JP2012201975A - Austenitic stainless steel pipe having water vapor oxidation resistance, and method for producing the same - Google Patents

Austenitic stainless steel pipe having water vapor oxidation resistance, and method for producing the same Download PDF

Info

Publication number
JP2012201975A
JP2012201975A JP2011070602A JP2011070602A JP2012201975A JP 2012201975 A JP2012201975 A JP 2012201975A JP 2011070602 A JP2011070602 A JP 2011070602A JP 2011070602 A JP2011070602 A JP 2011070602A JP 2012201975 A JP2012201975 A JP 2012201975A
Authority
JP
Japan
Prior art keywords
steel pipe
stainless steel
austenitic stainless
pipe
shot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011070602A
Other languages
Japanese (ja)
Inventor
Masaru Shimizu
大 清水
Takeshi Satakeda
剛 佐竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2011070602A priority Critical patent/JP2012201975A/en
Priority to TW101107156A priority patent/TW201304910A/en
Priority to KR1020137027192A priority patent/KR20130135353A/en
Priority to PCT/JP2012/056725 priority patent/WO2012132938A1/en
Priority to CN201280015707.9A priority patent/CN103547688A/en
Publication of JP2012201975A publication Critical patent/JP2012201975A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D7/00Modifying the physical properties of iron or steel by deformation
    • C21D7/02Modifying the physical properties of iron or steel by deformation by cold working
    • C21D7/04Modifying the physical properties of iron or steel by deformation by cold working of the surface
    • C21D7/06Modifying the physical properties of iron or steel by deformation by cold working of the surface by shot-peening or the like
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/10Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for compacting surfaces, e.g. shot-peening
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C1/00Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods
    • B24C1/08Methods for use of abrasive blasting for producing particular effects; Use of auxiliary equipment in connection with such methods for polishing surfaces, e.g. smoothing a surface by making use of liquid-borne abrasives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24CABRASIVE OR RELATED BLASTING WITH PARTICULATE MATERIAL
    • B24C3/00Abrasive blasting machines or devices; Plants
    • B24C3/32Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks
    • B24C3/325Abrasive blasting machines or devices; Plants designed for abrasive blasting of particular work, e.g. the internal surfaces of cylinder blocks for internal surfaces, e.g. of tubes
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/08Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for tubular bodies or pipes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/04Component parts or details of steam boilers applicable to more than one kind or type of steam boiler and characterised by material, e.g. use of special steel alloy
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B37/00Component parts or details of steam boilers
    • F22B37/02Component parts or details of steam boilers applicable to more than one kind or type of steam boiler
    • F22B37/10Water tubes; Accessories therefor
    • F22B37/107Protection of water tubes

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Articles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an austenitic stainless steel pipe excellent in water vapor oxidation resistance by determining quality of shot processing based on measurement of surface roughness on the inner surface of the pipe.SOLUTION: In the austenitic stainless steel pipe 1 used for a heat transfer pipe in a boiler, the roughness of the pipe inner surfaces 5 after shot processing performed on the pipe inner surfaces is an arithmetic mean roughness (Ra) of 2 μm or less. In a water vapor oxidation scale layer 6 occurring on the inside of the steel pipe during its use, the thickness of an inner layer 6a consisting of (Cr,Fe)Ois 10 μm or less. The hardness of the pipe inner surface after the shot processing on the pipe inner surface is 350 Hv or greater.

Description

本発明は、ボイラの伝熱管に使用されるオーステナイト系ステンレス鋼管に係わり、特に、鋼管内を高温、高圧の水蒸気が流れる部位に使用するのに好適な耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管に関する。   The present invention relates to an austenitic stainless steel pipe used for a heat transfer pipe of a boiler, and in particular, an austenitic stainless steel pipe excellent in steam oxidation resistance suitable for use in a portion where high-temperature and high-pressure steam flows in the steel pipe. About.

ボイラの高温のガスが流れる高温部には鋼管内を高温、高圧の水蒸気が流れる過熱器や再熱器等が設けられており、これらを構成する伝熱管には高温強度及び耐食性の観点から、Crを18%以上含有するオーステナイト系ステンレス鋼管が用いられている。ボイラ運転中、鋼管の内表面には、鋼管内部を流れる高温、高圧の水蒸気との接触、反応により、水蒸気酸化スケールが生成する。この水蒸気酸化スケールは(Cr,Fe)から成る内層とFeからなる外層からなる2層構造となっている。 The high-temperature part where the high-temperature gas of the boiler flows is provided with a superheater, a reheater, etc. in which high-temperature, high-pressure steam flows in the steel pipe.The heat transfer tubes constituting these from the viewpoint of high-temperature strength and corrosion resistance, An austenitic stainless steel pipe containing 18% or more of Cr is used. During boiler operation, a steam oxidation scale is generated on the inner surface of the steel pipe by contact and reaction with high-temperature and high-pressure steam flowing inside the steel pipe. The steam oxidation scale has a two-layer structure including an inner layer made of (Cr, Fe) 3 O 4 and an outer layer made of Fe 3 O 4 .

オーステナイト系ステンレス鋼は、一般に線膨張係数が大きいため、ボイラの負荷変化や、運転停止又は運転起動に伴う鋼管内部を流れる流体の温度変化により、鋼管の膨張または縮小が生じるがこのとき鋼管自体と鋼管の内表面に層を生成している水蒸気酸化スケールとの膨張差が大きいため水蒸気酸化スケールの剥離が生じやすい。剥離した水蒸気酸化スケールは、鋼管の曲げ部に堆積して生じる管閉塞や蒸気配管を経由して蒸気タービン部へ飛散して生じる蒸気タービン翼エロージョンの原因となる。従って、ボイラの高温部で使用される鋼管には、高温強度に加え、優れた耐水蒸気酸化性が要求される。   Since austenitic stainless steel generally has a large coefficient of linear expansion, expansion or contraction of the steel pipe occurs due to changes in the load of the boiler and the temperature change of the fluid flowing inside the steel pipe when the operation is stopped or started. Since the difference in expansion from the steam oxidation scale forming a layer on the inner surface of the steel pipe is large, peeling of the steam oxidation scale is likely to occur. The peeled steam oxide scale causes steam blockage erosion caused by pipe blockage caused by accumulation in a bent part of a steel pipe or by scattering to a steam turbine part via a steam pipe. Therefore, the steel pipe used in the high temperature part of the boiler is required to have excellent steam oxidation resistance in addition to high temperature strength.

オーステナイト系ステンレス鋼の耐水蒸気酸化性の向上策には、材料中Cr含有量の増加、結晶粒の微細化、鋼管内面のショット加工による硬化層形成等が挙げられるが、一般的に広く採用されている方法は、鋼管内面のショット加工による硬化層の形成である。ショット加工は、例えば特許文献1で示されているように、鋼管内面にステンレス鋼からなる粒子などを所定の圧力および吹付け量以上でショット加工を施し、鋼管内面に所定の厚さ以上のショット加工層を形成させるものである。このように加工した鋼管を高温蒸気発生用の過熱器などで使用した場合、鋼管内表面に極めて薄くかつ緻密なスケールが形成されて、水蒸気酸化スケール全体の生長を防止するとされている。   Measures to improve the steam oxidation resistance of austenitic stainless steel include increasing the Cr content in the material, refining the crystal grains, and forming a hardened layer by shot processing of the inner surface of the steel pipe. The method is to form a hardened layer by shot machining of the inner surface of the steel pipe. For example, as shown in Patent Document 1, the shot processing is performed by performing shot processing on the inner surface of the steel pipe with particles of stainless steel or the like at a predetermined pressure and a spraying amount or more, and shots having a predetermined thickness or more on the inner surface of the steel pipe. A processed layer is formed. When the steel pipe processed in this way is used in a superheater for generating high-temperature steam, an extremely thin and dense scale is formed on the inner surface of the steel pipe to prevent the growth of the entire steam oxidation scale.

また、オーステナイト系ステンレス鋼管におけるショット加工が全面に確実に施工されているか否かを判定する手法として、例えば、特許文献2では、ショット加工された管の片側から光源を管内面に当て、他端から内面観察用のTVカメラを管内で移動させながら、ショット加工された面積を測定する方法が記載されている。この場合、ショット加工された面は、微小な凹凸のために非光沢面となり、未加工面は光沢があることで判別できる。そしてショット加工された面積が全体の70%以上となるショット条件を選択することが記載されている。   In addition, as a method for determining whether or not shot processing in an austenitic stainless steel pipe is reliably performed on the entire surface, for example, in Patent Document 2, a light source is applied to the inner surface of the tube from one side of the shot processed tube, and the other end Describes a method of measuring a shot-processed area while moving a TV camera for observing the inner surface in a tube. In this case, the shot-processed surface becomes a non-glossy surface due to minute unevenness, and the unprocessed surface can be identified by being glossy. In addition, it is described that a shot condition in which a shot processed area is 70% or more of the whole is selected.

特開昭52−8930号公報JP 52-8930 A 国際公開番号WO2007/099949 (特願2008−502795)International Publication Number WO2007 / 099949 (Japanese Patent Application No. 2008-502795)

最近の火力発電用大型ボイラでは、過熱器や再熱器管に使用されるオーステナイト系ステンレス鋼管の長さはボイラ一缶あたり数千m以上となり、ショット加工が鋼管内面全体に確実に施工されていることを品質保証する必要があり、そのための判定技術が必要とされている。上記の特許文献1には所定の圧力および吹付け量以上でショット加工を行う必要があることは記載されているが、適正なショット加工が行われたことを判定する必要があることは記載されていない。   In recent large-scale boilers for thermal power generation, the length of austenitic stainless steel pipes used for superheaters and reheater pipes is more than several thousand meters per boiler, and shot processing is reliably applied to the entire inner surface of the steel pipe. It is necessary to assure the quality of the product, and a judgment technique for that purpose is required. Although the above Patent Document 1 describes that it is necessary to perform shot processing with a predetermined pressure and a spraying amount or more, it is described that it is necessary to determine that proper shot processing has been performed. Not.

また、上記の特許文献2にはショット加工が確実に施工されているか否かを判定する手法として、ショット加工面が凹凸のために非光沢面となり、未加工面が光沢面となることを利用してTVカメラで観察し判定する方法が記載されているが、管内表面への異物の付着はもちろんショット加工前の管内表面の状態の影響を受けやすく測定精度が高くないため実用的ではなかった。   Further, in Patent Document 2 described above, as a method for determining whether or not the shot processing is reliably performed, the fact that the shot processing surface becomes a non-glossy surface due to unevenness and the unprocessed surface becomes a glossy surface is used. However, this method is not practical because it is easily affected by the state of the tube inner surface before shot processing and the measurement accuracy is not high. .

本発明の目的は、ショット加工が確実に施工されているか否かを判定する手法として、適切な判定手法を提供することにあり、さらにこの判定手法により施工することにより得られる耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管を提供することにある。   An object of the present invention is to provide an appropriate determination method as a method for determining whether or not the shot processing is reliably applied, and further to the steam oxidation resistance obtained by the execution by this determination method. The object is to provide an excellent austenitic stainless steel pipe.

前記課題を解決するために、本発明は主として次のような構成を採用する。
伝熱管用のオーステナイト系ステンレス鋼管において、鋼管内面へのショット加工後の管内表面の粗さが、算術平均粗さ(Ra)で2μm以下である鋼管。さらにこの鋼管は使用時に鋼管内側に生成する水蒸気酸化スケール層のうち、(Cr,Fe)から成る内層の厚さが10μm以下の鋼管である。
In order to solve the above problems, the present invention mainly adopts the following configuration.
An austenitic stainless steel pipe for a heat transfer pipe, wherein the roughness of the inner surface of the pipe after shot processing on the inner surface of the steel pipe is 2 μm or less in terms of arithmetic average roughness (Ra). Further, this steel pipe is a steel pipe having a thickness of an inner layer made of (Cr, Fe) 3 O 4 of 10 μm or less among the steam oxide scale layers generated inside the steel pipe during use.

また、ボイラの伝熱管に使用されるオーステナイト系ステンレス鋼管の製造方法において、鋼管内面にショット加工を施し、ショット加工後の管内表面の粗さを算術平均粗さ(Ra)で2μm以下とする鋼管の製造方法。さらに使用時に鋼管内側に生成する水蒸気酸化スケール層のうち、(Cr,Fe)から成る内層の厚さを10μm以下とする鋼管の製造方法である。 Moreover, in the manufacturing method of an austenitic stainless steel pipe used for a heat transfer pipe of a boiler, the steel pipe is subjected to shot processing on the inner surface of the steel pipe, and the roughness of the inner surface of the pipe after the shot processing is 2 μm or less in terms of arithmetic average roughness (Ra) Manufacturing method. Further among the steam oxidation scale layer to produce steel pipe inside during use, a method for producing a steel pipe according to (Cr, Fe) 10 [mu] m or less of the inner layer thickness consisting of 3 O 4.

従来は鋼管内表面に加工層を形成させることにより水蒸気酸化スケールの生成を抑制することは知られていたが、確実にショット加工が施工されているか否かを判定する手法として適切なものがなかった。本発明によれば、管内面の表面粗さの測定により確実にショット加工が施工されているか判断することができ、耐水蒸気酸化性に優れた鋼管を得ることができる。   Conventionally, it has been known to suppress the formation of steam oxidation scale by forming a processing layer on the inner surface of a steel pipe, but there is no appropriate method for determining whether or not shot processing has been applied reliably. It was. According to the present invention, it is possible to determine whether or not shot processing is reliably performed by measuring the surface roughness of the inner surface of the tube, and it is possible to obtain a steel tube excellent in steam oxidation resistance.

本発明の実施形態に係るオーステナイト系ステンレス鋼管の内面にショット加工を施す概略構成を示す図である。It is a figure which shows schematic structure which performs shot processing to the inner surface of the austenitic stainless steel pipe which concerns on embodiment of this invention. 本発明の第1の実施形態に関するショット加工後における、管内表面に生成する水蒸気酸化スケール厚さとの関係を示す図であり、併せて算術平均粗さと管内面深さ50μmでの硬さとの関係を示す図である。It is a figure which shows the relationship between the steam oxidation scale thickness produced | generated on the pipe | tube inner surface after the shot process regarding the 1st Embodiment of this invention, and also shows the relationship between arithmetic mean roughness and the hardness in a pipe | tube inner surface depth of 50 micrometers. FIG. 第1の実施形態に関するショット加工後における、管内表面の粗さと生成した水蒸気酸化スケールとの関係を説明する模式図である。It is a schematic diagram explaining the relationship between the roughness of the pipe inner surface and the produced | generated steam oxidation scale after the shot process regarding 1st Embodiment. 本発明の第2と第3の実施形態に関するショット加工後の管内表面からの深さ位置での管内面の硬さ分布と、ショット加工無しの場合での管内面の硬さ分布とを比較した図である。The hardness distribution of the inner surface of the tube at a depth position from the inner surface of the tube after the shot processing according to the second and third embodiments of the present invention was compared with the hardness distribution of the inner surface of the tube without the shot processing. FIG. 本発明の第4の実施形態に関するショット加工後の管内面にエッチング処理を施してショット加工層を明瞭にした断面ミクロ組織の写真である。It is the photograph of the cross-sectional microstructure which performed the etching process on the pipe inner surface after the shot process regarding the 4th Embodiment of this invention, and clarified the shot process layer. 本発明の第5の実施形態に関するショット加工後の管内面にエッチング処理を施してショット加工層を明瞭にした管内表面からの深さ約50μm位置の断面ミクロ組織の写真である。It is a photograph of the cross-sectional microstructure at a depth of about 50 μm from the inner surface of the tube where the inner surface of the tube after the shot processing according to the fifth embodiment of the present invention is etched to clarify the shot processing layer. 第5の実施形態に関するショット加工後の管内表面からの深さ50μm位置での10μm長さ当たりのすべり線の本数と管内面面の深さ50μm位置での硬さとの関係を示す図である。It is a figure which shows the relationship between the number of the slide line | wire per 10 micrometers length in the 50 micrometers depth position from the pipe inner surface after the shot process regarding 5th Embodiment, and the hardness in the 50 micrometers depth position of the pipe inner surface.

本発明の第1〜第5の実施形態に係る耐水蒸気酸化性を有するオーステナイト系ステンレス鋼管及びその製造方法について、図面を参照しながら以下説明する。   An austenitic stainless steel pipe having steam oxidation resistance and a method for producing the same according to first to fifth embodiments of the present invention will be described below with reference to the drawings.

まず、本発明の第1の実施形態に係る耐水蒸気酸化性を有するオーステナイト系ステンレス鋼管とその製造方法について、図1〜図3を参照しながら説明する。図面において、1はオーステナイト系ステンレス鋼管、2はショットノズル、3はショット粒子、4はショット加工層、5は管内表面、6は水蒸気酸化スケール、をそれぞれ表す。   First, an austenitic stainless steel pipe having steam oxidation resistance and a method for producing the same according to a first embodiment of the present invention will be described with reference to FIGS. In the drawings, 1 represents an austenitic stainless steel tube, 2 represents a shot nozzle, 3 represents shot particles, 4 represents a shot processed layer, 5 represents an inner surface of the tube, and 6 represents a steam oxidation scale.

図1において、オーステナイト系ステンレス鋼管の内面へのショット加工は、オーステナイト系ステンレス鋼製の小さな鋼片や鋼球などのショット粒子を圧縮空気で鋼管内表面に衝突させて、鋼管内表面近傍の結晶粒内にすべり変形を多数生じさせ、硬化させるものである。ショット加工を鋼管内面に均一に施工するには、このショット粒子の形状や硬さ、ショット粒子の吹き付け圧力や吹き付け量、ショットノズルの鋼管の内周方向への回転速度やノズルの軸方向への移動速度の条件を最適化する必要がある。   In FIG. 1, shot processing to the inner surface of an austenitic stainless steel pipe is performed by causing shot particles such as small austenitic stainless steel pieces or steel balls to collide with the inner surface of the steel pipe with compressed air, and crystal near the inner surface of the steel pipe. It causes many slip deformations in the grains and hardens them. In order to perform shot processing uniformly on the inner surface of the steel pipe, the shape and hardness of the shot particles, the spray pressure and amount of shot particles, the rotational speed of the shot nozzle in the inner peripheral direction of the steel pipe, and the axial direction of the nozzle It is necessary to optimize the moving speed condition.

本発明者は、鋭意研究を重ねた結果、16〜23%Crからなるオーステナイト系ステンレス鋼において、ショット加工後の鋼管内表面の粗さが耐水蒸気酸化性の指標となる鋼管内表面に生成する水蒸気酸化スケールの厚さと関連性を有していることを知見し、その関連性について図2に示すように実験データで確認した。   As a result of extensive research, the inventor of the present invention has a steel pipe inner surface roughness after shot processing that is an index of steam oxidation resistance in an austenitic stainless steel made of 16-23% Cr. It was found that there is a relationship with the thickness of the steam oxidation scale, and the relationship was confirmed by experimental data as shown in FIG.

図2はショット加工後の18%Crからなるオーステナイト系ステンレス鋼管内表面の算術平均粗さ(Ra)と鋼管内を流れる水蒸気温度が650℃で876時間経過後の18Cr8Niオーステナイト系ステンレス鋼管(火SUS304J1HTB)における水蒸気酸化スケールの厚さ(全層および内層の厚さ)を計測したものである。なお、図2には鋼管内表面からの深さが50μmの位置の硬さの計測値も併せて示している。算術平均粗さは、ショット加工条件を変化させて調整し、粗さの測定は、接触式表面粗さ計を用いて直接測定で行った。なお、測定機器については、接触式に限定するものではなく、レーザー顕微鏡等の非接触式の粗さ計を使用してもよい。実際の測定は鋼管の全長に渡り行うことが望ましいが、ショット加工条件が一定であればサンプル測定により行うことも可能である。また、水蒸気酸化スケールの厚さについてはサンプル抽出したものを腐食試験により顕微鏡にて計測した。   FIG. 2 shows the 18Cr8Ni austenitic stainless steel pipe (fire SUS304J1HTB) after the 876 hours of arithmetic mean roughness (Ra) of the inner surface of the austenitic stainless steel pipe made of 18% Cr after shot processing and the temperature of water vapor flowing through the steel pipe at 650 ° C. ) Was measured for the thickness of the steam oxidation scale (the thickness of all layers and the inner layer). In addition, in FIG. 2, the measured value of the hardness in the position whose depth from the steel pipe inner surface is 50 micrometers is also shown. The arithmetic average roughness was adjusted by changing the shot processing conditions, and the roughness was measured by direct measurement using a contact-type surface roughness meter. The measuring instrument is not limited to a contact type, and a non-contact type roughness meter such as a laser microscope may be used. Actual measurement is desirably performed over the entire length of the steel pipe, but can also be performed by sample measurement if the shot processing conditions are constant. Moreover, about the thickness of the steam oxidation scale, what extracted the sample was measured with the microscope by the corrosion test.

測定の結果、鋼管内表面の算術平均表面粗さ(Ra)が1.97μm以下の場合(本発明G〜J)、水蒸気酸化スケールの厚さは20μm(内層10μm)となり、鋼管内表面への水蒸気酸化スケールの生成を抑制できた。これに対して、鋼管内表面の算術平均表面粗さ(Ra)が2.06μm以上の場合(比較例C〜F)、水蒸気酸化スケールの厚さは20μmより大となり、さらに鋼管内表面の算術平均表面粗さ(Ra)が2.44μm以上の場合、水蒸気酸化スケールの厚さは70μm(内層40μm)より大となり、鋼管内表面への水蒸気酸化スケールの生成を抑制できなかった。   As a result of the measurement, when the arithmetic average surface roughness (Ra) of the inner surface of the steel pipe is 1.97 μm or less (present inventions G to J), the thickness of the steam oxidation scale becomes 20 μm (inner layer 10 μm), The generation of steam oxidation scale could be suppressed. On the other hand, when the arithmetic average surface roughness (Ra) of the inner surface of the steel pipe is 2.06 μm or more (Comparative Examples C to F), the thickness of the steam oxidation scale becomes larger than 20 μm, and further the arithmetic of the inner surface of the steel pipe When the average surface roughness (Ra) was 2.44 μm or more, the thickness of the steam oxidation scale was larger than 70 μm (inner layer 40 μm), and generation of the steam oxidation scale on the steel pipe inner surface could not be suppressed.

また、非ショット管(比較例A,B)では水蒸気酸化スケールの厚さは150μm(内層75μm)となった。なお鋼管内表面の算術平均表面粗さ(Ra)は2.44,2.51μmであった。   In the non-shot tube (Comparative Examples A and B), the thickness of the steam oxidation scale was 150 μm (inner layer 75 μm). The arithmetic average surface roughness (Ra) of the inner surface of the steel pipe was 2.44 and 2.51 μm.

また、図2には鋼管内表面からの深さが50μmの位置の硬さの計測値も併せて示しているが、鋼管内表面の算術平均表面粗さ(Ra)が1.97μm以下の場合、硬さが300Hv以上であり、確実にショット層が形成されていることがわかる。これに対して、鋼管内表面の算術平均表面粗さ(Ra)が2.06μm以上の場合、管内表面から深さ50μmの位置での硬さ(ピラミッド形圧子を用いた材料硬さのビッカース硬さ試験)が300Hv未満となっており、確実なショット層が形成されていないことがわかる。   FIG. 2 also shows the measured value of the hardness at a position where the depth from the inner surface of the steel pipe is 50 μm. When the arithmetic average surface roughness (Ra) of the inner surface of the steel pipe is 1.97 μm or less, It can be seen that the hardness is 300 Hv or more, and the shot layer is formed reliably. On the other hand, when the arithmetic average surface roughness (Ra) of the steel pipe inner surface is 2.06 μm or more, the hardness at the position of 50 μm depth from the pipe inner surface (the Vickers hardness of the material hardness using the pyramid indenter) Satisfactory test) is less than 300 Hv, indicating that a reliable shot layer is not formed.

図3はショット加工後の管内表面5の粗さと生成する水蒸気酸化スケール6との関係を示したものである。図3の左図に示すように、ショット加工が不均一であった場合、鋼管内表面に部分的にショット加工による硬化層が形成されるため、表面粗さは粗くなる。一方、図3の右図に示すように、ショット加工が鋼管内表面に均一に施工された場合、全体にショット加工層4が形成されるため、表面粗さは滑らかになる。   FIG. 3 shows the relationship between the roughness of the pipe inner surface 5 after shot processing and the generated steam oxidation scale 6. As shown in the left diagram of FIG. 3, when shot processing is not uniform, a hardened layer is partially formed on the inner surface of the steel pipe, so that the surface roughness becomes rough. On the other hand, as shown in the right diagram of FIG. 3, when shot processing is uniformly performed on the inner surface of the steel pipe, the shot processing layer 4 is formed on the entire surface, so that the surface roughness becomes smooth.

高温水蒸気中に暴露した場合、ショット加工が行われたショット加工層の表面には水蒸気酸化スケールのうち内層6aが薄くしか生成せず、その外側に生成する外層6bも薄くしか生成しないため、全層厚さは薄くなる。ショット加工が不十分である部位には内層6aが厚く生成し、その外側の外層6bも厚く生成するため全体で厚い水蒸気酸化スケール6が生成されることになり、従って、算術平均粗さでも水蒸気酸化スケール厚が大きくなる(左図)。   When exposed to high-temperature steam, the inner surface 6a of the steam oxidation scale is only thinly formed on the surface of the shot processed layer on which the shot processing has been performed, and the outer layer 6b generated on the outside thereof is only thinly generated. The layer thickness is reduced. A thick inner layer 6a is formed in a portion where shot processing is insufficient, and an outer layer 6b on the outer side is also formed thick, so that a thick steam oxidation scale 6 is formed as a whole. The oxide scale thickness increases (left figure).

一方、ショット加工が鋼管内表面に均一に施工された場合、全体にショット加工層4が形成されており、水蒸気酸化スケールは内層6a、外層6bとも薄くしか生成しないため、全層厚さは薄くなり、従って、算術平均粗さでも水蒸気酸化スケール厚が小さくなる(右図)。   On the other hand, when the shot processing is uniformly applied to the inner surface of the steel pipe, the shot processing layer 4 is formed on the whole, and the steam oxidation scale is generated only thinly in the inner layer 6a and the outer layer 6b. Accordingly, the thickness of the steam oxidation scale becomes small even with the arithmetic average roughness (right figure).

ここで、オーステナイト系ステンレス鋼管の内表面に生成する水蒸気酸化スケールについて説明する。オーステナイト系ステンレス鋼管の内表面に生成する水蒸気酸化スケール6は、ショット有無に関わらず、外層6bがFeからなり、 内層6aが(Cr,Fe)からなる2層構造になっている。ここで、Feを多く含む酸化物(Fe,(Cr,Fe):(Fe>Cr))はCrを多く含む酸化物(Cr,((Cr,Fe):(Cr>Fe))に比べ生成速度が一般的に速い。これは、酸化物中のイオン(Fe,Cr,Oイオン)の拡散速度(移動速度)がFe酸化物の方がCr酸化物に比べて速いためである。 Here, the steam oxidation scale produced | generated on the inner surface of an austenitic stainless steel pipe is demonstrated. The steam oxidation scale 6 formed on the inner surface of the austenitic stainless steel pipe has a two-layer structure in which the outer layer 6b is made of Fe 3 O 4 and the inner layer 6a is made of (Cr, Fe) 3 O 4 regardless of the presence or absence of shots. ing. Here, an oxide containing a large amount of Fe (Fe 3 O 4 , (Cr, Fe) 3 O 4 : (Fe> Cr)) is an oxide containing a large amount of Cr (Cr 2 O 3 , ((Cr, Fe) 3 O 4 : (Cr> Fe)) is generally faster in the generation rate because the diffusion rate (migration rate) of ions (Fe, Cr, O ions) in the oxide is higher in the case of Fe oxide. This is because it is faster than the oxide.

ショット加工は、金属中の金属(Fe,Cr)の拡散速度を速くする効果があり、18(16)Cr以上のSUS鋼では、相対的にFeよりもCrの拡散速度を速くするため、ショット無しに比べてスケール中のCr量が多いスケールが初期に生成し、スケール成長速度は著しく低下(抑制)する。従って、ショット加工が均一(全面)に施工されていれば、均一(全面)にCr量が多い薄いスケールが生成されが、ショット加工が不均一(部分的)であった場合には、部分的にFeを多く含む厚いスケールが生成するため、スケール成長を完全には抑制できないことになる。なお、Cr酸化物もFe酸化物もいずれも金属が蒸気と参加して生成する水蒸気酸化スケールである。   Shot processing has the effect of increasing the diffusion rate of metals (Fe, Cr) in the metal, and in SUS steel of 18 (16) Cr or higher, the diffusion rate of Cr is relatively higher than that of Fe. A scale with a large amount of Cr in the scale is formed in the initial stage compared to the case without, and the scale growth rate is significantly reduced (suppressed). Therefore, if shot processing is applied uniformly (entire surface), a thin scale with a large amount of Cr is generated uniformly (entire surface), but if shot processing is non-uniform (partial), partial As a result, a thick scale containing a large amount of Fe is generated, and thus scale growth cannot be completely suppressed. It should be noted that both Cr oxide and Fe oxide are steam oxidation scales produced by the participation of metal with steam.

従って、鋼管1へのショット加工後の管内表面の算術平均粗さを測定することによって、水蒸気酸化スケールの生成を抑制するためのショット加工が確実に施工されているかを判断することができる。本実施形態では、管内表面の粗さに算術平均粗さ(Ra)を用いたが、これに限定するものではなく、例えば最大高さ(Rz)や平均平方根高さ(Rq)などの他の粗さパラメータを使用してもよい。これらの粗さパラメータを用いることの妥当性は、深さ50μm位置での硬さを測定することにより確認した。   Therefore, by measuring the arithmetic average roughness of the pipe inner surface after the shot processing on the steel pipe 1, it is possible to determine whether or not the shot processing for suppressing the generation of the steam oxidation scale is reliably performed. In this embodiment, the arithmetic average roughness (Ra) is used for the roughness of the pipe inner surface, but the present invention is not limited to this, and other examples such as the maximum height (Rz) and the average square root height (Rq) are used. A roughness parameter may be used. The validity of using these roughness parameters was confirmed by measuring the hardness at a depth of 50 μm.

このように、本実施形態では、ショット加工後の管内表面の算術平均粗さが2μm以下であれば、(Cr,Fe)から成る内層6aの厚さを10μm以下の鋼管とすることができ、耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管であると判断される。 Thus, in this embodiment, if the arithmetic average roughness of the inner surface of the pipe after shot processing is 2 μm or less, the thickness of the inner layer 6a made of (Cr, Fe) 3 O 4 is 10 μm or less. Therefore, it is judged to be an austenitic stainless steel pipe excellent in steam oxidation resistance.

次に、本発明の第2の実施形態に係るオーステナイト系ステンレス鋼管の内面ショット加工による耐水蒸気酸化性を、さらに鋼管の使用前において管内表面の硬さを用いて評価する手法について、図4を参照しながら説明する。図4はショット加工後の18%Crからなるオーステナイト系ステンレス鋼管の管内面硬さと、ショット加工無しの硬さとを比較した結果を示す。図4によると、ショット加工による硬さ増加は、管内表面で最大となり、管内部方向への位置で徐々に低下する。従って、管内表面の硬さは、管内部のように測定位置による影響を受けないため、安定した結果が得られる。   Next, FIG. 4 shows a method for evaluating the steam oxidation resistance by inner surface shot machining of an austenitic stainless steel pipe according to the second embodiment of the present invention by using the hardness of the inner surface of the pipe before using the steel pipe. The description will be given with reference. FIG. 4 shows the result of comparing the tube inner surface hardness of an 18% Cr austenitic stainless steel tube after shot processing and the hardness without shot processing. According to FIG. 4, the increase in hardness due to shot processing is maximized on the inner surface of the tube, and gradually decreases at a position toward the inside of the tube. Therefore, the hardness of the inner surface of the tube is not affected by the measurement position unlike the inside of the tube, and a stable result can be obtained.

本実施形態では、ショット加工後の管内表面の硬さが350Hv以上であれば、耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管であると判断される。本実施形態は管内表面から直接硬さを測定するため、管断面からの管内部の測定に比べて測定が容易でかつ正確な手法と言える。   In the present embodiment, if the hardness of the tube inner surface after shot processing is 350 Hv or more, it is determined that the austenitic stainless steel tube has excellent steam oxidation resistance. In this embodiment, since the hardness is directly measured from the inner surface of the tube, it can be said that the measurement is easier and more accurate than the measurement inside the tube from the tube cross section.

次に、本発明の第3の実施形態に係るオーステナイト系ステンレス鋼管の内面ショット加工による耐水蒸気酸化性を、さらに鋼管の使用前において管内部面(管内の深さ位置)の硬さを用いて評価する手法について、図4を参照しながら説明する。図4に示すように、ショット加工後の18%Crからなるオーステナイト系ステンレス鋼管の硬さは、管内表面で最大となり、管内表面から約200μmの深さ位置まで観測される。管内表面から深さ約200μmの位置の範囲内で硬さを測定すれば、ショット加工の影響を評価できるが、重要なのは管内表面近傍での硬さである。   Next, steam oxidation resistance by inner surface shot machining of the austenitic stainless steel pipe according to the third embodiment of the present invention is further determined using the hardness of the pipe inner surface (depth position in the pipe) before using the steel pipe. A method for evaluation will be described with reference to FIG. As shown in FIG. 4, the hardness of the austenitic stainless steel pipe made of 18% Cr after the shot processing is maximized on the pipe inner surface, and is observed from the pipe inner surface to a depth position of about 200 μm. If the hardness is measured within a range of a depth of about 200 μm from the inner surface of the tube, the influence of shot processing can be evaluated, but what is important is the hardness near the inner surface of the tube.

管内表面から深さ約100μmの位置で硬さを規定する方法(上記の特許文献3を参照)もあるが、管内面から距離が大きくなると、硬さの値のバラツキも大きくなり、極表面の硬さを保証できない場合もあるため、可能な限り管内表面近傍での硬さで評価する方が良い。   There is also a method of defining the hardness at a position about 100 μm deep from the inner surface of the tube (see Patent Document 3 above), but as the distance from the inner surface of the tube increases, the variation in hardness value increases, Since the hardness may not be guaranteed, it is better to evaluate the hardness near the inner surface of the tube as much as possible.

ビッカース試験法を用いて鋼管の内面硬さを測定する場合、鋼管をその軸方向に垂直な面で切断して輪切り形状とし、この輪切り形状鋼管の管内面の硬さを管内表面から管外表面に向かって測定するときに、極内表面近傍ではダイヤモンド形圧子(例えば、圧子形状は四角錐体で、角度136度、対角線長さ0〜数μm)が測定部位からずれてしまって正確な圧痕ができ難いために、管内表面から最低限深さ50μmの位置が硬さ測定の適宜な位置である。図4によると、本実施形態では、管内表面から深さ50μmの位置での硬さが300Hv以上であれば、耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管であると判断される。   When measuring the inner surface hardness of a steel pipe using the Vickers test method, the steel pipe is cut in a plane perpendicular to its axial direction into a ring shape, and the hardness of the inner surface of the ring-shaped steel pipe is changed from the inner surface to the outer surface of the tube. When measuring toward the surface, a diamond-shaped indenter (for example, the shape of the indenter is a quadrangular pyramid, the angle is 136 degrees, and the diagonal length is 0 to several μm) deviates from the measurement site in the vicinity of the inner surface. Therefore, a position with a minimum depth of 50 μm from the inner surface of the tube is an appropriate position for hardness measurement. According to FIG. 4, in this embodiment, if the hardness at a depth of 50 μm from the inner surface of the pipe is 300 Hv or more, it is determined that the austenitic stainless steel pipe has excellent steam oxidation resistance.

次に、本発明の第4の実施形態に係るオーステナイト系ステンレス鋼管の内面ショット加工による耐水蒸気酸化性を、さらに鋼管の使用前においてミクロ組織から測定されるショット加工層4(ショット加工により形成される層)の深さを用いて評価する手法について、図5を参照しながら説明する。図5はショット加工後の18%Crからなるオーステナイト系ステンレス鋼管の断面ミクロ組織写真である。この写真は、ショット加工層4を明瞭にするため、ショット加工後の鋼管を650℃で1時間熱処理後、樹脂に埋めこみ、鏡面研磨した後、クロム酸溶液中で電解エッチング処理して観察したものである。   Next, the steam oxidation resistance by the inner surface shot processing of the austenitic stainless steel pipe according to the fourth embodiment of the present invention, and the shot processing layer 4 (formed by shot processing, which is measured from the microstructure before using the steel pipe). A method of evaluating using the depth of the layer will be described with reference to FIG. FIG. 5 is a cross-sectional microstructure photograph of an austenitic stainless steel pipe made of 18% Cr after shot processing. This photograph shows the steel tube after shot processing for 1 hour, heat treated at 650 ° C for 1 hour, embedded in resin, mirror-polished, and observed by electrolytic etching in chromic acid solution to clarify the shot processing layer 4 It is.

管内面には、ショット加工による塑性変形によって生じた多数のすべり線7(後述の図6を参照)により黒く観測され、これをショット加工層4と呼ぶ。このショット加工層4は、ショット加工が確実に施工されている場合には、均一かつ深くなる。本実施形態では、管内表面からのショット加工層深さが50μm以上であれば、耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管であると判断される。   On the inner surface of the tube, a large number of slip lines 7 (see FIG. 6 to be described later) generated by plastic deformation by shot processing are observed in black, and this is called a shot processing layer 4. The shot processing layer 4 becomes uniform and deep when the shot processing is reliably performed. In the present embodiment, if the depth of the shot processing layer from the inner surface of the pipe is 50 μm or more, it is determined that the austenitic stainless steel pipe has excellent steam oxidation resistance.

次に、本発明の第5の実施形態に係るオーステナイト系ステンレス鋼管の内面ショット加工による耐水蒸気酸化性を、さらに鋼管の使用前においてミクロ組織から測定されるショット加工層4のすべり線7の密度(本数)を用いて評価する手法について、図6と図7を参照しながら説明する。   Next, the steam oxidation resistance by inner surface shot machining of the austenitic stainless steel pipe according to the fifth embodiment of the present invention, and the density of the slip line 7 of the shot machining layer 4 measured from the microstructure before using the steel pipe A method of evaluating using (number) will be described with reference to FIGS.

図6は管内表面から深さ50μ位置でのショット加工後の18%Crからなるオーステナイト系ステンレス鋼管の断面ミクロ組織写真である。この写真は、図5と同様な処理方法で観察したものである。結晶粒の中に、ショット加工による塑性変形によって生じたすべり線が観測されるのが分かる。このすべり線の本数(10μm長さ当たり)と硬さとの関係が、実験データとして図7に取り纏められている。   FIG. 6 is a cross-sectional microstructure photograph of an austenitic stainless steel pipe composed of 18% Cr after shot processing at a depth of 50 μm from the pipe inner surface. This photograph was observed by the same processing method as in FIG. It can be seen that slip lines produced by plastic deformation by shot processing are observed in the crystal grains. The relationship between the number of slip lines (per 10 μm length) and hardness is summarized in FIG. 7 as experimental data.

図7によると、深さ50μm位置でのすべり線の本数が3本以下では、硬さが300Hv以下となり得ることが分かる。従って、本実施形態では、管内表面から深さが50μm位置でのすべり線の本数が10μm長さ当たり4本以上であれば、耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管であると判断される。   According to FIG. 7, it can be seen that if the number of slip lines at a depth of 50 μm is 3 or less, the hardness can be 300 Hv or less. Therefore, in this embodiment, if the number of slip lines at a depth of 50 μm from the inner surface of the tube is 4 or more per 10 μm length, it is determined that the austenitic stainless steel tube has excellent steam oxidation resistance. .

以上説明したように、本発明の実施形態に係る、ボイラの伝熱管に使用されるオーステナイト系ステンレス鋼管において、ショット加工後の管内表面の粗さ、管内表面の硬さ、管断面における極表面近傍の硬さ、管断面における組織観察から求まるショット加工層深さ、のそれぞれが特定の基準値を満足することにより、耐水蒸気酸化性に優れたオーステナイト系ステンレス鋼管であると判断することができる。   As described above, in the austenitic stainless steel pipe used for the heat transfer pipe of the boiler according to the embodiment of the present invention, the roughness of the inner surface of the pipe after shot processing, the hardness of the inner surface of the pipe, and the vicinity of the pole surface in the cross section of the pipe When each of the hardness and the shot processed layer depth obtained from the structure observation on the tube cross section satisfies a specific reference value, it can be determined that the austenitic stainless steel tube has excellent steam oxidation resistance.

本発明によれば、高価な計測手段を必要としない比較的簡単な方法で、オーステナイト系ステンレス鋼管の管内表面にショット加工が確実に施工されているかを判別でき、耐水蒸気酸化性に優れた鋼管を提供できる。   According to the present invention, it is possible to determine whether shot processing is reliably applied to the inner surface of an austenitic stainless steel pipe by a relatively simple method that does not require expensive measuring means, and a steel pipe having excellent steam oxidation resistance. Can provide.

1 オーステナイト系ステンレス鋼管
2 ショットノズル
3 ショット粒子
4 ショット加工層
5 管内表面
6 水蒸気酸化スケール層
6a 内層
6b 外層
7 すべり線
DESCRIPTION OF SYMBOLS 1 Austenitic stainless steel pipe 2 Shot nozzle 3 Shot particle 4 Shot processing layer 5 Pipe inner surface 6 Steam oxidation scale layer 6a Inner layer 6b Outer layer
7 slip line

Claims (13)

伝熱管用のオーステナイト系ステンレス鋼管において、
鋼管内面へのショット加工後の管内表面の粗さが、算術平均粗さ(Ra)で2μm以下である
ことを特徴とするオーステナイト系ステンレス鋼管。
In austenitic stainless steel pipes for heat transfer tubes,
An austenitic stainless steel pipe characterized in that the roughness of the inner surface of the pipe after shot processing on the inner surface of the steel pipe is 2 μm or less in terms of arithmetic average roughness (Ra).
請求項1に記載されたオーステナイト系ステンレス鋼管において、
前記鋼管の使用時に鋼管内側に生成する水蒸気酸化スケール層のうち、(Cr,Fe)から成る内層の厚さが10μm以下の鋼管であることを特徴とするオーステナイト系ステンレス鋼管。
In the austenitic stainless steel pipe according to claim 1,
An austenitic stainless steel pipe characterized in that, among the steam oxide scale layers generated inside the steel pipe when the steel pipe is used, the inner layer made of (Cr, Fe) 3 O 4 has a thickness of 10 μm or less.
請求項2に記載されたオーステナイト系ステンレス鋼管において、
さらに管内面へのショット加工後の管内表面の硬さが350Hv以上であることを特徴とするオーステナイト系ステンレス鋼管。
In the austenitic stainless steel pipe according to claim 2,
Furthermore, the hardness of the inner surface of the tube after shot processing on the inner surface of the tube is 350 Hv or more.
請求項2に記載されたオーステナイト系ステンレス鋼管において、
さらに管内面へのショット加工後の硬さが、管内表面から深さ50μmの位置で、300Hv以上であることを特徴とするオーステナイト系ステンレス鋼管。
In the austenitic stainless steel pipe according to claim 2,
Furthermore, the austenitic stainless steel pipe is characterized in that the hardness after shot processing on the inner surface of the pipe is 300 Hv or more at a depth of 50 μm from the inner surface of the pipe.
請求項2に記載されたオーステナイト系ステンレス鋼管において、
さらに管内面へのショット加工後の管内面のミクロ組織から観測されるショット加工層が、管内表面から50μm以上の深さに達する
ことを特徴とするオーステナイト系ステンレス鋼管。
In the austenitic stainless steel pipe according to claim 2,
Furthermore, an austenitic stainless steel pipe characterized in that a shot processed layer observed from the microstructure of the inner surface of the tube after the shot processing on the inner surface of the tube reaches a depth of 50 μm or more from the inner surface of the tube.
請求項2に記載されたオーステナイト系ステンレス鋼管において、
さらに管内面へのショット加工後の鋼管のミクロ組織から観測されるすべり線の本数が、管内表面から50μmの深さ位置で、10μmの長さ当たり4本以上ある
ことを特徴とするオーステナイト系ステンレス鋼管。
In the austenitic stainless steel pipe according to claim 2,
Furthermore, the number of slip lines observed from the microstructure of the steel pipe after shot processing on the inner surface of the pipe is 4 or more per 10 μm length at a depth of 50 μm from the inner surface of the pipe. Steel pipe.
請求項1,2,3,4,5,6のいずれか1つの請求項に記載のオーステナイト系ステンレス鋼管を過熱器又は再熱器に用いることを特徴とするボイラ。   A boiler using the austenitic stainless steel pipe according to any one of claims 1, 2, 3, 4, 5, and 6 for a superheater or a reheater. ボイラの伝熱管に使用されるオーステナイト系ステンレス鋼管の製造方法において、
管内面にショット加工を施し、ショット加工後の管内表面の粗さを算術平均粗さ(Ra)で2μm以下とする
ことを特徴とするオーステナイト系ステンレス鋼管の製造方法。
In the manufacturing method of the austenitic stainless steel pipe used for the heat transfer pipe of the boiler,
A method for producing an austenitic stainless steel pipe, characterized in that the inner surface of the pipe is subjected to shot processing, and the roughness of the inner surface of the pipe after shot processing is 2 μm or less in terms of arithmetic average roughness (Ra).
請求項8に記載されたオーステナイト系ステンレス鋼管の製造方法において、
前記鋼管の使用時に鋼管内側に生成する水蒸気酸化スケール層のうち、(Cr,Fe)から成る内層の厚さを10μm以下とすることを特徴とするオーステナイト系ステンレス鋼管の製造方法。
In the manufacturing method of the austenitic stainless steel pipe described in claim 8,
A method for producing an austenitic stainless steel pipe, characterized in that a thickness of an inner layer made of (Cr, Fe) 3 O 4 is 10 μm or less among the steam oxide scale layers generated inside the steel pipe when the steel pipe is used.
請求項9に記載されたオーステナイト系ステンレス鋼管の製造方法において、
さらに管内面にショット加工を施し、ショット加工後の管内表面の硬さを350Hv以上とすることを特徴とするオーステナイト系ステンレス鋼管の製造方法。
In the manufacturing method of the austenitic stainless steel pipe according to claim 9,
A method for producing an austenitic stainless steel pipe, wherein the inner surface of the pipe is further subjected to shot processing, and the hardness of the inner surface of the pipe after shot processing is 350 Hv or more.
請求項9に記載されたオーステナイト系ステンレス鋼管の製造方法において、
さらに管内面にショット加工を施し、ショット加工後の硬さを、管内表面から深さ50μmの位置で、300Hv以上とすることを特徴とするオーステナイト系ステンレス鋼管の製造方法。
In the manufacturing method of the austenitic stainless steel pipe according to claim 9,
Further, a method for producing an austenitic stainless steel pipe, wherein the inner surface of the pipe is shot and the hardness after the shot is set to 300 Hv or more at a depth of 50 μm from the inner surface of the pipe.
請求項9に記載されたオーステナイト系ステンレス鋼管の製造方法において、
さらに管内面にショット加工を施し、ショット加工後の管内面のミクロ組織を観測し、前記観測から、塑性変形によって生じる複数のすべり線で黒く観測されるショット加工層を、管内表面から50μm以上の深さとする
ことを特徴とするオーステナイト系ステンレス鋼管の製造方法。
In the manufacturing method of the austenitic stainless steel pipe according to claim 9,
Further, shot processing is performed on the inner surface of the tube, and the microstructure of the inner surface of the tube after the shot processing is observed. From the observation, a shot processing layer that is observed in black at a plurality of slip lines caused by plastic deformation is 50 μm or more from the inner surface of the tube. A method for producing an austenitic stainless steel pipe characterized by having a depth.
請求項9に記載されたオーステナイト系ステンレス鋼管の製造方法において、
さらに管内面にショット加工を施し、ショット加工後の鋼管のミクロ組織を観測し、前記観測から、観測されるすべり線の本数を、管内表面から50μmの深さ位置で、10μmの長さ当たり4本以上とする
ことを特徴とするオーステナイト系ステンレス鋼管の製造方法。
In the manufacturing method of the austenitic stainless steel pipe according to claim 9,
Further, the inner surface of the pipe is shot, the microstructure of the steel pipe after the shot is observed, and from the observation, the number of slip lines observed is 4 per 10 μm at a depth of 50 μm from the inner surface of the pipe. A method for producing an austenitic stainless steel pipe characterized by comprising at least this.
JP2011070602A 2011-03-28 2011-03-28 Austenitic stainless steel pipe having water vapor oxidation resistance, and method for producing the same Pending JP2012201975A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011070602A JP2012201975A (en) 2011-03-28 2011-03-28 Austenitic stainless steel pipe having water vapor oxidation resistance, and method for producing the same
TW101107156A TW201304910A (en) 2011-03-28 2012-03-03 Austenitic stainless steel pipe, boiler device, and method for processing inner surface of pipe
KR1020137027192A KR20130135353A (en) 2011-03-28 2012-03-15 Austenitic stainless steel pipe, boiler device, and method for processing inner surface of pipe
PCT/JP2012/056725 WO2012132938A1 (en) 2011-03-28 2012-03-15 Austenitic stainless steel pipe, boiler device, and method for processing inner surface of pipe
CN201280015707.9A CN103547688A (en) 2011-03-28 2012-03-15 Austenitic stainless steel pipe, boiler device, and method for processing inner surface of pipe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011070602A JP2012201975A (en) 2011-03-28 2011-03-28 Austenitic stainless steel pipe having water vapor oxidation resistance, and method for producing the same

Publications (1)

Publication Number Publication Date
JP2012201975A true JP2012201975A (en) 2012-10-22

Family

ID=46930672

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011070602A Pending JP2012201975A (en) 2011-03-28 2011-03-28 Austenitic stainless steel pipe having water vapor oxidation resistance, and method for producing the same

Country Status (5)

Country Link
JP (1) JP2012201975A (en)
KR (1) KR20130135353A (en)
CN (1) CN103547688A (en)
TW (1) TW201304910A (en)
WO (1) WO2012132938A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136085A (en) * 2017-02-22 2018-08-30 三菱日立パワーシステムズ株式会社 Manufacturing method of heat transfer pipe, heat transfer pipe, and boiler including the same

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FI127909B (en) * 2017-11-06 2019-05-15 Wasenco Oy Container for recovery of waste water heat energy

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839733A (en) * 1981-09-04 1983-03-08 Nippon Kokan Kk <Nkk> Enhancing method for resistance of austenite stainless steel pipe to oxidation due to steam at high temperature
JPS6354598A (en) * 1986-08-22 1988-03-08 Babcock Hitachi Kk Treatment of body of stainless steel pipes for boiler already installed
JP2006307313A (en) * 2004-09-15 2006-11-09 Sumitomo Metal Ind Ltd Steel tube excellent in exfoliating resistance for scale on inner surface of tube
WO2008023410A1 (en) * 2006-08-23 2008-02-28 Nkk Tubes Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
JP2009068079A (en) * 2007-09-14 2009-04-02 Sumitomo Metal Ind Ltd Steel tube with excellent steam oxidation resistance

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5839733A (en) * 1981-09-04 1983-03-08 Nippon Kokan Kk <Nkk> Enhancing method for resistance of austenite stainless steel pipe to oxidation due to steam at high temperature
JPS6354598A (en) * 1986-08-22 1988-03-08 Babcock Hitachi Kk Treatment of body of stainless steel pipes for boiler already installed
JP2006307313A (en) * 2004-09-15 2006-11-09 Sumitomo Metal Ind Ltd Steel tube excellent in exfoliating resistance for scale on inner surface of tube
WO2008023410A1 (en) * 2006-08-23 2008-02-28 Nkk Tubes Austenite-base stainless steel pipe, for boiler, having excellent high-temperature steam oxidation resistance
JP2009068079A (en) * 2007-09-14 2009-04-02 Sumitomo Metal Ind Ltd Steel tube with excellent steam oxidation resistance

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018136085A (en) * 2017-02-22 2018-08-30 三菱日立パワーシステムズ株式会社 Manufacturing method of heat transfer pipe, heat transfer pipe, and boiler including the same

Also Published As

Publication number Publication date
KR20130135353A (en) 2013-12-10
WO2012132938A1 (en) 2012-10-04
CN103547688A (en) 2014-01-29
TW201304910A (en) 2013-02-01

Similar Documents

Publication Publication Date Title
JP5108771B2 (en) Austenitic stainless steel pipe for boilers with excellent high-temperature steam oxidation resistance
WO2007119817A1 (en) Method for correcting pipe and method for producing pipe by using that correction method
JP4630745B2 (en) Calculation method of flow accelerated corrosion thinning rate and remaining life diagnosis method
JP4979730B2 (en) Creep damage evaluation method
KR101503612B1 (en) Heat transfer tube for steam generator and method for producing same
JP2012201975A (en) Austenitic stainless steel pipe having water vapor oxidation resistance, and method for producing the same
JP2011064381A (en) Method of estimating metal temperature of boiler heat transfer pipe and method of estimating lifetime
WO2018092259A1 (en) Method for estimating operating temperature of cu (copper)-containing austenitic heat-resistant steel, method for estimating creep damage life of cu-containing austenitic heat-resistant steel, method for estimating operating temperature of heat-conductive tube made of cu-containing austenitic heat-resistant steel, and method for estimating creep damage life of heat-conductive tube made of cu-containing austenitic heat-resistant steel
Shimov Rapid Method for Determining the Distribution of Residual Stresses in Pipes
JP2013122411A (en) Pipe creep life evaluation method
CN101665889A (en) Martensitic stainless steel pipe and method for production thereof
Wang et al. Effect of temperature on the fretting wear behavior of Cr-coated Zircaloy cladding in high-temperature pressurized water
JP2007064675A (en) Damage diagnosis method of giga-domain by laminated oxidation thinning
KR101457340B1 (en) Tube sheet of Steam Generator and manufacturing method thereof
Dryepondt et al. 3D microscopy to assess the effect of high temperature cyclic oxidation on the deformation of cast and ODS FeCrAlY alloys
JP2014142304A (en) Life evaluation method for austenite stainless steel
JP5232759B2 (en) Method for evaluating the quality of sprayed film
JP2015125116A (en) Heat resistant member inspection method
CN109190311B (en) Method for predicting oxide film peeling of austenitic heat-resistant steel for ultra-supercritical thermal power generating unit
JP2017155311A (en) Production method of highly corrosion-resistant alloy material
Otsuka Fracture behavior of steam-grown oxide scales formed on 2–12% Cr steels
JP2004132437A (en) Manufacturing method for steel pipe for boiler having superior steam oxidation resistance property
JP4287798B2 (en) Al-alloy heat transfer tube for open rack type vaporizer and method for manufacturing the Al-alloy heat transfer tube
Turnbull et al. Impact of pitting corrosion on the benefit of shot peening
JP2017219472A (en) High chromium steel creep life diagnosis method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131002

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140909

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150120