JP2004039411A - Vacuum circuit breaker - Google Patents

Vacuum circuit breaker Download PDF

Info

Publication number
JP2004039411A
JP2004039411A JP2002194104A JP2002194104A JP2004039411A JP 2004039411 A JP2004039411 A JP 2004039411A JP 2002194104 A JP2002194104 A JP 2002194104A JP 2002194104 A JP2002194104 A JP 2002194104A JP 2004039411 A JP2004039411 A JP 2004039411A
Authority
JP
Japan
Prior art keywords
current
commutation
circuit breaker
capacitor
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002194104A
Other languages
Japanese (ja)
Inventor
Hideji Kikuchi
菊地 秀二
Mitsutaka Honma
本間 三孝
Hiroki Kagara
加々良 弘樹
Kazumasa Sato
佐藤 和征
Naoyuki Ishibashi
石橋 尚之
Shiro Otake
大竹 史郎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2002194104A priority Critical patent/JP2004039411A/en
Publication of JP2004039411A publication Critical patent/JP2004039411A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum circuit breaker capable of stabilizing the breaking performance, enhancing the reliability, and reducing the loss in the vacuum circuit breaker with the use of a commutation device. <P>SOLUTION: The commutation device 20 is connected in parallel with a vacuum valve 11 of the vacuum circuit breaker. In the commutation device 20; a capacitor 21, a reactor 22, and a commutation current starting switch 24 are serially connected, and further an arrester 23 to be a non-linear resistive element is connected in parallel with this as an energy absorbing device. The capacitance of the capacitor is made not less than 1000 μF, the reactor is made not less than 3 μH, the resonance frequency is made not less than 1000 Hz and less than 2000 Hz, the resistance of the serial circuit consisting of the capacitor, the reactor, and the turned-on commutation current starting switch is made not less than 20 mΩ. The operating voltage (the voltage value at which a current of 1 mA begins to flow) of the energy absorbing device is made 1.5-2.5 times the rated voltage of the system. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は真空遮断器に係り、特に電流遮断時に遮断電流に転流装置からの転流電流を重畳させて遮断するようにした遮断性能を安定化させた真空遮断器に関する。
【0002】
【従来の技術】
近年真空遮断器が多方面で使用されている。真空バルブを用いた真空遮断器の遮断では、電流が零にならなければ電流遮断ができない点がある。このため直流電流の場合では、真空バルブに並列に接続した転流装置により遮断電流に対して高周波電流を重畳し、強制的に電流零点を形成して電流を遮断する方式が行われている。
【0003】
気中遮断器の場合では、接点を開いて電流を遮断する時、数干V以上の非常に高いアーク電圧になり、このアーク電圧の影響で電流が限流され遮断を行うことができる。この気中遮断器では、接点に消費されるエネルギー、つまり電流とアーク電圧の積は非常に大きく、従って遮断を行ったことによる接点の劣化が大きいことが知られている。
【0004】
そのため、メンテナンスなどを頻繁に行う必要があり、さらに、気中でアークを出して遮断するため、遮断時には大きな遮断音が発生し、環境的な問題も出て来ている。このような気中遮断器に比べて真空遮断器を用いた場合では、アーク電圧は数十Vであり、接点間で消費するエネルギーは気中遮断器の百分の一程度に低減される。このため接点の損傷は少なく長寿命にすることができる。
【0005】
さらに、互いに接離する接点が真空容器内に配置されているため、アークは真空容器内で処理される。これによって、アークの飛散による影響や、遮断時の遮断音も大幅に軽減でき、環境に適していると言える。これらの背景から直流を遮断する場合でも真空バルブを使用した真空遮断器が用いられる様になって来ている。
【0006】
また、交流電流において高速に遮断を行う場合にも、前述の様な真空バルブに並列に接続した転流装置を用いる場合が出てきている。これにより、半導体式の遮断器(GTO遮断器)に近い遮断時間での遮断を行わせることが可能で、半導体式に比べ真空遮断器は、定格電流通電時のエネルギーロスが低減でき省エネ化が図れる。
【0007】
この様に真空遮断器は、直流電流を遮断する場合や、非常に高速で電流遮断を行う場合等に幅広く使用する様になってきた。このような使用の場合には、従来の交流で使用していた真空遮断器に対して、前述のように真空バルブに並列に転流装置を接続する必要がある。
【0008】
ところで、転流装置を真空バルブに並列に接続した場合、転流装置からの重畳電流で電流零点を作ることから、電流零点での電流勾配が遮断性能に大きく影響する。また遮断状態時の真空バルブ電極間のアークは、プラズマ状態になっている。
【0009】
電流遮断に向け電流が減衰して行くに従って、電極間のプラズマは減少し、理想的には電流零点でプラズマが電極間から全て拡散して電極間の環境が真空状態になれば、電流遮断後に電極間に加わる回復電圧に対して十分な絶縁耐力があるため確実に遮断が完了する。
【0010】
真空遮断器ではこのプラズマの拡散速度が速く、高い電流勾配でも遮断が可能である。然しながら、電流勾配が大きすぎると電流零点で拡散できない残留プラズマが増加し、この結果、遮断に失敗する場合が出てくる恐れがある。この様に転流装置を用いる場合には、転流電流の電流勾配条件が重要であることが知られている。
【0011】
一方、転流電流で電流零点を作り遮断する方式では、強制的に電流を遮断することから、回路のインダクタンス分に残留するエネルギーを放出する必要があり、エネルギー放出のため遮断する真空バルブと並列に非線型抵抗などのエネルギー吸収装置を接続する必要がある。
【0012】
この種技術として、特開平3−67429号公報に記載された車両搭載の直流高速遮断器が知られている。これによれば転流回路の振動周波数が2kHz以上で、転流電流を5、000A以上とし、且つ転流インダクタンスを1μH以上とする事が示されている。
【0013】
しかし、この条件を地上の軌電回路に使用される直流高速真空遮断器に適用する場合には、大電流遮断時の電流勾配が大きくなり遮断できない場合が考えられる。
【0014】
即ち、軌電用遮断器の場合、事故電流の検出電流値(気中遮断器の一般的名称では目盛値)が12、000Aであり、定格の遮断電流、目盛値で遮断器が動作し電流が遮断するまでの期間での最大電流値、は25,000Aとなる。これは事故電流の検出から遮断までの時間が数msあり、その電流上昇率が3×10A/sであるため遮断点での電流が大きな値となる。
【0015】
この様な大電流を遮断する場合には、真空バルブの電極間のアーク形態が、ア一クに対して自己ピンチ力が働き集中してしまい、電極の極部的な損傷を引き起こす恐れがあるためで、10,000A程度以下の拡散している状態に比べ、遮断できる電流勾配が小さくなる。
【0016】
従って、10,000A程度を越える大電流遮断の場合でも安定して電流を遮断するためには、転流電流が重畳して流れる電流の電流零点付近の電流勾配を低減する必要がある。
【0017】
転流電流を重畳した電流の電流零点付近での電流勾配を小さくする手法としては、図3に示す回路が知られている。図3において、真空遮断器の真空バルブ11に直列に過飽和リアクトル15が接続され、この直列回路に並列に転流装置20が接続されている。
【0018】
転流装置20はコンデンサ21、リアクトル22および転流電流始動用スイッチ24が直列に接続され、この直列回路と並列に工ネルギー吸収装置としてのアレスタ23が接続されている。コンデンサ21は図示していない充電装置により充電された状態とする。
【0019】
このように真空遮断器に流れる遮断電流と転流電流が重畳する部分に過飽和リアクトル15を接続する方法である。この方法によれば真空バルブ11の電流零点付近では過飽和リアクトル15のリアクトル分が増加し、電流零点での電流勾配を小さくすることができる。
【0020】
電流を遮断する場合、まず真空バルブ11を開極し、その後に転流電流始動用スイッチ24を投入する。これにより、コンデンサ21に充電されていた電荷は、遮断電流と逆方向の転流電流となって真空バルブ11に流れる。この重畳電流により電流零点を作り電流遮断を行う。
【0021】
この時の電流波形を図4に示す。遮断電流と転流電流の重畳電流波形図(a)と、転流電流だけ流した場合の電流波形図(b)を示す。重畳電流は電流零点付近で電流勾配が小さくなっている。転流電流だけを見ると電流ピーク付近のA部分が過飽和リアクトル15の効果のある部分である。
【0022】
しかし、転流装置20側ではコンデンサ21の放電を開始する転流電流始動用スイッチ24に流れる転流電流の電流零点に対しては電流勾配を低減する効果は期待できない。
【0023】
【発明が解決しようとする課題】
この様な構成であると過飽和リアクトル15を通常の電流を通電する部分に取付ける必要があることから、通常の電流を通電している時にも過飽和リアクトル15による損失がある。
【0024】
また、電流遮断による回路のリアクタンス分の残留エネルギーを放出するための工ネルギー吸収装置として非線形抵抗素子であるアレスタ23を接続しているが、アレスタ23の制限電圧は、この制限電圧が高すぎると回路で発生する電圧によりアレスタ以外の部分で放電を起こす可能性がある。また、制限電圧が低すぎるとアレスタ23の動作頻度が増加し、アレスタ23の寿命を低減してしまうことになる。
【0025】
さらに、転流電流を流すためのコンデンサ21は充電電圧を高くした方が同一の転流電流を流すためには容量を小さく出来るが、アレスタ23ヘの分流などを考慮する必要がある。そして、充電電圧を低くするとコンデンサ21の容量を増加させる必要があると共に、アレスタ23の制限電圧がコンデンサ21の両端に印加されるためコンデンサ21の許容電圧によってはコンデンサ21の劣化を早めることにつながる。
【0026】
本発明は上記問題点に鑑みなされたもので、転流装置を用いた真空遮断器において、遮断性能を安定化させ、信頼性の高い損失の小さな真空遮断器を提供することを目的とするものである。
【0027】
【課題を解決するための手段】
上記目的を達成するために本発明による真空遮断器によれば、真空バルブに並列に転流装置を接続し、電流遮断時に遮断電流に転流装置から転流電流を重畳して電流零点を作り電流を遮断する真空遮断器において、前記転流装置をコンデンサとリアクトルおよび充電装置により充電されるコンデンサの充電された電荷を放電する転流電流始動用スイッチを直列に接続した回路に並列にエネルギー吸収素子を接続して構成し、前記転流装置のコンデンサ容量を1000μF以上でリアクトルを3μH以上とし、共振周波数を1000Hz以上2000Hz未満とし、且つ転流装置のコンデンサとリアクトルおよび転流電流始動用スイッチを投入した状態での直列の回路抵抗を20mΩ以下とし、エネルギー吸収装置の動作電圧(1mA流れ始める電圧値)を系統の定格電圧の1.5倍〜2.5倍とした事を特徴とする。
【0028】
これにより転流装置の小型化を図ることができ、エネルギー吸収装置の寿命を延ばすことができ、また重畳電流の電流零点での電流勾配を200A/μs以下とすることができ安定した遮断を行わせることができる。
【0029】
また本発明による真空遮断器によれば、真空バルブに並列に転流装置を接続し、電流遮断時に遮断電流に転流装置から転流電流を重畳して電流零点を作り電流を遮断する真空遮断器において、前記転流装置をコンデンサとリアクトルおよび充電装置により充電されるコンデンサの充電された電荷を放電する転流電流始動用スイッチを直列に接続した回路に並列にエネルギー吸収素子を接続して構成して成り、前記転流装置のコンデンサ充電電圧をエネルギー吸収素子の動作電圧より低くし、且つ系統の定格電圧より高くした事を特徴とする。
【0030】
これにより、コンデンサの寿命劣化を低減でき、安定した遮断を行わせることができる。
【0031】
【発明の実施の形態】
本発明の実施の形態を図1に示す。図1において、真空遮断器の真空バルブ11に並列に転流装置20が接続されている。転流装置20はコンデンサ21、リアクトル22および転流電流始動用スイッチ24が直列に接続され、更にこれと並列に工ネルギー吸収装置として非線形抵抗素子であるアレスタ23が接続されて構成されている。コンデンサ21は図示していない充電装置により充電される。
【0032】
電流を遮断する場合、まず真空バルブ11を開極し、その後に転流電流始動用スイッチ24を投入する。これにより、コンデンサ21に充電されていた電荷は、遮断電流と逆方向の転流電流となって真空バルブ11に流れる。この重畳電流により電流零点を作り電流遮断を行う。
【0033】
ここで転流電流の周波数と電流勾配の関係を図2に示す。大電流遮断領域である20kA遮断において共振周波数を2kHz未満にする事により電流勾配を200A/μs以下に抑えることができる。またコンデンサ21の容量は1,000μF以上でリアクトル22を3mH以上とするのが転流装置20の縮小化の点からも適切である。
【0034】
本発明での実施例としてコンデンサ容量1,200μF、リアクトルを15μHとした。これによって、推定短絡電流50kA、直流電流の上昇率を3×10A/s、目盛値12,000Aの条件で、転流電流と遮断電流の重畳電流の電流零点での電流勾配を200A/μs以下とすることができ、問題無く遮断をする事ができた。
【0035】
転流装置20に浮遊のインダクタンス分以外にリアクトル22を挿入する事により、製造状態による浮遊のインダクタンス分の変動による影響を無くす事ができ、安定した性能の転流装置を製造する事ができる。
【0036】
また、転流電流の共振周波数を1kHzより小さくするためにはコンデンサ21およびリアクトル22を大きくする必要があることから、転流装置20が大型化し得策ではない。
【0037】
さらにコンデンサ21とリアクトル22および転流電流開始用スイッチ24の投入状態での回路抵抗を20mΩするのが良く、本発明の実施例として10mΩとした。これにより転流電流の減衰を低減できた。その結果、直流電流を逆方向に13,200A流した条件でも問題無く遮断する事ができた。
【0038】
また、エネルギー吸収素子に使用しているアレスタ23の制限電圧(アレスタに1mA流れる電圧値)を、系統の定格電圧の1.5〜2.5倍の範囲に設定する。本発明の実施例では系統の定格電圧1,500Vに対してアレスタの制限電圧を2,500Vとした。
【0039】
これにより遮断時のアレスタの最大発生電圧を4,000V以下に制限でき、アレスタ以外の部分での絶縁破壊など無く問題無い遮断をする事ができた。アレスタ23の制限電圧を系統の定格電圧の1.5倍以上にする事により、小電流開閉などの条件ではアレスタの動作は無くアレスタの寿命を伸ばすことができる。
そして、制限電圧の最大を2.5倍以下にすることにより、アレスタ以外の部分の絶縁破壊もなく安定した遮断をすることができる。
【0040】
転流装置20のコンデンサ21の充電電圧は、前述のアレスタ23の制限電圧より低く、且つ系統の定格電圧以上とすることにより、安定した転流電流を遮断器の真空バルブ11に重畳することができ、コンデンサ21の寿命劣化を低減することができる。
【0041】
本発明の実施例では系統の定格電圧1,500V、アレスタの制限電圧2.500Vに対してコンデンサ21の充電電圧を2,300Vとした。これにより、転流電流のアレスタ23側への分流も無く安定した転流電流を真空バルブ11に重畳することができた。
【0042】
尚、使用した真空バルブ11の接点材料は、導電成分としてCuまたはAgを使用し、耐弧成分としてCr、W、Mo、Tiおよびその炭化物の少なくても一種を含む合金からなる材料を使用した。
【0043】
このような接点材料構成であれば、高蒸気圧材などが含有されている材料に比べ、遮断電流の単位電荷量あたりの接点からの中性金属蒸気および金属プラズマの発生量を小さくでき、また遮断電流の電流勾配が従来より大きな条件でも遮断が可能であった。そのため、転流電流の電流周波数を高くでき、小さな転流装置にすることができる利点がある。
【0044】
本発明の実施例として接点材料としてCuCr合金を使用した。これにより、高い遮断性能を得ることができた。
【0045】
【発明の効果】
本発明の真空遮断器によれば、転流装置の転流電流を安定化させ、遮断性能を安定化できると供に、小形化が可能である。さらに転流装置の劣化を低減でき長寿命化が図れる。
【図面の簡単な説明】
【図1】本発明の実施の形態を示す回路図。
【図2】転流電流の周波数と電流勾配の関係を示す説明図。
【図3】従来の真空遮断器を示す回路図。
【図4】(a)、(b) 図3の真空遮断器における重畳電流波形図と転流電流波形図。
【符号の説明】
11・・・真空バルブ
15・・・過飽和リアクトル
20・・・転流装置
21・・・コンデンサ
22・・・リアクトル
23・・・アレスタ
24・・・転流電流始動スイッチ
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a vacuum circuit breaker, and more particularly, to a vacuum circuit breaker having a stabilized breaking performance in which a commutation current from a commutation device is superimposed on a breaking current when a current is cut off to break the current.
[0002]
[Prior art]
In recent years, vacuum circuit breakers have been used in various fields. When shutting off a vacuum circuit breaker using a vacuum valve, the current cannot be cut off unless the current becomes zero. For this reason, in the case of DC current, a method is used in which a high-frequency current is superimposed on a cutoff current by a commutation device connected in parallel to a vacuum valve to forcibly form a current zero point and cut off the current.
[0003]
In the case of an air circuit breaker, when a contact is opened to interrupt a current, an extremely high arc voltage of several volts or more occurs, and the current is limited by the influence of the arc voltage, so that interruption can be performed. In this air circuit breaker, it is known that the energy consumed at the contacts, that is, the product of the current and the arc voltage is very large, and therefore, the contacts are greatly deteriorated due to the interruption.
[0004]
Therefore, it is necessary to frequently perform maintenance and the like, and furthermore, since the arc is cut off in the air and cut off, a loud shut-off sound is generated at the time of cut-off, and environmental problems have also been raised. When a vacuum circuit breaker is used as compared with such an air circuit breaker, the arc voltage is several tens of volts, and the energy consumed between the contacts is reduced to about one-hundredth of the air circuit breaker. For this reason, damage to the contacts is small and the life can be extended.
[0005]
Furthermore, the arcs are processed in the vacuum vessel, since the contacts that come into and away from each other are arranged in the vacuum vessel. As a result, the influence of the scattering of the arc and the interruption sound at the time of interruption can be significantly reduced, and it can be said that it is suitable for the environment. From these backgrounds, a vacuum circuit breaker using a vacuum valve has come to be used even when direct current is cut off.
[0006]
In addition, even in the case of performing high-speed cutoff with an alternating current, there has been a case where a commutation device connected in parallel to the above-described vacuum valve is used. As a result, it is possible to perform a cut-off with a cut-off time close to that of a semiconductor circuit breaker (GTO circuit breaker). Compared with a semiconductor circuit breaker, a vacuum circuit breaker can reduce energy loss when a rated current is supplied and save energy. I can plan.
[0007]
As described above, the vacuum circuit breaker has been widely used for interrupting a DC current or for interrupting a current at a very high speed. In such a case, it is necessary to connect a commutation device in parallel with the vacuum valve, as described above, with respect to a conventional vacuum circuit breaker used for alternating current.
[0008]
By the way, when the commutation device is connected in parallel with the vacuum valve, a current zero point is created by the superimposed current from the commutation device, and thus the current gradient at the current zero point greatly affects the breaking performance. The arc between the vacuum valve electrodes in the cutoff state is in a plasma state.
[0009]
As the current attenuates toward the current interruption, the plasma between the electrodes decreases, and ideally, if the plasma diffuses completely from between the electrodes at the current zero point and the environment between the electrodes becomes a vacuum state, after the current interruption, Since there is a sufficient dielectric strength against the recovery voltage applied between the electrodes, the cutoff is surely completed.
[0010]
In a vacuum circuit breaker, the diffusion speed of this plasma is high, and it is possible to cut off even with a high current gradient. However, if the current gradient is too large, the amount of residual plasma that cannot be diffused at the current zero point increases, and as a result, there is a possibility that shutoff may fail. It is known that when using a commutation device, the current gradient condition of the commutation current is important.
[0011]
On the other hand, in the method of cutting off by creating a current zero point by the commutation current, it is necessary to release the energy remaining in the circuit inductance because the current is forcibly cut off. It is necessary to connect an energy absorbing device such as a non-linear resistor.
[0012]
As this kind of technology, a DC high-speed circuit breaker mounted on a vehicle described in Japanese Patent Application Laid-Open No. 3-67429 is known. According to this, it is shown that the oscillation frequency of the commutation circuit is 2 kHz or more, the commutation current is 5,000 A or more, and the commutation inductance is 1 μH or more.
[0013]
However, when this condition is applied to a DC high-speed vacuum circuit breaker used in a track circuit on the ground, there may be a case where a current gradient at the time of a large current interruption becomes large and interruption cannot be performed.
[0014]
That is, in the case of a railroad circuit breaker, the detected current value of the accident current (scale value in the general name of the air circuit breaker) is 12,000 A, and the circuit breaker operates at the rated break current and scale value. The maximum current value during the period until the current is cut off is 25,000 A. This is because the time from the detection of the fault current to the interruption is several ms, and the current rise rate is 3 × 10 6 A / s, so the current at the interruption point has a large value.
[0015]
In the case of interrupting such a large current, the arc form between the electrodes of the vacuum valve may cause a self-pinch force to act on the arc and concentrate, possibly causing extreme damage to the electrodes. For this reason, the current gradient that can be cut off is smaller than in the case where the current is diffused at about 10,000 A or less.
[0016]
Therefore, in order to stably cut off the current even in the case of cutting off a large current exceeding about 10,000 A, it is necessary to reduce the current gradient near the current zero point of the current flowing by superimposing the commutation current.
[0017]
A circuit shown in FIG. 3 is known as a technique for reducing a current gradient near a current zero point of a current on which a commutation current is superimposed. In FIG. 3, a saturable reactor 15 is connected in series to a vacuum valve 11 of a vacuum circuit breaker, and a commutation device 20 is connected in parallel to this series circuit.
[0018]
In the commutation device 20, a capacitor 21, a reactor 22, and a commutation current start switch 24 are connected in series, and an arrester 23 as an energy absorbing device is connected in parallel with this series circuit. The capacitor 21 is charged by a charging device (not shown).
[0019]
In this method, the supersaturated reactor 15 is connected to a portion where the cutoff current flowing through the vacuum circuit breaker and the commutation current overlap. According to this method, the reactor component of the supersaturated reactor 15 increases near the current zero point of the vacuum valve 11, and the current gradient at the current zero point can be reduced.
[0020]
When interrupting the current, the vacuum valve 11 is first opened, and then the commutation current start switch 24 is turned on. As a result, the electric charge charged in the capacitor 21 flows to the vacuum valve 11 as a commutation current in a direction opposite to the cutoff current. A current zero point is created by this superimposed current to interrupt the current.
[0021]
FIG. 4 shows the current waveform at this time. FIG. 2A shows a superimposed current waveform diagram of a cutoff current and a commutation current, and FIG. 2B shows a current waveform diagram when only a commutation current flows. The superimposed current has a small current gradient near the current zero point. Looking at only the commutation current, the portion A near the current peak is a portion where the supersaturated reactor 15 has an effect.
[0022]
However, on the side of the commutation device 20, the effect of reducing the current gradient with respect to the current zero point of the commutation current flowing through the commutation current start switch 24 for starting the discharge of the capacitor 21 cannot be expected.
[0023]
[Problems to be solved by the invention]
With such a configuration, since the supersaturated reactor 15 needs to be attached to a portion where a normal current flows, there is a loss due to the supersaturated reactor 15 even when the normal current is flowing.
[0024]
Further, an arrester 23, which is a non-linear resistance element, is connected as an energy absorbing device for releasing residual energy corresponding to the reactance of the circuit due to current interruption. However, the limiting voltage of the arrester 23 is too high. The voltage generated in the circuit may cause discharge in parts other than the arrester. If the limit voltage is too low, the operation frequency of the arrester 23 increases, and the life of the arrester 23 is reduced.
[0025]
Further, the capacity of the capacitor 21 for flowing the commutation current can be reduced by increasing the charging voltage in order to flow the same commutation current, but it is necessary to consider the shunt to the arrester 23 and the like. When the charging voltage is reduced, the capacity of the capacitor 21 needs to be increased, and the limiting voltage of the arrester 23 is applied to both ends of the capacitor 21, which leads to hasten deterioration of the capacitor 21 depending on the allowable voltage of the capacitor 21. .
[0026]
The present invention has been made in view of the above problems, and an object of the present invention is to provide a vacuum circuit breaker using a commutation device, which stabilizes the breaking performance and provides a highly reliable, low-loss vacuum circuit breaker. It is.
[0027]
[Means for Solving the Problems]
To achieve the above object, according to the vacuum circuit breaker of the present invention, a commutation device is connected in parallel to a vacuum valve, and when a current is interrupted, a commutation current is superimposed on the interruption current from the commutation device to create a current zero point. In a vacuum circuit breaker for interrupting a current, the commutation device is connected to a circuit in which a commutation current start switch for discharging a charged charge of a capacitor and a reactor and a capacitor charged by a charging device is connected in parallel to a circuit. Elements are connected, the capacitor of the commutation device is 1000 μF or more and the reactor is 3 μH or more, the resonance frequency is 1000 Hz or more and less than 2000 Hz, and the capacitor and the reactor of the commutation device and the commutation current start switch are provided. The series circuit resistance in the input state is set to 20 mΩ or less, and the operating voltage of the energy absorbing device (1 mA starts flowing) The pressure value), characterized in that it was 1.5 to 2.5 times the rated voltage of the system.
[0028]
As a result, the commutation device can be reduced in size, the life of the energy absorbing device can be extended, and the current gradient at the current zero point of the superimposed current can be reduced to 200 A / μs or less, and stable interruption can be performed. Can be made.
[0029]
According to the vacuum circuit breaker according to the present invention, a commutation device is connected in parallel with the vacuum valve, and when the current is interrupted, the commutation current is superimposed on the interruption current from the commutation device to form a current zero point and the current is interrupted. In the device, the commutation device is configured by connecting an energy absorption element in parallel to a circuit in which a commutation current start switch for discharging a charged charge of the capacitor and the reactor and the capacitor charged by the charging device is connected in series. The charging voltage of the capacitor of the commutation device is lower than the operating voltage of the energy absorbing element and higher than the rated voltage of the system.
[0030]
As a result, deterioration of the life of the capacitor can be reduced, and stable shutoff can be performed.
[0031]
BEST MODE FOR CARRYING OUT THE INVENTION
FIG. 1 shows an embodiment of the present invention. In FIG. 1, a commutation device 20 is connected in parallel with a vacuum valve 11 of a vacuum circuit breaker. The commutation device 20 includes a capacitor 21, a reactor 22, and a commutation current starting switch 24 connected in series, and further connected in parallel with an arrester 23 as a non-linear resistance element as an energy absorbing device. The capacitor 21 is charged by a charging device (not shown).
[0032]
When interrupting the current, the vacuum valve 11 is first opened, and then the commutation current start switch 24 is turned on. As a result, the electric charge charged in the capacitor 21 flows to the vacuum valve 11 as a commutation current in a direction opposite to the cutoff current. A current zero point is created by this superimposed current to interrupt the current.
[0033]
FIG. 2 shows the relationship between the frequency of the commutation current and the current gradient. The current gradient can be suppressed to 200 A / μs or less by setting the resonance frequency to less than 2 kHz in 20 kA interruption, which is a large current interruption region. It is also appropriate to set the capacity of the capacitor 21 to 1,000 μF or more and the reactor 22 to 3 mH or more from the viewpoint of reducing the size of the commutation device 20.
[0034]
As an example in the present invention, the capacitance of the capacitor was 1,200 μF, and the reactor was 15 μH. Thus, under the conditions of an estimated short-circuit current of 50 kA, a DC current increase rate of 3 × 10 6 A / s, and a scale value of 12,000 A, the current gradient at the current zero point of the superimposed current of the commutation current and the breaking current is 200 A / μs or less, and could be cut off without any problem.
[0035]
By inserting the reactor 22 into the commutation device 20 in addition to the floating inductance, the influence of the fluctuation of the floating inductance due to the manufacturing state can be eliminated, and a commutation device with stable performance can be manufactured.
[0036]
Further, in order to reduce the resonance frequency of the commutation current to less than 1 kHz, it is necessary to increase the size of the capacitor 21 and the reactor 22, so that the size of the commutation device 20 is not good.
[0037]
Further, the circuit resistance when the capacitor 21, the reactor 22, and the commutation current start switch 24 are turned on is preferably 20 mΩ, and was set to 10 mΩ in the embodiment of the present invention. Thereby, the attenuation of the commutation current could be reduced. As a result, it was possible to cut off the DC current without any problem even under the condition of 13,200 A flowing in the reverse direction.
[0038]
Further, the limit voltage (voltage value of 1 mA flowing through the arrester) of the arrester 23 used in the energy absorbing element is set in a range of 1.5 to 2.5 times the rated voltage of the system. In the embodiment of the present invention, the limit voltage of the arrester is set to 2,500 V with respect to the rated voltage of the system of 1,500 V.
[0039]
As a result, the maximum generated voltage of the arrester at the time of interruption can be limited to 4,000 V or less, and interruption without any problem such as insulation breakdown at a portion other than the arrester can be achieved. By setting the limit voltage of the arrester 23 to 1.5 times or more of the rated voltage of the system, the arrester does not operate under conditions such as small current switching and the life of the arrester can be extended.
By setting the maximum of the limit voltage to 2.5 times or less, it is possible to perform stable interruption without dielectric breakdown of parts other than the arrester.
[0040]
By setting the charging voltage of the capacitor 21 of the commutation device 20 lower than the limit voltage of the arrester 23 and equal to or higher than the rated voltage of the system, a stable commutation current can be superimposed on the vacuum valve 11 of the circuit breaker. As a result, deterioration of the life of the capacitor 21 can be reduced.
[0041]
In the embodiment of the present invention, the charging voltage of the capacitor 21 is set to 2,300 V with respect to the rated voltage of the system of 1,500 V and the limit voltage of the arrester of 2.500 V. As a result, a stable commutation current could be superimposed on the vacuum valve 11 without diverting the commutation current to the arrester 23 side.
[0042]
The contact material of the vacuum valve 11 used was Cu or Ag as a conductive component, and a material made of an alloy containing at least one of Cr, W, Mo, Ti and a carbide thereof as an arc resistant component. .
[0043]
With such a contact material configuration, it is possible to reduce the amount of neutral metal vapor and metal plasma generated from the contact per unit charge amount of the breaking current, as compared to a material containing a high vapor pressure material or the like. Interruption was possible even under conditions where the current gradient of the interruption current was larger than before. Therefore, there is an advantage that the current frequency of the commutation current can be increased and a small commutation device can be obtained.
[0044]
As an example of the present invention, a CuCr alloy was used as a contact material. As a result, high blocking performance could be obtained.
[0045]
【The invention's effect】
ADVANTAGE OF THE INVENTION According to the vacuum circuit breaker of this invention, the commutation current of a commutation apparatus can be stabilized, and while being able to stabilize interruption | blocking performance, miniaturization is possible. Further, the deterioration of the commutation device can be reduced and the life can be prolonged.
[Brief description of the drawings]
FIG. 1 is a circuit diagram illustrating an embodiment of the present invention.
FIG. 2 is an explanatory diagram showing a relationship between a frequency of a commutation current and a current gradient.
FIG. 3 is a circuit diagram showing a conventional vacuum circuit breaker.
4A and 4B are a superimposed current waveform diagram and a commutation current waveform diagram in the vacuum circuit breaker of FIG.
[Explanation of symbols]
11 Vacuum valve 15 Supersaturated reactor 20 Commutation device 21 Condenser 22 Reactor 23 Arrestor 24 Commutation current start switch

Claims (5)

真空バルブに並列に転流装置を接続し、電流遮断時に遮断電流に転流装置から転流電流を重畳して電流零点を作り電流を遮断する真空遮断器において、前記転流装置をコンデンサとリアクトルおよび充電装置により充電されるコンデンサの充電された電荷を放電する転流電流始動用スイッチを直列に接続した回路に並列にエネルギー吸収素子を接続して構成し、前記転流装置のコンデンサ容量を1000μF以上でリアクトルを3μH以上とし、共振周波数を1000Hz以上2000Hz未満とし、且つ転流装置のコンデンサとリアクトルおよび転流電流始動用スイッチを投入した状態での直列の回路抵抗を20mΩ以下とし、エネルギー吸収装置の動作電圧(1mA流れ始める電圧値)を系統の定格電圧の1.5倍〜2.5倍とした事を特徴とする真空遮断器。In a vacuum circuit breaker in which a commutation device is connected in parallel to a vacuum valve and a current is cut off by superimposing a commutation current from the commutation device on the interruption current when the current is interrupted to cut off the current, the commutation device includes a capacitor and a reactor. And an energy absorbing element connected in parallel to a circuit in which a commutation current starting switch for discharging the charged charge of the capacitor charged by the charging device is connected in series, and the capacitor capacity of the commutation device is set to 1000 μF. With the above, the reactor is set to 3 μH or more, the resonance frequency is set to 1000 Hz or more and less than 2000 Hz, and the series circuit resistance in a state where the commutation device capacitor and the reactor and the commutation current start switch are turned on is set to 20 mΩ or less. Operating voltage (voltage value at which 1 mA starts to flow) is 1.5 to 2.5 times the rated voltage of the system. Vacuum circuit breaker according to. エネルギー吸収装置が非線型抵抗素子である請求項1に記載の真空遮断器。The vacuum circuit breaker according to claim 1, wherein the energy absorbing device is a non-linear resistance element. 真空バルブに並列に転流装置を接続し、電流遮断時に遮断電流に転流装置から転流電流を重畳して電流零点を作り電流を遮断する真空遮断器において、前記転流装置をコンデンサとリアクトルおよび充電装置により充電されるコンデンサの充電された電荷を放電する転流電流始動用スイッチを直列に接続した回路に並列にエネルギー吸収素子を接続して構成して成り、前記転流装置のコンデンサ充電電圧をエネルギー吸収素子の動作電圧より低くし、且つ系統の定格電圧より高くした事を特徴とする真空遮断器。In a vacuum circuit breaker in which a commutation device is connected in parallel to a vacuum valve and a current is cut off by superimposing a commutation current from the commutation device on the interruption current when the current is interrupted to cut off the current, the commutation device includes a capacitor and a reactor. And an energy absorbing element connected in parallel to a circuit in which a commutation current start switch for discharging the charged charge of the capacitor charged by the charging device is connected in series, and the capacitor charging of the commutation device is performed. A vacuum circuit breaker characterized in that the voltage is lower than the operating voltage of the energy absorbing element and higher than the rated voltage of the system. 真空バルブは、その接点材料が導電成分としてCuまたはAgを使用し、耐弧成分としてCr、W、Mo、Tiおよびその炭化物の少なくても一種を含む合金からなる事を特徴とする請求項1乃至4のいずれかに記載の真空遮断器。2. The vacuum valve according to claim 1, wherein the contact material comprises Cu or Ag as a conductive component, and an alloy containing at least one of Cr, W, Mo, Ti and carbide thereof as an arc-resistant component. The vacuum circuit breaker according to any one of claims 1 to 4. 真空バルブの接点材料がCuCr合金である事を特徴とする請求項4に記載の真空遮断器。The vacuum circuit breaker according to claim 4, wherein the contact material of the vacuum valve is a CuCr alloy.
JP2002194104A 2002-07-03 2002-07-03 Vacuum circuit breaker Pending JP2004039411A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002194104A JP2004039411A (en) 2002-07-03 2002-07-03 Vacuum circuit breaker

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002194104A JP2004039411A (en) 2002-07-03 2002-07-03 Vacuum circuit breaker

Publications (1)

Publication Number Publication Date
JP2004039411A true JP2004039411A (en) 2004-02-05

Family

ID=31702878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002194104A Pending JP2004039411A (en) 2002-07-03 2002-07-03 Vacuum circuit breaker

Country Status (1)

Country Link
JP (1) JP2004039411A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195121A (en) * 2011-03-16 2012-10-11 Fuji Electric Co Ltd Circuit breaker
CN108987173A (en) * 2018-10-17 2018-12-11 宁夏晟晏实业集团能源循环经济有限公司 A kind of Anti-breakdown device for 35KV high-pressure vacuum switch

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012195121A (en) * 2011-03-16 2012-10-11 Fuji Electric Co Ltd Circuit breaker
CN108987173A (en) * 2018-10-17 2018-12-11 宁夏晟晏实业集团能源循环经济有限公司 A kind of Anti-breakdown device for 35KV high-pressure vacuum switch

Similar Documents

Publication Publication Date Title
EP2469552B1 (en) Method, circuit breaker and switching unit for switching off high-voltage DC currents
KR101550374B1 (en) High-voltage DC circuit breaker
US5473494A (en) Electrical power supply system
JP3965037B2 (en) DC vacuum interrupter
JPS59105226A (en) Breaker
JP6042041B1 (en) DC circuit breaker
US7633725B2 (en) Micro-electromechanical system based soft switching
US11824346B2 (en) Current cut-off device for high-voltage direct current with adaptive oscillatory circuit, and control method
JP6456575B1 (en) DC circuit breaker
US11791617B2 (en) Current cut-off device for high-voltage direct current with capacitive buffer circuit, and control method
EP2226914B1 (en) Systems and methods for protecting a series capacitor bank
JP2004039411A (en) Vacuum circuit breaker
JP2004014241A (en) Dc breaker
JP2018533835A (en) Circuit breaker for high voltage DC networks using forced oscillation of current
JP2991266B2 (en) Gas circuit breaker
JP3245716B2 (en) Current interrupter
JP3719456B2 (en) DC circuit breaker
JP2002110006A (en) Direct current breaker
JP2017059513A (en) Device for restriking voltage control
JP3483728B2 (en) Current limiter
JP4434499B2 (en) DC cutoff system
JP2004039410A (en) Vacuum circuit breaker
JP3292783B2 (en) DC circuit breaker
JPH11265644A (en) Switching device
JPS5957524A (en) Ac current limiting type semiconductor circuit breaker

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20050224

Free format text: JAPANESE INTERMEDIATE CODE: A621

RD02 Notification of acceptance of power of attorney

Effective date: 20050415

Free format text: JAPANESE INTERMEDIATE CODE: A7422

RD04 Notification of resignation of power of attorney

Effective date: 20050606

Free format text: JAPANESE INTERMEDIATE CODE: A7424

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070307

A131 Notification of reasons for refusal

Effective date: 20070330

Free format text: JAPANESE INTERMEDIATE CODE: A131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080215

A521 Written amendment

Effective date: 20080324

Free format text: JAPANESE INTERMEDIATE CODE: A523

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Effective date: 20080501

Free format text: JAPANESE INTERMEDIATE CODE: A911

A912 Removal of reconsideration by examiner before appeal (zenchi)

Effective date: 20090206

Free format text: JAPANESE INTERMEDIATE CODE: A912