JP2012195129A - Coin-shaped battery and method for manufacturing the same - Google Patents

Coin-shaped battery and method for manufacturing the same Download PDF

Info

Publication number
JP2012195129A
JP2012195129A JP2011057506A JP2011057506A JP2012195129A JP 2012195129 A JP2012195129 A JP 2012195129A JP 2011057506 A JP2011057506 A JP 2011057506A JP 2011057506 A JP2011057506 A JP 2011057506A JP 2012195129 A JP2012195129 A JP 2012195129A
Authority
JP
Japan
Prior art keywords
active material
battery
electrode
coin
nonionic surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011057506A
Other languages
Japanese (ja)
Inventor
Hiroyuki Akitani
弘之 秋谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011057506A priority Critical patent/JP2012195129A/en
Publication of JP2012195129A publication Critical patent/JP2012195129A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a coin-shaped battery capable of enhancing adhesiveness among an active material, carbon and a binder by containing a small amount of a surface active agent added thereto, and thereby can improve high-load current characteristics, and to provide a method for manufacturing the same.SOLUTION: The method for manufacturing the coin-shaped battery comprises the steps of: kneading the fine-powdered active material and a nonionic surface active agent; adding a conductive agent, the binder and a solvent to the kneaded mixture and kneading them; drying and fracturing the mixture and pressure-molding the fractured substance to form pellet-shaped electrodes 1 and 2; drying the electrodes; and placing the electrodes that are arranged so as to face each other through a separator 3 in an outer package body together with an electrolyte.

Description

本発明は、各種電子機器の電源として利用されるコイン形電池とその製造方法に関するものである。   The present invention relates to a coin-type battery used as a power source for various electronic devices and a method for manufacturing the same.

近年において高出力、高エネルギー密度の電池として、非水電解液を用いた電池であるリチウム電池やリチウム二次電池が多くの電子機器などの電源として用いられている。これらの非水電解液を用いた電池は、電解液が水溶液である電池に比べて放電電圧が高く、低温特性や長期保存特性に優れており、様々な形状のものが実用化されている。特に、コイン形状を有したコイン形電池は小型かつ軽量である。   In recent years, lithium batteries and lithium secondary batteries, which are batteries using a non-aqueous electrolyte, have been used as power sources for many electronic devices as batteries with high output and high energy density. Batteries using these non-aqueous electrolytes have a higher discharge voltage and superior low-temperature characteristics and long-term storage characteristics as compared with batteries in which the electrolyte is an aqueous solution, and batteries having various shapes have been put into practical use. In particular, a coin-shaped battery having a coin shape is small and lightweight.

コイン形電池には一次電池と二次電池があり、一次電池は主に正極をマンガン酸化物、負極をリチウム金属とした二酸化マンガンリチウム電池が多くの電子機器で使用されている。また、近年では高温下で使われる車載用途にも使用され始め、その分野は広がってきている。   Coin-type batteries include primary batteries and secondary batteries. The primary batteries are mainly used in many electronic devices as lithium manganese dioxide batteries with a positive electrode made of manganese oxide and a negative electrode made of lithium metal. In recent years, it has begun to be used for in-vehicle applications that are used at high temperatures, and its fields are expanding.

一方、二次電池では、主に正極にマンガン酸リチウムを用い、負極にリチウムアルミニウム合金を用いたマンガンリチウム二次電池が小型電子機器のメモリーバックアップ用電源として使用されている。しかしながら、負極にリチウムアルミニウム合金を用いた場合、放電容量に対し100%深度まで放電する充放電サイクルを行うと、負極の表面が脆化し導電性が取れなくなるため、数十サイクルで放電容量が得られなくなり主電源用には向いていない。   On the other hand, in the secondary battery, a lithium manganese secondary battery mainly using lithium manganate for the positive electrode and a lithium aluminum alloy for the negative electrode is used as a memory backup power source for small electronic devices. However, when a lithium aluminum alloy is used for the negative electrode, if a charge / discharge cycle that discharges to a depth of 100% of the discharge capacity is performed, the surface of the negative electrode becomes brittle and the conductivity cannot be obtained. It is not suitable for main power supply.

そこで、100サイクル以上の充放電サイクルが必要とされる主電源用として、正極にマンガン酸リチウム、コバルト酸リチウム、ニッケル酸リチウムなどを用い、負極にチタン酸リチウム、シリコン酸化物、黒鉛などを用いた二次電池が多く開発されている。これらの二次電池では、負極活物質構造の層間にリチウムが脱挿入しやすく劣化が少ないため放電容量に対し100%深度まで放電する充放電サイクルを行っても、100サイクル以上放電容量が得られる。   Therefore, for main power supplies that require charge / discharge cycles of 100 cycles or more, lithium manganate, lithium cobaltate, lithium nickelate, etc. are used for the positive electrode, and lithium titanate, silicon oxide, graphite, etc. are used for the negative electrode. Many secondary batteries have been developed. In these secondary batteries, lithium is easily inserted and removed between the layers of the negative electrode active material structure, so that the discharge capacity is 100 cycles or more even when the charge / discharge cycle is discharged to a depth of 100% of the discharge capacity. .

さらに主電源用途では、機器の電波発信などの高負荷電流が必要とされることが多い。高負荷電流特性を向上するために、活物質や導電剤の単位質量当たりの表面積を増やす方法のひとつとして、材料の粒径を小さくする方法がある。この方法の場合、活物質の粒径が小さくなるほど単粒子あたりの質量が軽くなるため、活物質粒子同士の分子間力や静電気などによる帯電の影響が大きくなり活物質同士で凝集してしまい、粒径を小さくして表面積を増加した効果を得ることは容易ではない。   In addition, main load applications often require high load current such as radio wave transmission of equipment. One method of increasing the surface area per unit mass of the active material or conductive agent in order to improve the high load current characteristics is to reduce the particle size of the material. In the case of this method, the smaller the particle size of the active material, the lighter the mass per single particle, the greater the influence of charging between the active material particles due to intermolecular forces or static electricity, and aggregation between the active materials, It is not easy to obtain the effect of increasing the surface area by reducing the particle size.

凝集・分散を改善する方法としては、界面活性剤を使用して、混合・練合する方法が提案されている(例えば、特許文献1参照)。しかし、界面活性剤を用いた場合、常圧(大気圧)雰囲気で200℃以上の高温で熱処理すると、界面活性剤によって正極活物質である二酸化マンガンの酸素が奪われ(酸素欠損)、放電性能に有効な二酸化マンガンが減少し放電性能に大きな影響を及ぼす。そのため、その使用は、0.1質量%から1.0質量%が好ましいと提案されている。   As a method of improving aggregation / dispersion, a method of mixing and kneading using a surfactant has been proposed (for example, see Patent Document 1). However, when a surfactant is used, if the heat treatment is performed at a high temperature of 200 ° C. or higher in an atmospheric pressure (atmospheric pressure) atmosphere, oxygen of the manganese dioxide that is the positive electrode active material is deprived by the surfactant (oxygen deficiency), and the discharge performance. The effective manganese dioxide is reduced and the discharge performance is greatly affected. Therefore, it is proposed that its use is preferably 0.1% to 1.0% by weight.

特開2005−310522号公報JP 2005-310522 A

前述したように、従来の混合・練合方法では、活物質の粒径が小さくなるほど活物質粒子同士の分子間力や静電気などによる帯電の影響が大きくなり活物質同士で凝集するため、活物質の凝集を抑えて分散性を向上するためには界面活性剤を多く入れなければならなかった。   As described above, in the conventional mixing / kneading method, the smaller the active material particle size, the greater the influence of charging between the active material particles due to intermolecular force or static electricity, and the active material aggregates. In order to suppress the agglomeration and improve the dispersibility, it was necessary to add a large amount of surfactant.

本発明は、従来よりも少ない界面活性剤の添加量で、従来と同等以上に活物質とカーボン、バインダーとの密着性を向上させ、高負荷電流特性を改良できるコイン形電池とその製造方法を提供することを目的とするものである。   The present invention provides a coin-type battery and a method for producing the same that can improve the high load current characteristics by improving the adhesion between the active material, carbon, and the binder at least as much as in the past with the addition amount of the surfactant less than the conventional one. It is intended to provide.

上記目的を達成するために本発明は、予め微粉末状の活物質とノニオン界面活性剤とを練合したものに、さらに導電剤、バインダー、溶媒を加えて練合し、乾燥した後粉砕したものを加圧成型してペレット状の一方の電極を形成し、この電極を乾燥させた後、他方の電極とセパレータを介して対向配置させ、電解液とともに外装体に封入したコイン形電池である。   In order to achieve the above-mentioned object, the present invention kneaded after adding a conductive agent, a binder and a solvent to a pre-kneaded active material and a nonionic surfactant in advance, pulverized after drying This is a coin-type battery in which one is formed by pressure molding to form one pellet-shaped electrode, this electrode is dried, placed opposite to the other electrode via a separator, and enclosed in an outer package together with an electrolytic solution .

また本発明は、予め微粉末状の活物質とノニオン界面活性剤とを練合したものに、さらに導電剤、バインダー、溶媒を加えて練合し、乾燥した後粉砕したものを加圧成型してペレット状の一方の電極を形成し、この電極を乾燥させた後、他方の電極とセパレータを介して対向配置させ、電解液とともに外装体に封入するコイン形電池の製造方法である。   In addition, the present invention is a method in which a finely powdered active material and a nonionic surfactant are kneaded in advance, further kneaded by adding a conductive agent, a binder and a solvent, dried, and then pulverized. This is a method for producing a coin-type battery in which one pellet-shaped electrode is formed, this electrode is dried, placed opposite to the other electrode through a separator, and enclosed in an outer package together with an electrolytic solution.

本発明によれば、微粉末状の活物質と導電剤、バインダーの密着性が向上し、高負荷電流特性が向上するコイン形電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the coin-type battery which the adhesiveness of a fine powdery active material, a electrically conductive agent, and a binder improves, and a high load current characteristic improves can be provided.

本発明の一実施の形態に係るコイン形電池の断面図Sectional drawing of the coin-type battery which concerns on one embodiment of this invention

本発明による第1の発明は、予め微粉末状の活物質とノニオン界面活性剤とを練合したものに、さらに導電剤、バインダー、溶媒を加えて練合し、乾燥した後粉砕したものを加圧成型してペレット状の一方の電極を形成し、この電極を乾燥させた後、他方の電極とセパレータを介して対向配置させ、電解液とともに外装体に封入したコイン形電池である。   According to the first aspect of the present invention, a finely powdered active material and a nonionic surfactant are kneaded in advance, further kneaded by adding a conductive agent, a binder and a solvent, dried, and then pulverized. This is a coin-type battery in which one electrode in the form of pellets is formed by pressure molding, this electrode is dried, placed opposite to the other electrode through a separator, and enclosed in an outer package together with an electrolytic solution.

すなわち予め微粉末状の活物質とノニオン界面活性剤を練合することにより、微粉末状の活物質の間にノニオン界面活性剤が入り込み凝集を抑え、さらに導電剤を取り込みながら練合されるため、微粉末状の活物質と導電剤、バインダーの密着性を向上した電極が形成でき、高負荷電流特性が向上するコイン形電池を提供することができる。   In other words, by kneading the finely powdered active material and the nonionic surfactant in advance, the nonionic surfactant enters between the finely powdered active material to suppress aggregation and further kneading while incorporating the conductive agent. In addition, an electrode with improved adhesion between a fine powdery active material, a conductive agent and a binder can be formed, and a coin-type battery with improved high load current characteristics can be provided.

本発明による第2の発明は、第1の発明において、前記ノニオン界面活性剤がポリオキシエチレンアルキルエーテル系のものであるコイン形電池である。   A second invention according to the present invention is the coin-type battery according to the first invention, wherein the nonionic surfactant is of a polyoxyethylene alkyl ether type.

ポリオキシエチレンアルキルエーテル系を用いることで微粉末状の活物質と導電剤、バインダーの密着性をより向上し、更に200℃以上の高温熱処理で充分分解するので電池特性を低下させず、高負荷電流特性が向上するコイン形電池を提供することができる。   By using polyoxyethylene alkyl ether, the adhesion between fine powdery active material, conductive agent and binder is further improved, and it is fully decomposed by high-temperature heat treatment at 200 ° C or higher, so the battery characteristics are not deteriorated and the load is high. A coin-type battery with improved current characteristics can be provided.

本発明の第3の発明は、第1の発明において、前記ノニオン界面活性剤が電極固形分に
対して0.1質量%以上0.4質量%以下添加されたコイン形電池である。
A third invention of the present invention is the coin-type battery according to the first invention, wherein the nonionic surfactant is added in an amount of 0.1% by mass to 0.4% by mass with respect to the solid content of the electrode.

添加量をこの範囲にすることで、従来よりも少ない量で高負荷電流特性が向上するコイン形電池を提供することができる。   By setting the addition amount within this range, it is possible to provide a coin-type battery in which high load current characteristics are improved with a smaller amount than in the past.

本発明の第4の発明は、第1の発明において、前記活物質の平均粒径が0.5μm以上10μm以下であるコイン形電池である。   A fourth invention of the present invention is the coin-type battery according to the first invention, wherein the active material has an average particle size of 0.5 μm or more and 10 μm or less.

活物質の平均粒径をこの範囲にすることで、活物質の表面積が増え、活物質と導電剤、バインダーの密着箇所が増えるため従来よりも高負荷電流特性が向上するコイン形電池を提供することができる。   By providing the average particle size of the active material within this range, the surface area of the active material is increased, and the number of contact portions between the active material, the conductive agent, and the binder is increased, so that a coin-type battery with improved high load current characteristics is provided. be able to.

本発明の第5の発明は、予め微粉末状の活物質とノニオン界面活性剤とを練合したものに、さらに導電剤、バインダー、溶媒を加えて練合し、乾燥した後粉砕したものを加圧成型してペレット状の一方の電極を形成し、この電極を乾燥させた後、他方の電極とセパレータを介して対向配置させ、電解液とともに外装体に封入するコイン形電池の製造方法である。   According to a fifth aspect of the present invention, a finely powdered active material and a nonionic surfactant are kneaded in advance, further kneaded by adding a conductive agent, a binder and a solvent, dried, and then pulverized. A coin-shaped battery manufacturing method in which one electrode in the form of pellets is formed by pressure molding, this electrode is dried, placed opposite to the other electrode through a separator, and enclosed in an outer package together with an electrolyte. is there.

予め微粉末状の活物質とノニオン界面活性剤を練合することにより、微粉末状の活物質の間にノニオン界面活性剤が入り込み凝集を抑え、さらに導電剤を取り込みながら練合されるため、微粉末状の活物質と導電剤、バインダーの密着性を向上した電極が形成でき、高負荷電流特性が向上するコイン形電池を提供することができる。   By kneading the fine powdered active material and the nonionic surfactant in advance, the nonionic surfactant enters the fine powdery active material to suppress aggregation, and further kneading while incorporating the conductive agent. An electrode with improved adhesion between a fine powdery active material, a conductive agent, and a binder can be formed, and a coin-type battery with improved high load current characteristics can be provided.

本発明の第6の発明は、前記ペレット状の電極の乾燥温度を200℃以上300℃以下とするコイン形電池の製造方法である。   A sixth invention of the present invention is a method for manufacturing a coin-type battery, wherein the drying temperature of the pellet-shaped electrode is 200 ° C. or higher and 300 ° C. or lower.

電極の乾燥温度をこの範囲にすることで、ノニオン界面活性剤が活物質表面で抵抗成分になることなく加熱分解され、従来よりも高負荷電流特性に優れたコイン形電池を提供することができる。   By setting the drying temperature of the electrode within this range, the nonionic surfactant is thermally decomposed without becoming a resistance component on the surface of the active material, and a coin-type battery superior in high load current characteristics can be provided. .

以下、本発明の一実施の形態について説明する。なお、以下に示す一実施の形態は本発明を具現化した一例であって、本発明の技術的範囲を限定するものではない。   Hereinafter, an embodiment of the present invention will be described. The following embodiment is an example embodying the present invention, and does not limit the technical scope of the present invention.

図1は、本発明のコイン形電池の断面図である。   FIG. 1 is a cross-sectional view of a coin battery of the present invention.

本発明に用いる非水電解液を用いたコイン形電池は、封口板5とガスケット4を一体化した内部に、負極2を設置した後、セパレータ3を挿入し、このセパレータ3に非水電解液を含浸した後、正極1を設置し、正極ケース6を嵌合後、折曲加工して封止することで作製される。   In the coin-type battery using the non-aqueous electrolyte used in the present invention, the negative electrode 2 is installed inside the sealing plate 5 and the gasket 4 and then the separator 3 is inserted, and the non-aqueous electrolyte is inserted into the separator 3. After impregnating, the positive electrode 1 is installed, and after the positive electrode case 6 is fitted, it is fabricated by bending and sealing.

正極1は、活物質と界面活性剤と導電剤とバインダーから構成される。その製造方法は、活物質と界面活性剤を練合した後に導電剤、バインダーを練合する。この練合の際には、スラリーにならない程度に適宜イオン交換水を添加しても良い。そして練合物を乾燥した後、秤量し加圧成型してペレット形状にし、ペレット形成後さらに乾燥させ、正極1を作製する。   The positive electrode 1 includes an active material, a surfactant, a conductive agent, and a binder. The manufacturing method kneads an active material and a surfactant, and then kneads a conductive agent and a binder. In this kneading, ion exchange water may be appropriately added to such an extent that it does not become a slurry. Then, after drying the kneaded material, it is weighed and pressure-molded to form a pellet, and after the pellet is formed, it is further dried to produce the positive electrode 1.

このように、微粉末状の活物質とノニオン界面活性剤を練合することで、微粉末状の活物質の間に界面活性剤が入り込み凝集を抑え、さらに導電剤を取り込みながら練合するため、微粉末状の活物質と導電剤、バインダーの密着性が向上した電極を形成でき、高負荷電流特性が向上するコイン形電池を提供することができる。活物質と導電剤を先に練合さ
せた場合は、界面活性剤を混ぜ合わせる時点で活物質同士、導電剤同士が凝集しているので、後から界面活性剤を入れると活物質と導電剤両方の凝集を抑えるために多量の界面活性剤が必要である。しかし先に活物質と界面活性剤を混ぜると少量の界面活性剤で凝集が抑制され、活物質が導電剤と密着する機会が増加し、更に活物質と界面活性剤が導電剤を取り込みながら練合することができるため良好な結果が得られるものと考えられる。
In this way, by kneading the fine powdered active material and the nonionic surfactant, the surfactant enters the fine powdery active material to suppress aggregation and further knead while incorporating the conductive agent. In addition, an electrode with improved adhesion between the fine powdery active material, the conductive agent and the binder can be formed, and a coin-type battery with improved high load current characteristics can be provided. When the active material and the conductive agent are kneaded first, the active material and the conductive agent are aggregated at the time when the surfactant is mixed. Therefore, if the surfactant is added later, the active material and the conductive agent are added. A large amount of surfactant is required to suppress both aggregations. However, when the active material and the surfactant are mixed first, aggregation is suppressed with a small amount of the surfactant, and the opportunity for the active material to adhere to the conductive agent increases. It is considered that good results can be obtained because of the combination.

活物質は、リチウムの吸蔵・放出が可能である結晶構造を持つ金属酸化物、あるいは500℃以上で焼成して得られる金属酸化物であればいかなるものでも良く、二酸化マンガン、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウム、V、Nbなどが挙げられる。 The active material may be any metal oxide having a crystal structure capable of occluding and releasing lithium, or a metal oxide obtained by firing at 500 ° C. or higher, such as manganese dioxide, lithium cobaltate, manganese. Examples thereof include lithium acid lithium, lithium nickel acid, V 2 O 5 , and Nb 2 O 5 .

界面活性剤は、ノニオン界面活性剤であればいかなるものでも良く、特にポリオキシエチレンアルキルエーテル系を用いることで、活物質と導電剤、バインダーの密着性を向上し、更に200℃以上の高温熱処理で分解するので電池特性を低下させず、高負荷電流特性が向上するコイン形電池を提供することができる。   Any surfactant can be used as long as it is a nonionic surfactant. In particular, the use of a polyoxyethylene alkyl ether system improves the adhesion between the active material, the conductive agent and the binder, and further heat treatment at 200 ° C. or higher. Therefore, it is possible to provide a coin-type battery with improved high load current characteristics without degrading battery characteristics.

また、その添加量は電極固形分に対して0.1質量%以上0.4質量%以下が最も良い。二酸化マンガンでは添加量が多いほど二酸化マンガンの酸素欠損が生じるため、より少ないほうが好ましい。   Further, the addition amount is most preferably 0.1% by mass or more and 0.4% by mass or less with respect to the electrode solid content. In manganese dioxide, oxygen vacancies in manganese dioxide occur as the amount added increases.

活物質の平均粒径は0.5μm以上10μm以下が最も良い。ここでいう平均粒径は、メジアン径のことを示している。平均粒径が0.1μmより小さい場合、活物質同士の凝集が強いため導電剤、バインダーとの密着性が不足し高負荷放電特性が低下する。また、20μmより大きい場合、凝集性は弱くノニオン界面活性剤を添加しない場合と高負荷放電特性が同レベルであり、その効果が小さい。   The average particle size of the active material is most preferably 0.5 μm or more and 10 μm or less. The average particle diameter here indicates the median diameter. When the average particle size is smaller than 0.1 μm, the active materials are strongly aggregated, so that the adhesiveness with the conductive agent and the binder is insufficient and the high-load discharge characteristics are deteriorated. On the other hand, when it is larger than 20 μm, the cohesiveness is weak and the high load discharge characteristics are the same level as when no nonionic surfactant is added, and the effect is small.

電極の乾燥温度は、200℃以上300℃以下がより好ましい。この温度範囲においてノニオン界面活性剤が加熱分解でき、活物質表面で抵抗成分になることなく反応性を維持できるため高負荷電流特性に優れる。200℃未満では界面活性剤が分解せずに活物質表面に残って、抵抗成分になるため高負荷電流特性が低下する。300℃より高い温度では、バインダーが分解するため活物質と導電剤の密着性が低下し、高負荷電流特性が低下する。   As for the drying temperature of an electrode, 200 to 300 degreeC is more preferable. In this temperature range, the nonionic surfactant can be thermally decomposed, and the reactivity can be maintained without becoming a resistance component on the surface of the active material, so that the high load current characteristics are excellent. If it is less than 200 ° C., the surfactant remains on the surface of the active material without being decomposed and becomes a resistance component, so that the high load current characteristic is deteriorated. When the temperature is higher than 300 ° C., the binder is decomposed, so that the adhesion between the active material and the conductive agent is lowered, and the high load current characteristics are lowered.

導電剤は、カーボンが主に用いられ、鎖状構造のアセチレンブラック、カーボンブラックなどが挙げられる。   Carbon is mainly used as the conductive agent, and examples thereof include chain-structured acetylene black and carbon black.

バインダーは、フッ素系、ゴム系、アクリル酸系などが挙げられる。特に耐熱性に優れるフッ素系が好ましい。   Examples of the binder include fluorine-based, rubber-based, and acrylic acid-based binders. In particular, a fluorine type having excellent heat resistance is preferable.

負極2は、金属系ではリチウム金属、合金系ではリチウムアルミニウム合金、酸化珪素に金属添加した合金などが挙げられる。   Examples of the negative electrode 2 include lithium metal in a metal system, lithium aluminum alloy in an alloy system, and an alloy obtained by adding metal to silicon oxide.

また、リチウムの吸蔵・放出が可能である層状構造あるいは結晶構造を持つ金属酸化物であればいかなるものでも良い。特にリチウムのインターカレーションに適している黒鉛、チタン酸リチウム、シリコン酸化物などが挙げられる。   Further, any metal oxide having a layered structure or a crystal structure capable of occluding and releasing lithium can be used. In particular, graphite, lithium titanate, silicon oxide and the like which are suitable for lithium intercalation can be mentioned.

導電剤は、カーボンが主に用いられ、鎖状構造のアセチレンブラック、カーボンブラックなどが挙げられる。   Carbon is mainly used as the conductive agent, and examples thereof include chain-structured acetylene black and carbon black.

バインダーは、フッ素系、ゴム系、アクリル酸系などが挙げられる。特に耐熱性に優れ
るフッ素系が好ましい。
Examples of the binder include fluorine-based, rubber-based, and acrylic acid-based binders. In particular, a fluorine type having excellent heat resistance is preferable.

活物質にリチウムの吸蔵・放出が可能である層状構造あるいは結晶構造を持つ金属酸化物を用いる場合は、正極1と同様の製造方法にて電極を作製できる。   When a metal oxide having a layered structure or a crystal structure capable of inserting and extracting lithium is used as the active material, the electrode can be manufactured by the same manufacturing method as that for the positive electrode 1.

セパレータ3は、負極2と正極1とを絶縁するものであればいかなるものでも良く、ポリプロピレン、ポリエチレン、ポリフェニレンサルファイド(PPS)などが挙げられる。   The separator 3 may be any material as long as it insulates the negative electrode 2 and the positive electrode 1, and examples thereof include polypropylene, polyethylene, and polyphenylene sulfide (PPS).

ガスケット4は、融点が高い耐熱性に優れたテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)、ポリテトラフルオロエチレン(PTFE)などのフッ素を含有した高分子材料が用いられる。   The gasket 4 is made of a fluorine-containing polymer material such as tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) or polytetrafluoroethylene (PTFE) having a high melting point and excellent heat resistance.

封口板5は、ステンレス鋼であればいかなるものでも良く、負極2にリチウムとアルミニウムの合金を使用する場合には、内面にアルミニウムを配置した構造のステンレス鋼でも良い。   The sealing plate 5 may be anything as long as it is stainless steel, and when an alloy of lithium and aluminum is used for the negative electrode 2, stainless steel having a structure in which aluminum is disposed on the inner surface may be used.

正極ケース6は、ステンレス鋼、アルミニウム鋼などが用いられる。   The positive electrode case 6 is made of stainless steel, aluminum steel, or the like.

非水電解液は、非水溶媒液に電解質を溶かしたものであればいかなるものでも良い。非水溶媒液としては、プロピレンカーボネート、エチレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジメトキシエタン、ガンマーブチルラクトンなどが挙げられる。電解質としては、LiPF、LiBF、LiNCFSO、LiN(CFSO、LiN(CSO、LiClOなどが挙げられる。 The nonaqueous electrolytic solution may be any one as long as an electrolyte is dissolved in a nonaqueous solvent solution. Examples of the non-aqueous solvent liquid include propylene carbonate, ethylene carbonate, butylene carbonate, diethyl carbonate, dimethyl carbonate, ethyl methyl carbonate, dimethoxyethane, and gamma butyl lactone. Examples of the electrolyte include LiPF 6 , LiBF 4 , LiNCF 3 SO 3 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ) 2 , LiClO 4 and the like.

以下、本発明を実施例に基づいて具体的に説明する。   Hereinafter, the present invention will be specifically described based on examples.

(電池Aの作製)
正極1は、正極活物質として平均粒径が10μmである微粉末状のコバルト酸リチウムLiCoOを90質量%と、界面活性剤としてポリオキシエチレンアルキルエーテルを0.1質量%と、導電剤として粉末状のカーボンブラック5質量%と、バインダーとしてイオン交換水にディスパージョンしたポリテトラフルオロエチレンを5質量%から構成される。
(Production of battery A)
The positive electrode 1 includes 90% by mass of fine powder lithium cobaltate LiCoO 2 having an average particle size of 10 μm as a positive electrode active material, 0.1% by mass of polyoxyethylene alkyl ether as a surfactant, and a conductive agent. It is composed of 5% by mass of powdered carbon black and 5% by mass of polytetrafluoroethylene dispersed in ion-exchanged water as a binder.

その製造方法は、微粉末状のコバルト酸リチウムとポリオキシエチレンアルキルエーテルをスラリー状にならない程度にイオン交換水を添加しながら練合する。その練合物に、カーボンブラックとイオン交換水にディスパージョンしたポリテトラフルオロエチレンを添加し、更に練合する。そして80℃下で24時間乾燥した後、粉砕を行い、正極合剤とする。   In the production method, fine powdery lithium cobaltate and polyoxyethylene alkyl ether are kneaded while adding ion-exchanged water so as not to form a slurry. Polytetrafluoroethylene dispersed in carbon black and ion-exchanged water is added to the kneaded material and further kneaded. And after drying at 80 degreeC for 24 hours, it grind | pulverizes and it is set as a positive electrode mixture.

この正極合剤を30mg秤量し、直径3.8mm、厚み0.90mmのペレット状に加圧成型した後、250℃にて24時間熱風乾燥し、正極1を作製した。   30 mg of this positive electrode mixture was weighed and pressure-molded into a pellet shape having a diameter of 3.8 mm and a thickness of 0.90 mm, and then dried with hot air at 250 ° C. for 24 hours to prepare the positive electrode 1.

負極2は、負極活物質としてチタン酸リチウムLi4/3Ti5/3を90質量%と、カーボンブラックを5質量%と、スチレンブタジエンラバーを5質量%とを練合する。そして80℃下で24時間乾燥した後、負極合剤とした。この負極合剤を24mg秤量し、直径4.0mm、厚み0.85mmのペレット状に加圧成型した後、100℃下で24時間乾燥し負極2を作製した。 The negative electrode 2 kneads 90% by mass of lithium titanate Li 4/3 Ti 5/3 O 4 as a negative electrode active material, 5% by mass of carbon black, and 5% by mass of styrene butadiene rubber. And after drying at 80 degreeC for 24 hours, it was set as the negative mix. 24 mg of this negative electrode mixture was weighed and pressure-molded into a pellet having a diameter of 4.0 mm and a thickness of 0.85 mm, and then dried at 100 ° C. for 24 hours to prepare a negative electrode 2.

この負極2をガスケット4と一体化した封口板5の内部に設置した後、ポリプロピレンからなるセパレータ3を挿入する。このセパレータ3にエチレンカーボネートとエチルメチルカーボネ―トを1:3の割合で混合した溶媒に、LiPFを1mol/lの濃度で溶解した非水電解液を含浸する。その後正極1を設置し、正極ケース6を嵌合後封口し、直径6.8mm、厚み2.1mmの電池Aを作製した。 After this negative electrode 2 is installed inside a sealing plate 5 integrated with a gasket 4, a separator 3 made of polypropylene is inserted. The separator 3 is impregnated with a non-aqueous electrolyte solution in which LiPF 6 is dissolved at a concentration of 1 mol / l in a solvent in which ethylene carbonate and ethyl methyl carbonate are mixed at a ratio of 1: 3. Thereafter, the positive electrode 1 was installed, the positive electrode case 6 was fitted and sealed, and a battery A having a diameter of 6.8 mm and a thickness of 2.1 mm was produced.

(電池Bの作製)
前記ノニオン界面活性剤の電極固形分当り0.05質量%添加した以外は電池Aと同様にして電池Bを作製した。
(Production of battery B)
Battery B was produced in the same manner as Battery A, except that 0.05% by mass of the nonionic surfactant was added per electrode solid content.

(電池Cの作製)
前記ノニオン界面活性剤の電極固形分当り0.2質量%添加した以外は電池Aと同様にして電池Cを作製した。
(Production of Battery C)
A battery C was produced in the same manner as the battery A, except that 0.2% by mass of the nonionic surfactant was added based on the solid content of the electrode.

(電池Dの作製)
前記ノニオン界面活性剤の電極固形分当たり0.4質量%添加した以外は電池Aと同様にして電池Dを作製した。
(Production of battery D)
A battery D was produced in the same manner as the battery A, except that 0.4% by mass of the nonionic surfactant was added per electrode solid content.

(電池Eの作製)
前記ノニオン界面活性剤の電極固形分当たり1.0質量%添加した以外は電池Aと同様にして電池Eを作製した。
(Production of battery E)
Battery E was produced in the same manner as Battery A, except that 1.0% by mass of the nonionic surfactant was added per electrode solid content.

(電池Gの作製)
その製造方法は、微粉末状のコバルト酸リチウムを90質量%と、カーボンブラック5質量%とを混合した後、ポリオキシエチレンアルキルエーテル0.1質量%をスラリー状にならない程度にイオン交換水を添加しながら練合する。その練合物に、イオン交換水にディスパージョンしたポリテトラフルオロエチレンを添加し、更に練合する。そして80℃下で24時間乾燥した後、粉砕を行い、正極合剤としたこと以外は電池Aと同様にして電池Gを作製した。
(Production of battery G)
In the production method, 90% by mass of finely powdered lithium cobaltate and 5% by mass of carbon black are mixed, and then ion-exchanged water is added so that 0.1% by mass of polyoxyethylene alkyl ether does not become a slurry. Knead while adding. To the kneaded product, polytetrafluoroethylene dispersed in ion-exchanged water is added and further kneaded. And after drying at 80 degreeC for 24 hours, it grind | pulverized and the battery G was produced like the battery A except having set it as the positive mix.

(電池Fの作製)
前記ノニオン界面活性剤の電極固形分当り0.05質量%添加した以外は電池Gと同様にして電池Fを作製した。
(Production of Battery F)
A battery F was produced in the same manner as the battery G, except that 0.05% by mass of the nonionic surfactant per electrode solid content was added.

(電池Hの作製)
前記ノニオン界面活性剤の電極固形分当り0.2質量%添加した以外は電池Gと同様にして電池Hを作製した。
(Production of battery H)
Battery H was produced in the same manner as Battery G, except that 0.2% by mass of the nonionic surfactant was added per electrode solid content.

(電池Iの作製)
前記ノニオン界面活性剤の電極固形分当り0.4質量%添加した以外は電池Gと同様にして電池Iを作製した。
(Production of Battery I)
Battery I was made in the same manner as Battery G, except that 0.4% by mass of the nonionic surfactant was added per electrode solid content.

(電池Jの作製)
前記ノニオン界面活性剤の電極固形分当り1.0質量%添加した以外は電池Gと同様にして電池Jを作製した。
(Production of Battery J)
Battery J was produced in the same manner as Battery G, except that 1.0% by mass of the nonionic surfactant was added per electrode solid content.

以上のように作製した電池A〜Jをそれぞれ10個作製し、2.6Vにて充電した後、−10℃下で5mAの放電電流で5秒後の電池電圧を確認した。   Ten batteries A to J manufactured as described above were prepared and charged at 2.6 V, and then the battery voltage after 5 seconds was confirmed at −10 ° C. with a discharge current of 5 mA.

(表1)にその結果を示す。   The results are shown in (Table 1).

先に界面活性剤を混ぜた電池A〜Eでは後から界面活性剤を混ぜた電池F〜Jに比較して、同じ放電試験の結果はいずれも高い電圧が得られている。これは、活物質と導電剤を先に練合させた場合は界面活性剤を混ぜ合わせる時点で活物質同士、導電剤同士が凝集しているので、活物質の凝集だけでなく導電剤の凝集を抑えることにも界面活性剤が使われてしまっているため、活物質が導電剤と密着する機会が減少したためと考えられる。   In the batteries A to E in which the surfactant is mixed first, the same discharge test results are higher in voltage than the batteries F to J in which the surfactant is mixed later. This is because when the active material and the conductive agent are kneaded first, the active material and the conductive agent are aggregated at the time when the surfactant is mixed, so that not only the active material but also the conductive agent is aggregated. This is considered to be because the surface active agent has been used to suppress the phenomenon, and the opportunity for the active material to adhere to the conductive agent has decreased.

電池A、C、Dでは、高負荷電流特性が1.65V以上の特性が得られた。ノニオン界面活性剤を0.05質量%、1.0質量%添加した電池B、Eでは、高負荷電流特性が1.55Vより低かった。   In batteries A, C, and D, a high load current characteristic of 1.65 V or more was obtained. In the batteries B and E to which 0.05% by mass and 1.0% by mass of the nonionic surfactant were added, the high load current characteristics were lower than 1.55V.

ノニオン界面活性剤の添加が0.1質量%以上0.4質量%以下である電池A、C、Dでは、微粉末状の活物質とノニオン界面活性剤を先に練合することにより、微粉末状の活物質の間に界面活性剤が入り込み活物質同士の凝集を抑えている。その後、導電剤を取り込みながら練合するため、微粉末状の活物質と導電剤、バインダーの密着性が向上した電極を形成でき、高負荷電流特性が向上した。   In the batteries A, C, and D in which the addition of the nonionic surfactant is 0.1% by mass or more and 0.4% by mass or less, the fine powdery active material and the nonionic surfactant are kneaded first, A surfactant enters between the powdery active materials to suppress aggregation of the active materials. Thereafter, kneading while incorporating the conductive agent, an electrode having improved adhesion between the fine powdered active material, the conductive agent, and the binder was formed, and the high load current characteristics were improved.

ノニオン界面活性剤の添加が1.0質量%である電池Eでは、界面活性剤量が多いため活物質の凝集だけでなく導電剤の凝集も抑制しているが、活物質および導電剤の密着面が増加しているため練合時には密着しているが、ペレット状に加圧成型し熱風乾燥した後に膨張が大きいため、高負荷電流特性が低下したと考察される。   In the battery E in which the addition of the nonionic surfactant is 1.0% by mass, the amount of the surfactant is large, so that not only the aggregation of the active material but also the aggregation of the conductive agent is suppressed. It is considered that the high load current characteristics deteriorated due to the large expansion after pressure forming into pellets and drying with hot air, although the surfaces increased because of the increased surface.

続いて活物質の平均粒径について検討を行った。   Subsequently, the average particle size of the active material was examined.

(電池Kの作製)
前記活物質として、平均粒径が0.1μmであるものを用いた以外は電池Dと同様にして電池Kを作製した。
(Production of battery K)
A battery K was produced in the same manner as the battery D except that an active material having an average particle diameter of 0.1 μm was used.

(電池Lの作製)
前記活物質として、平均粒径が0.5μmであるものを用いた以外は電池Dと同様にして電池Lを作製した。
(Production of battery L)
A battery L was produced in the same manner as the battery D, except that an active material having an average particle diameter of 0.5 μm was used.

(電池Mの作製)
前記活物質として、平均粒径が5.0μmであるものを用いた以外は電池Dと同様にし
て電池Mを作製した。
(Production of battery M)
A battery M was produced in the same manner as the battery D, except that an active material having an average particle diameter of 5.0 μm was used.

(電池Nの作製)
前記活物質として、平均粒径が10μmであるものを用いた以外は電池Dと同様にして電池Nを作製した。
(Production of battery N)
A battery N was produced in the same manner as the battery D, except that an active material having an average particle diameter of 10 μm was used.

(電池Oの作製)
前記活物質として、平均粒径が20μmであるものを用いた以外は電池Dと同様にして電池Oを作製した。
(Production of battery O)
A battery O was produced in the same manner as the battery D, except that an active material having an average particle diameter of 20 μm was used.

(表2)にその結果を示す。   The results are shown in (Table 2).

電池L、M、Nでは、高負荷電流特性が、1.65V以上の特性が得られた。活物質の平均粒径が0.1μmである電池K、活物質の平均粒径が20μmである電池Oでは、1.6Vより低かった。   In the batteries L, M, and N, a high load current characteristic of 1.65 V or more was obtained. In the battery K in which the average particle diameter of the active material is 0.1 μm and in the battery O in which the average particle diameter of the active material is 20 μm, it is lower than 1.6V.

活物質の平均粒径が0.5μm以上10μm以下では活物質同士の凝集が抑えられ、さらに活物質の表面積が増加しているため高負荷電流特性が高かった。   When the average particle size of the active material was 0.5 μm or more and 10 μm or less, aggregation of the active materials was suppressed, and the surface area of the active material was increased, and thus high load current characteristics were high.

活物質の平均粒径が0.1μmである電池Kでは、活物質の粒子が小さいため凝集が強すぎるため高負荷電流特性が低下したと考察される。   In the battery K in which the average particle diameter of the active material is 0.1 μm, it is considered that the high load current characteristics are deteriorated because the particles of the active material are small and the aggregation is too strong.

活物質の平均粒径が20μmである電池Oでは、活物質の粒子が大きいため高負荷電流特性が低下したと考察される。   In the battery O in which the average particle diameter of the active material is 20 μm, it is considered that the high load current characteristics are deteriorated because the active material particles are large.

続いてペレット状の電極の乾燥温度を検討した。   Subsequently, the drying temperature of the pellet-shaped electrode was examined.

(電池Pの作製)
前記ペレット状の電極の乾燥温度を150℃とした以外は電池Dと同様にして電池Pを作製した。
(Production of battery P)
A battery P was produced in the same manner as the battery D, except that the drying temperature of the pellet-shaped electrode was 150 ° C.

(電池Qの作製)
前記ペレット状の電極の乾燥温度を200℃とした以外は電池Dと同様にして電池Qを作製した。
(Production of battery Q)
A battery Q was produced in the same manner as the battery D except that the drying temperature of the pellet-shaped electrode was 200 ° C.

(電池Rの作製)
前記ペレット状の電極の乾燥温度を300℃とした以外は電池Dと同様にして電池Rを作製した。
(Production of battery R)
A battery R was produced in the same manner as the battery D, except that the drying temperature of the pellet-shaped electrode was 300 ° C.

(電池Sの作製)
前記ペレット状の電極の乾燥温度を400℃とした以外は電池Dと同様にして電池Sを作製した。
(Production of battery S)
A battery S was produced in the same manner as the battery D, except that the drying temperature of the pellet-shaped electrode was 400 ° C.

(表3)にその結果を示す。   The results are shown in (Table 3).

電池Q、Rでは、高負荷電流特性が1.65V以上得られた。電極の乾燥温度を150℃で行った電池P、400℃で行った電池Sでは、高負荷電流特性が1.6Vより低かった。   In the batteries Q and R, a high load current characteristic of 1.65 V or more was obtained. In the battery P performed at an electrode drying temperature of 150 ° C. and the battery S performed at 400 ° C., the high load current characteristics were lower than 1.6V.

電極の乾燥温度が200℃以上300℃以下では、電極中のノニオン界面活性剤が分解し、活物質表面で抵抗成分にならず高負荷電流特性が高かった。   When the drying temperature of the electrode was 200 ° C. or higher and 300 ° C. or lower, the nonionic surfactant in the electrode was decomposed and did not become a resistance component on the active material surface, and high load current characteristics were high.

乾燥温度が150℃である電池Pでは、ノニオン界面活性剤が十分に分解していないため活物質表面の抵抗成分になり、高負荷電流特性が低下したと考察される。   In the battery P having a drying temperature of 150 ° C., the nonionic surfactant is not sufficiently decomposed, so that it becomes a resistance component on the surface of the active material, and it is considered that the high load current characteristics are deteriorated.

乾燥温度が400℃である電池Sでは、バインダーが分解しているため活物質と導電剤の密着性が低下し、高負荷電流特性が低下したと考察される。   In the battery S having a drying temperature of 400 ° C., the binder is decomposed, so that the adhesion between the active material and the conductive agent is lowered, and the high load current characteristic is considered to be lowered.

以上の結果から微粉末状の活物質とノニオン界面活性剤を練合し、これに導電剤、バインダー、溶媒を加えて練合し、これを乾燥した後に粉砕したものを加圧成型してペレット上の電極を形成し、この電極を乾燥させた後他方の電極とセパレータを介して対向配置したものを電解液と共に外装体に封入することによって、導電性が向上し、高負荷電流特性に優れた電池を提供することができる。   From the above results, a fine powdery active material and a nonionic surfactant are kneaded, and a conductive agent, a binder, and a solvent are added thereto, kneaded, dried, pulverized, and then pressure-molded into pellets After forming the upper electrode and drying this electrode, the other electrode and the separator placed opposite to each other through the separator are sealed in the outer package together with the electrolyte, thereby improving conductivity and excellent high load current characteristics. Batteries can be provided.

本発明によれば、活物質と導電剤、バインダーの密着性が向上し、高負荷電流特性に優れたコイン形電池を提供することができ、各種電子機器の電源等として有用である。   ADVANTAGE OF THE INVENTION According to this invention, the adhesiveness of an active material, a electrically conductive agent, and a binder improves, the coin-type battery excellent in the high load current characteristic can be provided, and it is useful as a power supply etc. of various electronic devices.

1 正極
2 負極
3 セパレータ
4 ガスケット
5 封口板
6 正極ケース
1 Positive electrode 2 Negative electrode 3 Separator 4 Gasket 5 Sealing plate 6 Positive electrode case

Claims (6)

予め微粉末状の活物質とノニオン界面活性剤とを練合したものに、さらに導電剤、バインダー、溶媒を加えて練合し、乾燥した後粉砕したものを加圧成型してペレット状の一方の電極を形成し、この電極を乾燥させた後、他方の電極とセパレータを介して対向配置させ、電解液とともに外装体に封入したコイン形電池。 In addition, a powdered active material and a nonionic surfactant are kneaded in advance, a conductive agent, a binder and a solvent are further added, kneaded, dried and then pulverized, and then one of the pellets is pressure-molded. After forming this electrode, and drying this electrode, it arrange | positions facing through the other electrode and a separator, and is coin-type battery enclosed with the exterior body with electrolyte solution. 前記ノニオン界面活性剤がポリオキシエチレンアルキルエーテル系のものである請求項1記載のコイン形電池。 The coin-type battery according to claim 1, wherein the nonionic surfactant is of a polyoxyethylene alkyl ether type. 前記ノニオン界面活性剤が電極固形分に対して0.1質量%以上0.4質量%以下添加された請求項1記載のコイン形電池。 The coin-type battery according to claim 1, wherein the nonionic surfactant is added in an amount of 0.1% by mass to 0.4% by mass with respect to the electrode solid content. 前記活物質の平均粒径が0.5μm以上10μm以下である請求項1記載のコイン形電池。 The coin-type battery according to claim 1, wherein the active material has an average particle size of 0.5 μm to 10 μm. 予め微粉末状の活物質とノニオン界面活性剤とを練合したものに、さらに導電剤、バインダー、溶媒を加えて練合し、乾燥した後粉砕したものを加圧成型してペレット状の一方の電極を形成し、この電極を乾燥させた後、他方の電極とセパレータを介して対向配置させ、電解液とともに外装体に封入するコイン形電池の製造方法。 In addition, a powdered active material and a nonionic surfactant are kneaded in advance, a conductive agent, a binder and a solvent are further added, kneaded, dried and then pulverized, and then one of the pellets is pressure-molded. A method for manufacturing a coin-type battery in which an electrode is formed, dried, and placed opposite to the other electrode with a separator interposed between the electrode and an electrolyte. 前記ペレット状の電極の乾燥温度を200℃以上300℃以下とする請求項5記載のコイン形電池の製造方法。 The method for producing a coin-type battery according to claim 5, wherein a drying temperature of the pellet-shaped electrode is 200 ° C or higher and 300 ° C or lower.
JP2011057506A 2011-03-16 2011-03-16 Coin-shaped battery and method for manufacturing the same Withdrawn JP2012195129A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057506A JP2012195129A (en) 2011-03-16 2011-03-16 Coin-shaped battery and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057506A JP2012195129A (en) 2011-03-16 2011-03-16 Coin-shaped battery and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012195129A true JP2012195129A (en) 2012-10-11

Family

ID=47086840

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057506A Withdrawn JP2012195129A (en) 2011-03-16 2011-03-16 Coin-shaped battery and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012195129A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099520A1 (en) * 2011-12-26 2013-07-04 太陽ホールディングス株式会社 Positive-electrode mixture, positive electrode, and non-aqueous electrolyte secondary battery using same
WO2019181050A1 (en) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 Alkaline dry battery

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013099520A1 (en) * 2011-12-26 2013-07-04 太陽ホールディングス株式会社 Positive-electrode mixture, positive electrode, and non-aqueous electrolyte secondary battery using same
JPWO2013099520A1 (en) * 2011-12-26 2015-04-30 太陽ホールディングス株式会社 Positive electrode mixture, positive electrode, and nonaqueous electrolyte secondary battery using the same
WO2019181050A1 (en) * 2018-03-23 2019-09-26 パナソニックIpマネジメント株式会社 Alkaline dry battery
CN111587504A (en) * 2018-03-23 2020-08-25 松下知识产权经营株式会社 Alkaline dry cell
US11581549B2 (en) 2018-03-23 2023-02-14 Panasonic Intellectual Property Management Co., Ltd. Alkaline dry batteries
CN111587504B (en) * 2018-03-23 2023-05-02 松下知识产权经营株式会社 Alkaline dry cell

Similar Documents

Publication Publication Date Title
CN108155351B (en) Lithium ion battery and negative electrode material thereof
US9647262B2 (en) Core-shell type anode active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising the same
CN104218234B (en) A kind of lithium ion battery composite cathode material of high circulation performance and preparation method thereof
CA2792747C (en) Lithium secondary battery using ionic liquid
CN105810899A (en) Lithium ion battery
CN112582596B (en) Secondary battery, battery module, battery pack and device containing same
JP2000215884A (en) Positive electrode for nonaqueous electrolyte battery, its manufacture, nonaqueous electrolyte battery using the positive electrode, and manufacture of the battery
CN106299267B (en) A kind of preparation method of titanium phosphate lithium titanate cathode material
CN109546105B (en) Power type lithium carbon fluoride battery and manufacturing method thereof
WO2019216275A1 (en) Positive electrode composition for lithium ion secondary cell, positive electrode for lithium ion secondary cell, and lithium ion secondary cell
JP2012146590A (en) Positive electrode for nonaqueous electrolyte secondary battery, method for producing positive electrode, and nonaqueous electrolyte secondary battery
JP2015028855A (en) Powder for negative electrode material of lithium ion secondary battery, and conductive assistant used therefor
CN108137346A (en) For the precursor of the lithium transition-metal oxide cathode material of chargeable storage
JP2009200043A (en) Battery
WO2011070748A1 (en) Non-aqueous electrolyte secondary battery, and method for charging same
KR20190047196A (en) Silicon-carbon composite, and lithium secondary battery comprising the same
KR102586846B1 (en) Lithium secondary battery
JP2007095534A (en) Method of manufacturing nonaqueous electrolyte secondary battery
Kim et al. A study on electrochemical characteristics of LiCoO2/LiNi1/3Mn1/3Co1/3O2 mixed cathode for Li secondary battery
WO2008047421A1 (en) Lithium primary battery
JP2005158623A (en) Nonaqueous electrolyte secondary battery
JP2013134921A (en) Electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP6624631B2 (en) Lithium transition metal composite oxide and method for producing the same
KR20180028797A (en) Anode with improved swelling phenomenon and Lithium secondary battery comprising the anode
JP2012195129A (en) Coin-shaped battery and method for manufacturing the same

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140603