JP2012201138A - Forced air cooling type semiconductor cooling device - Google Patents

Forced air cooling type semiconductor cooling device Download PDF

Info

Publication number
JP2012201138A
JP2012201138A JP2011065158A JP2011065158A JP2012201138A JP 2012201138 A JP2012201138 A JP 2012201138A JP 2011065158 A JP2011065158 A JP 2011065158A JP 2011065158 A JP2011065158 A JP 2011065158A JP 2012201138 A JP2012201138 A JP 2012201138A
Authority
JP
Japan
Prior art keywords
cooling
cooler
cooling air
semiconductor
wind tunnel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011065158A
Other languages
Japanese (ja)
Inventor
Kyota Ri
京太 李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyo Electric Manufacturing Ltd
Original Assignee
Toyo Electric Manufacturing Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Electric Manufacturing Ltd filed Critical Toyo Electric Manufacturing Ltd
Priority to JP2011065158A priority Critical patent/JP2012201138A/en
Publication of JP2012201138A publication Critical patent/JP2012201138A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Inverter Devices (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a compact semiconductor cooling device capable of improving cooling performance by efficiently using cooling air by a cooling fan.SOLUTION: A first cooler 4 having a wide cooling air width with respect to a cooling air flow length and a second cooler 5 having a cooling air width smaller than that of the first cooler 4 are arranged so that cooling air directions are similar and no heat is exchanged therebetween. The semiconductor elements 7, 8 and 9 of an inverter circuit are attached to the first cooler 4, and the semiconductor element 10 of a brake chopper circuit is attached to the second cooler 5. Cooling air by a cooling fan 6 having a cooling air direction perpendicular to the cooling air direction of the cooler is distributed to the first cooler 4 and the second cooler 5 via a wind channel 2 having an air rectifying guide 3, and the heat exchange with the semiconductors is performed.

Description

本発明は、例えば鉄道車両の屋根上や床下に設置される電力変換装置内の強制風冷式半導体冷却装置に関する。   The present invention relates to a forced air cooling type semiconductor cooling device in a power conversion device installed, for example, on the roof or under the floor of a railway vehicle.

鉄道車両の電力変換装置は、半導体素子から発生する熱を大気へ放散し、半導体素子の温度上昇を抑えるための冷却装置が必要になる。路面電車や新交通車両の場合は、走行風を利用せず冷却ファンを用いて強制的に送風冷却を行う強制風冷方式が採用されているのが一般的である。   The power conversion device for a railway vehicle requires a cooling device for radiating heat generated from the semiconductor element to the atmosphere and suppressing the temperature rise of the semiconductor element. In the case of a streetcar or a new transportation vehicle, a forced air cooling method is generally employed in which the cooling air is forcibly cooled without using the traveling wind.

従来の強制風冷式電力変換装置の半導体冷却装置の構造は、一般的に図3、図4と図5に示されるような方式がある。図3は、冷却ファンによる冷却風は冷却風向に対し幅の狭い冷却器に流れて熱交換を行う冷却方式であり、図4と図5は、冷却ファンによる冷却風は冷却風向に対し幅の広い冷却器に流れて熱交換を行う冷却方式である。   The structure of the semiconductor cooling device of the conventional forced air cooling type power converter is generally shown in FIGS. 3, 4 and 5. FIG. 3 shows a cooling system in which the cooling air from the cooling fan flows through a cooler having a narrow width with respect to the direction of the cooling air, and performs heat exchange. This is a cooling system that exchanges heat through a wide cooler.

図3(a)と図3(b)に示すのは、冷却風向に対し幅の狭い冷却器を用いた半導体冷却装置である。この冷却方式により、冷却ファンによる冷却風は直接に冷却器に流れるため、冷却器と冷却ファン間には整流風洞を設ける必要はなく、簡潔な冷却構造が実現できる冷却方式である。電力変換装置の冷却構造設計が比較的簡単となる構造のため、採用されることの多い方法である。(例えば、特許文献1参照。)   3A and 3B show a semiconductor cooling device using a cooler having a narrow width with respect to the cooling air direction. With this cooling method, since the cooling air from the cooling fan flows directly to the cooler, there is no need to provide a rectifying wind tunnel between the cooler and the cooling fan, and the cooling method can realize a simple cooling structure. Since the cooling structure design of the power conversion device is relatively simple, this method is often employed. (For example, refer to Patent Document 1.)

図4(a)と図4(b)に示すのは、冷却風向に対し幅の広い冷却器を用いた半導体冷却装置(一)である。図3に示す冷却方式は、複数の冷却ファンを使用し、冷却器に冷却風を直接に吹き出すことにより、冷却器と冷却ファン間に整流風洞を設ける必要はない方式である。   FIG. 4A and FIG. 4B show a semiconductor cooling device (one) that uses a cooler having a wider width than the cooling air direction. The cooling method shown in FIG. 3 is a method in which a plurality of cooling fans are used and cooling air is blown directly to the cooler, so that it is not necessary to provide a rectifying wind tunnel between the cooler and the cooling fan.

図5(a)と図5(b)に示すのは、冷却風向に対し幅の広い冷却器を用いた半導体冷却装置(二)である。図4に示す冷却方式は、少数の冷却ファンを使用し、整流風洞を介して冷却器に冷却風を吹き出す冷却方式である。   FIG. 5 (a) and FIG. 5 (b) show a semiconductor cooling device (2) using a cooler having a wide width with respect to the cooling air direction. The cooling system shown in FIG. 4 is a cooling system that uses a small number of cooling fans and blows cooling air to the cooler through the rectifying wind tunnel.

特開平10−023768号公報(第6頁、図1)Japanese Patent Laid-Open No. 10-023768 (page 6, FIG. 1)

鉄道車両の電力変換器は力行での電力変換を行うのみではなく、省エネや保守低減への配慮から、ブレーキ時に運動エネルギーを電力に変換して架線へ回生する電気制動(回生制動)を極力使用し、回生失効の時にもブレーキ抵抗に電力を消費させて電気制動(発電制動)を行う等が行われるため、電力変換装置の発熱は増加している。更に、モータの大容量化に伴い、電力変換装置の容量は増加し、発熱は更に増加している。その一方、電力変換装置の小型化・軽量化も要求されている。   Railroad car power converters not only perform power conversion by power running, but also use electric braking (regenerative braking) to convert kinetic energy into electric power and regenerate it to the overhead line during braking to save energy and reduce maintenance. However, since the electric power is consumed by the brake resistor and electric braking (power generation braking) is performed even when the regeneration expires, the heat generation of the power converter increases. Further, as the capacity of the motor is increased, the capacity of the power conversion device is increased and the heat generation is further increased. On the other hand, miniaturization and weight reduction of power converters are also required.

図3に示すような従来の冷却方式の場合は、各半導体の放熱により、冷却器は冷却風の吸気側から排気側に向かって温度が徐々に上昇する温度勾配が発生し、排気側に近い半導体の温度は吸気側に近い半導体より高くなる。冷却器の冷却風向長が延びるほど温度勾配が大きくなり、冷却器の熱容量を十分に生かせず冷却効率の悪いものとなる。無論冷却器性能は最も冷却条件の悪い排気側に配置される半導体の温度で決まるため、冷却器の形状は大きくなり、冷却装置の小型化、軽量化、コストに不利になる。しかも、冷却風向に対し幅の広い冷却器と比較して、同外形では温度勾配の問題によって、処理発熱量に対する温度上昇比(熱抵抗)が大きくなるため、半導体の温度上昇の抑制能力は低いものとなる。   In the case of the conventional cooling system as shown in FIG. 3, due to the heat radiation of each semiconductor, the cooler generates a temperature gradient in which the temperature gradually increases from the cooling air intake side toward the exhaust side, and is close to the exhaust side. The temperature of the semiconductor is higher than that of the semiconductor close to the intake side. As the cooling wind direction length of the cooler extends, the temperature gradient increases, and the heat capacity of the cooler cannot be fully utilized, resulting in poor cooling efficiency. Of course, since the performance of the cooler is determined by the temperature of the semiconductor disposed on the exhaust side having the worst cooling conditions, the shape of the cooler becomes large, which is disadvantageous in terms of downsizing, weight reduction, and cost of the cooling device. In addition, compared with a cooler having a wide width with respect to the cooling air direction, the temperature rise ratio (thermal resistance) with respect to the processing heat generation becomes large due to the problem of temperature gradient in the same outer shape, so the ability to suppress the temperature rise of the semiconductor is low. It will be a thing.

図4と図5に示すような従来の冷却方式の場合は、冷却器の温度勾配は小さく、同外形では各半導体の温度上昇はほぼ同じになるため、冷却器の外形形状は小さく抑えられ、冷却器の小型化、軽量化に非常に有利になる。しかも、冷却風向に対し幅の狭い冷却器と比較して、同外形と同一の冷却風条件では、熱抵抗が小さくなるため、半導体の温度上昇の抑制能力は高いものとなる。   In the case of the conventional cooling system as shown in FIG. 4 and FIG. 5, the temperature gradient of the cooler is small, and the temperature rise of each semiconductor is almost the same in the same outer shape, so the outer shape of the cooler is kept small, This is very advantageous for reducing the size and weight of the cooler. In addition, as compared with a cooler having a narrow width with respect to the cooling air direction, under the same cooling air condition as the same outer shape, the thermal resistance is reduced, so that the ability to suppress the temperature rise of the semiconductor is high.

一方、図4に示すような冷却方式においては、複数の冷却ファンを使用する場合は、整流風洞を使用せず直接に冷却器に冷却風を吹き出す構造になるが、冷却ファンの数が多いため、コスト・騒音の低減は難しく、冷却風を効率良く利用することもできない。また、一個の冷却ファンが止まった場合、冷却ファンが停止した部位にある半導体の温度上昇が冷却ファンの健全な部位のそれに対して高くなるため、温度上昇が異常に高くなることにより電力変換装置を停止しなくてはならない可能性を生じる。   On the other hand, in the cooling method as shown in FIG. 4, when a plurality of cooling fans are used, the cooling air is blown directly to the cooler without using the rectifying wind tunnel, but the number of cooling fans is large. Cost and noise are difficult to reduce, and cooling air cannot be used efficiently. In addition, when one cooling fan stops, the temperature rise of the semiconductor in the part where the cooling fan has stopped becomes higher than that of the healthy part of the cooling fan, so the temperature rise becomes abnormally high and the power conversion device The possibility of having to stop is generated.

図5に示すような冷却方式においては、少数の冷却ファンを使用して整流風洞を介して冷却風を吹き出す場合は、冷却風を効率良く利用することができるが、整流風洞等の冷却装置の形状が大幅に増大するため、電力変換装置の小型化には非常に不利になる。   In the cooling method as shown in FIG. 5, when the cooling air is blown out through the rectifying wind tunnel using a small number of cooling fans, the cooling air can be efficiently used. Since the shape greatly increases, it is very disadvantageous for miniaturization of the power conversion device.

本発明は、上記状況に対処するためになされたもので、その課題は、冷却性能を高め、冷却装置を小型化にすることにより電力変換装置の小型化、軽量化を可能とする半導体冷却装置を提供することにある。   The present invention has been made to cope with the above-described situation, and its problem is to improve the cooling performance and reduce the size of the cooling device, thereby reducing the size and weight of the power conversion device. Is to provide.

上記課題を解決するために、請求項1の発明によれば、鉄道車両の床下装置に取り付けられる電力変換装置において、冷却通風面に対し広い冷却風幅を有する第1の冷却器と、該第1の冷却器より狭い冷却風幅を有する第2の冷却器とを当該冷却器の各々の冷却風向が同一かつ相互に熱交換がないように併設収納する第1の風洞と、該冷却風向に対し直角の冷却風向を有する冷却ファンと、該冷却ファンの冷却風を前記第1の冷却器と前記第2の冷却器とに通風分配する整風ガイドを具備する第2の風洞を配設して成ることを特徴とする。   In order to solve the above-described problem, according to the invention of claim 1, in the power conversion device attached to the underfloor device of the railway vehicle, the first cooler having a wide cooling air width with respect to the cooling ventilation surface, A first wind tunnel for accommodating a second cooler having a cooling air width narrower than that of the first cooler so that the cooling air directions of the coolers are the same and do not exchange heat with each other; and A cooling fan having a cooling air direction perpendicular to the cooling fan, and a second wind tunnel provided with a wind regulation guide for distributing the cooling air of the cooling fan to the first and second coolers. It is characterized by comprising.

すなわち、冷却風通流長に対し広い冷却風幅を有する第1の冷却器と、当該冷却器より狭い冷却風幅を有する第2の冷却器と、これら冷却器は冷却風向が同一でかつ相互に熱交換のないよう配置され、冷却器の冷却風向に対し直角の冷却風向を有する冷却ファンと、当該冷却ファンの冷却風を冷却器に集約する風洞と、当該風洞内に第1の冷却器と第2の冷却器への冷却風を分配する整風ガイドを有することを特徴とする。   That is, a first cooler having a cooling air width wider than the cooling air flow length, a second cooler having a cooling air width narrower than the cooler, and these coolers have the same cooling air direction and mutual A cooling fan having a cooling air direction perpendicular to the cooling air direction of the cooler, a wind tunnel for concentrating the cooling air of the cooling fan in the cooler, and a first cooler in the wind tunnel And a wind guide that distributes the cooling air to the second cooler.

また、整風ガイドを有する風洞を介して、冷却ファンによる冷却風を分配することにより第1の冷却器と第2の冷却器に半導体の温度上昇を抑制する必要な風量を提供し半導体素子の冷却を行う。   In addition, by distributing the cooling air from the cooling fan through the wind tunnel having the air conditioning guide, the first cooler and the second cooler are provided with a necessary air volume for suppressing the temperature rise of the semiconductor to cool the semiconductor element. I do.

請求項2の発明によれば、請求項1の発明において、前記冷却ファンの代わりに、前記当該冷却器の各々の冷却風向に対し逆方向の冷却風向を有する冷却ファンとごみ止めとを具備する第3の風洞を配設し、該第3の風洞の入風面と前記第1の風洞の排風面とが互いの通風状態に影響がないずれた位置にあることを特徴とする。   According to the invention of claim 2, in the invention of claim 1, instead of the cooling fan, a cooling fan having a cooling air direction opposite to the cooling air direction of each of the coolers and a dust stopper are provided. A third wind tunnel is provided, and the inlet surface of the third wind tunnel and the exhaust surface of the first wind tunnel are in positions where they do not affect each other's ventilation state.

すなわち、鉄道車両の床下に取り付けられる強制風冷式半導体冷却装置において、請求項1に記載の第1の冷却器と、請求項1に記載の第2の冷却器と、これら冷却器は冷却風向が車両の床面に対し垂直するようかつ相互に熱交換のないよう配置され、車両の床面に対し直角の冷却風向を有する冷却ファンと、当該冷却ファンの冷却風を冷却器に集約する風洞と、前記冷却ファンを内蔵する風洞と、当該風洞は冷却風向が床面に垂直となるよう配置され、当該風洞の吸気部は前記第1の冷却器および第2の冷却器の排風部よりも下に位置し、当該風洞内にごみ止めを設けることを特徴とする。   That is, in the forced air cooling type semiconductor cooling device attached under the floor of a railway vehicle, the first cooler according to claim 1, the second cooler according to claim 1, and these coolers are provided with a cooling airflow direction. Are arranged so as to be perpendicular to the vehicle floor and have no heat exchange with each other, and have a cooling air direction perpendicular to the vehicle floor, and a wind tunnel that collects the cooling air of the cooling fan in the cooler And a wind tunnel incorporating the cooling fan, and the wind tunnel is arranged so that the cooling air direction is perpendicular to the floor surface, and the air intake portion of the wind tunnel is from the air exhaust portion of the first cooler and the second cooler Is located below, and is provided with a dust stopper in the wind tunnel.

また、整風ガイドを有する風洞を介して、冷却ファンによる冷却風を分配することにより、第1の冷却器と第2の冷却器に半導体の温度上昇を抑制する必要な風量を提供し半導体素子との熱交換を行う。前記冷却ファンはごみ止めを有する風洞に内蔵され、前記風洞は冷却風向が床面に垂直するよう配置されることにより、冷却ファンのメンテナンス性の向上が図る。   Also, by distributing the cooling air from the cooling fan through the wind tunnel having the air conditioning guide, the semiconductor device is provided with a necessary air volume for suppressing the temperature rise of the semiconductor to the first cooler and the second cooler. Heat exchange. The cooling fan is built in a wind tunnel having a dust stopper, and the wind tunnel is arranged so that the cooling air direction is perpendicular to the floor surface, thereby improving the maintenance performance of the cooling fan.

本発明の強制風冷式半導体冷却装置によれば、冷却ファンによる冷却風を効率よく利用することが図れ、半導体の温度上昇の抑制、半導体冷却装置の小型化、軽量化が図れる。   According to the forced air cooling type semiconductor cooling device of the present invention, it is possible to efficiently use the cooling air by the cooling fan, and it is possible to suppress the rise in the temperature of the semiconductor and to reduce the size and weight of the semiconductor cooling device.

(a)本願の第1実施の形態に係わる半導体冷却装置を示す斜視図である。 (b)本願の第1実施の形態に係わる半導体冷却装置を示す上視図である。(A) It is a perspective view which shows the semiconductor cooling device concerning 1st Embodiment of this application. (B) It is an upper view which shows the semiconductor cooling device concerning 1st Embodiment of this application. (a)本願の第2実施の形態に係わる半導体冷却装置を示す斜視図である。 (b)本願の第2実施の形態に係わる半導体冷却装置を示す正視図である。(A) It is a perspective view which shows the semiconductor cooling device concerning 2nd Embodiment of this application. (B) It is a front view which shows the semiconductor cooling device concerning 2nd Embodiment of this application. (a)従来の冷却風向に対し幅の狭い冷却器を用いた半導体冷却装置を示す 斜視図である。 (b)従来の冷却風向に対し幅の狭い冷却器を用いた半導体冷却装置を示す 上視図である。(A) It is a perspective view which shows the semiconductor cooling device using the cooler with a narrow width | variety with respect to the conventional cooling air direction. (B) It is an upper view which shows the semiconductor cooling device using the cooler with a narrow width | variety with respect to the conventional cooling wind direction. (a)従来の冷却風向に対し幅の広い冷却器を用いた半導体冷却装置(一) を示す斜視図である。 (b)従来の冷却風向に対し幅の広い冷却器を用いた半導体冷却装置(一) を示す上視図である。(A) It is a perspective view which shows the semiconductor cooling device (1) using the cooler wide with respect to the conventional cooling air direction. (B) It is a top view which shows the semiconductor cooling device (1) using the cooler wide with respect to the conventional cooling wind direction. (a)従来の冷却風向に対し幅の広い冷却器を用いた半導体冷却装置(二) を示す斜視図である。 (b)従来の冷却風向に対し幅の広い冷却器を用いた半導体冷却装置(二) を示す上視図である。(A) It is a perspective view which shows the semiconductor cooling device (2) using the cooler wide with respect to the conventional cooling air direction. (B) It is a top view which shows the semiconductor cooling device (2) using the cooler which is wide with respect to the conventional cooling wind direction.

以下、本発明の実施の形態を説明する。図1(a)に本発明の第1実施の形態に係わる半導体冷却装置の斜視図を示し、図1(b)に半導体冷却装置上視図を示す。   Embodiments of the present invention will be described below. FIG. 1A shows a perspective view of the semiconductor cooling device according to the first embodiment of the present invention, and FIG. 1B shows a top view of the semiconductor cooling device.

図1の示すように、本実施形態の半導体冷却装置では、第1の冷却器4と第2の冷却器5は冷却風向が同一でかつ相互に熱交換のないよう配置され、第1の風洞1に収納されている。そして、冷却器の冷却風向に対し直角の冷却風向を有する冷却ファン6と整風ガイド3を有する整流風洞の第2の風洞2が構成されている。ここで第2の風洞2を形成する一部の面は内部を斜視するために図示していない。   As shown in FIG. 1, in the semiconductor cooling device of the present embodiment, the first cooler 4 and the second cooler 5 are arranged so that the cooling air directions are the same and there is no heat exchange with each other, and the first wind tunnel 1 is housed. And the 2nd wind tunnel 2 of the rectification wind tunnel which has the cooling fan 6 and the wind regulation guide 3 which have the cooling wind direction orthogonal to the cooling wind direction of a cooler is comprised. Here, a part of the surface forming the second wind tunnel 2 is not shown in order to squint the inside.

次に、本実施の形態の作用を説明する。冷却風通流長に対し広い冷却風幅を有する第1の冷却器4にインバータ回路の半導体素子7、8、9を取り付け、第2の冷却器5にブレーキチョッパ回路の半導体素子10を取り付ける。整風ガイド3を有する第2の風洞2を介して、冷却器の冷却風向に対し直角の冷却風向を有する冷却ファン6による冷却風を第1の冷却器4と第2の冷却器5へ分配し、各半導体素子の冷却を行う。   Next, the operation of the present embodiment will be described. The semiconductor elements 7, 8, 9 of the inverter circuit are attached to the first cooler 4 having a wide cooling air width with respect to the cooling air flow length, and the semiconductor element 10 of the brake chopper circuit is attached to the second cooler 5. Cooling air from the cooling fan 6 having a cooling air direction perpendicular to the cooling air direction of the cooler is distributed to the first cooler 4 and the second cooler 5 through the second wind tunnel 2 having the air conditioning guide 3. Then, each semiconductor element is cooled.

冷却器の熱抵抗、熱時定数(冷却器の温度上昇が処理発熱量に対する温度上昇の約63.2%まで達成する所要時間)は冷却風量と反比例関係にする特性がある。力行及びブレーキ時に動作させられるインバータ回路の半導体素子7、8、9の発熱量は多いため、整風ガイド3を有する整流風洞の第2の風洞2を介して、冷却器の熱抵抗を低下させるようインバータ回路の半導体素子7、8、9を冷却する第1の冷却器4への冷却風量を分配することにより、冷却器の性能を向上させ、半導体素子温度上昇の抑制が図れ、冷却器形状の抑制も図れる。   The thermal resistance and thermal time constant of the cooler (the time required for the temperature rise of the cooler to reach about 63.2% of the temperature rise with respect to the processing heat generation amount) have characteristics that are inversely proportional to the amount of cooling air. Since the semiconductor elements 7, 8, 9 of the inverter circuit that are operated during power running and braking have a large amount of heat generation, the thermal resistance of the cooler is lowered via the second wind tunnel 2 of the rectifying wind tunnel having the wind regulation guide 3. By distributing the cooling air volume to the first cooler 4 that cools the semiconductor elements 7, 8, 9 of the inverter circuit, the performance of the cooler can be improved, the temperature rise of the semiconductor element can be suppressed, and the cooler-shaped Suppression can also be achieved.

回生失効の時に動作させられるブレーキチョッパ回路の半導体素子10の発熱量は少ないため、整風ガイド3を有する整流風洞の第2の風洞2を介して、第2の冷却器5の熱時定数を高め、熱時定数とほぼ反比例にする温度変化を抑制するようブレーキチョッパ回路の半導体素子10を冷却する第2の冷却器5への冷却風量を分配することにより、温度変化による熱サイクルに依存する半導体の寿命を伸ばすことが図れる。   Since the heat generation amount of the semiconductor element 10 of the brake chopper circuit that is operated at the time of regeneration invalidation is small, the thermal time constant of the second cooler 5 is increased through the second wind tunnel 2 of the rectifying wind tunnel having the wind guide 3. A semiconductor that depends on a thermal cycle due to a temperature change by distributing a cooling air amount to the second cooler 5 that cools the semiconductor element 10 of the brake chopper circuit so as to suppress a temperature change that is substantially inversely proportional to the thermal time constant. Can be extended.

以上の実施の形態より、整風ガイド3を有する整流風洞の第2の風洞2により冷却ファン6による冷却風を効率良く利用でき、冷却性能を向上すると共に、半導体冷却装置の小型化と軽量化にも効果がある。   According to the above embodiment, the second wind tunnel 2 of the rectifying wind tunnel having the wind guide 3 can efficiently use the cooling air from the cooling fan 6 to improve the cooling performance and reduce the size and weight of the semiconductor cooling device. Is also effective.

図2(a)に本発明の第2実施の形態に係わる半導体冷却装置の斜視図を示し、図2(b)に本発明の第2実施の形態に係わる半導体冷却装置の正視図を示す。ここで第2の風洞2を形成する一部の面は内部を斜視するために図示していない。   FIG. 2A is a perspective view of a semiconductor cooling device according to the second embodiment of the present invention, and FIG. 2B is a front view of the semiconductor cooling device according to the second embodiment of the present invention. Here, a part of the surface forming the second wind tunnel 2 is not shown in order to squint the inside.

本発明の第1実施の形態に係わる半導体冷却装置は鉄道車両の床下に取り付けられる場合が想定される。図2の示すように、本実施形態の半導体冷却装置では、第1の冷却器4と第2の冷却器5は冷却風向が同一でかつ車両の床面に対し垂直し相互に熱交換のないよう配置され、第1の風洞1に収納されている。そして、車両床面に対し直角の冷却風向を有する冷却ファン6と、冷却ファン6による冷却風を冷却器に集約する第2の風洞2と、冷却ファン6とごみ止め12を有する第3の風洞11が設けられ、第3の風洞11は冷却風向が車両床面13に垂直となるよう配置される。   It is assumed that the semiconductor cooling device according to the first embodiment of the present invention is attached under the floor of a railway vehicle. As shown in FIG. 2, in the semiconductor cooling device of this embodiment, the first cooler 4 and the second cooler 5 have the same cooling air direction and are perpendicular to the vehicle floor and do not exchange heat with each other. Arranged in the first wind tunnel 1. A cooling fan 6 having a cooling air direction perpendicular to the vehicle floor, a second wind tunnel 2 that collects the cooling air from the cooling fan 6 in the cooler, and a third wind tunnel having the cooling fan 6 and a dust stopper 12. 11 is provided, and the third wind tunnel 11 is arranged such that the cooling air direction is perpendicular to the vehicle floor 13.

次に、本実施の形態の作用を説明する。鉄道車両の床下に取り付けられる半導体冷却装置において、本実施の形態の作用と効果は第1実施の形態と同様であるほかに、ごみ侵入対策として冷却ファン6を設ける第3の風洞11は冷却風向が車両床面13に垂直するよう配置される。冷却ファン6は地面から離れるよう設けられ、ごみは自身重量で落ちる重力フィルタ効果により吸い上げられるごみを低減でき、さらに、ごみ止め12により冷却ファン6につまるごみを低減でき、冷却ファン6のメンテナンス性を向上する効果がある。   Next, the operation of the present embodiment will be described. In the semiconductor cooling device installed under the floor of a railway vehicle, the operation and effect of the present embodiment are the same as those of the first embodiment, and the third wind tunnel 11 provided with a cooling fan 6 as a measure against dust intrusion is provided with a cooling wind direction. Is arranged perpendicular to the vehicle floor 13. The cooling fan 6 is provided so as to be separated from the ground, and the dust can be reduced by the gravity filter effect that falls due to its own weight. Further, the dust stopper 12 can reduce the clogging of the cooling fan 6 and maintainability of the cooling fan 6. There is an effect of improving.

上記風洞等が床下に垂直以外に例えば水平に配置されても同様な効果であることは言わずもがなである。   It goes without saying that the same effect can be obtained even if the wind tunnel or the like is arranged, for example, horizontally in addition to being vertical under the floor.

1 :第1の風洞
2 :第2の風洞
3 :整風ガイド
4 :第1の冷却器
5 :第2の冷却器
6 :冷却ファン
7 :インバータ回路の半導体素子
8 :インバータ回路の半導体素子
9 :インバータ回路の半導体素子
10:ブレーキチョッパ回路の半導体素子
11:第3の風洞
12:ゴミ止め
13:車両床面
1: 1st wind tunnel 2: 2nd wind tunnel 3: Wind guide 4: 1st cooler 5: 2nd cooler 6: Cooling fan 7: Semiconductor element of an inverter circuit 8: Semiconductor element of an inverter circuit 9: Semiconductor element of inverter circuit 10: Semiconductor element of brake chopper circuit 11: Third wind tunnel 12: Dust stopper 13: Vehicle floor

Claims (2)

鉄道車両の床下装置に取り付けられる電力変換装置において、冷却通風面に対し広い冷却風幅を有する第1の冷却器と、該第1の冷却器より狭い冷却風幅を有する第2の冷却器とを当該冷却器の各々の冷却風向が同一かつ相互に熱交換がないように併設収納する第1の風洞と、該冷却風向に対し直角の冷却風向を有する冷却ファンと、該冷却ファンの冷却風を前記第1の冷却器と前記第2の冷却器とに通風分配する整風ガイドを具備する第2の風洞を配設して成ることを特徴とする強制風冷式半導体冷却装置。 In a power converter attached to an underfloor device of a railway vehicle, a first cooler having a cooling air width wider than a cooling ventilation surface, and a second cooler having a cooling air width narrower than the first cooler, A cooling fan having a cooling air direction perpendicular to the cooling air direction, and a cooling fan for the cooling fan. A forced air cooling type semiconductor cooling apparatus comprising a second wind tunnel provided with a wind guide that distributes air to the first cooler and the second cooler. 前記冷却ファンの代わりに、前記当該冷却器の各々の冷却風向に対し逆方向の冷却風向を有する冷却ファンとごみ止めとを具備する第3の風洞を配設し、該第3の風洞の入風面と前記第1の風洞の排風面とが互いの通風状態に影響がないずれた位置にあることを特徴とする請求項1記載の強制風冷式半導体装置。 Instead of the cooling fan, a third wind tunnel including a cooling fan having a cooling air direction opposite to the cooling air direction of each of the coolers and a dust stopper is disposed, and the third wind tunnel is inserted. The forced air-cooling type semiconductor device according to claim 1, wherein the wind surface and the exhaust surface of the first wind tunnel are in positions where the mutual ventilation state is not affected.
JP2011065158A 2011-03-24 2011-03-24 Forced air cooling type semiconductor cooling device Pending JP2012201138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011065158A JP2012201138A (en) 2011-03-24 2011-03-24 Forced air cooling type semiconductor cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011065158A JP2012201138A (en) 2011-03-24 2011-03-24 Forced air cooling type semiconductor cooling device

Publications (1)

Publication Number Publication Date
JP2012201138A true JP2012201138A (en) 2012-10-22

Family

ID=47182577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011065158A Pending JP2012201138A (en) 2011-03-24 2011-03-24 Forced air cooling type semiconductor cooling device

Country Status (1)

Country Link
JP (1) JP2012201138A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378969U (en) * 1976-12-01 1978-06-30
JP2002044808A (en) * 2000-07-19 2002-02-08 Toshiba Transport Eng Inc Vehicle controller
JP2003033002A (en) * 2001-07-19 2003-01-31 Mitsubishi Electric Corp Power converter
JP2007095482A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Power supply device and cooling method of battery
WO2009011162A1 (en) * 2007-07-19 2009-01-22 Mitsubishi Heavy Industries, Ltd. Battery mounting structure for electric tramcar

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5378969U (en) * 1976-12-01 1978-06-30
JP2002044808A (en) * 2000-07-19 2002-02-08 Toshiba Transport Eng Inc Vehicle controller
JP2003033002A (en) * 2001-07-19 2003-01-31 Mitsubishi Electric Corp Power converter
JP2007095482A (en) * 2005-09-28 2007-04-12 Sanyo Electric Co Ltd Power supply device and cooling method of battery
WO2009011162A1 (en) * 2007-07-19 2009-01-22 Mitsubishi Heavy Industries, Ltd. Battery mounting structure for electric tramcar

Similar Documents

Publication Publication Date Title
US6477965B2 (en) Power conversion device for a rail way vehicle
US10064316B2 (en) Vehicular power conversion device
US8908375B2 (en) Cooler of power converting device for railroad vehicle
US9943007B2 (en) Power converter for railroad vehicle
JP2013071482A (en) Liquid-cooled electric power conversion device
JP5730746B2 (en) Cooler for vehicle control device
JP5474265B2 (en) Cooling device for vehicle underfloor device
JP3959248B2 (en) High-speed railway vehicle power converter
CN101459375B (en) Traction current transformer device
JP2006050742A (en) Forced air-cooling power converter and electric motor car
JP5481451B2 (en) Electric vehicle control device
CN102916567A (en) Cooling system for CRH380BL traction converter
JP2011151924A (en) Power converter for railway vehicle
JP2012201138A (en) Forced air cooling type semiconductor cooling device
JP2015156411A (en) Power converter and railway vehicle mounting the same
JP4739802B2 (en) Electric vehicle control device and electric vehicle using the same
JP2013154758A (en) Vehicular control device
CN212012507U (en) Traction converter for rail transit vehicle
JP2008160986A (en) Controller for electric vehicle
JP2016078654A (en) Electric power conversion system and railway vehicle mounted with the same
JP2012256767A (en) Forced-air cooling semiconductor cooling device
JP2017200305A (en) Power converter of rolling stock
JP6359202B2 (en) Transformer for vehicle
JP2017112190A (en) Cooler and power converter
CN210986781U (en) Forced air cooling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131211

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141020

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150306