JP2012195121A - Circuit breaker - Google Patents

Circuit breaker Download PDF

Info

Publication number
JP2012195121A
JP2012195121A JP2011057354A JP2011057354A JP2012195121A JP 2012195121 A JP2012195121 A JP 2012195121A JP 2011057354 A JP2011057354 A JP 2011057354A JP 2011057354 A JP2011057354 A JP 2011057354A JP 2012195121 A JP2012195121 A JP 2012195121A
Authority
JP
Japan
Prior art keywords
capacitor
current
main contact
circuit breaker
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011057354A
Other languages
Japanese (ja)
Other versions
JP5654394B2 (en
Inventor
Yoshinori Yamauchi
芳准 山内
Toshiyuki Onchi
俊行 恩地
Masaru Isozaki
優 磯崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Original Assignee
Fuji Electric Co Ltd
Fuji Electric FA Components and Systems Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, Fuji Electric FA Components and Systems Co Ltd filed Critical Fuji Electric Co Ltd
Priority to JP2011057354A priority Critical patent/JP5654394B2/en
Publication of JP2012195121A publication Critical patent/JP2012195121A/en
Application granted granted Critical
Publication of JP5654394B2 publication Critical patent/JP5654394B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a small-sized circuit breaker having a high breaking performance by increasing a capacity of a capacitor part configuring a resonance circuit part and by miniaturizing the capacitor part.SOLUTION: A circuit breaker has: a main contact 11 inserted in a DC circuit 1 provided between a DC power supply 20 and a load 30; and a resonance circuit part connected in parallel to the main contact 11, the resonance circuit part in which a coil 13 and a capacitor part 14 are connected in series. An oscillating current generated at an arc A of the main contact 11 and the resonance circuit part at the time of current breaking is superimposed on a DC current to generate current zero to a current flowing in the main contact 11 and perform the current breaking. The capacitor part 14 has two sets of circuits in each set of which an aluminum electrolytic capacitor 15 and a diode 16 are connected in parallel so that a positive electrode of the aluminum electrolytic capacitor 15 and a cathode of the diode 16 are connected with each other. The two sets of circuits are connected in series so that the same poles of the aluminum electrolytic capacitors 15 are connected with each other.

Description

本発明は、回路遮断器に関し、特に電流の開閉を行う主接点と並列にコイル及びコンデンサを接続した共振回路により遮断性能を高めるようにした回路遮断器に関するものである。   The present invention relates to a circuit breaker, and more particularly to a circuit breaker in which the breaking performance is improved by a resonance circuit in which a coil and a capacitor are connected in parallel with a main contact for switching current.

図4は、従来の回路遮断器の構成を示す回路図である。この図4に示すように、遮断器100は接点部101を有し、直流電源120と負荷130とからなる直流回路に挿入される。このような構成の遮断器では、遮断器の電圧を電源電圧以上に上げることで回路全体に流れる電流を零点まで減少させ、直流電流を遮断する。   FIG. 4 is a circuit diagram showing a configuration of a conventional circuit breaker. As shown in FIG. 4, the circuit breaker 100 has a contact portion 101 and is inserted into a DC circuit composed of a DC power source 120 and a load 130. In the circuit breaker having such a configuration, by raising the voltage of the circuit breaker to the power supply voltage or more, the current flowing through the entire circuit is reduced to the zero point and the direct current is interrupted.

図5は、図4に示す遮断器100の遮断動作時における電流・電圧波形の一例である。ここで、実線は回路全体の電流、破線は接点部101に発生するアークAの電圧(アーク電圧)の波形を示している。図5に示すように、図4に示す構成では、時刻t11で接点部101を開極して遮断動作を開始しても、遮断器の電圧が十分に上昇せず、回路全体に流れる電流(接点部101を流れる電流)をなかなか零点まで減少させることができない。このように、図4に示す構成では遮断性能が悪い、もしくは遮断不能となる。
そこで、遮断器の接点部と並列にコイル及びコンデンサを接続した共振回路により、遮断動作時に振動電流を発生させ、これを直流電流に重畳させることで接点部を流れる電流に零点を作り出し遮断する方法が提案されている(例えば、特許文献1〜3参照)。
FIG. 5 is an example of current / voltage waveforms during the breaking operation of the circuit breaker 100 shown in FIG. Here, the solid line indicates the current of the entire circuit, and the broken line indicates the waveform of the arc A voltage (arc voltage) generated at the contact portion 101. As shown in FIG. 5, in the configuration shown in FIG. 4, even when the contact portion 101 is opened at time t <b> 11 and the breaking operation is started, the circuit breaker voltage does not rise sufficiently and the current ( It is difficult to reduce the current flowing through the contact portion 101 to the zero point. As described above, in the configuration shown in FIG. 4, the blocking performance is poor or cannot be blocked.
Therefore, a resonance circuit in which a coil and a capacitor are connected in parallel with the contact part of the circuit breaker generates an oscillating current at the time of breaking operation, and superimposes this on a direct current to create a zero point in the current flowing through the contact part and shut off Has been proposed (see, for example, Patent Documents 1 to 3).

図6は、共振回路部を設けた遮断器の一般的な構成を示す図である。図6に示すように、遮断器100は、接点部101と、接点部101に直列に接続される補助接点102と、接点部101に並列に接続されるコイル103とコンデンサ104とを直列接続した共振回路部とを有する。このような構成の遮断器100では、接点開極時に接点部101にアークAが発生し、そのアーク電圧の発生に伴い接点部101、コイル103及びコンデンサ104からなる閉ループ回路に振動電流が発生する。そして、この振動電流が接点部101に流れる直流電流に重畳されることで、接点部101に流れる電流が零点に到達し、アーク電圧が上昇してアークAを介して通電されていた電流が遮断される。主接点101で電流零点を迎えた後は、コイル103及びコンデンサ104側の回路に直流電源120の電圧が印加され、コンデンサ104は電源電圧と同レベルまで充電される。この後、補助接点102が動作し、直流電源120から負荷130が完全に切り離される。   FIG. 6 is a diagram illustrating a general configuration of a circuit breaker provided with a resonance circuit unit. As shown in FIG. 6, the circuit breaker 100 has a contact part 101, an auxiliary contact 102 connected in series to the contact part 101, a coil 103 connected in parallel to the contact part 101, and a capacitor 104 connected in series. And a resonance circuit unit. In the circuit breaker 100 having such a configuration, an arc A is generated in the contact portion 101 when the contact is opened, and an oscillating current is generated in a closed loop circuit including the contact portion 101, the coil 103, and the capacitor 104 along with the generation of the arc voltage. . Then, this oscillating current is superimposed on the direct current flowing through the contact portion 101, so that the current flowing through the contact portion 101 reaches the zero point, the arc voltage rises, and the current that is energized through the arc A is interrupted. Is done. After reaching the current zero point at the main contact 101, the voltage of the DC power supply 120 is applied to the circuit on the coil 103 and capacitor 104 side, and the capacitor 104 is charged to the same level as the power supply voltage. Thereafter, the auxiliary contact 102 operates, and the load 130 is completely disconnected from the DC power source 120.

特開2004−39411号公報JP 2004-39411 A 特開平3−67429号公報JP-A-3-67429 特開昭54−132776号公報JP 54-132776 A

ところで、遮断動作時に発生する上記振動電流は、遮断器の共振回路部を構成するコンデンサの容量が大きいほど大きくなるため、当該コンデンサの容量が大きいほど、遮断性能は高くなるといえる。
例えば、図6に示す遮断器100において、共振回路部のコイル103のインダクタンスを10μH、コンデンサ104の容量を5.6μFとした場合、数百Vの電源電圧で数十A(例えば、50A)の直流電流を遮断しようとしたときの電流・電圧波形は図7に示すようになる。ここで、図7(a)の実線は回路全体の電流、(a)の破線はアーク電圧、(b)は接点部101を流れる電流、(c)は共振回路部を流れる電流である。この図7に示すように、時刻t21で接点部101を開極して遮断動作を開始しても、共振回路部に発生する振動電流が小さく、接点部101を流れる電流をなかなか零点まで到達させることができない。そのため、遮断動作開始から所望の遮断性能となる所定期間が経過した時点(矢印α)で、確実に電流遮断を完了とすることができない。
By the way, the oscillating current generated during the breaking operation increases as the capacitance of the capacitor constituting the resonance circuit portion of the breaker increases, so that it can be said that the breaking performance increases as the capacitance of the capacitor increases.
For example, in the circuit breaker 100 shown in FIG. 6, when the inductance of the coil 103 of the resonance circuit unit is 10 μH and the capacitance of the capacitor 104 is 5.6 μF, the power supply voltage of several hundred volts is several tens of A (for example, 50 A). FIG. 7 shows current / voltage waveforms when the direct current is cut off. Here, the solid line in FIG. 7 (a) is the current of the entire circuit, the broken line in (a) is the arc voltage, (b) is the current flowing through the contact part 101, and (c) is the current flowing through the resonant circuit part. As shown in FIG. 7, even when the contact portion 101 is opened at time t21 and the breaking operation is started, the oscillating current generated in the resonance circuit portion is small, and the current flowing through the contact portion 101 reaches the zero point quite easily. I can't. Therefore, the current interruption cannot be completed with certainty at the time when the predetermined period of the desired interruption performance has elapsed since the start of the interruption operation (arrow α).

このように、数百Vの電源電圧で数十Aの直流電流を遮断するには、コンデンサ104の容量が数μFであると容量が小さすぎるため、遮断性能が悪い。数百Vの電源電圧で数十Aの直流電流を遮断するには、数十μF〜数百μFのコンデンサ容量が必要である。
共振回路部に流れる電流は、正負の向きを持つ振動電流であるため、共振回路部を構成するコンデンサとしては無極性のコンデンサを使用するのが一般的である。ところが、無極性コンデンサで比較的容量の大きなフィルムコンデンサなどでも、その容量はせいぜい数μF程度しかない。そのため、上述したように数十μF以上のコンデンサ容量を実現するためには、当該無極性コンデンサを複数個並列に接続しなければならず、共振回路部が大型化し、それに伴い回路遮断器全体が大型化してしまう。そのため、例えば、配電盤等で回路遮断器を複数台設置するような用途には適用が困難であった。
そこで、本発明は、共振回路部を構成するコンデンサ部の大容量化及び小型化により、小型で遮断性能の高い回路遮断器を提供することを課題としている。
In this way, in order to cut off several tens of amperes of direct current with a power supply voltage of several hundred volts, if the capacity of the capacitor 104 is several μF, the capacity is too small, and the shut-off performance is poor. Capacitance of several tens of μF to several hundreds of μF is required to cut off several tens of A direct current with a power supply voltage of several hundred volts.
Since the current flowing through the resonance circuit unit is an oscillating current having positive and negative directions, a nonpolar capacitor is generally used as a capacitor constituting the resonance circuit unit. However, even a non-polar capacitor having a relatively large capacity has a capacity of only a few μF at most. Therefore, as described above, in order to realize a capacitor capacity of several tens of μF or more, a plurality of the nonpolar capacitors must be connected in parallel, the resonance circuit section becomes larger, and accordingly, the entire circuit breaker is It will increase in size. For this reason, for example, it has been difficult to apply to a use in which a plurality of circuit breakers are installed on a switchboard or the like.
Therefore, an object of the present invention is to provide a small circuit breaker having a high breaking performance by increasing the capacity and downsizing of the capacitor part constituting the resonance circuit part.

上記課題を解決するために、本発明の回路遮断器は、直流電源と負荷との間の直流回路に挿入される主接点と、コイルとコンデンサ部とが直列に接続され、前記主接点に並列に接続される共振回路部と、を備え、前記主接点の開極時に、前記主接点のアーク電圧特性によって前記共振回路部に発生する振動電流を、前記主接点を流れる直流電流に重畳し、上記主接点に流れる電流に零点を発生させて電流遮断を行う回路遮断器であって、前記コンデンサ部は、有極性コンデンサとダイオードとを、前記有極性コンデンサの正極と前記ダイオードのカソードとが接続するように並列に接続した回路を2組有し、前記2組の回路を、前記有極性コンデンサの同一極同士が接続するように直列に接続した構成であることを特徴としている。   In order to solve the above problems, a circuit breaker according to the present invention includes a main contact inserted in a DC circuit between a DC power supply and a load, a coil and a capacitor unit connected in series, and in parallel with the main contact. A resonance circuit unit connected to, and at the time of opening the main contact, oscillating current generated in the resonance circuit unit due to arc voltage characteristics of the main contact is superimposed on a direct current flowing through the main contact, A circuit breaker that cuts off current by generating a zero point in the current flowing through the main contact, wherein the capacitor unit connects a polar capacitor and a diode, and a positive electrode of the polar capacitor and a cathode of the diode Thus, there are two sets of circuits connected in parallel, and the two sets of circuits are connected in series so that the same poles of the polar capacitors are connected to each other.

このように、コンデンサ部に、無極性コンデンサと比較して容量の大きい有極性コンデンサを用いるので、コンデンサを多数並列接続することなく、必要なコンデンサ容量を確保することができる。したがって、コンデンサ部の大容量化及びそれに伴う小型化を図ることができる。   In this way, since the polar capacitor having a larger capacity than the nonpolar capacitor is used for the capacitor portion, a necessary capacitor capacity can be ensured without connecting many capacitors in parallel. Therefore, it is possible to increase the capacity of the capacitor portion and to reduce the size associated therewith.

さらに、コンデンサ部を、有極性コンデンサの正極と前記ダイオードのカソードとが接続するように並列に接続した回路2組により構成するので、このダイオードによるバイパス機能により、有極性コンデンサに逆方向の電流が流れないようにすることができる。すなわち、有極性コンデンサの逆電圧からの保護が可能となる。また、コンデンサ部を2個の有極性コンデンサの同一極同士を直列に接続した構成とするので、共振回路部全体で正負どちらの方向の電流でも流すことができる。すなわち、正負両方の通電方向をもつ振動電流に対応させることができる。
また、上記において、前記有極性コンデンサは、アルミ電解コンデンサであることを特徴としている。
このように、有極性コンデンサとして比較的安価なアルミ電解コンデンサを適用するので、低コストで回路遮断器を提供することができる。
Furthermore, since the capacitor portion is composed of two sets of circuits connected in parallel so that the positive electrode of the polar capacitor and the cathode of the diode are connected, the reverse function of the diode causes a reverse current to flow in the polar capacitor. It can be prevented from flowing. That is, it is possible to protect the polar capacitor from the reverse voltage. In addition, since the capacitor portion is configured such that the same poles of two polar capacitors are connected in series, current in either the positive or negative direction can flow in the entire resonance circuit portion. That is, it is possible to deal with an oscillating current having both positive and negative energization directions.
In the above, the polar capacitor is an aluminum electrolytic capacitor.
Thus, since a relatively inexpensive aluminum electrolytic capacitor is applied as the polar capacitor, a circuit breaker can be provided at a low cost.

本発明によれば、主接点と並列にコイル及びコンデンサ部を接続した共振回路により、遮断性能を高めた回路遮断器とすることができる。また、コンデンサ部に、一般的に使用される無極性コンデンサと比較して容量の大きい有極性コンデンサを用いるので、コンデンサ部の大容量化とそれに伴う小型化とを実現することができる。
したがって、回路遮断器全体の小型化が図れ、例えば、配電盤等で回路遮断器を複数台設置するような用途にも適用可能となる。
According to the present invention, a circuit breaker with improved breaking performance can be obtained by a resonance circuit in which a coil and a capacitor portion are connected in parallel with the main contact. In addition, since a polar capacitor having a larger capacity than that of a generally used nonpolar capacitor is used for the capacitor unit, it is possible to realize an increase in the capacity of the capacitor unit and a reduction in size associated therewith.
Therefore, the circuit breaker as a whole can be reduced in size, and can be applied to, for example, a case where a plurality of circuit breakers are installed on a switchboard or the like.

本発明に係る回路遮断器を適用した直流回路の構成を示す図である。It is a figure which shows the structure of the DC circuit to which the circuit breaker concerning this invention is applied. 遮断動作時における電流・電圧波形の一例である。It is an example of the electric current and voltage waveform at the time of interruption | blocking operation | movement. 本発明に係る回路遮断器の別の例を示す図である。It is a figure which shows another example of the circuit breaker which concerns on this invention. 従来の回路遮断器(共振回路部なし)の構成を示す図である。It is a figure which shows the structure of the conventional circuit breaker (no resonance circuit part). 従来の回路遮断器の遮断動作時における電流・電圧波形の一例である。It is an example of the electric current and voltage waveform at the time of interruption | blocking operation | movement of the conventional circuit breaker. 従来の回路遮断器(共振回路部あり)の構成を示す図である。It is a figure which shows the structure of the conventional circuit breaker (with a resonance circuit part). 従来の回路遮断器の遮断動作時における電流・電圧波形の一例である。It is an example of the electric current and voltage waveform at the time of interruption | blocking operation | movement of the conventional circuit breaker.

以下、本発明の実施の形態を図面に基づいて説明する。
(構成)
図1は、本発明に係る回路遮断器を適用した直流回路の構成を示す図である。
図中、符号1は直流回路であり、直流電源20と負荷30との間を結ぶ直流回路1に、回路遮断器(以下、単に遮断器と称す)10が挿入されている。
遮断器10は、接触子の開閉により電流を遮断/通電する主接点11を備える。主接点11には、回路の切り離しを行うための補助接点12が直列に接続されており、これら主接点11及び補助接点12は図示しない開閉機構部によって開閉制御される。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
(Constitution)
FIG. 1 is a diagram showing a configuration of a DC circuit to which a circuit breaker according to the present invention is applied.
In the figure, reference numeral 1 denotes a DC circuit, and a circuit breaker (hereinafter simply referred to as a circuit breaker) 10 is inserted in the DC circuit 1 connecting the DC power supply 20 and the load 30.
The circuit breaker 10 includes a main contact 11 that cuts off / energizes the current by opening and closing the contact. An auxiliary contact 12 for disconnecting the circuit is connected in series to the main contact 11, and the main contact 11 and the auxiliary contact 12 are controlled to be opened and closed by an opening / closing mechanism unit (not shown).

また、主接点11には、コイル13とコンデンサ部14とを直列に接続した共振回路部が並列に接続されている。ここで、コンデンサ部14は、2個の有極性コンデンサ15a,15bと2個のダイオード16a,16bとで構成される。上記有極性コンデンサ15a,15bとしては、アルミ電解コンデンサを用いる。なお、以下の説明において、アルミ電解コンデンサ15a,15bを総括して説明する場合には、単にアルミ電解コンデンサ15と略記する。また同様に、ダイオード16a,16bを総括して説明する場合には、ダイオード16と略記する。   The main contact 11 is connected in parallel with a resonance circuit unit in which a coil 13 and a capacitor unit 14 are connected in series. Here, the capacitor unit 14 includes two polar capacitors 15a and 15b and two diodes 16a and 16b. Aluminum electrolytic capacitors are used as the polar capacitors 15a and 15b. In the following description, when the aluminum electrolytic capacitors 15a and 15b are collectively described, they are simply abbreviated as the aluminum electrolytic capacitor 15. Similarly, when the diodes 16a and 16b are collectively described, they are abbreviated as a diode 16.

このコンデンサ部14は、アルミ電解コンデンサ15とダイオード16とを、アルミ電解コンデンサ15の正極とダイオード16のカソードとが接続するように並列に接続した回路を2組有する構成となっており、この2組の回路は、アルミ電解コンデンサ15の負極同士が接続するように直列に接続されている。
アルミ電解コンデンサ15は有極性のコンデンサであるため、一方向にしか通電することができない。そこで、本実施形態では、アルミ電解コンデンサ15a及び15bの負極同士を接続することで、共振回路部を正負両方の電流が通電可能となるように構成する。なお、この図1においては、直流電源20の高電位に接続されている側(コイル13側)から低電位に接続されている側(負荷30側)に流れる方向を正とする。
This capacitor unit 14 has a configuration including two sets of circuits in which an aluminum electrolytic capacitor 15 and a diode 16 are connected in parallel so that the positive electrode of the aluminum electrolytic capacitor 15 and the cathode of the diode 16 are connected. The circuits in the set are connected in series so that the negative electrodes of the aluminum electrolytic capacitors 15 are connected to each other.
Since the aluminum electrolytic capacitor 15 is a polar capacitor, it can be energized only in one direction. Therefore, in the present embodiment, the resonance circuit unit is configured to allow both positive and negative currents to flow by connecting the negative electrodes of the aluminum electrolytic capacitors 15a and 15b. In FIG. 1, the direction of flow from the side connected to the high potential of the DC power source 20 (coil 13 side) to the side connected to the low potential (load 30 side) is positive.

また、本実施形態では、各アルミ電解コンデンサ15に、当該アルミ電解コンデンサ15が通電することができない方向の電流を通電可能なダイオード16を並列に接続する。すなわち、アルミ電解コンデンサ15の正極にダイオード16のカソードを接続する。これにより、ダイオード16のバイパス機能によって、アルミ電解コンデンサ15の逆電圧からの保護が可能となる。   In this embodiment, each aluminum electrolytic capacitor 15 is connected in parallel with a diode 16 capable of conducting a current in a direction in which the aluminum electrolytic capacitor 15 cannot be energized. That is, the cathode of the diode 16 is connected to the positive electrode of the aluminum electrolytic capacitor 15. As a result, the bypass function of the diode 16 enables protection from the reverse voltage of the aluminum electrolytic capacitor 15.

以上の構成により、遮断器10は、定常状態で主接点11を閉極することで、負荷電流を主接点11に通電させる。一方、事故電流や負荷電流を遮断する際には、主接点11を開極する。このとき、主接点11にアークAが発生し、アーク電圧が発生する。ここで、アークAの電圧特性は、電流が増加するとアーク電圧が低下する負特性である。アークAと共振回路部(コイル13及びコンデンサ部14)とで構成される閉ループ回路に発生する振動電流は、主接点11に流れる直流電流に重畳され、これにより主接点11に流れる電流に零点を作り出し遮断することができる。   With the above configuration, the circuit breaker 10 closes the main contact 11 in a steady state, thereby energizing the main contact 11 with a load current. On the other hand, the main contact 11 is opened when an accident current or a load current is interrupted. At this time, an arc A is generated at the main contact 11 and an arc voltage is generated. Here, the voltage characteristic of the arc A is a negative characteristic in which the arc voltage decreases as the current increases. The oscillating current generated in the closed loop circuit composed of the arc A and the resonance circuit unit (the coil 13 and the capacitor unit 14) is superimposed on the direct current flowing through the main contact 11, thereby setting the zero point to the current flowing through the main contact 11. Can be produced and blocked.

上記振動電流は正負両方の通電方向をもつ電流である。共振回路部を電流が正の方向に流れる場合には、実線矢印Iaに示すように、コイル13→アルミ電解コンデンサ15a→ダイオード16bの経路で電流が流れる。一方、共振回路部を電流が負の方向に流れる場合には、破線矢印Ibに示すように、アルミ電解コンデンサ15b→ダイオード16a→コイル13の経路で電流が流れる。
このように、共振回路部を流れる電流の通電方向によってダイオード16a又は16bでバイパスすることで、アルミ電解コンデンサ15に逆方向の電流が流れないようにし、共振回路部全体では正負どちらの電流も流すことができるようにしている。
The oscillating current is a current having both positive and negative energization directions. When the current flows in the positive direction through the resonance circuit unit, the current flows through the path of the coil 13 → the aluminum electrolytic capacitor 15a → the diode 16b as indicated by the solid line arrow Ia. On the other hand, when the current flows in the negative direction through the resonance circuit section, the current flows through the path of the aluminum electrolytic capacitor 15b → the diode 16a → the coil 13 as indicated by the broken line arrow Ib.
In this way, by bypassing the diode 16a or 16b depending on the direction of current flow through the resonance circuit section, current in the reverse direction is prevented from flowing through the aluminum electrolytic capacitor 15, and both positive and negative current flows in the entire resonance circuit section. To be able to.

(動作)
次に、本実施形態の動作について説明する。
定常状態では、主接点11及び補助接点12が閉極されており、直流回路1には、直流電源20と負荷30とで決まる直流電流が流れる。この定常状態において、何らかの原因により負荷30で短絡事故が発生すると、直流回路1には定常状態で流れる電流に比べて非常に大きな短絡電流が流れる。すると、図示しない電流検知部が過電流を検知し、図示しない開閉機構部を駆動して短絡電流を遮断するための動作を開始する。以下、この電流遮断動作手順について、図2を参照しながら説明する。
(Operation)
Next, the operation of this embodiment will be described.
In the steady state, the main contact 11 and the auxiliary contact 12 are closed, and a DC current determined by the DC power supply 20 and the load 30 flows through the DC circuit 1. In this steady state, when a short circuit accident occurs in the load 30 for some reason, a very short circuit current flows in the DC circuit 1 compared to the current flowing in the steady state. Then, a current detection unit (not shown) detects an overcurrent and starts an operation for driving a switching mechanism unit (not shown) to cut off the short-circuit current. Hereinafter, the procedure of the current interruption operation will be described with reference to FIG.

ここで、図2は、図1に示す遮断器10において、共振回路部のコイル13のインダクタンスを10μH、コンデンサ部14の容量を33.6μF(アルミ電解コンデンサ15a,15bの容量をそれぞれ33.6μF)とした場合の遮断動作時における電流・電圧波形である。図2(a)の実線は回路全体の電流、(a)の破線はアーク電圧、(b)は接点部11を流れる電流、(c)は共振回路部を流れる電流を示している。また、I0は遮断電流、V0は電源電圧である。 Here, FIG. 2 shows that in the circuit breaker 10 shown in FIG. 1, the inductance of the coil 13 of the resonance circuit portion is 10 μH, the capacitance of the capacitor portion 14 is 33.6 μF (the capacitances of the aluminum electrolytic capacitors 15a and 15b are 33.6 μF, respectively). ) Is a current / voltage waveform during the shut-off operation. The solid line in FIG. 2A indicates the current of the entire circuit, the broken line in FIG. 2A indicates the arc voltage, (b) indicates the current flowing through the contact portion 11, and (c) indicates the current flowing through the resonant circuit portion. I 0 is a cut-off current, and V 0 is a power supply voltage.

短絡電流を遮断する場合、先ず、図2の時刻t1で、開閉機構部によって主接点11が開極される。この接点開極時には、主接点11にアークAが発生し、それに伴い図2(a)の破線に示すようにアーク電圧が発生する。すると、主接点11、コイル13及びコンデンサ部14からなる閉ループ回路に、コイル13及びコンデンサ部14によって決まる周波数をもつ振動電流が発生し(図2(c))、この振動電流が主接点11を流れる直流電流に重畳される(図2(b))。   When interrupting the short-circuit current, first, the main contact 11 is opened by the switching mechanism at time t1 in FIG. When the contact is opened, an arc A is generated at the main contact 11, and an arc voltage is generated accordingly, as shown by the broken line in FIG. Then, an oscillating current having a frequency determined by the coil 13 and the capacitor unit 14 is generated in the closed loop circuit including the main contact 11, the coil 13, and the capacitor unit 14 (FIG. 2C). It is superimposed on the flowing direct current (FIG. 2 (b)).

アーク電圧は時間の経過とともに緩やかに上昇し、このアーク電圧の上昇に伴い振動電流も増大する。すると、時刻t2で、主接点11を流れる電流が零点に到達し、これによりアーク電圧が上昇して、時刻t3でアークAを介して通電されていた電流が遮断され、電流遮断完了となる。
主接点11で電流零点を迎えた後は、コイル13及びコンデンサ14側に直流電源20の電圧が印加されるため、アルミ電解コンデンサ15は電源電圧と同レベルまで充電される。その後、開閉機構部によって補助接点12が開極されることで、直流電源20から負荷30が完全に切り離される。
The arc voltage gradually rises with time, and the oscillating current also increases as the arc voltage increases. Then, at time t2, the current flowing through the main contact 11 reaches the zero point, whereby the arc voltage rises, and the current energized via the arc A at time t3 is interrupted, thereby completing the current interruption.
After reaching the current zero point at the main contact 11, the voltage of the DC power supply 20 is applied to the coil 13 and the capacitor 14, so that the aluminum electrolytic capacitor 15 is charged to the same level as the power supply voltage. Thereafter, the auxiliary contact 12 is opened by the opening / closing mechanism so that the load 30 is completely disconnected from the DC power supply 20.

このように、コイル13及びコンデンサ部14で構成される共振回路部により振動電流を発生させ、その振動電流を直流電流に重畳させることで主接点11を流れる電流に零点を作り出して電流遮断を行う。このとき、共振回路部に、主接点11を流れる電流を遮断動作開始時から所望の遮断性能を実現可能な期間内に零点に到達させることができる大きさの振動電流が発生するように、コンデンサ部14の容量を設定する。   In this way, an oscillating current is generated by the resonance circuit unit composed of the coil 13 and the capacitor unit 14, and the oscillating current is superimposed on the DC current to create a zero point in the current flowing through the main contact 11 to cut off the current. . At this time, the capacitor is generated so that an oscillation current of a magnitude that can cause the current flowing through the main contact 11 to reach the zero point within a period in which a desired cutoff performance can be realized from the start of the cutoff operation is generated in the resonance circuit unit. The capacity of the unit 14 is set.

上記の例では、数百Vの電源電圧で例えば50Aの電流を効率良く遮断するために、コンデンサ容量を33.6μFとしている。本実施形態では、コンデンサ部14を構成するコンデンサとして、アルミ電解コンデンサ15を使用している。このような有極性コンデンサは静電容量が大きく、数十μF程度のコンデンサ容量は1個で実現可能である。本実施形態では、正負両方の通電方向をもつ振動電流に対応させるために、アルミ電解コンデンサ15を2組設ける必要があるため、33.6μFのコンデンサ容量を実現するためには遮断器10にアルミ電解コンデンサ15を2個設けるだけでよい。   In the above example, the capacitor capacity is set to 33.6 μF in order to efficiently cut off a current of, for example, 50 A with a power supply voltage of several hundred volts. In the present embodiment, an aluminum electrolytic capacitor 15 is used as a capacitor constituting the capacitor unit 14. Such a polar capacitor has a large electrostatic capacity, and a single capacitor having a capacitance of about several tens of μF can be realized. In the present embodiment, since it is necessary to provide two sets of aluminum electrolytic capacitors 15 in order to cope with an oscillating current having both positive and negative energization directions, in order to realize a capacitor capacity of 33.6 μF, the breaker 10 is provided with aluminum. It is only necessary to provide two electrolytic capacitors 15.

ところで、コイル13及びコンデンサ部14で構成される共振回路部には、上述したように正負両方の通電方向をもつ振動電流が流れるため、従来、共振回路部を構成するコンデンサには無極性コンデンサを使用していた。しかしながら、無極性コンデンサの中で比較的容量の大きなフィルムコンデンサでも静電容量は数μF程度である。図6に示す構成の遮断器100において、共振回路部を構成するコンデンサ104に無極性コンデンサを使用し、当該コンデンサ104のコンデンサ容量を5.6μFとした場合、遮断動作時の電流・電圧波形は図7に示すようになる。   By the way, since an oscillating current having both positive and negative energization directions flows through the resonance circuit unit constituted by the coil 13 and the capacitor unit 14 as described above, conventionally, a nonpolar capacitor has been used as the capacitor constituting the resonance circuit unit. I was using it. However, even a non-polar capacitor having a relatively large capacitance has a capacitance of about several μF. In the circuit breaker 100 having the configuration shown in FIG. 6, when a nonpolar capacitor is used as the capacitor 104 constituting the resonance circuit unit and the capacitance of the capacitor 104 is set to 5.6 μF, the current / voltage waveform during the breaking operation is As shown in FIG.

この図7に示すように、時刻t21で接点部101を開極して遮断動作を開始しても、共振回路部に発生する振動電流が小さく、図2における遮断動作開始時(時刻t1)から電流遮断完了時(時刻t3)までの期間と同等の期間が経過した矢印αの時点では、接点部101を流れる電流を零点まで到達させることができない。このように、共振回路部を構成するコンデンサの容量が小さいと遮断性能が悪い。   As shown in FIG. 7, even when the contact portion 101 is opened at time t21 and the breaking operation is started, the oscillating current generated in the resonance circuit portion is small, and from the time when the breaking operation starts (time t1) in FIG. At the time of the arrow α when a period equivalent to the period until completion of current interruption (time t3) has elapsed, the current flowing through the contact portion 101 cannot reach the zero point. Thus, when the capacitance of the capacitor constituting the resonance circuit unit is small, the cutoff performance is poor.

接点部101を流れる電流を効果的に零点まで到達させるために、例えば5.6μFのフィルムコンデンサを使ってコンデンサ部の静電容量を33μF以上にするには、6個のコンデンサを並列接続する必要がある。この場合、コンデンサ部が大型化し、結果として回路遮断器全体が大型化してしまう。
これに対して、本実施形態では、共振回路部を構成するコンデンサ部に、無極性コンデンサと比べて静電容量が大きい有極性コンデンサを用いる。これにより、主接点11を流れる電流を零点に到達させるのに十分必要な容量(数十μF〜数百μF)を、少ないコンデンサで実現することができる。すなわち、有極性コンデンサを使用することで、容量確保のためにコンデンサを多数並列接続する必要がなくなり、回路遮断器全体の小型化が図れる。
In order to make the current flowing through the contact part 101 reach the zero point effectively, for example, in order to increase the capacitance of the capacitor part to 33 μF or more using a film capacitor of 5.6 μF, it is necessary to connect six capacitors in parallel. There is. In this case, the capacitor portion is enlarged, and as a result, the entire circuit breaker is enlarged.
On the other hand, in the present embodiment, a polar capacitor having a larger capacitance than that of a nonpolar capacitor is used for the capacitor unit constituting the resonance circuit unit. As a result, a capacity (several tens of μF to several hundreds of μF) necessary for causing the current flowing through the main contact 11 to reach the zero point can be realized with a small number of capacitors. That is, by using a polar capacitor, it is not necessary to connect a large number of capacitors in parallel in order to secure the capacity, and the entire circuit breaker can be reduced in size.

(効果)
このように、本実施形態では、主接点と並列に接続する共振回路部を構成するコンデンサ部分を、他の種類のコンデンサに比べ静電容量の高い有極性コンデンサで構成するので、コンデンサ部の大容量化、小型化を図ることができる。また、有極性コンデンサとして比較的安価なアルミ電解コンデンサを用いるので、低コストで回路遮断器を提供することができる。
さらに、有極性コンデンサで構成されるコンデンサ部を2個のアルミ電解コンデンサと2個のダイオードとで構成する。そして、アルミ電解コンデンサの正極とダイオードのカソードとが接続するように並列に接続した回路を2組作り、当該2組の回路を、アルミ電解コンデンサの負極同士が接続するように直列に接続する。
(effect)
As described above, in the present embodiment, the capacitor portion constituting the resonance circuit portion connected in parallel with the main contact is constituted by a polarized capacitor having a higher capacitance than other types of capacitors, so that the capacitor portion is large. Capacitance and size reduction can be achieved. Further, since a relatively inexpensive aluminum electrolytic capacitor is used as the polar capacitor, a circuit breaker can be provided at a low cost.
Furthermore, the capacitor part composed of a polar capacitor is composed of two aluminum electrolytic capacitors and two diodes. Then, two sets of circuits connected in parallel so that the positive electrode of the aluminum electrolytic capacitor and the cathode of the diode are connected are made, and the two sets of circuits are connected in series so that the negative electrodes of the aluminum electrolytic capacitor are connected.

これにより、共振回路部を流れる電流の通電方向によってダイオードをバイパスさせることで、片方のアルミ電解コンデンサを逆電圧から保護しつつ、共振回路部全体では正負どちらの電流も流すことができるようになる。したがって、電流遮断動作時には、遮断器の主接点に流れる電流を効果的に零点に到達させることができる振動電流を適切に発生させることができ、遮断性能の高い回路遮断器とすることができる。
以上のように、小型で遮断性能の高い回路遮断器を提供することができる。その結果、例えば、配電盤等で回路遮断器を複数台設置するような用途にも適用可能となる。
As a result, by bypassing the diode depending on the direction of current flow through the resonance circuit unit, one of the positive and negative currents can flow through the entire resonance circuit unit while protecting one aluminum electrolytic capacitor from a reverse voltage. . Therefore, during the current interruption operation, an oscillating current that can effectively reach the zero point of the current flowing through the main contact of the circuit breaker can be appropriately generated, and a circuit breaker with high interruption performance can be obtained.
As described above, it is possible to provide a circuit breaker that is small and has high breaking performance. As a result, for example, the present invention can be applied to an application in which a plurality of circuit breakers are installed on a switchboard or the like.

(変形例)
なお、上記実施形態においては、アルミ電解コンデンサ15の負極同士を直列に接続する場合について説明したが、図3に示すように、アルミ電解コンデンサ15の正極同士を直列に接続することもできる。
この場合、共振回路部を電流が正の方向に流れる場合には、実線矢印Iaに示すように、コイル13→ダイオード16b→アルミ電解コンデンサ15aの経路で電流が流れる。一方、共振回路部を電流が負の方向に流れる場合には、破線矢印Ibに示すように、ダイオード16a→アルミ電解コンデンサ15b→コイル13の経路で電流が流れる。したがって、図3に示す回路構成でも、図1に示す回路構成の場合と同様の動作を実現することができる。
(応用例)
なお、上記実施形態においては、有極性コンデンサとしてアルミ電解コンデンサを用いる場合について説明したが、これに代えて小型で大容量のタンタル電解コンデンサ等を用いることもできる。
(Modification)
In the above embodiment, the case where the negative electrodes of the aluminum electrolytic capacitors 15 are connected in series has been described. However, as shown in FIG. 3, the positive electrodes of the aluminum electrolytic capacitors 15 can also be connected in series.
In this case, when the current flows in the positive direction through the resonance circuit unit, the current flows through the path of the coil 13 → the diode 16b → the aluminum electrolytic capacitor 15a as indicated by the solid line arrow Ia. On the other hand, when the current flows in the negative direction through the resonance circuit section, the current flows through the path of the diode 16a → the aluminum electrolytic capacitor 15b → the coil 13 as indicated by the broken line arrow Ib. Therefore, even with the circuit configuration shown in FIG. 3, the same operation as in the circuit configuration shown in FIG. 1 can be realized.
(Application examples)
In the above embodiment, the case where an aluminum electrolytic capacitor is used as the polar capacitor has been described. However, a tantalum electrolytic capacitor having a small size and a large capacity may be used instead.

1…直流回路、10…遮断器、11…主接点、12…補助接点、13…コイル、14…コンデンサ部、15a,15b…アルミ電解コンデンサ(有極性コンデンサ)、16a,16b…ダイオード、A…アーク   DESCRIPTION OF SYMBOLS 1 ... DC circuit, 10 ... Circuit breaker, 11 ... Main contact, 12 ... Auxiliary contact, 13 ... Coil, 14 ... Capacitor part, 15a, 15b ... Aluminum electrolytic capacitor (polar capacitor), 16a, 16b ... Diode, A ... arc

Claims (2)

直流電源と負荷との間の直流回路に挿入される主接点と、コイルとコンデンサ部とが直列に接続され、前記主接点に並列に接続される共振回路部と、を備え、前記主接点の開極時に、前記主接点のアーク電圧特性によって前記共振回路部に発生する振動電流を、前記主接点を流れる直流電流に重畳し、上記主接点に流れる電流に零点を発生させて電流遮断を行う回路遮断器であって、
前記コンデンサ部は、有極性コンデンサとダイオードとを、前記有極性コンデンサの正極と前記ダイオードのカソードとが接続するように並列に接続した回路を2組有し、
前記2組の回路を、前記有極性コンデンサの同一極同士が接続するように直列に接続した構成であることを特徴とする回路遮断器。
A main contact inserted into a DC circuit between a DC power supply and a load, a coil and a capacitor unit are connected in series, and a resonance circuit unit is connected in parallel to the main contact. When opening the pole, the oscillating current generated in the resonance circuit unit due to the arc voltage characteristic of the main contact is superimposed on the direct current flowing through the main contact, and a zero point is generated in the current flowing through the main contact to cut off the current. A circuit breaker,
The capacitor unit has two sets of circuits in which a polar capacitor and a diode are connected in parallel so that a positive electrode of the polar capacitor and a cathode of the diode are connected,
A circuit breaker characterized in that the two sets of circuits are connected in series so that the same poles of the polarized capacitors are connected to each other.
前記有極性コンデンサは、アルミ電解コンデンサであることを特徴とする請求項1に記載の回路遮断器。   The circuit breaker according to claim 1, wherein the polar capacitor is an aluminum electrolytic capacitor.
JP2011057354A 2011-03-16 2011-03-16 Circuit breaker Expired - Fee Related JP5654394B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011057354A JP5654394B2 (en) 2011-03-16 2011-03-16 Circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011057354A JP5654394B2 (en) 2011-03-16 2011-03-16 Circuit breaker

Publications (2)

Publication Number Publication Date
JP2012195121A true JP2012195121A (en) 2012-10-11
JP5654394B2 JP5654394B2 (en) 2015-01-14

Family

ID=47086834

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011057354A Expired - Fee Related JP5654394B2 (en) 2011-03-16 2011-03-16 Circuit breaker

Country Status (1)

Country Link
JP (1) JP5654394B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522411B1 (en) * 2013-12-26 2015-05-21 주식회사 효성 DC circuit breaker for shutting off bi-direction fault current using single circuit
KR101522412B1 (en) * 2013-12-26 2015-05-26 주식회사 효성 Bi-directional DC interruption device
KR101522413B1 (en) * 2013-12-30 2015-05-28 주식회사 효성 High-voltage DC circuit breaker
KR101570172B1 (en) 2014-01-28 2015-11-19 삼화전기 주식회사 Passive type energy storage system
WO2016108530A1 (en) * 2014-12-29 2016-07-07 주식회사 효성 Dc circuit breaker
WO2017034322A1 (en) * 2015-08-24 2017-03-02 주식회사 효성 Dc circuit breaker
US10002722B2 (en) 2015-02-20 2018-06-19 Abb Schweiz Ag Switching system for breaking a current and method of performing a current breaking operation
EP3242309A4 (en) * 2014-12-29 2018-07-04 Hyosung Corporation High voltage dc circuit breaker

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132776A (en) * 1978-04-05 1979-10-16 Hitachi Ltd Dc breaker
JPH0256332U (en) * 1988-10-18 1990-04-24
JPH0367429A (en) * 1989-08-04 1991-03-22 Hitachi Ltd High-speed dc vacuum breaker
JP2004039411A (en) * 2002-07-03 2004-02-05 Toshiba Corp Vacuum circuit breaker
JP2009218054A (en) * 2008-03-10 2009-09-24 Ntt Data Ex Techno Corp Circuit breaker assistant circuit of direct current switch, direct current breaking circuit and direct current breaker
JP2010272296A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp State recognition unit for switching device or electromagnetic operation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54132776A (en) * 1978-04-05 1979-10-16 Hitachi Ltd Dc breaker
JPH0256332U (en) * 1988-10-18 1990-04-24
JPH0367429A (en) * 1989-08-04 1991-03-22 Hitachi Ltd High-speed dc vacuum breaker
JP2004039411A (en) * 2002-07-03 2004-02-05 Toshiba Corp Vacuum circuit breaker
JP2009218054A (en) * 2008-03-10 2009-09-24 Ntt Data Ex Techno Corp Circuit breaker assistant circuit of direct current switch, direct current breaking circuit and direct current breaker
JP2010272296A (en) * 2009-05-20 2010-12-02 Mitsubishi Electric Corp State recognition unit for switching device or electromagnetic operation device

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101522411B1 (en) * 2013-12-26 2015-05-21 주식회사 효성 DC circuit breaker for shutting off bi-direction fault current using single circuit
KR101522412B1 (en) * 2013-12-26 2015-05-26 주식회사 효성 Bi-directional DC interruption device
WO2015099467A1 (en) * 2013-12-26 2015-07-02 주식회사 효성 Dc circuit breaker for breaking bidirectional fault current using single circuit
WO2015099468A1 (en) * 2013-12-26 2015-07-02 주식회사 효성 Bidirectional direct current circuit breaker
KR101522413B1 (en) * 2013-12-30 2015-05-28 주식회사 효성 High-voltage DC circuit breaker
WO2015102307A1 (en) * 2013-12-30 2015-07-09 주식회사 효성 High-voltage dc circuit breaker
KR101570172B1 (en) 2014-01-28 2015-11-19 삼화전기 주식회사 Passive type energy storage system
WO2016108530A1 (en) * 2014-12-29 2016-07-07 주식회사 효성 Dc circuit breaker
EP3242309A4 (en) * 2014-12-29 2018-07-04 Hyosung Corporation High voltage dc circuit breaker
US10476255B2 (en) 2014-12-29 2019-11-12 Hyosung Heavy Industries Corporation DC circuit breaker
US10002722B2 (en) 2015-02-20 2018-06-19 Abb Schweiz Ag Switching system for breaking a current and method of performing a current breaking operation
WO2017034322A1 (en) * 2015-08-24 2017-03-02 주식회사 효성 Dc circuit breaker

Also Published As

Publication number Publication date
JP5654394B2 (en) 2015-01-14

Similar Documents

Publication Publication Date Title
JP5654394B2 (en) Circuit breaker
KR101550374B1 (en) High-voltage DC circuit breaker
US10176947B2 (en) High-voltage DC circuit breaker for blocking DC current
KR101522412B1 (en) Bi-directional DC interruption device
WO2015121983A1 (en) Protection system for dc power transmission system, ac/dc converter, and dc power transmission system breaking method
KR101483084B1 (en) Device and method to interrupt direct current
JP4942169B2 (en) 3-level inverter
CN111937110B (en) Switching device
US9159511B2 (en) Circuit and method for interrupting a current flow in a DC current path
JP6469894B2 (en) Power converter
US10937612B2 (en) DC voltage switch
JPWO2014038008A1 (en) DC circuit breaker
US10490365B2 (en) Direct-current switching device
JP6953885B2 (en) Power supply and cutoff switch circuit
DK2789068T3 (en) Circuit device for reducing the current in a high voltage dc transfer line, high voltage dc transfer system and method for reducing the current in an electric current
JP2010238391A (en) Direct-current breaker
JP6794930B2 (en) DC cutoff device
JP2011243288A (en) Blowout interruption circuit and arc discharge suppression circuit
JP2010153368A (en) Direct current interruption assist circuit, direct overcurrent interrupting circuit, direct current interrupting circuit, and incoming direct current preventing circuit
JP2006260925A (en) Direct current high speed vacuum circuit breaker
JP2000090787A (en) Breaking device and d.c. power transmission system with its application
JP2019195242A (en) Boost converter
JP2002110006A (en) Direct current breaker
JP2013187035A (en) High-speed reclosing device of circuit breaker
JPWO2005041389A1 (en) Pulse generation circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141023

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141120

R150 Certificate of patent or registration of utility model

Ref document number: 5654394

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees