JP2012199412A - Heat exchanger for cooling inside body - Google Patents

Heat exchanger for cooling inside body Download PDF

Info

Publication number
JP2012199412A
JP2012199412A JP2011062991A JP2011062991A JP2012199412A JP 2012199412 A JP2012199412 A JP 2012199412A JP 2011062991 A JP2011062991 A JP 2011062991A JP 2011062991 A JP2011062991 A JP 2011062991A JP 2012199412 A JP2012199412 A JP 2012199412A
Authority
JP
Japan
Prior art keywords
air
inside air
heat exchanger
air side
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011062991A
Other languages
Japanese (ja)
Other versions
JP5053447B1 (en
Inventor
Hiroshi Takigawa
宏 瀧川
Yoshiki Hashimoto
良樹 橋本
Yoshikiyo Tanabe
義清 田辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fanuc Corp
Original Assignee
Fanuc Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fanuc Corp filed Critical Fanuc Corp
Priority to JP2011062991A priority Critical patent/JP5053447B1/en
Priority to US13/289,360 priority patent/US20120241135A1/en
Priority to CN201210040799.8A priority patent/CN102695402B/en
Priority to DE102012102195A priority patent/DE102012102195A1/en
Application granted granted Critical
Publication of JP5053447B1 publication Critical patent/JP5053447B1/en
Publication of JP2012199412A publication Critical patent/JP2012199412A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20009Modifications to facilitate cooling, ventilating, or heating using a gaseous coolant in electronic enclosures
    • H05K7/202Air circulating in closed loop within enclosure wherein heat is removed through heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D15/00Heat-exchange apparatus with the intermediate heat-transfer medium in closed tubes passing into or through the conduit walls ; Heat-exchange apparatus employing intermediate heat-transfer medium or bodies
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/025Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being corrugated, plate-like elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/048Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of ribs integral with the element or local variations in thickness of the element, e.g. grooves, microchannels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2255/00Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes
    • F28F2255/16Heat exchanger elements made of materials having special features or resulting from particular manufacturing processes extruded

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a heat exchanger installable for a downsized body, which realizes both of high heat exchange performance and high air volume in an inside-air-side.SOLUTION: Air inside a heating component housing body 2 comes from outside a heat exchanger case 3 into inside the heat exchanger case, by an inside-air-side fan 5, through an inside-air-side intake port provided to the heat exchanger case, and separates to upward and downward. Then, it flows between inside-air-side fins 14 provided in an inside-air-side passage 19, losing heat thereof by the inside-air-side fins, and goes out through top and bottom of first and second inside-air-side exhaust ports 8, 9. The air cools because loosing heat thereof, and flows on a surface of a heat component (not shown) removing heat thereof, so that the heat component becomes cool. The air rises in heat thereof because it circulates in the heat component housing body to remove heat from the heating component, and returns into a heat exchanger for cooling body 1 by the inside-air-side fan again.

Description

本発明は、筐体内冷却用熱交換器に関する。   The present invention relates to a heat exchanger for cooling inside a casing.

機械加工工場等においては、粉塵や切削液等による電子部品や電気配線部品の汚染や損傷を防ぐために、これらの電子部品や電気配線部品を密閉化した筐体内に収納して使用する場合が少なくない。電子部品の発熱量が大きい場合には、筐体の表面からの放熱だけでは、筐体内の空気温度が上昇し、発熱部品の温度も許容温度以上に上昇して、寿命が短くなったり、故障したりするという問題が発生する。その問題を回避するために筐体内部に直接外気を取り入れて換気することはできないので、その代わりに筐体内部の空気と筐体外部の空気との間で熱交換器を使用して熱交換を行う方法が用いられている。   In machining factories, etc., in order to prevent contamination and damage of electronic parts and electrical wiring parts due to dust, cutting fluid, etc., these electronic parts and electrical wiring parts are rarely stored and used in a sealed enclosure. Absent. When the amount of heat generated by the electronic components is large, heat radiation from the surface of the housing alone will increase the air temperature inside the housing, and the temperature of the heat generating components will rise above the allowable temperature, shortening the service life or malfunctioning. Problem occurs. In order to avoid the problem, it is not possible to ventilate by directly taking outside air into the inside of the enclosure. Instead, heat exchange is performed between the air inside the enclosure and the air outside the enclosure. The method of performing is used.

このような目的で使用される一般的な構成の熱交換器としては、図14のように、発熱部品収納筐体2内部の空気が流れる内気側流路19と発熱部品収納筐体2外部の空気が流れる外気側流路20をベース板の両面にフィンを設置した熱交換ヒートシンク12(図3参照)やコルゲートフィン18(図4参照)で仕切り、内気側ファン5で内気側流路19に発熱部品収納筐体2内部の空気を流し、外気側ファン6で外気側流路20に発熱部品収納筐体2外部の空気を流して、発熱部品収納筐体2内部の空気と発熱部品収納筐体2外部の空気の間で熱交換する構造が一般的である。構造はやや複雑になり、組立コストが上昇する。また、図15のように、内気側ファン5と外気側ファン6を熱伝導率が非常に高いヒートパイプ31で熱的に接続した構造もよく知られている。構造はやや複雑になり、組立コストが上昇する。
筐体内冷却用熱交換器に関して、特許文献1には、筐体内に後付けする冷却装置を筐体内の空気が流れる内気通路および筐体外の空気が流れる外気通路とからなる二重構造として、この二重構造部分で筐体内の空気と筐体外の空気とで熱交換し、筐体内で発生した熱を筐体外に放出する技術が開示されている。
As a heat exchanger having a general configuration used for such a purpose, as shown in FIG. 14, an inside air flow path 19 through which the air inside the heat generating component storage housing 2 flows and an outside of the heat generating component storage housing 2 are provided. The outside air flow path 20 through which air flows is partitioned by a heat exchange heat sink 12 (see FIG. 3) and corrugated fins 18 (see FIG. 4) in which fins are installed on both surfaces of the base plate, and the inside air side flow path 19 becomes the inside air flow path 19. The air inside the heat generating component housing 2 is flowed, and the air outside the heat generating component housing 2 is flowed to the outside air flow path 20 by the outside air fan 6, and the air inside the heat generating component housing 2 and the heat generating component housing 2 A structure in which heat is exchanged between air outside the body 2 is common. The structure is somewhat complicated and the assembly cost increases. Further, as shown in FIG. 15, a structure in which the inside air fan 5 and the outside air fan 6 are thermally connected by a heat pipe 31 having a very high thermal conductivity is well known. The structure is somewhat complicated and the assembly cost increases.
With respect to the heat exchanger for cooling inside the casing, Patent Document 1 discloses that the cooling device to be retrofitted in the casing is a dual structure composed of an inside air passage through which air inside the casing flows and an outside air passage through which air outside the casing flows. A technique is disclosed in which heat is exchanged between the air inside the casing and the air outside the casing at the heavy structure portion, and the heat generated inside the casing is released to the outside of the casing.

特許4403823号公報Japanese Patent No. 4403823

近年、技術の趨勢として、他の電子機器と同様に、発熱部品を内蔵する筐体も小型化が要求されている。筐体が小型になると、筐体表面からの放熱量が減少し、熱交換器による放熱量を増やす必要があるが、熱交換器が大型化しては意味がない。即ち、小型で熱交換能力の高い熱交換器が必要とされている。また、熱交換能力が高いと、筐体内の内気側空気の温度は低下するが、発熱部品の温度は低くなるとは限らない。発熱部品から内気側空気への熱伝達による放熱量は、発熱部品と内気側空気の温度差に比例すると同時に、発熱部品の表面を流れる空気の流速の平方根にほぼ比例するためである。筐体内の空気の流速を高くするためには攪拌ファンの使用も考えられるが、攪拌ファンを設置するスペースを確保するために、その分筐体が大型化することは免れない。攪拌ファンを使用しないで、筐体内の空気の流速を大きくするには、熱交換器の内気側排気口からの流量(風量)を大きくすれば良い。しかし、小型の熱交換器の熱交換能力を高くしようとすると、熱交換器内の内気側流路に設ける吸熱フィンの表面積を広く確保するためにフィンのピッチが細かくなり、その結果、狭いフィン間を流れることによって発生する圧力損失が大きくなり、内気側流路に空気を流す内気側ファンの圧力―流量特性(P−Q特性)に従って、図13に示したように、流量が減少しがちであるという問題がある。   In recent years, as a trend of technology, as with other electronic devices, housings containing heat-generating components are also required to be downsized. As the housing becomes smaller, the amount of heat released from the surface of the housing decreases and it is necessary to increase the amount of heat released by the heat exchanger, but there is no point in enlarging the heat exchanger. That is, there is a need for a heat exchanger that is small and has a high heat exchange capacity. Further, when the heat exchange capability is high, the temperature of the inside air in the housing is lowered, but the temperature of the heat generating component is not necessarily lowered. This is because the amount of heat released by heat transfer from the heat generating component to the inside air is proportional to the temperature difference between the heat generating component and the inside air, and at the same time, is approximately proportional to the square root of the flow velocity of the air flowing on the surface of the heat generating component. In order to increase the flow rate of air in the housing, the use of a stirring fan may be considered. However, in order to secure a space for installing the stirring fan, it is inevitable that the housing is increased in size accordingly. In order to increase the flow rate of air in the casing without using a stirring fan, the flow rate (air volume) from the inside air side exhaust port of the heat exchanger may be increased. However, when trying to increase the heat exchange capacity of a small heat exchanger, the fin pitch becomes fine in order to secure a large surface area of the heat absorption fins provided in the inside air flow path in the heat exchanger. As shown in FIG. 13, the flow rate tends to decrease according to the pressure-flow rate characteristic (PQ characteristic) of the inside air side fan that flows air into the inside air side flow path. There is a problem that.

また、特許文献1に開示される技術では、1個のモータで内気ファンを回すという特殊構造であること、複数の熱交換器を設置していること、冷却器(熱交換器)のケースが凹凸のある構造を有していること、仕切り板の形状が複雑であることから、部品コストと組立てコストが高く、高静圧を得やすい遠心ファンは高流量が得にくい問題がある。軸流ファンを使用しても、軸流ファンの軸流方向の吸い込み側あるいは吹き出し側に完全な遮蔽障害物である仕切り板が近接して対向しており、軸流ファンを使用しても高風量が得られる構造にはなっていない。
小型筐体用の熱交換器はコスト面でも低価格であることが要求されることが多く、部品点数の増加、高価な部品の使用、組立コストの増加は極力抑えることが必要であり、シンプルな構造で上記の課題を解決する必要がある。
Further, in the technology disclosed in Patent Document 1, a special structure in which the inside air fan is rotated by one motor, a plurality of heat exchangers are installed, and a case of a cooler (heat exchanger) is provided. Due to the structure with irregularities and the shape of the partition plate is complicated, there is a problem that a centrifugal fan with high component cost and assembly cost and high static pressure is difficult to obtain. Even when an axial fan is used, the partition plate, which is a complete shielding obstacle, is closely adjacent to the suction or discharge side in the axial direction of the axial fan. It is not structured to obtain air volume.
Heat exchangers for small enclosures are often required to be low in cost, and it is necessary to minimize the increase in the number of parts, the use of expensive parts, and the increase in assembly costs. It is necessary to solve the above problems with a simple structure.

そこで本発明の目的は、上記点に鑑み、小型化が進んだ筐体にも設置可能でありながら高い熱交換能力と内気側の高風量が両立した安価な熱交換器を提供することである。   SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide an inexpensive heat exchanger that can be installed in a downsized housing while achieving both high heat exchange capability and high air volume on the inside air side. .

本願の請求項1に係る発明は、発熱部品を収納した筐体の壁面に設置され、前記筐体内の空気を流入するための内気側吸気口と流入した前記筐体内の空気を流出するための内気側排気口を設けた熱交換器ケースと、前記熱交換器ケース内を前記筐体内の空気が流れる内気側流路と前記筐体外の空気が流れる外気側流路に仕切る第1の隔壁部材の前記内気側流路側の面に内気側フィンと前記外気側流路側の面に外気側フィンを設けた熱交換ヒートシンクと、前記筐体内の空気を前記内気側吸気口から吸気し、前記内気側フィンが設けられた前記内気側流路を通して前記内気側排気口から排気する内気側ファンと、前記筐体外の空気を前記筐体外の空気が前記熱交換ケースに流入するための外気側吸気口から吸気し、前記外気側フィンが設けられた前記外気側流路を通して、流入した前記筐体外の空気が流出する外気側排気口から排気する外気側ファンを備え、前記熱交換ヒートシンクは、前記第1の隔壁部材と前記内気側フィンに垂直な断面に垂直な方向に長さを有する単一の熱交換ヒートシンクであり、前記内気側排気口は、前記熱交換ヒートシンクの長さ方向の一方の端部付近に少なくとも1個設けられた第1の内気側排気口と、前記熱交換ヒートシンクの長さ方向の他方の端部付近に少なくとも1個設けられた第2の内気側排気口から構成され、前記内気側吸気口は、前記第1の内気側排気口と前記第2の内気側排気口の間に設けられ、前記内気側ファンは、軸流ファンであり、前記内気側フィンの先端部に対向して配置され、前記内気側ファンによって、前記筐体内の空気が、前記内気側吸気口から前記内気側流路を通って、前記第1の内気側排気口と前記第2の内気側排気口の両方から排気されることを特徴とする筐体内冷却用熱交換器である。   The invention according to claim 1 of the present application is installed on the wall surface of the housing that houses the heat-generating component, and is used to flow out the air in the housing that has flowed in and the inside air inlet for flowing in the air in the housing. A heat exchanger case provided with an inside air side exhaust port, and a first partition member that partitions the inside of the heat exchanger case into an inside air flow path through which air in the housing flows and an outside air flow path through which air outside the housing flows. A heat exchange heat sink provided with an internal air side fin on the surface of the internal air side flow path and an external air side fin on the surface of the external air side flow path, and the air in the housing is sucked from the internal air side intake port, and the internal air side An inside air side fan that exhausts air from the inside air side exhaust port through the inside air side flow path provided with fins, and an outside air side air intake port through which air outside the housing flows into the heat exchange case Intake air, the outside air side fin is provided An outside air fan that exhausts air from the outside air outlet through which the air outside the housing that has flowed in flows out through the outside air flow path, and the heat exchange heat sink is perpendicular to the first partition member and the inside air fin. A first heat exchange heat sink having a length in a direction perpendicular to a cross section, wherein the inside air-side exhaust port is provided with at least one near one end in the length direction of the heat exchange heat sink. An inside air side exhaust port and at least one second inside air side exhaust port provided in the vicinity of the other end in the length direction of the heat exchange heat sink are configured. Provided between a side exhaust port and the second room air side exhaust port, the room air side fan is an axial fan, and is disposed to face a front end portion of the room air side fin, and by the room air side fan, Air in the housing A heat exchanger for cooling inside a casing, wherein the heat is exhausted from both the first room air side exhaust port and the second room air side exhaust port through the room air side flow path from the room air side intake port. It is.

請求項2に係る発明は、前記第1の内気側排気口からの排気温度と前記第2の内気側排気口からの排気温度が略等しくなる位置に前記内気側吸気口と前記内気側ファンを設置したことを特徴とする請求項1記載の筐体内冷却用熱交換器である。
請求項3に係る発明は、前記熱交換器ケースの外形が前記筐体内冷却用熱交換器を前記筐体に取付けるためのフランジ部と、前記内気側吸気口と前記内気側排気口のための開口部を除いて概略直方体であり、板金を加工して製造されていることを特徴とする請求項1または2に記載の筐体内冷却用熱交換器である。
請求項4に係る発明は、前記熱交換ヒートシンクが金型からの押出し成形により製作されたアルミニウムまたはアルミニウム合金からなる成形物であり、前記熱交換ヒートシンクの前記長さ方向に前記成形物を所定の長さに切断する以外の切削加工が施されていないことを特徴とする請求項1〜3のいずれかひとつに記載の筐体内冷却用熱交換器である。
請求項5に係る発明は、前記内気側吸気口と前記第1の内気側排気口の間の前記内気側フィンの先端部と前記熱交換器ケースの内面の間に第1の充填用部材、前記内気側吸気口と前記第2の内気側排気口の間の前記内気側フィンの先端部と前記熱交換器ケースの内面の間に第2の充填用部材を設置したことを特徴とする請求項1〜4のいずれかひとつに記載の筐体内冷却用熱交換器である。
請求項6に係る発明は、前記熱交換ヒートシンクを構成する前記第1の隔壁部材と概略同じ幅の表面にフィンが形成されていない第2の隔壁部材を前記第1の隔壁部材の前記長さ方向の少なくとも一端に接続して、隔壁部材の全長を伸ばしたことを特徴とする請求項1〜5のいずれかひとつに記載の筐体内冷却用熱交換器である。
According to a second aspect of the present invention, the inside air inlet and the inside air fan are placed at a position where the exhaust temperature from the first inside air outlet and the exhaust temperature from the second inside air outlet are substantially equal. The heat exchanger for cooling in a housing according to claim 1, wherein the heat exchanger is for cooling inside a housing.
According to a third aspect of the present invention, an outer shape of the heat exchanger case is provided for a flange portion for attaching the heat exchanger for cooling in the housing to the housing, and for the inside air inlet and the inside air outlet. 3. The heat exchanger for cooling inside a casing according to claim 1, wherein the heat exchanger is a substantially rectangular parallelepiped except for the opening and is manufactured by processing a sheet metal.
According to a fourth aspect of the present invention, the heat exchange heat sink is a molded article made of aluminum or an aluminum alloy manufactured by extrusion molding from a mold, and the molded article is placed in a predetermined direction in the length direction of the heat exchange heat sink. The heat exchanger for cooling in a housing according to any one of claims 1 to 3, wherein a cutting process other than cutting to length is not performed.
According to a fifth aspect of the present invention, there is provided a first filling member between a front end portion of the inside air-side fin between the inside air side intake port and the first inside air side exhaust port and an inner surface of the heat exchanger case, The second filling member is installed between a front end portion of the inside air side fin between the inside air side intake port and the second inside air side exhaust port and an inner surface of the heat exchanger case. The heat exchanger for cooling in a housing according to any one of Items 1 to 4.
According to a sixth aspect of the present invention, there is provided a second partition member in which fins are not formed on a surface having substantially the same width as the first partition member constituting the heat exchange heat sink, and the length of the first partition member. It is connected to at least one end of the direction, and the whole length of the partition member is extended, The heat exchanger for cooling inside a casing according to any one of claims 1 to 5.

本発明により、小型化が進んだ筐体にも設置可能でありながら高い熱交換能力と内気側の高風量が両立した安価な熱交換器を提供できる。   According to the present invention, it is possible to provide an inexpensive heat exchanger that is compatible with both high heat exchange capability and high air volume on the inside air side, while being able to be installed in a miniaturized housing.

本発明の実施形態1の筐体内冷却用熱交換器の外観斜視図である。It is an external appearance perspective view of the heat exchanger for cooling in a case of Embodiment 1 of the present invention. 本発明の実施形態1の筐体内冷却用熱交換器の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the heat exchanger for cooling in a housing | casing of Embodiment 1 of this invention. 本発明の実施形態1の筐体内冷却用熱交換器に用いられる熱交換ヒートシンクの外観斜視図である。It is an external appearance perspective view of the heat exchange heat sink used for the heat exchanger for cooling in a case of Embodiment 1 of the present invention. 本発明の実施形態1の筐体内冷却用熱交換器に用いられるコルゲートフィンの外観斜視図である。It is an external appearance perspective view of the corrugated fin used for the heat exchanger for cooling in a housing of Embodiment 1 of the present invention. 実施形態1の変形例を示す筐体内冷却用熱交換器の外観斜視図である。It is an external appearance perspective view of the heat exchanger for cooling in a case which shows the modification of Embodiment 1. 実施形態1の変形例を示す筐体内冷却用熱交換器の概略断面図である。It is a schematic sectional drawing of the heat exchanger for cooling in a housing | casing which shows the modification of Embodiment 1. 実施形態1のその他の変形例を示す筐体内冷却用熱交換器の概略断面図である。It is a schematic sectional drawing of the heat exchanger for cooling in a housing | casing which shows the other modification of Embodiment 1. 本発明の実施形態2による筐体内冷却用熱交換器の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the heat exchanger for cooling in a housing | casing by Embodiment 2 of this invention. 本発明の実施形態3による筐体内冷却用熱交換器の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the heat exchanger for cooling in a housing | casing by Embodiment 3 of this invention. 本発明の実施形態4による筐体内冷却用熱交換器の構造を示す概略断面図であり、外気側ファンを取付けたパネルを筐体に取付けた状態(a)と、筐体から取外した状態(b)を示す図である。It is a schematic sectional drawing which shows the structure of the heat exchanger for cooling in a housing | casing by Embodiment 4 of this invention, The state (a) which attached the panel which attached the external air side fan to the housing | casing, and the state removed from the housing | casing ( It is a figure which shows b). 本発明の実施形態5による筐体内冷却用熱交換器の構造を示す概略断面図(a)と内気側ファンを外した状態で内気ファン取付け面側から見た熱交換器の外観図(b)である。Schematic sectional view (a) showing the structure of the heat exchanger for cooling in a casing according to Embodiment 5 of the present invention and an external view (b) of the heat exchanger as seen from the inside air fan mounting surface side with the inside air side fan removed. It is. 本発明の実施形態6による筐体内冷却用熱交換器の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the heat exchanger for cooling in a housing | casing by Embodiment 6 of this invention. 軸流ファンと遠心ファンの圧力−流量特性(P−Q特性)を模式的に示す図である。It is a figure which shows typically the pressure-flow rate characteristic (PQ characteristic) of an axial flow fan and a centrifugal fan. 従来の技術に係る筐体内冷却用熱交換器の構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the heat exchanger for cooling in a housing | casing which concerns on the prior art. ヒートパイプを使用した従来の技術に係る筐体内冷却用熱交換器の構造を示す断面模式図である。It is a cross-sectional schematic diagram which shows the structure of the heat exchanger for cooling in a housing | casing which concerns on the prior art which uses a heat pipe.

以下、本発明の実施形態を図面と共に説明する。
<実施形態1>
図1,図2,図3,図4は、本発明の実施形態1を示しており、図1は、実施形態1の熱交換器を筐体内部側から見た斜視図であり、図2は、筐体の内側に取付けた状態のこの熱交換器の構造を示す断面模式図であり、白抜きの矢印は空気の流れを示している。図3は、この熱交換器に使用している熱交換ヒートシンクの斜視図である。図4は、本発明の実施形態1の筐体内冷却用熱交換器に用いられるコルゲートフィンの外観斜視図である。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
<Embodiment 1>
1, FIG. 2, FIG. 3 and FIG. 4 show Embodiment 1 of the present invention, and FIG. 1 is a perspective view of the heat exchanger of Embodiment 1 as viewed from the inside of the housing. These are the cross-sectional schematic diagrams which show the structure of this heat exchanger of the state attached to the inner side of a housing | casing, and the white arrow has shown the flow of air. FIG. 3 is a perspective view of a heat exchange heat sink used in the heat exchanger. FIG. 4 is an external perspective view of a corrugated fin used in the in-casing cooling heat exchanger according to the first embodiment of the present invention.

図2に示されるように、発熱部品収納筐体2内の空気は、熱交換器ケース3の外側の面から、内気側吸気口7に接続して内気側フィン14の内気側フィンの先端部15(図3参照)に対向して配置された内気側ファン5によって、熱交換器ケース3に設けられた内気側吸気口7を通過して熱交換器ケース3内に吸い込まれて内気側流路19に流れ込み、上下二手に分かれて、内気側流路19,19に設けられた内気側フィン14の間を内気側フィン14に熱を奪われながら流れ、上下の第1,第2の内気側排気口8,9から排気される。
熱を奪われることにより空気の温度が下がり、第1,第2の内気側排気口8,9から排気された空気は、発熱部品(図示せず)の表面を流れることで発熱部品から熱を奪い、発熱部品の温度を下げる。発熱部品収納筐体2内を循環しながら発熱部品から熱を奪うことによって温度が上昇した発熱部品収納筐体2内の空気は、再び、内気側ファン5によって筐体内冷却用熱交換器1内に戻される。発熱部品の温度を低く保つには、発熱部品と発熱部品収納筐体2内の空気の温度差が大きいことと、第1,第2の内気側排気口8,9からの空気の流量(風量)が大きく、発熱部品表面の空気の流速(風速)が大きいことが要求される。
As shown in FIG. 2, the air in the heat generating component housing 2 is connected to the inside air inlet 7 from the outer surface of the heat exchanger case 3 and the tip of the inside air fin 14 of the inside air fin 14. 15 (see FIG. 3), the inside air side fan 5 disposed opposite to the inside air side air inlet 7 provided in the heat exchanger case 3 is sucked into the heat exchanger case 3 and flows into the inside air side flow. The air flows into the passage 19 and is divided into upper and lower hands, and flows between the inside air-side fins 14 provided in the inside air-side flow passages 19 and 19 while the heat is taken away by the inside air-side fins 14, and the upper and lower first and second inside air The air is exhausted from the side exhaust ports 8 and 9.
When the heat is removed, the temperature of the air is lowered, and the air exhausted from the first and second inside air side exhaust ports 8 and 9 flows through the surface of the heat generating component (not shown) to generate heat from the heat generating component. Take away and lower the temperature of the heat generating parts. The air in the heat generating component housing case 2 whose temperature has been raised by removing heat from the heat generating component while circulating in the heat generating component housing case 2 is again returned to the inside of the heat exchanger 1 for cooling in the case by the inside air side fan 5. Returned to In order to keep the temperature of the heat generating component low, the temperature difference between the heat generating component and the air in the heat generating component housing 2 is large, and the flow rate of air from the first and second inside air side exhaust ports 8 and 9 (air volume) ) Is large, and the air flow rate (wind velocity) on the surface of the heat generating component is required to be large.

実施形態1では、第1,第2の内気側排気口8,9が上下2ヶ所に設けられ、内気側ファン5と内気側吸気口7がその第1,第2の内気側排気口8,9の間に設置されているので、フィンピッチを細かくして(すなわちフィン枚数を多くして)、全長も長くして、高い熱交換能力を得るための必須条件であるフィン表面積の大きい熱交換ヒートシンク12(図3参照)を使用できる。そして、内気側吸気口7から第1,第2の内気側排気口8,9までの距離が短く、上下方向に流れる流路の断面積が大きくなるので、内気側吸気口7から第1,第2の内気側排気口8,9までの圧力損失が小さく、第1,第2の内気側排気口8,9からの風量を大きくできる。内気側ファン5と内気側吸気口7の位置は、第1の内気側排気口8からの排気温度と第2の内気側排気口9からの排気温度が略等しくなる位置にすることが、第1の内気側排気口8または第2の内気側排気口9のいずれか一方から放熱量が少なく高温のままの空気が発熱部品収納筐体2内に還流されるというような内気側フィン14の一部しか活用していない状態となることによる熱交換能力の低下を防ぐことができるので望ましい。   In the first embodiment, the first and second room air side exhaust ports 8 and 9 are provided at two locations in the upper and lower sides, and the room air side fan 5 and the room air side air intake port 7 are connected to the first and second room air side exhaust ports 8 and 8. Since it is installed between 9, the fin pitch is made fine (ie, the number of fins is increased), the overall length is lengthened, and heat exchange with a large fin surface area is essential for obtaining high heat exchange capacity. A heat sink 12 (see FIG. 3) can be used. Since the distance from the inside air inlet 7 to the first and second inside air outlets 8 and 9 is short and the cross-sectional area of the flow path flowing in the vertical direction is large, the inside air inlet 7 The pressure loss to the second inside air side exhaust ports 8 and 9 is small, and the air volume from the first and second inside air side exhaust ports 8 and 9 can be increased. The positions of the inside air side fan 5 and the inside air side intake port 7 are set such that the exhaust temperature from the first inside air side exhaust port 8 and the exhaust temperature from the second inside air side exhaust port 9 are substantially equal. The inside air-side fin 14 has a low heat release amount from either one of the inside air-side exhaust port 8 or the second inside air-side exhaust port 9 so that air that remains at a high temperature is recirculated into the heat generating component housing 2. It is desirable because it can prevent a decrease in heat exchange capacity due to a state where only a part is utilized.

熱交換器ケース3は、発熱部品収納筐体2の壁面に取付けるための熱交換器ケース3のフランジ4(図5参照)と、内気側吸気口7と内気側排気口8,9のための開口部の部分を除いて、概略直方体であり、板金を加工して容易に製造することができるので低コストで製造できる。   The heat exchanger case 3 is provided for the flange 4 (see FIG. 5) of the heat exchanger case 3 to be mounted on the wall surface of the heat generating component housing 2, the inside air inlet 7 and the inside air outlets 8 and 9. Except for the opening portion, it is a substantially rectangular parallelepiped, and can be manufactured easily by processing a sheet metal, so that it can be manufactured at low cost.

図3に示される熱交換ヒートシンク12は、長さ方向に垂直な断面形状が一定であり、アルミニウムまたはアルミニウム合金の金型からの押出し成形により製作できる成形物であり、熱交換ヒートシンク12を所定の長さに切断する以外の切削加工が施されていないので、低コストで製作できる。熱交換ヒートシンク12は、金型からの押出し成形により製作されたアルミニウムまたはアルミニウム合金からなる成形物を所定の長さに切断するだけで製作すると最も低コストで製作できる。複数の内気側排気口8,9を設けながら、単一の熱交換ヒートシンク2しか使用しないことと相まって、熱交換ヒートシンク12に要する部品コストも組立コストも少なくできる。   The heat exchange heat sink 12 shown in FIG. 3 has a constant cross-sectional shape perpendicular to the length direction, and is a molded product that can be manufactured by extrusion molding from an aluminum or aluminum alloy mold. Since no cutting process other than cutting to length is applied, it can be manufactured at low cost. The heat exchange heat sink 12 can be manufactured at the lowest cost if it is manufactured by simply cutting a molded product made of aluminum or aluminum alloy, which is manufactured by extrusion molding from a mold, into a predetermined length. In combination with the use of only a single heat exchange heat sink 2 while providing a plurality of inside air-side exhaust ports 8 and 9, both the parts cost and assembly cost required for the heat exchange heat sink 12 can be reduced.

熱交換器ケース3を削り出しや型に流し込んで作ると製作費が高くなったり、ケースの厚さが厚くなって小型化が難しくなったりするが、熱交換器ケース3は単純な直方体にすることによって、板金の切断、折り曲げ、貼り合わせだけで簡単に製作できるので、薄く軽量な熱交換器ケースを低コストで得ることができる。   If the heat exchanger case 3 is cut out or poured into a mold, the production cost will increase, or the case will become thick and difficult to downsize, but the heat exchanger case 3 will be a simple cuboid. Thus, since it can be easily manufactured only by cutting, bending and bonding the sheet metal, a thin and light heat exchanger case can be obtained at low cost.

一般に、フィンの表面積を広げるために、熱交換ヒートシンク12の幅を広げたり、フィンの高さを高くしたりすると、押出し金型が大型になり高価になる。しかし、実施形態1では、図3に示した熱交換ヒートシンク12の形状から分かるように、第1の隔壁部材13と内気側フィン14と外気側フィン16に垂直な断面に垂直な方向の熱交換ヒートシンク12の長さ方向と押出し方向は一致しているので、熱交換ヒートシンク12の長さを長くしてフィン表面積を広げても押出し金型を大型化する必要がない。このように、幅よりも長さ方向が大きい熱交換ヒートシンク12を使用した場合に、内気側吸気口7を第1の内気側排気口8と第2の内気側排気口9の間に設けた構造は、内気側流量の増加に特に顕著な効果をもたらす。なお、実施形態1では、図3の熱交換ヒートシンク12を図4のコルゲートフィンで置き換えることも可能である。   Generally, when the width of the heat exchange heat sink 12 is increased or the height of the fin is increased in order to increase the surface area of the fin, the extrusion mold becomes large and expensive. However, in the first embodiment, as can be seen from the shape of the heat exchange heat sink 12 shown in FIG. 3, the heat exchange in the direction perpendicular to the cross section perpendicular to the first partition member 13, the inside air side fins 14, and the outside air side fins 16. Since the length direction of the heat sink 12 and the extrusion direction coincide with each other, it is not necessary to increase the size of the extrusion mold even if the length of the heat exchange heat sink 12 is increased to increase the fin surface area. Thus, when the heat exchange heat sink 12 whose length direction is larger than the width is used, the room air side intake port 7 is provided between the first room air side exhaust port 8 and the second room air side exhaust port 9. The structure has a particularly significant effect on the increase of the inside air flow rate. In the first embodiment, the heat exchange heat sink 12 shown in FIG. 3 can be replaced with the corrugated fin shown in FIG.

第1,第2の内気側排気口8,9の配置について説明すると、上下の第1,第2の内気側排気口8,9の一方あるいは両方を、熱交換器ケース3の内気側ファン5を取付けた側面でなく、図5,図6のように、その側面に直交する熱交換器ケース3の上面に設けてもよい。あるいは、第1,第2の内気側排気口8,9を熱交換器ケース3の下面に設けてもよいし、側面と上面や下面の両方に設けてもよい。   The arrangement of the first and second inside air side exhaust ports 8 and 9 will be described. One or both of the upper and lower first and second inside air side exhaust ports 8 and 9 are connected to the inside air side fan 5 of the heat exchanger case 3. You may provide in the upper surface of the heat exchanger case 3 orthogonal to the side surface like FIG. Alternatively, the first and second inside air-side exhaust ports 8 and 9 may be provided on the lower surface of the heat exchanger case 3, or may be provided on both the side surface, the upper surface, and the lower surface.

このような第1,第2の内気側排気口8,9の配置によって、熱交換ヒートシンク12を構成する第1の隔壁部材13と内気側フィン14と熱交換器ケース3で形成される第1のコーナー部25,25に空気が移動しにくい風溜まりが発生することが防止でき、熱交換ヒートシンク12の長さ方向の端部まで内気側フィン14間を空気がスムーズに通過する。これによって、内気側フィン14の表面を熱交換するために有効に利用できるようになり、高い熱交換能力を得ることができる。但し、第1,第2の内気側排気口8,9を熱交換器ケース3の上面や下面に設けると、第1、第2の内気側排気口8,9からの温度の下がった空気が発熱部品の方に流れにくくなる懸念があり、第1,第2の内気側排気口8,9に風向きを変えるための風向偏向板27(図6参照)を設置してもよい。   With the arrangement of the first and second room air side exhaust ports 8 and 9, the first partition member 13, the room air side fins 14 and the heat exchanger case 3 constituting the heat exchange heat sink 12 are formed. It is possible to prevent the occurrence of a wind trap in which the air hardly moves at the corner portions 25, 25, and the air smoothly passes between the inside air-side fins 14 to the end portion in the length direction of the heat exchange heat sink 12. As a result, the surface of the inside air-side fin 14 can be effectively used for heat exchange, and high heat exchange capability can be obtained. However, if the first and second inside air side exhaust ports 8 and 9 are provided on the upper surface and the lower surface of the heat exchanger case 3, the air from the first and second inside air side exhaust ports 8 and 9 is cooled. There is a concern that it may be difficult to flow toward the heat-generating component, and a wind direction deflecting plate 27 (see FIG. 6) for changing the wind direction may be installed in the first and second inside air side exhaust ports 8 and 9.

同様に、特に発熱量の大きい発熱部品の温度上昇を抑えるために、第1,第2の内気側排気口8,9にその部品の方向に選択的に排気口からの風を向けるための風向偏向板(図示せず)を設置してもよい。   Similarly, in order to suppress the temperature rise of the heat generating component having a particularly large heat generation amount, the wind direction for selectively directing the air from the exhaust port toward the first and second inside air exhaust ports 8 and 9 in the direction of the component. A deflection plate (not shown) may be installed.

一方、発熱部品収納筐体2の外部の空気は、発熱部品収納筐体2の壁面に設けられた外気側吸気口10の発熱部品収納筐体2内側に、外気側フィン16の外気側フィンの先端部17に対向して設置された外気側ファン(軸流ファン)6によって、外気側吸気口10から吸い込まれて、外気側ファン6を通過後、外気側流路20に流れ込み、外気側流路20に設けられた外気側フィン16の間を外気側フィン16から熱を奪いながら流れ、外気側排気口11から排気される。なお、実施形態1では、外気側吸気口11から外気側ファン6よって外気側流路20に流れ込んだ発熱部品収納筐体2外の空気が外気側フィン16間を経由せずに外気側排気口11に流れることを抑制する導風板28を備えている。   On the other hand, the air outside the heat generating component storage case 2 passes through the inside of the heat generating component storage case 2 of the outside air inlet 10 provided on the wall surface of the heat generating component storage case 2, The outside air side fan (axial fan) 6 installed facing the front end portion 17 is sucked from the outside air side inlet 10 and passes through the outside air side fan 6 and then flows into the outside air side flow path 20, where the outside air side flow The air flows between the outside air side fins 16 provided in the passage 20 while taking heat from the outside air side fins 16 and is exhausted from the outside air side exhaust port 11. In the first embodiment, the air outside the heat generating component housing 2 that has flowed into the outside air flow path 20 from the outside air inlet 11 through the outside air fan 6 does not pass between the outside air fins 16 and passes through the outside air outlet 16. 11 is provided.

なお、図1,図2,図3,図4の実施形態1では、外気側ファン6を熱交換ヒートシンク12の長さ方向の下側の一端付近に設置しているが、上下逆転して、外気側ファン6を熱交換ヒートシンク12の長さ方向の上側の一端付近に設置しているもよい。
あるいは、図7に示したように、外気側ファン6を、内気側ファン5と同じように、外気側排気口11,11を上下に設けて、その間に設置しても良い。更には、熱交換ヒートシンク12を横に90°傾倒して、第1の内気側排気口8と第2の内気側排気口9を上下ではなく、左右になるように配置しても良い。また、安全のため、外気側ファン6の外側にファンガードを取付けても良く、外気側排気口11は異物混入防止等のためにスリットパンチングとしても良い。
In FIG. 1, FIG. 2, FIG. 3, and FIG. 4, the outside air fan 6 is installed near one end on the lower side in the length direction of the heat exchange heat sink 12, The outside air fan 6 may be installed near one end on the upper side in the length direction of the heat exchange heat sink 12.
Alternatively, as shown in FIG. 7, the outside air side fan 6 may be installed between the outside air outlets 11 and 11 in the same manner as the inside air fan 5. Furthermore, the heat exchange heat sink 12 may be tilted by 90 ° to the side, and the first inside air side exhaust port 8 and the second inside air side exhaust port 9 may be arranged so as to be left and right instead of up and down. Further, for safety, a fan guard may be attached to the outside of the outside air side fan 6, and the outside air side exhaust port 11 may be slit punched to prevent foreign matter from being mixed.

上述したように実施形態1は、空気の流れ方向の長さが長い単一の熱交換ヒートシンクと高風量を得るのに有利な軸流ファンを使用しながら、同様の熱交換ヒートシンク12の一端から他端まで空気を流す従来の構造に比べて、内気側ファン5の表面積は同じでほぼ同等の熱交換能力を有しながら、内気側吸気口7から第1,第2の内気側排気口8,9までにフィン間を流れる距離は約1/2になり、フィン間を流れる内気側流路19の流路断面積は約2倍になるので、内気側フィン間を空気が流れることによる圧力損失は大幅に減少し、内気側ファンのP−Q特性に従って、第1の内気側排気口と第2の内気側排気口の内気側排気流量は大幅に向上するので、攪拌ファンを用いることなく、筐体内の空気の温度も発熱部品の温度も低く保つことが可能になる。   As described above, the first embodiment uses a single heat exchange heat sink having a long length in the air flow direction and an axial fan that is advantageous for obtaining a high air flow, and from one end of a similar heat exchange heat sink 12. Compared to the conventional structure in which air flows to the other end, the surface area of the inside air side fan 5 is the same and has almost the same heat exchanging capacity, but from the inside air side intake port 7 to the first and second inside air side exhaust ports 8. , 9, the distance flowing between the fins is about ½, and the cross-sectional area of the inside air side passage 19 that flows between the fins is about double, so the pressure due to the air flowing between the inside air side fins The loss is greatly reduced, and according to the PQ characteristics of the inside air side fan, the inside air side exhaust flow rate of the first inside air side exhaust port and the second inside air side exhaust port is greatly improved. , Keep the temperature of the air in the enclosure and the temperature of the heat generating parts low Door is possible.

また、上記のように、圧力損失が低下するので、圧力損失が高いピッチの細かいフィンが使用できるので、内気側フィンの表面積を確保しながら、熱交換ヒートシンク12の体積を小さくできるので熱交換器全体を小型化することができ、小型化が進む筐体にも適用することができる。また、圧力損失が低下するので、比較的小型のファンでも、必要な風量を得ることができることも熱交換器全体の小型化に有利である。   In addition, since the pressure loss is reduced as described above, fine pitch fins with high pressure loss can be used, so that the volume of the heat exchange heat sink 12 can be reduced while ensuring the surface area of the inside air-side fin, so that the heat exchanger The whole can be reduced in size, and can be applied to a housing that is increasingly downsized. In addition, since the pressure loss is reduced, the necessary air volume can be obtained even with a relatively small fan, which is advantageous for downsizing the entire heat exchanger.

また、内気側吸気口7と第1の内気側排気口8までの間における内気側空気の単位流量当りの放熱量と内気側吸気口7と第2の内気側排気口9までの間における内気側空気の単位流量当りの放熱量がほぼ同じになる位置に内気側吸気口7と内気側ファン5を設置して、第1の内気側排気口8からの排気温度と第2の内気側排気口9からの排気温度が略等しくなるようにすることによって、一方の内気側排気口から放熱量が少なく高温のままの空気が筐体内に還流されるというような内気側フィンの一部しか活用していない状態となることによる熱交換能力の低下を防ぐことができ、最も高い熱交換能力を得ることができる。   Also, the amount of heat released per unit flow of the inside air side air between the inside air side intake port 7 and the first inside air side exhaust port 8, and the inside air between the inside air side intake port 7 and the second inside air side exhaust port 9. The inside air side intake port 7 and the inside air side fan 5 are installed at a position where the heat radiation amount per unit flow rate of the side air is substantially the same, and the exhaust temperature from the first inside air side exhaust port 8 and the second inside air side exhaust gas are exhausted. By making the exhaust temperature from the port 9 substantially equal, only a part of the inside air-side fin is used such that the air with a small amount of heat released from one inside air side exhaust port is recirculated into the housing. It is possible to prevent the heat exchange capacity from being lowered due to the state not being performed, and to obtain the highest heat exchange capacity.

また、構造的には、内気側吸気口7と内気側ファン5の位置を変え、第1,第2の内気側排気口8,9のための熱交換器ケース3の開口部を増やしているだけで、新たな部品の追加や、高価な部品との置換え、組立工数の増加等が無く、コストが上昇する要因は殆どなく、安価に製作できる。   Further, structurally, the positions of the inside air side intake port 7 and the inside air side fan 5 are changed to increase the opening of the heat exchanger case 3 for the first and second inside air side exhaust ports 8 and 9. Thus, there is no addition of new parts, replacement with expensive parts, an increase in the number of assembling steps, etc., and there are almost no factors that increase the cost, and it can be manufactured at low cost.

なお、内気側ファン5も外気側ファン6も、ファンによる風向きが反対方向になるように取付け、第1,第2の内気側排気口8,9、外気側排気口11をそれぞれ内気側吸気口、外気側吸気口と読み替え、内気側吸気口7、外気側吸気口10をそれぞれ内気側排気口、外気側排気口と読み替える構造も、当然考えられるが、軸流ファンでは、吹き出し側に障害物(本構造ではフィンが障害物になる)があっても影響は少ないが、吸込み側に障害物があると流量がP−Q特性からずれて大幅に低下する。内気側の流量が低下することは本発明の目的に反し、外気側の流量が低下することも望ましいことではない。一方、ファンの吸込み側と障害物の距離を流量への影響がない距離に広げようとすると熱交換器の大型化は避けられない。従って、本発明に対して、ファンをファンによる風向きが反対方向になるようにすることは、構造としては可能だが、本発明の目的を実現する上では望ましい構造ではない。   Both the inside air side fan 5 and the outside air side fan 6 are mounted so that the direction of the air flow by the fans is opposite, and the first and second inside air side exhaust ports 8, 9 and the outside air side exhaust port 11 are respectively connected to the inside air side intake port. Of course, a structure in which the inside air side inlet port 7 and the outside air side inlet port 10 are read as the inside air side exhaust port and the outside air side exhaust port, respectively, is conceivable. Even if there is an obstruction (in this structure, the fin becomes an obstruction), the influence is small, but if there is an obstruction on the suction side, the flow rate deviates from the PQ characteristic and falls significantly. Decreasing the flow rate on the inside air side is contrary to the object of the present invention, and it is not desirable that the flow rate on the outside air side be decreased. On the other hand, if the distance between the fan suction side and the obstacle is increased to a distance that does not affect the flow rate, an increase in the size of the heat exchanger is inevitable. Therefore, although it is possible as a structure to make the fan wind direction opposite to that of the present invention, it is not a desirable structure for realizing the object of the present invention.

<実施形態2>
図8は、本発明における筐体内冷却用熱交換器の実施形態2を示したものである。実施形態1では、外気側ファン6を発熱部品収納筐体2の内側に取付けていたが、実施形態2では、外気側ファン6を発熱部品収納筐体2の外側に取付けている。これにより、発熱部品収納筐体2の外側に外気側ファン6が突起物として張り出している。美観上、あるいは、発熱部品収納筐体2の設置場所の制約がない場合には、外気側吸気口10から外気側ファン6よって外気側流路20に流れ込んだ発熱部品収納筐体2の外の空気が外気側フィン16間を経由せずに外気側排気口11に流れることを抑制する導風板28が不要となって部品点数の減少、部品コストの低下、組立コストの低下等が図れると共に、導風板28の設置していたスペースが不要になるため、筐体内冷却用熱交換器1の小型化(この場合は、筐体内冷却用熱交換器1の厚さ(熱交換器の奥行き)の減少)が可能になる。
<Embodiment 2>
FIG. 8 shows a second embodiment of the heat exchanger for cooling in a casing according to the present invention. In the first embodiment, the outside air fan 6 is attached to the inside of the heat generating component housing 2, but in the second embodiment, the outside air fan 6 is attached to the outside of the heat generating components housing 2. As a result, the outside air side fan 6 projects as a protrusion on the outside of the heat generating component housing 2. If there is no restriction on the installation location of the heat generating component housing case 2 aesthetically, the outside of the heat generating component housing case 2 that has flowed into the outside air flow path 20 by the outside air side fan 6 from the outside air inlet port 10. The air guide plate 28 that suppresses air from flowing to the outside air side exhaust port 11 without passing between the outside air side fins 16 is not necessary, so that the number of parts, the parts cost, the assembly cost, etc. can be reduced. Since the space where the air guide plate 28 is installed becomes unnecessary, the size of the heat exchanger 1 for cooling in the casing (in this case, the thickness of the heat exchanger 1 for cooling in the casing (the depth of the heat exchanger) )).

<実施形態3>
図9は、本発明における筐体内冷却用熱交換器1の実施形態3を示したものである。実施例形態1では、外気側ファン6は外気側フィンの先端部17に対向して設置していたが、実施形態3では外気側ファン6は熱交換ヒートシンク12を長さ方向に延長した位置に設置されており、熱交換ヒートシンク12を構成する第1の隔壁部材13に接続した第3の隔壁部材24によって、外気側吸気口10から外気側ファン6よって外気側流路20に吸い込まれた発熱部品収納筐体2の外の空気が発熱部品収納筐体2内の空気と混ざることなく、外気側フィン16の間を流れて外気側排気口11から排気できるようにしている。これにより、筐体内冷却用熱交換1の上下方向の長さ(熱交換器の高さ)は大きくなるが、筐体内冷却用熱交換器1の厚さ(熱交換器の奥行き)は、外気側ファン6による発熱部品収納筐体2の外側への突起物を設けることなく、減少させることができる。そのため、高さには余裕があるが奥行きに余裕が無い小型筐体に適用可能になる。
<Embodiment 3>
FIG. 9 shows a third embodiment of the heat exchanger 1 for cooling inside a casing according to the present invention. In the first embodiment, the outside air side fan 6 is installed facing the front end portion 17 of the outside air side fin. However, in the third embodiment, the outside air side fan 6 is located at a position where the heat exchange heat sink 12 is extended in the length direction. Heat generated by the third partition member 24 installed and connected to the first partition member 13 constituting the heat exchange heat sink 12 is sucked into the outside air flow path 20 from the outside air inlet 10 by the outside air side fan 6. The air outside the component housing case 2 flows between the outside air-side fins 16 without being mixed with the air inside the heat-generating component housing case 2 so that the air can be exhausted from the outside air side exhaust port 11. As a result, the vertical length of the heat exchanger 1 for cooling in the casing (height of the heat exchanger) is increased, but the thickness of the heat exchanger 1 for cooling in the casing (depth of the heat exchanger) is outside air. Reduction can be achieved without providing a protrusion to the outside of the heat generating component housing 2 by the side fan 6. Therefore, the present invention can be applied to a small casing having a height but a depth.

<実施形態4>
図10は、本発明における筐体内冷却用熱交換器1の実施形態4を示したものである。実施形態1では、外気用吸気口10や外気用排気口11を発熱部品収納筐体2の壁面に設けており、外気側ファン6も発熱部品収納筐体2の壁面に外気側吸気口10に接続するように発熱部品収納筐体2の内側から取付けていたが、実施形態4では、発熱部品収納筐体2の壁面に外気用吸気口10や外気用排気口11より大きな開口部を設け、この開口部を筐体の外側から覆うパネル29に外気用吸気口10や外気用排気口11を設け、外気側ファン6もこのパネル29に外気用吸気口10に接続するように発熱部品収納筐体2の内側方向から取付けている。これにより、発熱部品収納筐体2の外側からパネル29を外すことによって、外気側フィン16を簡単に露出させることができ、発熱部品収納筐体2の外から吸い込んだ粉塵や切削液によって汚染あるいは目詰まりした外気側フィン16の清掃や、外気側ファン6の清掃や交換等のメンテナンスが容易にできるようになり、発熱部品収納筐体2の扉を開く必要がないので、扉を開くことによって発熱部品収納筐体2の内部を汚染することも回避できる。
<Embodiment 4>
FIG. 10 shows Embodiment 4 of the heat exchanger 1 for cooling inside a casing in the present invention. In the first embodiment, the outside air inlet 10 and the outside air outlet 11 are provided on the wall surface of the heat generating component housing 2, and the outside air fan 6 is also connected to the outside air inlet 10 on the wall surface of the heat generating component housing 2. Although it was attached from the inside of the heat generating component storage housing 2 so as to be connected, in the fourth embodiment, a larger opening than the outside air intake port 10 and the outside air exhaust port 11 is provided on the wall surface of the heat generating component storage housing 2. An outside air inlet 10 and an outside air outlet 11 are provided in a panel 29 that covers the opening from the outside of the casing, and the outside air fan 6 is also connected to the panel 29 with the outside air inlet 10. It is attached from the inside direction of the body 2. Accordingly, by removing the panel 29 from the outside of the heat generating component housing 2, the outside air side fins 16 can be easily exposed and contaminated with dust or cutting fluid sucked from the outside of the heat generating component housing 2. Maintenance such as cleaning of clogged outside air side fins 16 and outside air side fan 6 can be facilitated, and there is no need to open the door of the heat generating component housing 2. Contamination of the inside of the heat generating component housing 2 can also be avoided.

<実施形態5>
図11は、本発明における筐体内冷却用熱交換器の実施形態5を示したものである。実施形態1では、内気側ファン5と内気側フィンの先端部15とのギャップは筐体内冷却用熱交換器1のケースを構成している薄い板金の厚さしかないが、実施形態5では、内気側吸気口7と第1の内気側排気口8の間の内気側フィンの先端部15と筐体内冷却用熱交換器1のケースの内面の間に第1の充填用部材21、内気側吸気口7と第2の内気側排気口9の間の内気側フィンの先端部15と筐体内冷却用熱交換器1のケースの内面の間に、第1の充填用部材21と同じ厚さの第2の充填用部材22を設置して、内気側ファン5の周辺の筐体内冷却用熱交換器1のケースの内面と内気側フィン14の先端との間に隙間を形成している。これにより、熱交換ヒートシンク12の幅が内気側ファン5の直径より大きい場合でも、内気側ファン5からはみ出した熱交換ヒートシンク12の部分のフィン間に内気側ファン5からの風が流れ込まないという問題が解決できて小形の内気側ファン5も使用できる。充填板(第1の充填用部材21,第2の充填用部材22)の厚さは必要以上に厚くしても意味がなく、筐体内冷却用熱交換器1の小型化を阻害するだけであり、充填板の厚さは数mm〜十数mmの範囲に保つことが望ましい。
<Embodiment 5>
FIG. 11 shows Embodiment 5 of the heat exchanger for cooling inside a casing in the present invention. In Embodiment 1, the gap between the inside air side fan 5 and the tip 15 of the inside air side fin is only the thickness of a thin sheet metal constituting the case of the heat exchanger 1 for cooling inside the housing, but in Embodiment 5, A first filling member 21 is provided between the tip 15 of the inside air side fin between the inside air side inlet 7 and the first inside air outlet 8 and the inner surface of the case of the case cooling heat exchanger 1. The same thickness as that of the first filling member 21 is provided between the front end portion 15 of the inside air side fin between the intake port 7 and the second inside air side exhaust port 9 and the inner surface of the case of the heat exchanger 1 for cooling in the housing. The second filling member 22 is installed, and a gap is formed between the inner surface of the case of the case internal cooling heat exchanger 1 around the inside air fan 5 and the tip of the inside air fin 14. Thereby, even when the width of the heat exchange heat sink 12 is larger than the diameter of the inside air fan 5, the wind from the inside air fan 5 does not flow between the fins of the heat exchange heat sink 12 protruding from the inside air fan 5. Can be solved, and a small inside air fan 5 can also be used. It is meaningless to make the thickness of the filling plates (first filling member 21 and second filling member 22) unnecessarily thick, and it only hinders the downsizing of the heat exchanger 1 for cooling in the housing. In addition, it is desirable to keep the thickness of the filling plate within a range of several mm to several tens of mm.

<実施形態6>
図12は、本発明における筐体内冷却用熱交換器1の実施形態6を示したものである。
実施形態1では、熱交換ヒートシンク12の長さ方向の端部は筐体内冷却用熱交換器のケースに接しているが、実施形態6では、熱交換ヒートシンク12を構成する第1の隔壁部材13と概略同じ幅の表面にフィンが形成されていない第2の隔壁部材23,23を第1の隔壁部材の長さ方向の両端部に接続して、熱交換ヒートシンク12の長さ方向の端部を筐体内冷却用熱交換器1のケースから離している。なお、寸法の関係で、第2の隔壁部材23は、熱交換ヒートシンク12の第1の隔壁部材13の一端部に設ける場合もある。
<Embodiment 6>
FIG. 12 shows a sixth embodiment of the heat exchanger 1 for cooling inside a casing in the present invention.
In the first embodiment, the end portion in the length direction of the heat exchange heat sink 12 is in contact with the case of the heat exchanger for cooling inside the housing. However, in the sixth embodiment, the first partition member 13 constituting the heat exchange heat sink 12 is used. Are connected to both ends of the first partition member in the length direction, and end portions of the heat exchange heat sink 12 in the length direction. Is separated from the case of the heat exchanger 1 for cooling inside the housing. In addition, the 2nd partition member 23 may be provided in the one end part of the 1st partition member 13 of the heat exchange heat sink 12 by the relationship of a dimension.

これにより、熱交換ヒートシンク12を構成する第1の隔壁部材13と内気側フィン14と筐体内冷却用熱交換器1のケースで形成される第1のコーナー部25や、熱交換ヒートシンク12を構成する第1の隔壁部材13と外気側フィン16と筐体内冷却用熱交換器1のケースで形成される第2のコーナー部26に空気が移動しにくい風溜まりが発生することが防止でき、熱交換ヒートシンク12の長さ方向の端部まで内気側フィン14間あるいは外気側フィン16間を空気がスムーズに通過するので、筐体内冷却用熱交換器1の高さは少し高くなるが、内気側フィン14あるいは外気側フィン16の表面を熱交換により有効に利用できるようになるので、高い熱交換能力を得ることができる。   As a result, the first partition member 13, the inside air-side fins 14 that form the heat exchange heat sink 12, and the first corner portion 25 formed by the case of the heat exchanger 1 for cooling inside the housing, and the heat exchange heat sink 12 are configured. It is possible to prevent the occurrence of air pockets that make it difficult for air to move in the second corner portion 26 formed by the first partition wall member 13, the outside air side fins 16, and the case of the heat exchanger 1 for cooling inside the housing. Since the air smoothly passes between the inside air-side fins 14 or between the outside air-side fins 16 to the end of the exchange heat sink 12 in the length direction, the height of the heat exchanger 1 for cooling in the housing is slightly increased. Since the surfaces of the fins 14 or the outside air side fins 16 can be used effectively by heat exchange, a high heat exchange capability can be obtained.

熱交換ヒートシンク12の両端のフィンを切削加工により除去することにより、同様の構造は実現できるが、押出し成形した熱交換ヒートシンク12に切削追加工を行うとコストがかなり上昇するため望ましい方法ではない。また、内気側だけについて言えば、図5あるいは図6のように、筐体内冷却用熱交換器1のケースの上面や下面に第1,第2の内気側排気口8,9を設けると、上記の風溜まりの発生は防げるが、第1,第2の内気側排気口8,9からの冷風が発熱部品の方に向かい難いという問題は残り、外気側については、熱交換器ケース3の上面や下面に外気側排気口11を設けることができないという問題がある。   By removing the fins at both ends of the heat exchange heat sink 12 by cutting, a similar structure can be realized. However, if additional machining is performed on the extruded heat exchange heat sink 12, the cost increases considerably, which is not a desirable method. Speaking only of the inside air side, as shown in FIG. 5 or FIG. 6, when the first and second inside air side exhaust ports 8 and 9 are provided on the upper surface and the lower surface of the case of the heat exchanger 1 for cooling inside the housing, Although the occurrence of the above-described air pocket can be prevented, there remains a problem that the cold air from the first and second inside air side exhaust ports 8 and 9 is not easily directed toward the heat generating component, and the outside air side has the problem of the heat exchanger case 3. There is a problem that the outside air side exhaust port 11 cannot be provided on the upper surface or the lower surface.

しかし、必要以上に熱交換ヒートシンク12の長さ方向の端部と筐体内冷却用熱交換器1のケースの内面の間隔を大きくしても熱交換能力は余り向上しないので、熱交換ヒートシンク12の長さ方向の端部と筐体内冷却用熱交換器1のケースの内面との間隔は数mm〜十数mmとすることが好ましい。   However, since the heat exchanging capacity does not improve much even if the gap between the end portion in the length direction of the heat exchanging heat sink 12 and the inner surface of the case of the heat exchanger 1 for cooling inside the housing is increased more than necessary, the heat exchanging heat sink 12 The distance between the end portion in the length direction and the inner surface of the case of the heat exchanger 1 for cooling inside the housing is preferably several mm to several tens of mm.

以上のように本発明により、内部の発熱部品の発熱量が多い小型筐体に適用することができる小型ながら熱交換能力が高くて内気側の風量の多い安価な筐体内冷却用熱交換器1を実現することができる。なお、ここで、熱交換能力とは、筐体内の空気温度と筐体外の外気温度の差を△T(K)とすると、熱交換能力(W/K)=(筐体内部の発熱量 −筐体表面からの放熱量)/△Tの意味で使用している。筐体表面からの放熱量は△Tの関数で△Tが大きくなるに従ってほぼ一次関数的に増加する。   As described above, according to the present invention, the heat exchanger 1 for cooling the inside of the housing can be applied to a small housing having a large amount of heat generated from the internal heat generating components, but has a high heat exchange capacity and a large air volume on the inside air side. Can be realized. Here, the heat exchange capacity is defined as heat exchange capacity (W / K) = (calorific value inside the case−) where ΔT (K) is a difference between the air temperature inside the case and the outside air temperature outside the case. It is used to mean the amount of heat released from the housing surface) / ΔT. The amount of heat released from the housing surface is a function of ΔT, and increases approximately linearly as ΔT increases.

1 筐体内冷却用熱交換器
2 (発熱部品収納)筐体
3 熱交換器ケース
4 熱交換器ケースのフランジ
5 内気側ファン
6 外気側ファン
7 内気側吸気口
8 第1の内気側排気口
9 第2の内気側排気口
10 外気側吸気口
11 外気側排気口
12 熱交換ヒートシンク
13 第1の隔壁部材
14 内気側フィン
15 内気側フィンの先端部
16 外気側フィン
17 外気側フィンの先端部
18 コルゲートフィン
19 内気側流路
20 外気側流路
21 第1の充填用部材
22 第2の充填用部材
23 第2の隔壁部材
24 第3の隔壁部材
25 第1のコーナー部
26 第2のコーナー部
27 風向偏向板
28 導風板
29 パネル
30 内気側排気口
31 ヒートパイプ
32 熱交換ヒートシンクの長さ
33 熱交換ヒートシンクの幅
DESCRIPTION OF SYMBOLS 1 Heat exchanger for cooling in a housing | casing 2 (Heat-generating component storage) Housing | casing 3 Heat exchanger case 4 Flange of heat exchanger case 5 Inside air side fan 6 Outside air side fan 7 Inside air side inlet port 8 1st inside air side outlet port 9 2nd inside air side exhaust port 10 Outside air side inlet port 11 Outside air side exhaust port 12 Heat exchange heat sink 13 1st partition member 14 Inside air side fin 15 End part of inside air side fin 16 Outside air side fin 17 End part of outside air side fin 18 Corrugated fin 19 Inside air side channel 20 Outside air side channel 21 First filling member 22 Second filling member 23 Second partition member 24 Third partition member 25 First corner portion 26 Second corner portion 27 Wind direction deflecting plate 28 Air guide plate 29 Panel 30 Inside air side exhaust port 31 Heat pipe 32 Length of heat exchange heat sink 33 Width of heat exchange heat sink

本願の請求項1に係る発明は、発熱部品を収納した筐体の壁面に設置され、前記筐体内の空気を流入するための内気側吸気口と流入した前記筐体内の空気を流出するための内気側排気口を設けた熱交換器ケースと、前記熱交換器ケース内を前記筐体内の空気が流れる内気側流路と前記筐体外の空気が流れる外気側流路に仕切る第1の隔壁部材の前記内気側流路側の面に内気側フィンと前記外気側流路側の面に外気側フィンを設けた熱交換ヒートシンクと、前記筐体内の空気を前記内気側吸気口から吸気し、前記内気側フィンが設けられた前記内気側流路を通して前記内気側排気口から排気する内気側ファンと、前記筐体外の空気を前記筐体外の空気が前記熱交換ケースに流入するための外気側吸気口から吸気し、前記外気側フィンが設けられた前記外気側流路を通して、流入した前記筐体外の空気が流出する外気側排気口から排気する外気側ファンを備え、前記熱交換ヒートシンクは、前記第1の隔壁部材と前記内気側フィンに垂直な断面に垂直な方向に長さを有する単一の熱交換ヒートシンクであり、前記内気側排気口は、前記熱交換ヒートシンクの長さ方向の一方の端部付近に少なくとも1個設けられた第1の内気側排気口と、前記熱交換ヒートシンクの長さ方向の他方の端部付近に少なくとも1個設けられた第2の内気側排気口から構成され、前記内気側吸気口は、前記第1の内気側排気口と前記第2の内気側排気口の間に設けられ、前記内気側ファンは、軸流ファンであり、前記内気側フィンの先端部に対向して配置され、前記内気側吸気口および前記内気側ファンは、前記第1の内気側排気口からの排気温度と前記第2の内気側排気口からの排気温度が略等しくなる位置に設置され、前記内気側ファンによって、前記筐体内の空気が、前記内気側吸気口から前記内気側流路を通って、前記第1の内気側排気口と前記第2の内気側排気口の両方から排気されることを特徴とする筐体内冷却用熱交換器である。
請求項2に係る発明は、発熱部品を収納した筐体の壁面に設置され、前記筐体内の空気を流入するための内気側吸気口と流入した前記筐体内の空気を流出するための内気側排気口を設けた熱交換器ケースと、前記熱交換器ケース内を前記筐体内の空気が流れる内気側流路と前記筐体外の空気が流れる外気側流路に仕切る第1の隔壁部材の前記内気側流路側の面に内気側フィンと前記外気側流路側の面に外気側フィンを設けた熱交換ヒートシンクと、前記筐体内の空気を前記内気側吸気口から吸気し、前記内気側フィンが設けられた前記内気側流路を通して前記内気側排気口から排気する内気側ファンと、前記筐体外の空気を前記筐体外の空気が前記熱交換ケースに流入するための外気側吸気口から吸気し、前記外気側フィンが設けられた前記外気側流路を通して、流入した前記筐体外の空気が流出する外気側排気口から排気する外気側ファンを備え、前記熱交換ヒートシンクは、前記第1の隔壁部材と前記内気側フィンに垂直な断面に垂直な方向に長さを有する単一の熱交換ヒートシンクであり、前記内気側排気口は、前記熱交換ヒートシンクの長さ方向の一方の端部付近に少なくとも1個設けられた第1の内気側排気口と、前記熱交換ヒートシンクの長さ方向の他方の端部付近に少なくとも1個設けられた第2の内気側排気口から構成され、前記内気側吸気口は、前記第1の内気側排気口と前記第2の内気側排気口の間に設けられ、前記内気側ファンは、軸流ファンであり、前記内気側フィンの先端部に対向して配置され、前記内気側吸気口と前記第1の内気側排気口の間の前記内気側フィンの先端部と前記熱交換器ケースの内面の間に第1の充填用部材、前記内気側吸気口と前記第2の内気側排気口の間の前記内気側フィンの先端部と前記熱交換器ケースの内面の間に第2の充填用部材を設置し、前記内気側ファンによって、前記筐体内の空気が、前記内気側吸気口から前記内気側流路を通って、前記第1の内気側排気口と前記第2の内気側排気口の両方から排気されることを特徴とする筐体内冷却用熱交換器である。
請求項3に係る発明は、発熱部品を収納した筐体の壁面に設置され、前記筐体内の空気を流入するための内気側吸気口と流入した前記筐体内の空気を流出するための内気側排気口を設けた熱交換器ケースと、前記熱交換器ケース内を前記筐体内の空気が流れる内気側流路と前記筐体外の空気が流れる外気側流路に仕切る第1の隔壁部材の前記内気側流路側の面に内気側フィンと前記外気側流路側の面に外気側フィンを設けた熱交換ヒートシンクと、前記筐体内の空気を前記内気側吸気口から吸気し、前記内気側フィンが設けられた前記内気側流路を通して前記内気側排気口から排気する内気側ファンと、前記筐体外の空気を前記筐体外の空気が前記熱交換ケースに流入するための外気側吸気口から吸気し、前記外気側フィンが設けられた前記外気側流路を通して、流入した前記筐体外の空気が流出する外気側排気口から排気する外気側ファンを備え、前記熱交換ヒートシンクは、前記第1の隔壁部材と前記内気側フィンに垂直な断面に垂直な方向に長さを有する単一の熱交換ヒートシンクであり、前記内気側排気口は、前記熱交換ヒートシンクの長さ方向の一方の端部付近に少なくとも1個設けられた第1の内気側排気口と、前記熱交換ヒートシンクの長さ方向の他方の端部付近に少なくとも1個設けられた第2の内気側排気口から構成され、前記内気側吸気口は、前記第1の内気側排気口と前記第2の内気側排気口の間に設けられ、前記内気側ファンは、軸流ファンであり、前記内気側フィンの先端部に対向して配置され、前記内気側吸気口および前記内気側ファンは、前記第1の内気側排気口からの排気温度と前記第2の内気側排気口からの排気温度が略等しくなる位置に設置され、前記内気側吸気口と前記第1の内気側排気口の間の前記内気側フィンの先端部と前記熱交換器ケースの内面の間に第1の充填用部材、前記内気側吸気口と前記第2の内気側排気口の間の前記内気側フィンの先端部と前記熱交換器ケースの内面の間に第2の充填用部材を設置し、前記内気側ファンによって、前記筐体内の空気が、前記内気側吸気口から前記内気側流路を通って、前記第1の内気側排気口と前記第2の内気側排気口の両方から排気されることを特徴とする筐体内冷却用熱交換器である。
The invention according to claim 1 of the present application is installed on the wall surface of the housing that houses the heat-generating component, and is used to flow out the air in the housing that has flowed in and the inside air inlet for flowing in the air in the housing. A heat exchanger case provided with an inside air side exhaust port, and a first partition member that partitions the inside of the heat exchanger case into an inside air flow path through which air in the housing flows and an outside air flow path through which air outside the housing flows. A heat exchange heat sink provided with an internal air side fin on the surface of the internal air side flow path and an external air side fin on the surface of the external air side flow path, and the air in the housing is sucked from the internal air side intake port, and the internal air side An inside air side fan that exhausts air from the inside air side exhaust port through the inside air side flow path provided with fins, and an outside air side air intake port through which air outside the housing flows into the heat exchange case Intake air, the outside air side fin is provided An outside air fan that exhausts air from the outside air outlet through which the air outside the housing that has flowed in flows out through the outside air flow path, and the heat exchange heat sink is perpendicular to the first partition member and the inside air fin. A first heat exchange heat sink having a length in a direction perpendicular to a cross section, wherein the inside air-side exhaust port is provided with at least one near one end in the length direction of the heat exchange heat sink. An inside air side exhaust port and at least one second inside air side exhaust port provided in the vicinity of the other end in the length direction of the heat exchange heat sink are configured. Provided between the side exhaust port and the second room air side exhaust port, the room air side fan is an axial fan, and is disposed to face the tip of the room air side fin, The inside air fan Disposed in a substantially equal position exhaust temperature from the exhaust temperature and the second inside air-side outlet of the first inside air-side outlet, the by inside air-side fan, the housing of the air, the room air intake It is a heat exchanger for cooling inside a casing, which is exhausted from both the first room air side exhaust port and the second room air side exhaust port through the room air side channel from the mouth.
The invention according to claim 2 is installed on the wall surface of the housing containing the heat-generating component, and the inside air side inlet port for flowing in the air in the housing and the inside air side for discharging the air in the housing that flows in A heat exchanger case provided with an exhaust port; and a first partition member that partitions the inside of the heat exchanger case into an inside air flow path through which air in the housing flows and an outside air flow path through which air outside the housing flows. A heat exchange heat sink in which an inside air side fin is provided on a surface on the inside air side channel side and an outside air side fin is provided on a surface on the outside air side channel side; air inside the housing is sucked from the inside air side inlet; An inside air side fan that exhausts air from the inside air side exhaust port through the inside air side flow path provided, and air outside the housing is sucked from the outside air side air intake port for air outside the housing to flow into the heat exchange case. The outside air fin is provided A cross-section perpendicular to the first partition wall member and the internal air-side fin, comprising an external air-side fan that exhausts from an external air-side exhaust port through which air outside the casing that has flowed in flows out through the air-side flow path; A first heat exchange heat sink having a length in a direction perpendicular to the heat exchange heat sink, and the inside air side exhaust port is provided with at least one first internal air provided near one end in the length direction of the heat exchange heat sink. A side exhaust port and at least one second inside air exhaust port provided in the vicinity of the other end in the length direction of the heat exchange heat sink, and the inside air side intake port is the first inside air side. Provided between the exhaust port and the second room air side exhaust port, the room air side fan is an axial flow fan, and is disposed to face the front end portion of the room air side fin, Between the first inside air outlet A first filling member between a front end portion of the air side fin and the inner surface of the heat exchanger case, a front end portion of the inside air side fin between the inside air side intake port and the second inside air side exhaust port, and the A second filling member is installed between the inner surfaces of the heat exchanger case, and the inside air side causes the air in the housing to pass from the inside air inlet through the inside air flow path by the inside air side fan. The inside-case cooling heat exchanger is exhausted from both the inside air side exhaust port and the second inside air side exhaust port.
The invention according to claim 3 is installed on the wall surface of the housing containing the heat-generating component, and the inside air side inlet for flowing in the air in the housing and the inside air side for discharging the air in the housing that flows in A heat exchanger case provided with an exhaust port; and a first partition member that partitions the inside of the heat exchanger case into an inside air flow path through which air in the housing flows and an outside air flow path through which air outside the housing flows. A heat exchange heat sink in which an inside air side fin is provided on a surface on the inside air side channel side and an outside air side fin is provided on a surface on the outside air side channel side; air inside the housing is sucked from the inside air side inlet; An inside air side fan that exhausts air from the inside air side exhaust port through the inside air side flow path provided, and air outside the housing is sucked from the outside air side air intake port for air outside the housing to flow into the heat exchange case. The outside air fin is provided A cross-section perpendicular to the first partition wall member and the internal air-side fin, comprising an external air-side fan that exhausts from an external air-side exhaust port through which air outside the casing that has flowed in flows out through the air-side flow path; A first heat exchange heat sink having a length in a direction perpendicular to the heat exchange heat sink, and the inside air side exhaust port is provided with at least one first internal air provided near one end in the length direction of the heat exchange heat sink. A side exhaust port and at least one second inside air exhaust port provided in the vicinity of the other end in the length direction of the heat exchange heat sink, and the inside air side intake port is the first inside air side. Provided between the exhaust port and the second room air side exhaust port, the room air side fan is an axial fan, and is disposed to face the front end portion of the room air side fin, The inside air side fan is the first air The inside air side between the inside air inlet and the first inside air outlet is installed at a position where the exhaust temperature from the inside air outlet and the exhaust temperature from the second inside air outlet are substantially equal. The first filling member between the tip of the fin and the inner surface of the heat exchanger case, the heat exchange with the tip of the inside air fin between the inside air inlet and the second inside air outlet A second filling member is disposed between the inner surfaces of the container case, and the inside air side causes the air in the housing to pass from the inside air side intake port through the inside air side flow path and the first inside air. A heat exchanger for cooling inside a casing, wherein the heat is exhausted from both a side exhaust port and the second inside air side exhaust port.

請求項4に係る発明は、前記熱交換器ケースの外形が前記筐体内冷却用熱交換器を前記筐体に取付けるためのフランジ部と、前記内気側吸気口と前記内気側排気口のための開口部を除いて概略直方体であり、板金を加工して製造されていることを特徴とする請求項1〜3のいずれか一つに記載の筐体内冷却用熱交換器である。
請求項5に係る発明は、前記熱交換ヒートシンクが金型からの押出し成形により製作されたアルミニウムまたはアルミニウム合金からなる成形物であり、前記熱交換ヒートシンクの前記長さ方向に前記成形物を所定の長さに切断する以外の切削加工が施されていないことを特徴とする請求項1〜4のいずれか一つに記載の筐体内冷却用熱交換器である。
請求項6に係る発明は、前記熱交換ヒートシンクを構成する前記第1の隔壁部材と概略同じ幅の表面にフィンが形成されていない第2の隔壁部材を前記第1の隔壁部材の前記長さ方向の少なくとも一端に接続して、隔壁部材の全長を伸ばしたことを特徴とする請求項1〜5のいずれか一つに記載の筐体内冷却用熱交換器である。
According to a fourth aspect of the present invention, the outer shape of the heat exchanger case is provided for a flange portion for attaching the heat exchanger for cooling in the housing to the housing, and for the inside air inlet and the inside air outlet. The heat exchanger for cooling in a housing according to any one of claims 1 to 3, wherein the heat exchanger is a substantially rectangular parallelepiped except for an opening and is manufactured by processing a sheet metal.
According to a fifth aspect of the present invention, the heat exchange heat sink is a molded product made of aluminum or an aluminum alloy manufactured by extrusion molding from a mold, and the molded product is placed in a predetermined direction in the length direction of the heat exchange heat sink. It is the heat exchanger for cooling in a housing | casing as described in any one of Claims 1-4 by which the cutting process other than cut | disconnecting to length is not given.
According to a sixth aspect of the present invention, there is provided a second partition member in which fins are not formed on a surface having substantially the same width as the first partition member constituting the heat exchange heat sink, and the length of the first partition member. It is connected to at least one end of the direction, and the whole length of the partition member is extended, The heat exchanger for cooling inside a casing according to any one of claims 1 to 5 characterized by things.

Claims (6)

発熱部品を収納した筐体の壁面に設置され、前記筐体内の空気を流入するための内気側吸気口と流入した前記筐体内の空気を流出するための内気側排気口を設けた熱交換器ケースと、
前記熱交換器ケース内を前記筐体内の空気が流れる内気側流路と前記筐体外の空気が流れる外気側流路に仕切る第1の隔壁部材の前記内気側流路側の面に内気側フィンと前記外気側流路側の面に外気側フィンを設けた熱交換ヒートシンクと、
前記筐体内の空気を前記内気側吸気口から吸気し、前記内気側フィンが設けられた前記内気側流路を通して前記内気側排気口から排気する内気側ファンと、
前記筐体外の空気を前記筐体外の空気が前記熱交換ケースに流入するための外気側吸気口から吸気し、前記外気側フィンが設けられた前記外気側流路を通して、流入した前記筐体外の空気が流出する外気側排気口から排気する外気側ファンを備え、
前記熱交換ヒートシンクは、前記第1の隔壁部材と前記内気側フィンに垂直な断面に垂直な方向に長さを有する単一の熱交換ヒートシンクであり、前記内気側排気口は、前記熱交換ヒートシンクの長さ方向の一方の端部付近に少なくとも1個設けられた第1の内気側排気口と、前記熱交換ヒートシンクの長さ方向の他方の端部付近に少なくとも1個設けられた第2の内気側排気口から構成され、
前記内気側吸気口は、前記第1の内気側排気口と前記第2の内気側排気口の間に設けられ、
前記内気側ファンは、軸流ファンであり、前記内気側フィンの先端部に対向して配置され、
前記内気側ファンによって、前記筐体内の空気が、前記内気側吸気口から前記内気側流路を通って、前記第1の内気側排気口と前記第2の内気側排気口の両方から排気されることを特徴とする筐体内冷却用熱交換器。
A heat exchanger installed on a wall surface of a housing containing a heat-generating component and provided with an inside air side intake port for flowing in air in the case and an inside air side exhaust port for discharging air flowing in the housing Case and
Inside air side fins on the inside air side channel side surface of the first partition member that partitions the inside of the heat exchanger case into an inside air side channel through which air inside the housing flows and an outside air side channel through which air outside the housing flows. A heat exchange heat sink provided with outside air side fins on the outside air channel side surface;
An inside air side fan that sucks air in the housing from the inside air side intake port, and exhausts the air from the inside air side exhaust port through the inside air side channel provided with the inside air side fin;
Air outside the housing is sucked in from the outside air inlet for allowing the air outside the housing to flow into the heat exchange case, and flows outside the housing through the outside air flow path provided with the outside air fin. An outside air fan that exhausts air from the outside air outlet through which air flows out,
The heat exchange heat sink is a single heat exchange heat sink having a length in a direction perpendicular to a cross section perpendicular to the first partition wall member and the inside air fin, and the inside air exhaust port is the heat exchange heat sink. At least one first air outlet near the one end in the length direction and at least one second near the other end in the length direction of the heat exchange heat sink. Consists of inside air side exhaust port,
The inside air side intake port is provided between the first inside air side exhaust port and the second inside air side exhaust port,
The inside air fan is an axial fan, and is disposed so as to face the front end of the inside air fin,
The inside air fan exhausts air in the housing from both the first inside air outlet and the second inside air outlet from the inside air inlet through the inside air flow path. A heat exchanger for cooling inside a casing.
前記第1の内気側排気口からの排気温度と前記第2の内気側排気口からの排気温度が略等しくなる位置に前記内気側吸気口と前記内気側ファンを設置したことを特徴とする請求項1記載の筐体内冷却用熱交換器。   The inside air inlet and the inside air fan are installed at a position where the exhaust temperature from the first inside air outlet and the exhaust temperature from the second inside air outlet are substantially equal. Item 2. The internal-case cooling heat exchanger according to Item 1. 前記熱交換器ケースの外形が前記筐体内冷却用熱交換器を前記筐体に取付けるためのフランジ部と、前記内気側吸気口と前記内気側排気口のための開口部を除いて概略直方体であり、板金を加工して製造されていることを特徴とする請求項1または2に記載の筐体内冷却用熱交換器。   The outer shape of the heat exchanger case is a substantially rectangular parallelepiped except for a flange portion for attaching the heat exchanger for cooling inside the housing to the housing, and openings for the inside air side intake port and the inside air side exhaust port. The heat exchanger for cooling in a housing according to claim 1, wherein the heat exchanger is manufactured by processing a sheet metal. 前記熱交換ヒートシンクが金型からの押出し成形により製作されたアルミニウムまたはアルミニウム合金からなる成形物であり、前記熱交換ヒートシンクの前記長さ方向に前記成形物を所定の長さに切断する以外の切削加工が施されていないことを特徴とする請求項1〜3のいずれかひとつに記載の筐体内冷却用熱交換器。   The heat exchange heat sink is a molding made of aluminum or an aluminum alloy produced by extrusion molding from a mold, and cutting other than cutting the molding into a predetermined length in the length direction of the heat exchange heat sink The heat exchanger for cooling in a housing according to any one of claims 1 to 3, wherein processing is not performed. 前記内気側吸気口と前記第1の内気側排気口の間の前記内気側フィンの先端部と前記熱交換器ケースの内面の間に第1の充填用部材、前記内気側吸気口と前記第2の内気側排気口の間の前記内気側フィンの先端部と前記熱交換器ケースの内面の間に第2の充填用部材を設置したことを特徴とする請求項1〜4のいずれかひとつに記載の筐体内冷却用熱交換器。   A first filling member, the inside air side inlet port, and the first space between a front end portion of the inside air side fin between the inside air side inlet port and the first inside air side exhaust port and an inner surface of the heat exchanger case. 5. The second filling member is installed between a front end portion of the inside air side fin between two inside air side exhaust ports and an inner surface of the heat exchanger case. 6. The heat exchanger for cooling in a housing | casing of description. 前記熱交換ヒートシンクを構成する前記第1の隔壁部材と概略同じ幅の表面にフィンが形成されていない第2の隔壁部材を前記第1の隔壁部材の前記長さ方向の少なくとも一端に接続して、隔壁部材の全長を伸ばしたことを特徴とする請求項1〜5のいずれかひとつに記載の筐体内冷却用熱交換器。   A second partition member having fins not formed on a surface of substantially the same width as the first partition member constituting the heat exchange heat sink is connected to at least one end of the first partition member in the length direction; The heat exchanger for cooling in a housing according to any one of claims 1 to 5, wherein the entire length of the partition member is extended.
JP2011062991A 2011-03-22 2011-03-22 Heat exchanger for internal cooling Expired - Fee Related JP5053447B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011062991A JP5053447B1 (en) 2011-03-22 2011-03-22 Heat exchanger for internal cooling
US13/289,360 US20120241135A1 (en) 2011-03-22 2011-11-04 Heat exchanger for cooling interior of housing
CN201210040799.8A CN102695402B (en) 2011-03-22 2012-02-21 Heat exchanger for cooling interior of housing
DE102012102195A DE102012102195A1 (en) 2011-03-22 2012-03-15 Heat exchanger for cooling the interior of a housing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011062991A JP5053447B1 (en) 2011-03-22 2011-03-22 Heat exchanger for internal cooling

Publications (2)

Publication Number Publication Date
JP5053447B1 JP5053447B1 (en) 2012-10-17
JP2012199412A true JP2012199412A (en) 2012-10-18

Family

ID=46860628

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011062991A Expired - Fee Related JP5053447B1 (en) 2011-03-22 2011-03-22 Heat exchanger for internal cooling

Country Status (4)

Country Link
US (1) US20120241135A1 (en)
JP (1) JP5053447B1 (en)
CN (1) CN102695402B (en)
DE (1) DE102012102195A1 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073166A1 (en) * 2012-11-12 2014-05-15 パナソニック株式会社 Cooling device, and heating element housing device equipped with same
WO2017094933A1 (en) * 2015-12-03 2017-06-08 잘만테크 주식회사 Electronic device case for increasing cooling efficiency
WO2018155693A1 (en) * 2017-02-27 2018-08-30 川崎重工業株式会社 Robot controller
JP6446118B1 (en) * 2017-12-05 2018-12-26 馬鞍山市明珠電子科技有限公司 Laser processing machine
KR20180137689A (en) * 2017-06-19 2018-12-28 주식회사 현대이엔지 Heat exchanger

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101960239B (en) * 2008-09-02 2014-03-12 株式会社拉斯科 Heat exchanging device
US9366422B2 (en) 2012-03-22 2016-06-14 Makersled Llc Slotted heatsinks and systems and methods related thereto
JP5909648B2 (en) * 2012-08-01 2016-04-27 パナソニックIpマネジメント株式会社 Heating element storage device
US9331430B2 (en) 2013-10-18 2016-05-03 JTech Solutions, Inc. Enclosed power outlet
US10205283B2 (en) 2017-04-13 2019-02-12 JTech Solutions, Inc. Reduced cross-section enclosed power outlet
USD843321S1 (en) 2018-03-26 2019-03-19 JTech Solutions, Inc. Extendable outlet
USD841592S1 (en) 2018-03-26 2019-02-26 JTech Solutions, Inc. Extendable outlet
CN110418557A (en) * 2019-08-26 2019-11-05 北京东土科技股份有限公司 A kind of closed type cabinet cooling device and closed type cabinet
CN113071351A (en) * 2021-03-29 2021-07-06 阳光电源股份有限公司 Fill electric pile equipment and radiator thereof
USD999742S1 (en) 2021-04-01 2023-09-26 JTech Solutions, Inc. Safety interlock outlet box
EP4075933A1 (en) * 2021-04-14 2022-10-19 Siemens Aktiengesellschaft Heat exchanger assembly
US12005797B2 (en) * 2022-08-25 2024-06-11 Chargepoint, Inc. Thermal management system for an electric vehicle supply equipment (EVSE) that includes a dual-sided heatsink
CN116997167B (en) * 2023-09-26 2023-12-19 沈阳新松机器人自动化股份有限公司 Built-in heat exchanger structure

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157994U (en) * 1987-04-01 1988-10-17
JPH08274482A (en) * 1995-03-29 1996-10-18 Mitsubishi Electric Corp Control board
JP2001168564A (en) * 1999-12-13 2001-06-22 Yaskawa Electric Corp Heat exchanger of electronic equipment enclosure
JP2008227136A (en) * 2007-03-13 2008-09-25 Matsushita Electric Ind Co Ltd Cooling device

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5035281A (en) * 1989-09-07 1991-07-30 Mclean Midwest Corporation Heat exchanger for cooling and method of servicing same
JPH058253A (en) * 1991-07-05 1993-01-19 Toowa Kk Resin sealing molding device of electronic parts
US6039111A (en) * 1997-02-14 2000-03-21 Denso Corporation Cooling device boiling and condensing refrigerant
JP3574727B2 (en) * 1997-03-31 2004-10-06 国際技術開発株式会社 Heat exchange equipment
EP0948248A1 (en) * 1998-03-24 1999-10-06 Lucent Technologies Inc. Electronic apparatus having an environmentally sealed enclosure
FR2783901B1 (en) * 1998-09-25 2000-12-29 Masa Therm Sa INDEPENDENT HEAT EXCHANGE UNIT, IN PARTICULAR FOR THE VENTILATION OF A BUILDING
US6199625B1 (en) * 1999-06-11 2001-03-13 Psc Computer Products, Inc. Stackable heat sink for electronic components
JP2001099531A (en) * 1999-09-29 2001-04-13 Denso Corp Cooling device
JP4106052B2 (en) * 2002-07-09 2008-06-25 富士通株式会社 Heat exchanger
US7108052B2 (en) * 2003-06-26 2006-09-19 Tellabs Petaluma, Inc. Low-cost method of forming a heat exchanger with an increased heat transfer efficiency
JP4403823B2 (en) 2003-10-24 2010-01-27 株式会社デンソー Cooling system
TWI331008B (en) * 2006-01-24 2010-09-21 Delta Electronics Inc Heat exchanger
US20100294458A1 (en) * 2007-12-17 2010-11-25 Panasonic Corporation Heat exchange device and device for receiving heat generation body
TWI405945B (en) * 2010-12-23 2013-08-21 Delta Electronics Inc Air-cooling heat exchanger and electronic equipment employing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63157994U (en) * 1987-04-01 1988-10-17
JPH08274482A (en) * 1995-03-29 1996-10-18 Mitsubishi Electric Corp Control board
JP2001168564A (en) * 1999-12-13 2001-06-22 Yaskawa Electric Corp Heat exchanger of electronic equipment enclosure
JP2008227136A (en) * 2007-03-13 2008-09-25 Matsushita Electric Ind Co Ltd Cooling device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014073166A1 (en) * 2012-11-12 2014-05-15 パナソニック株式会社 Cooling device, and heating element housing device equipped with same
WO2017094933A1 (en) * 2015-12-03 2017-06-08 잘만테크 주식회사 Electronic device case for increasing cooling efficiency
WO2018155693A1 (en) * 2017-02-27 2018-08-30 川崎重工業株式会社 Robot controller
JP2018140453A (en) * 2017-02-27 2018-09-13 川崎重工業株式会社 Robot controller
JP6998115B2 (en) 2017-02-27 2022-01-18 川崎重工業株式会社 Robot controller
US11458643B2 (en) 2017-02-27 2022-10-04 Kawasaki Jukogyo Kabushiki Kaisha Robot controller
KR20180137689A (en) * 2017-06-19 2018-12-28 주식회사 현대이엔지 Heat exchanger
JP6446118B1 (en) * 2017-12-05 2018-12-26 馬鞍山市明珠電子科技有限公司 Laser processing machine
JP2019102679A (en) * 2017-12-05 2019-06-24 馬鞍山市明珠電子科技有限公司 Laser processing machine

Also Published As

Publication number Publication date
CN102695402B (en) 2014-03-12
CN102695402A (en) 2012-09-26
DE102012102195A1 (en) 2013-02-07
US20120241135A1 (en) 2012-09-27
JP5053447B1 (en) 2012-10-17

Similar Documents

Publication Publication Date Title
JP5053447B1 (en) Heat exchanger for internal cooling
JP4532422B2 (en) Heat sink with centrifugal fan
JP7103695B2 (en) Water-cooled radiator
KR101188879B1 (en) Apparatus for Cooling Rack Mount Server System
JP2022091657A (en) Radiator with pump
EP2890227B1 (en) Electric power conversion apparatus
JP4558627B2 (en) Electronic device casing and electronic device
JP4614904B2 (en) Electrical component storage box for engine-driven work machines
JP2018113321A (en) Outdoor equipment of air conditioner
JP2007123641A5 (en)
KR101419636B1 (en) Heat sink, and method for producing same
JP5117287B2 (en) Electronic equipment cooling system
JP4744614B2 (en) Housing for housing electronic plug-in modules
US11085709B2 (en) Heat exchange device for closed electrical apparatus
JPWO2018061071A1 (en) Outdoor unit of air conditioner
JP4985390B2 (en) Heat dissipation device for electronic equipment
JP2017112190A (en) Cooler and power converter
WO2010113390A1 (en) Cooling device and heating element storage device
JP6238855B2 (en) Electronics
JP6301903B2 (en) Motor drive device that cools heat sink by outside air
CN220726402U (en) Engine oil cooler cooling structure and engine
CN216600330U (en) Box body of electronic equipment
CN218183823U (en) Dense fin water-cooling radiator
JP2012023146A (en) Heat sink
CN220062205U (en) Heating and ventilation equipment

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150803

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees