exterior wall substrate
Ber et al. Experimental investigations of timber–glass composite wall panels
JP6225289B1 (en) Seismic reinforcement structure and seismic reinforcement method
JP4097672B2 (en) Cantilever supporting balcony construction panel and balcony construction method
JP3122159U (en) Seismic reinforcement structure for buildings
JP2007002580A (en) Reinforcing structure of perforated plate joint part
WO2019203148A1 (en) Wooden building load-bearing wall structure and load-bearing wall construction method
JP3129745U (en) Ceramic siding and seismic reinforcement structure for buildings using the ceramic siding
JP4146497B1 (en) Building foundation reinforcement method
JP5478128B2 (en) Unit building
JP4093493B2 (en) Foundation reinforcement structure
JP3131038U (en) Bearing material
JP2008038355A (en) Repair structure of existing outer wall
JP4179972B2 (en) Partition wall structure
JP4097028B2 (en) How to repair polygonal column structures
JP2000248675A (en) Floor panel
JP2008038509A (en) Gypsum board wall and gypsum board wall reinforcing tape
JP2004316320A (en) Method of reinforcing borehole peripheral part for existing concrete structure
JP3203715U (en) Wall structure of mortar outer wall
WO2024024189A1 (en) Inorganic bearing surface material and bearing wall
JP2013108267A (en) Aseismic repair wall and method for constructing aseismic repair wall
JP2001227086A (en) Bearing wall of wooden building
JP5028120B2 (en) Seismic / fireproof outer wall, building having the seismic / fireproof outer wall, and construction method thereof
JP3151125U (en) Seismic retrofit structure for existing exterior walls
JP2013019135A (en) Construction method of mortar outer wall

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110608

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140225

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150213

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150630