WO2015099467A1 - Dc circuit breaker for breaking bidirectional fault current using single circuit - Google Patents

Dc circuit breaker for breaking bidirectional fault current using single circuit Download PDF

Info

Publication number
WO2015099467A1
WO2015099467A1 PCT/KR2014/012856 KR2014012856W WO2015099467A1 WO 2015099467 A1 WO2015099467 A1 WO 2015099467A1 KR 2014012856 W KR2014012856 W KR 2014012856W WO 2015099467 A1 WO2015099467 A1 WO 2015099467A1
Authority
WO
WIPO (PCT)
Prior art keywords
main switch
circuit
current
circuit breaker
capacitor
Prior art date
Application number
PCT/KR2014/012856
Other languages
French (fr)
Korean (ko)
Inventor
김남경
정영환
황휘동
Original Assignee
주식회사 효성
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 효성 filed Critical 주식회사 효성
Publication of WO2015099467A1 publication Critical patent/WO2015099467A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H3/00Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection
    • H02H3/08Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current
    • H02H3/087Emergency protective circuit arrangements for automatic disconnection directly responsive to an undesired change from normal electric working condition with or without subsequent reconnection ; integrated protection responsive to excess current for dc applications
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K17/00Electronic switching or gating, i.e. not by contact-making and –breaking
    • H03K17/08Modifications for protecting switching circuit against overcurrent or overvoltage
    • H03K17/081Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit
    • H03K17/0814Modifications for protecting switching circuit against overcurrent or overvoltage without feedback from the output circuit to the control circuit by measures taken in the output circuit

Definitions

  • the present invention relates to a direct current (DC) circuit breaker, and in particular, when a failure occurs on one side or the other side of a direct current (DC) line for power transmission or distribution, the bidirectional fault current is blocked by a single circuit to block the bidirectional fault current flowing in the DC line. Relates to a DC circuit breaker.
  • DC direct current
  • a high voltage DC circuit breaker is a switching device capable of blocking a current flowing through a high voltage transmission line of about 50 mA or more, such as a high voltage direct current (HVDC) transmission system. That is, the high voltage DC circuit breaker is installed on the DC line and serves to block the fault current from being provided to the faulted side when a fault occurs on one side or the other.
  • HVDC high voltage direct current
  • the present invention can also be applied to a medium voltage DC power distribution system having a DC voltage level of about 1 to 50 mA.
  • Japanese Patent Laid-Open Publication No. 1984-068128 shown in FIG. 1 uses an arc generated during the switching operation of the main switch CB in a high voltage DC circuit breaker to block the fault current Idc to cut off the fault current Idc.
  • the main switch CB is opened and the resonant current Ip is superimposed on the DC current I DC while being injected through the arc, and injected into the main switch CB.
  • the resonance current Ip becomes a vibrating current due to the resonance, and the vibration current Ip gradually increases along the main switch CB.
  • the arc of the main switch CB is extinguished when the negative resonant current -Ip becomes larger than I DC and the fault current Idc becomes a zero current.
  • An object of the present invention is to provide a DC circuit breaker for blocking bidirectional fault currents in a single circuit to completely block a fault current in the main switch even when a plurality of resonance currents are not applied to the main switch in the DC breaker.
  • the present invention provides a DC circuit breaker to block the bidirectional fault current in a single circuit to cut the fault current through the arc by artificially creating a current zero to remove the arc generated in the main switch when the main switch is blocked in the DC breaker Has a different purpose.
  • another object of the present invention is to provide a DC circuit breaker for blocking a bidirectional fault current in a single circuit to block a fault current in both directions in a high voltage DC line.
  • a main switch installed at the DC line and opened when a failure occurs at one side or the other side of the DC line to cut off the current of the DC line; First and second switching elements connected in parallel to the main switch 110 and connected in series in opposite directions; Third and fourth switching devices connected in parallel to the main switch and connected in series in opposite directions to each other and disposed in opposite directions to the first and second switching devices and connected in series to each other; An L / C circuit comprising a capacitor and a reactor connected between an intermediate point of the first and second switching elements and an intermediate point of the third and fourth switching elements and connected in series with each other to generate an LC resonance; And a fifth switching element connected in parallel to the L / C circuit to switch to generate LC resonance in the L / C circuit to invert the polarity of the charging voltage in the capacitor.
  • it further comprises a charging resistor provided between the LC circuit and the ground for voltage charging of the capacitor in a steady state.
  • each of the first to fifth switching elements includes a power semiconductor switch that can be turned on or turned on / off.
  • the first and fourth switching elements are connected to both ends of the L / C circuit and the main switch one by one along the first closed circuit formed between the L / C circuit and the main switch. Make sure to turn on.
  • the second and the third switching device the current in the second direction along the second closed circuit formed between the L / C circuit and the main switch one by one connected to each end of the L / C circuit and the main switch make sure to turn on.
  • the fifth switching device maintains the OFF state in the normal state and is switched to the ON state when the main switch is opened to reverse the polarity of the voltage charged in the capacitor.
  • the main switch when the main switch is opened, the main switch is supplied by supplying current to the main switch through the first and fourth switching elements or the second and third switching elements by the polarity inverted voltage at the capacitor. Extinguish the arc that occurred.
  • the first and fourth switching devices are turned on while the second and third switching devices are turned off.
  • Arc is generated in the main switch by the current is supplied to the main switch through the first and fourth switching elements by the polarity inverted voltage in the capacitor and becomes a zero current in the main switch by the supplied current. Ensure that SO is called.
  • the current supplied to the main switch is opposite in direction to the fault current sustained through the arc in the main switch and is larger in magnitude.
  • the second and third switching devices are turned on while the first and fourth switching devices are turned off.
  • Arc is generated in the main switch by the current is supplied to the main switch through the second and third switching elements by the polarity inverted voltage in the capacitor and becomes a zero current in the main switch by the supplied current Ensure that SO is called.
  • the current supplied to the main switch is opposite in direction to the fault current sustained through the arc in the main switch and is larger in magnitude.
  • the arc when an arc occurs during the switching operation of the main switch in the DC circuit breaker, the arc can be extinguished quickly so that the fault current can be completely blocked.
  • the DC circuit breaker charges the capacitor using the current flowing through the DC line in the normal state, a separate charging circuit is not required, thereby reducing the cost of constructing the circuit.
  • FIG. 1 is a block diagram of a conventional DC circuit breaker.
  • FIG. 2 is a block diagram of a DC circuit breaker for blocking a bidirectional fault current in a single circuit according to an embodiment of the present invention.
  • Figure 3 is a schematic diagram showing the current flow in the DC circuit breaker blocking the bidirectional fault current in a single circuit in a steady state according to an embodiment of the present invention.
  • Figure 4 is a schematic diagram showing a fault current blocking process in the DC circuit breaker to block the bidirectional fault current in a single circuit when a fault occurs on one side of the DC line according to the present invention.
  • FIG. 5 is a schematic diagram showing a fault current blocking process in a DC circuit breaker for blocking bidirectional fault currents in a single circuit when a fault occurs on the other side of the high voltage DC line according to the present invention.
  • FIG. 2 is a block diagram of a DC circuit breaker for blocking a bidirectional fault current in a single circuit according to an embodiment of the present invention.
  • the DC circuit breaker 100 includes a main switch 110 installed between one side A and the other side B of the DC line 10.
  • the main switch 110 basically serves to block the DC line 10 in order to prevent a fault current from flowing into a circuit in which a fault occurs when a fault occurs in one side A or the other side B. To this end, the main switch 110 is closed in the normal state and is opened when a failure occurs.
  • the main switch 110 is controlled by the control signal of the control unit (not shown).
  • the nonlinear resistor 120 is connected to the main switch 110 in parallel to prevent excessive voltage above the rated voltage from being applied to both ends of the DC circuit breaker 100 when the main switch 110 is opened. When both ends of the DC circuit breaker 100 over a predetermined reference value is automatically turned on (ON) to consume a high voltage.
  • the nonlinear resistor 120 may be implemented as, for example, a varistor.
  • first and second switching elements 140 and 150 connected in series in opposite directions are connected to the main switch 110 in parallel.
  • third and fourth switching devices 160 and 170 connected in series in opposite directions are connected to the main switch 110 in parallel.
  • the series connection pairs of the first and second switching elements 140 and 150 are connected in parallel to the series connection pairs of the third and fourth switching elements 160 and 170.
  • the first and second switching devices 140 and 150 are installed in opposite directions to the third and fourth switching devices 160 and 170, respectively.
  • a capacitor 131 connected in series with each other to generate LC resonance between the midpoint N1 of the first and second switching devices 140 and 150 and the midpoint N2 of the third and fourth switching devices 160 and 170.
  • a L / C circuit 130 including a reactor 132.
  • the capacitor 131 and the reactor 132 are configured in series and a voltage is charged to the capacitor 131 by a current supplied to the L / C circuit 130 in a normal state. When generated, current is transmitted to the main switch 110 by the voltage charged in the capacitor 131.
  • a fifth switching device 180 is connected in parallel to the L / C circuit 130. The switching device 180 generates LC resonance in the L / C circuit 130 to generate a charge voltage of the capacitor 131.
  • the operation (on / off) of the first to fifth switching devices 140 to 180 is controlled by a controller (not shown).
  • the first to fifth switching elements 140 to 180 may be implemented as turn-on controllable elements, for example, thyristors, or the like, or turn-on / As a turn-off controllable element, for example, it may be implemented with GTO, IGCT, IGBT, or the like.
  • the first and fourth switching elements 140 and 170 are connected to each of both ends of the L / C circuit 130 and the main switch 110 to form a first closed circuit between the L / C circuit 130 and the main switch 110. Do it. As a result, the first and fourth switching devices 140 and 170 are switched so that current flows in the first direction along the first closed circuit by the voltage charged in the capacitor 131 of the L / C circuit 130.
  • the second and third switching devices 150 and 160 are connected to both ends of the L / C circuit 130 and the main switch 110, respectively, and are formed between the L / C circuit 130 and the main switch 110.
  • the second and third switching devices 150 and 160 are switched such that current flows in the second direction along the second closed circuit by the voltage charged in the capacitor 131 of the L / C circuit 130.
  • the first closed circuit is different from the second closed circuit, and the first direction and the second direction mean the direction of the current, and indicate current flow in different directions.
  • the first and fourth switching elements 140 and 170 are installed in the same direction so that current flows in the first direction when turned on, and the second and third switching elements 150 and 160 are turned on when the second and third switching elements 150 and 160 are turned on. Are installed in the same direction so that current flows in the direction.
  • the current flowing in the first direction or the second direction is the voltage (+ Vc) initially charged in the capacitor 131 of the L / C circuit 130 is the polarity inversion by the fifth switching element 180 for polarity inversion Voltage (-Vc).
  • This current is provided to the main switch 110 in the first or second direction to extinguish the arc generated in the main switch 110 when the main switch 110 is opened.
  • the current must be supplied to the main switch 110 in a direction opposite to the current flowing through the arc generated in the main switch 110. Therefore, the first direction or the second direction is determined by the direction of the current flowing through the arc in the main switch 110. That is, the first and fourth switching devices 140 and 170 are turned on to flow current in the first direction, and the second and third switching devices 150 and 160 are turned on to flow current in the second direction.
  • the turn-on / turn-off of the first and fourth switching elements 140 and 170 and the second and third switching elements 150 and 160 may be implemented in reverse.
  • the charging resistor R is connected between the contact of the L / C circuit 130 and the first bidirectional switching element 140 and the ground GND. Through the charging resistor R, the capacitor 131 of the L / C circuit 130 is initially charged by the DC voltage Vc.
  • Figure 3 is a schematic diagram showing the current flow in the DC circuit breaker for blocking the bidirectional fault current in a single circuit in a steady state according to an embodiment of the present invention.
  • FIG. 3 (a) illustrates a case where current is supplied from one side A to the other side B, and (b) illustrates a case where current is supplied from the other side B to one side A.
  • the main switch 110 is closed, the first and fourth switching elements 140 and 170 are turned on and conducting, and the second and third switching elements 150 and 160 are turned off to turn off the current. Does not flow Therefore, the current supplied from one side A flows through the first switching element 140, the L / C circuit 130, the fourth switching element 170, and the charging resistor Rc, thereby allowing the L / C circuit (
  • the capacitor 131 of 130 is charged with the DC voltage + Vc.
  • FIG. 3A when the power is supplied from N1 to N2, the voltage charged in the capacitor 131 is represented by + Vc, and the polarity reversed voltage is -Vc. It is written as.
  • the control unit turns on the first, second, and fourth switching elements 140, 150, and 170, and the capacitor of the L / C circuit 130 by the current supplied from one side A or the other side B. 131 is charged to + Vc.
  • FIG. 4 is a schematic view showing a fault current blocking process when a fault occurs in the other side (B) of the DC circuit breaker for blocking a bidirectional fault current in a single circuit according to an embodiment of the present invention
  • Figure 5 is according to another embodiment of the present invention This is a schematic diagram showing the fault current blocking process when a fault occurs at one side (A) of the DC circuit breaker that blocks the bidirectional fault current in a single circuit.
  • the DC voltage of + Vc is charged in the capacitor 131 in the normal state as shown in FIG. 3. If a failure occurs in the B side in this state, as shown in Figure 4, the control unit detects the failure to open the main switch 110 that was closed. At this time, an arc is generated between the switch terminals of the main switch 110 when the main switch 110 is opened, and the fault current continuously flows from the A side to the B side through the arc.
  • the first to fourth switching devices 140 to 170 are turned off and the fifth switching device 180 is turned on.
  • the fifth switching device 180 is turned on, LC resonance occurs in the L / C circuit 130 through the fifth switching device 180 and the voltage initially charged in the capacitor 131 (+).
  • Vc) is reversed in polarity and charged to -Vc. That is, the voltage (-Vc) polarized inverted at the voltage (+ Vc) initially charged in the capacitor 131 by LC resonance in the L / C circuit 130 through the fifth switching element 180 is a capacitor. Is recharged in 131.
  • the first and fourth switching devices 140 and 170 are turned on in the state in which the second and third switching devices 150 and 160 are turned off to be charged by the voltage (-Vc) charged in the capacitor 131.
  • Current flows in the first direction through the fourth switching device 170, the main switch 110, and the first switching device 140.
  • the current supplied in this way the current in the main switch 110 becomes 0 (zero) and the arc is extinguished.
  • the current supplied to the main switch 110 in the first direction is opposite in direction to the fault current sustained through the arc in the main switch 110 and is larger in size. To this end, the charging capacity of the capacitor can be determined.
  • the voltage on the A side is increased rapidly compared to the B side.
  • the voltage on the A side thus increased is consumed in the nonlinear resistor 120 connected in parallel to the main switch 110.
  • the fifth switching device 180 is turned off again, and current flows through the first switching device 140, the L / C circuit 130, the fourth switching device 170, and the charging resistor Rc.
  • the capacitor 131 of the L / C circuit 130 is again recharged with a DC voltage of + Vc.
  • the DC circuit breaker 100 of the present invention is characterized in that the operation of reclosing the main switch 110 is possible. That is, when the failure of the B side is removed after the opening of the main switch 110, the control unit may close the main switch 110 to form a closed in the DC line (10). When closing the main switch 110 to form a closed, if the B-side failure is not eliminated to repeat the above process. This reclosing is possible because the capacitor 131 remains charged at + Vc in the L / C circuit 130 after the arc is extinguished in the main switch 110.
  • the DC circuit breaker 100 for blocking the bidirectional fault current in a single circuit is a voltage (+) initially charged in the capacitor 131 by LC resonance in the L / C circuit 130
  • a current to the main switch 110 by using the voltage (-Vc) inverted polarity at Vc) to achieve a zero current to the main switch 110 to arc the arc to completely block the fault current flowing through the arc Do it.
  • the control unit detects the failure to open the main switch 110.
  • the main switch 110 is opened, an arc occurs between the switching terminals of the main switch 110 so that a fault current continuously flows from the B side to the A side.
  • the first to fourth switching devices 140 to 170 are turned off and the fifth switching device 180 is turned on.
  • the fifth switching device 180 is turned on, LC resonance occurs in the L / C circuit 130 through the fifth switching device 180, and the + Vc voltage initially charged in the capacitor 131 is Polarity reversal occurs, charging to -Vc voltage. That is, in the L / C circuit 130, the voltage is generated in the LC resonance through the fifth switching device 180 and becomes the voltage (-Vc) polarized inverted from the voltage (+ Vc) initially charged in the capacitor 131. Recharged at 131.
  • the second and third switching devices 150 and 160 are turned on while the first and fourth switching devices 140 and 170 are turned off to the voltage (-Vc) charged in the capacitor 131.
  • current flows in the second direction through the third switching device 160, the main switch 110, and the second switching device 150.
  • the current supplied in this way the current in the main switch 110 becomes 0 (zero) and the arc is extinguished.
  • the current supplied to the main switch 110 in the second direction is opposite in direction to the fault current sustained through the arc in the main switch 110 and is larger in size. To this end, the charging capacity of the capacitor can be determined.
  • the voltage on the A side is increased rapidly compared to the B side.
  • the voltage on the A side thus increased is consumed in the nonlinear resistor 120 connected in parallel to the main switch 110.
  • the fifth switching device 180 is turned off again, and current flows through the second switching device 150, the L / C circuit 130, the fourth switching device 170, and the charging resistor Rc.
  • the capacitor 131 of the L / C circuit 130 is again recharged with a DC voltage of + Vc.
  • the DC circuit breaker 100 of the present invention may operate to reclose the main switch 110. That is, when the A side fault is removed after the opening of the main switch 110, the control unit may close the main switch 110 to form a closure in the DC line 10. At this time, in the case of closing the main switch 110 to form a closed, if the A-side failure is not removed to repeat the above process. This reclosing is possible because the capacitor 131 remains charged at + Vc in the L / C circuit 130 after the arc is extinguished in the main switch 110.
  • the current caused by the LC resonance is not the main switch CB as shown in FIG.
  • the device 180 is characterized in that it is made. Therefore, the current oscillation due to the LC resonance is not increased as in the prior art, but in the present invention, the LC resonance needs to be performed only once so that the polarity of the voltage of the capacitor 131 of the L / C circuit 130 is reversed by the LC resonance. . This causes the blocking speed to increase compared to the prior art. In addition, in the prior art, the arc is extinguished at the time when the magnitude of the fault current is increased by continuously increasing the magnitude of the resonance current through LC resonance.
  • the capacitor 131 determined according to the capacity of the capacitor 131 By injecting the current in the opposite direction to the fault current flowing in the main switch 110 by the charging voltage of the main to the main switch 110 to make a zero current arc arc arc.

Abstract

The present invention relates to a DC circuit breaker for breaking fault current on a DC line. The present invention comprises: a main switch which is opened when a fault occurs on a DC line so as to break current on the DC line; first and second switching devices which are connected in parallel with the main switch and connected in series with each other in opposite directions; third and fourth switching devices which are connected in parallel with the main switch and connected in series with each other in opposite directions, wherein the third and fourth switching devices are positioned in the opposite direction to the first and second switching devices and connected in series with each other; an L/C circuit which is connected between the middle point of the first and second switching devices and the middle point of the third and fourth switching devices and which includes a capacitor and a reactor connected in series with each other to generate LC resonance; and a fifth switching device which is connected in parallel with the L/C circuit and is switched to reverse the polarity of charge voltage in the capacitor by generating LC resonance in the L/C circuit.

Description

단일회로로 양방향 고장전류를 차단하는 DC차단기DC circuit breaker that blocks bidirectional fault currents in a single circuit
본 발명은 직류(DC) 차단기에 관한 것으로서, 특히 송전 또는 배전용 직류(DC) 선로의 일측 또는 타측에 고장발생시 그 DC 선로에 흐르는 양방향 고장전류를 차단하도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기에 관한 것이다.The present invention relates to a direct current (DC) circuit breaker, and in particular, when a failure occurs on one side or the other side of a direct current (DC) line for power transmission or distribution, the bidirectional fault current is blocked by a single circuit to block the bidirectional fault current flowing in the DC line. Relates to a DC circuit breaker.
통상 고전압 DC 차단기(circuit breaker)는 고전압 직류(HVDC: High Voltage Direct Current) 송전시스템 등과 같은 약 50㎸ 이상의 고전압 송전선로를 통해 흐르는 전류를 차단할 수 있는 스위칭 장치이다. 즉, 고전압 DC 차단기는 DC 선로 상에 설치되어 일측 또는 타측에 고장발생시 고장전류가 고장이 발생한 측으로 제공되지 않도록 차단하는 역할을 한다. 물론, 약 1~50㎸의 DC 전압레벨의 중간전압 DC 배전 시스템에도 적용이 가능하다.In general, a high voltage DC circuit breaker is a switching device capable of blocking a current flowing through a high voltage transmission line of about 50 mA or more, such as a high voltage direct current (HVDC) transmission system. That is, the high voltage DC circuit breaker is installed on the DC line and serves to block the fault current from being provided to the faulted side when a fault occurs on one side or the other. Of course, the present invention can also be applied to a medium voltage DC power distribution system having a DC voltage level of about 1 to 50 mA.
이러한 고전압 DC 차단기의 경우 시스템에 고장전류가 발생하면 DC 선로에 설치된 메인스위치를 개방시켜 고장이 발생한 회로를 분리하여 그 고장전류를 차단하도록 한다. 하지만, DC 선로에는 전류 0(zero)점이 존재하지 않기 때문에 메인스위치의 개방시 메인스위치의 단자간에 발생한 아크(arc)가 소호되지 않고 고장전류가 이러한 아크를 통해 지속적으로 흐르게 되어 고장전류를 차단하지 못하는 문제점이 있다.In the case of such a high voltage DC circuit breaker, if a fault current occurs in the system, the main switch installed in the DC line is opened to isolate the fault circuit and cut off the fault current. However, since there is no zero point in the DC line, the arc generated between the terminals of the main switch is not extinguished when the main switch is opened, and the fault current flows continuously through this arc to prevent fault current. There is a problem.
도 1에 도시된 일본공개특허 제1984-068128호에는 고전압 DC 차단기에서 메인스위치(CB)의 스위칭 동작시 발생된 아크(arc)를 소호하여 고장전류(Idc)를 차단하기 위해 메인스위치(CB)에 흐르는 DC 전류(IDC)에 L/C 회로에 의한 공진전류(Ip)를 중첩시켜(Idc=IDC+Ip), 메인스위치(CB)에서 0(zero) 전류를 만들어 아크를 소호시키는 기술을 제공한다. 즉, 고장발생시 메인스위치(CB)가 개방되고 아크를 통해 고장전류(Idc)가 계속 흐르는 중에 공진전류(Ip)가 DC 전류(IDC)에 중첩되어 메인스위치(CB)로 주입되고, 이후 LC 공진에 의해 공진전류(Ip)는 진동하는 전류가 되고 메인스위치(CB)를 따라 진동하면서 점점 크기가 커지게 된다. 이로써, 음(-)의 공진전류 -Ip가 IDC보다 커지게 되어 고장전류(Idc)가 zero 전류가 되는 시점에서 메인스위치(CB)의 아크가 소호된다. Japanese Patent Laid-Open Publication No. 1984-068128 shown in FIG. 1 uses an arc generated during the switching operation of the main switch CB in a high voltage DC circuit breaker to block the fault current Idc to cut off the fault current Idc. The technique of superimposing the arc by creating a zero current at the main switch CB by superimposing a resonant current Ip by the L / C circuit on the DC current I DC flowing in the current (Idc = I DC + Ip). To provide. That is, when a failure occurs, the main switch CB is opened and the resonant current Ip is superimposed on the DC current I DC while being injected through the arc, and injected into the main switch CB. The resonance current Ip becomes a vibrating current due to the resonance, and the vibration current Ip gradually increases along the main switch CB. Thus, the arc of the main switch CB is extinguished when the negative resonant current -Ip becomes larger than I DC and the fault current Idc becomes a zero current.
하지만, 이러한 종래기술에서는 DC 전류(IDC)보다 더 큰 공진전류(Ip)가 겹쳐져야 하기 때문에 회로정격이 정격전류의 2배 이상이어야 하며, 이처럼 큰 공진전류(Ip)를 발생시키기 위해 여러 번의 공진이 이루어져야 하기 때문에 차단속도가 느려지는 문제점이 있다. 또한, 이러한 종래의 DC 차단기는 양방향 고장전류의 차단이 불가능하다는 문제점이 있다.However, in this prior art, since the resonant current (Ip) larger than the DC current (I DC ) must overlap, the circuit rating must be more than twice the rated current, and in order to generate such a large resonant current (Ip) Since the resonance must be made, there is a problem that the blocking speed becomes slow. In addition, such a conventional DC circuit breaker has a problem that it is impossible to block the bidirectional fault current.
본 발명은 DC 차단기에서 메인스위치에 여러 번의 공진전류를 인가하지 않더라도 메인스위치에서 고장전류를 완전히 차단할 수 있도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기를 제공하는데 목적이 있다.SUMMARY OF THE INVENTION An object of the present invention is to provide a DC circuit breaker for blocking bidirectional fault currents in a single circuit to completely block a fault current in the main switch even when a plurality of resonance currents are not applied to the main switch in the DC breaker.
또한, 본 발명은 DC 차단기에서 메인스위치의 차단시 메인스위치에 발생한 아크를 제거하기 위한 인위적으로 전류영점을 만들어 아크를 통한 고장전류를 차단하도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기를 제공하는데 다른 목적이 있다.In addition, the present invention provides a DC circuit breaker to block the bidirectional fault current in a single circuit to cut the fault current through the arc by artificially creating a current zero to remove the arc generated in the main switch when the main switch is blocked in the DC breaker Has a different purpose.
또한, 본 발명은 고전압 DC 선로에서 양방향의 고장전류를 차단할 수 있도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기를 제공하는데 또 다른 목적이 있다.In addition, another object of the present invention is to provide a DC circuit breaker for blocking a bidirectional fault current in a single circuit to block a fault current in both directions in a high voltage DC line.
본 발명에 따른 단일회로로 양방향 고장전류를 차단하는 DC 차단기는,DC circuit breaker for blocking bidirectional fault current in a single circuit according to the present invention,
직류(DC) 선로에 흐르는 전류를 차단하기 위한 DC 차단기에 있어서,In the DC circuit breaker for blocking the current flowing in the DC line,
상기 DC 선로에 설치되고 상기 DC 선로의 일측 또는 타측에 고장발생시 개방되어 상기 DC 선로의 전류를 차단하기 위한 메인스위치; 상기 메인스위치(110)에 병렬연결되고 상호 반대방향으로 직렬연결된 제1 및 제2 스위칭소자; 상기 메인스위치에 병렬연결되고 상호 반대방향으로 직렬연결되되, 상기 제1 및 제2 스위칭소자와 반대방향으로 배치되어 서로 직렬연결된 제3 및 제4 스위칭소자; 상기 제1 및 제2 스위칭소자의 중간점과 상기 제3 및 제4 스위칭소자의 중간점 사이에 연결되고 LC 공진을 발생하기 위해 서로 직렬연결된 커패시터 및 리액터를 포함하는 L/C 회로; 및 상기 L/C 회로에 병렬연결되어 상기 L/C 회로에서 LC 공진을 발생시켜 상기 커패시터에서의 충전전압의 극성을 반전시키도록 스위칭하는 제5 스위칭소자를 포함한다.A main switch installed at the DC line and opened when a failure occurs at one side or the other side of the DC line to cut off the current of the DC line; First and second switching elements connected in parallel to the main switch 110 and connected in series in opposite directions; Third and fourth switching devices connected in parallel to the main switch and connected in series in opposite directions to each other and disposed in opposite directions to the first and second switching devices and connected in series to each other; An L / C circuit comprising a capacitor and a reactor connected between an intermediate point of the first and second switching elements and an intermediate point of the third and fourth switching elements and connected in series with each other to generate an LC resonance; And a fifth switching element connected in parallel to the L / C circuit to switch to generate LC resonance in the L / C circuit to invert the polarity of the charging voltage in the capacitor.
본 발명에서, 정상상태에서 상기 커패시터의 전압충전을 위하여 상기 LC 회로와 접지 사이에 설치되는 충전저항을 더 포함한다.In the present invention, it further comprises a charging resistor provided between the LC circuit and the ground for voltage charging of the capacitor in a steady state.
본 발명에서, 상기 제1 내지 제5 스위칭소자는, 각각 턴온 또는 턴온/턴오프 제어가능한 전력 반도체 스위치를 포함한다.In the present invention, each of the first to fifth switching elements includes a power semiconductor switch that can be turned on or turned on / off.
본 발명에서, 상기 제1 및 제4 스위칭소자는, 상기 L/C 회로 및 메인스위치의 각 양단에 하나씩 연결되어 상기 L/C 회로 및 메인스위치 간에 형성되는 제1 폐회로를 따라 제1 방향의 전류를 도통시키도록 한다.In the present invention, the first and fourth switching elements are connected to both ends of the L / C circuit and the main switch one by one along the first closed circuit formed between the L / C circuit and the main switch. Make sure to turn on.
본 발명에서, 상기 제2 및 제3 스위칭소자는, 상기 L/C 회로 및 메인스위치의 각 양단에 하나씩 연결되어 상기 L/C 회로 및 메인스위치 간에 형성되는 제2 폐회로를 따라 제2 방향의 전류를 도통시키도록 한다.In the present invention, the second and the third switching device, the current in the second direction along the second closed circuit formed between the L / C circuit and the main switch one by one connected to each end of the L / C circuit and the main switch Make sure to turn on.
본 발명에서, 상기 제5 스위칭소자는 정상상태에서는 오프(OFF)상태를 유지하고 상기 메인스위치의 개방시에 온(ON)상태로 전환되어 상기 커패시터에 충전된 전압의 극성을 반전시키도록 한다.In the present invention, the fifth switching device maintains the OFF state in the normal state and is switched to the ON state when the main switch is opened to reverse the polarity of the voltage charged in the capacitor.
본 발명에서, 상기 메인스위치의 개방시, 상기 커패시터에서의 극성반전된 전압에 의해 상기 제1 및 제4 스위칭소자 또는 제2 및 제3 스위칭소자를 통해 전류를 상기 메인스위치로 공급하여 상기 메인스위치에 발생한 아크를 소호한다.In the present invention, when the main switch is opened, the main switch is supplied by supplying current to the main switch through the first and fourth switching elements or the second and third switching elements by the polarity inverted voltage at the capacitor. Extinguish the arc that occurred.
본 발명에서, 상기 메인스위치의 개방시에 아크(arc)가 발생하면, 상기 제2 및 제3 스위칭소자는 오프(OFF)된 상태에서 상기 제1 및 제4 스위칭소자가 온(ON)되어 상기 커패시터에서 극성반전된 전압에 의해 전류가 상기 제1 및 제4 스위칭소자를 통해 상기 메인스위치로 공급되고 상기 공급된 전류에 의해 상기 메인스위치에서 0(zero) 전류가 되어 상기 메인스위치에 발생된 아크가 소호되도록 한다.In the present invention, when an arc occurs when the main switch is opened, the first and fourth switching devices are turned on while the second and third switching devices are turned off. Arc is generated in the main switch by the current is supplied to the main switch through the first and fourth switching elements by the polarity inverted voltage in the capacitor and becomes a zero current in the main switch by the supplied current. Ensure that SO is called.
본 발명에서, 상기 메인스위치로 공급되는 전류는 상기 메인스위치에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 크다.In the present invention, the current supplied to the main switch is opposite in direction to the fault current sustained through the arc in the main switch and is larger in magnitude.
본 발명에서, 상기 메인스위치의 개방시에 아크(arc)가 발생하면, 상기 제1 및 제4 스위칭소자는 오프(OFF)된 상태에서 상기 제2 및 제3 스위칭소자가 온(ON)되어 상기 커패시터에서 극성반전된 전압에 의해 전류가 상기 제2 및 제3 스위칭소자를 통해 상기 메인스위치로 공급되고 상기 공급된 전류에 의해 상기 메인스위치에서 0(zero) 전류가 되어 상기 메인스위치에 발생된 아크가 소호되도록 한다.In the present invention, when an arc occurs when the main switch is opened, the second and third switching devices are turned on while the first and fourth switching devices are turned off. Arc is generated in the main switch by the current is supplied to the main switch through the second and third switching elements by the polarity inverted voltage in the capacitor and becomes a zero current in the main switch by the supplied current Ensure that SO is called.
본 발명에서, 상기 메인스위치로 공급되는 전류는 상기 메인스위치에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 크다.In the present invention, the current supplied to the main switch is opposite in direction to the fault current sustained through the arc in the main switch and is larger in magnitude.
본 발명은 DC 차단기에서 메인스위치의 스위칭 동작시 아크가 발생하는 경우 빠르게 아크를 소호시킬 수 있도록 하여 고장전류를 완전히 차단할 수 있다.According to the present invention, when an arc occurs during the switching operation of the main switch in the DC circuit breaker, the arc can be extinguished quickly so that the fault current can be completely blocked.
또한, 본 발명에 의한 DC 차단기에서는 다수의 반도체 스위칭소자를 이용하여 브릿지 회로로 구성함으로써 고전압 DC 선로에서 양방향의 고장전류를 차단할 수 있다.In addition, in the DC circuit breaker according to the present invention, by using a plurality of semiconductor switching elements as a bridge circuit, a fault current in both directions can be blocked in a high voltage DC line.
또한, 본 발명에 의하면 DC 차단기에서는 정상상태에서 DC 선로를 통해 흐르는 전류를 이용하여 커패시터에 충전하므로 별도의 충전회로가 필요 없게 되어 회로를 구성하는 비용을 절감할 수 있다.In addition, according to the present invention, since the DC circuit breaker charges the capacitor using the current flowing through the DC line in the normal state, a separate charging circuit is not required, thereby reducing the cost of constructing the circuit.
도 1은 종래의 DC 차단기의 구성도.1 is a block diagram of a conventional DC circuit breaker.
도 2는 본 발명의 실시 예에 따른 단일회로로 양방향 고장전류를 차단하는 DC 차단기의 구성도.2 is a block diagram of a DC circuit breaker for blocking a bidirectional fault current in a single circuit according to an embodiment of the present invention.
도 3은 본 발명의 실시 예에 따른 정상상태에서 단일회로로 양방향 고장전류를 차단하는 DC 차단기에서의 전류흐름을 보이는 개요도.Figure 3 is a schematic diagram showing the current flow in the DC circuit breaker blocking the bidirectional fault current in a single circuit in a steady state according to an embodiment of the present invention.
도 4는 본 발명에 따른 DC 선로의 일측에 고장발생시 단일회로로 양방향 고장전류를 차단하는 DC 차단기에서의 고장전류 차단과정을 보이는 개요도.Figure 4 is a schematic diagram showing a fault current blocking process in the DC circuit breaker to block the bidirectional fault current in a single circuit when a fault occurs on one side of the DC line according to the present invention.
도 5는 본 발명에 따른 고전압 DC 선로의 타측에 고장발생시 단일회로로 양방향 고장전류를 차단하는 DC 차단기에서의 고장전류 차단과정을 보이는 개요도.5 is a schematic diagram showing a fault current blocking process in a DC circuit breaker for blocking bidirectional fault currents in a single circuit when a fault occurs on the other side of the high voltage DC line according to the present invention.
이하에서, 본 발명의 바람직한 실시 예가 첨부된 도면들을 참조하여 설명할 것이다. 또한, 본 발명을 설명함에 있어서 관련된 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다.Hereinafter, preferred embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the present invention, detailed descriptions of well-known functions or configurations will be omitted when it is determined that the detailed descriptions may unnecessarily obscure the subject matter of the present invention.
도 2는 본 발명의 실시 예에 따른 단일회로로 양방향 고장전류를 차단하는 DC 차단기의 구성도이다.2 is a block diagram of a DC circuit breaker for blocking a bidirectional fault current in a single circuit according to an embodiment of the present invention.
도 2를 참조하면, 본 발명의 실시 예에 따른 DC 차단기(100)는 DC 선로(10)의 일측(A)과 타측(B) 사이에 설치된 메인스위치(110)를 포함한다. 이러한 메인스위치(110)는 기본적으로 일측(A) 또는 타측(B)에 고장발생시 고장이 발생한 회로로 고장전류가 흘러들어가지 않도록 하기 위해 DC 선로(10)를 차단하는 역할을 한다. 이를 위해 메인스위치(110)는 정상상태에서는 닫혀(close) 있다가 고장발생시 개방(open)된다. 이러한 메인스위치(110)는 제어부(미도시)의 제어신호에 의해 그 스위칭 동작이 제어된다.2, the DC circuit breaker 100 according to the embodiment of the present invention includes a main switch 110 installed between one side A and the other side B of the DC line 10. The main switch 110 basically serves to block the DC line 10 in order to prevent a fault current from flowing into a circuit in which a fault occurs when a fault occurs in one side A or the other side B. To this end, the main switch 110 is closed in the normal state and is opened when a failure occurs. The main switch 110 is controlled by the control signal of the control unit (not shown).
이러한 메인스위치(110)에 병렬로 비선형 저항기(120)가 연결되어 메인스위치(110)의 개방시 정격전압 이상의 과도한 전압이 DC 차단기(100)의 양단에 가해지지 못하도록 하기 위한 것으로서 고장에 의한 고전압이 기설정된 기준치 이상으로 DC 차단기(100)의 양단에 걸리면 자동으로 온(ON)되어 고전압을 소모하도록 한다. 일례로 비선형 저항기(120)는 예컨대 바리스터(varistor)로 구현될 수 있다.The nonlinear resistor 120 is connected to the main switch 110 in parallel to prevent excessive voltage above the rated voltage from being applied to both ends of the DC circuit breaker 100 when the main switch 110 is opened. When both ends of the DC circuit breaker 100 over a predetermined reference value is automatically turned on (ON) to consume a high voltage. In one example, the nonlinear resistor 120 may be implemented as, for example, a varistor.
본 실시 예에서 DC 선로(10)에 고전압이 걸리기 때문에 메인스위치(110)에는 대전류가 흐르게 된다. 이 때문에 고장발생시 메인스위치(110)가 개방될 때 메인스위치(110)의 스위치 단자 간에 아크(arc)가 발생하게 되고, 이러한 아크를 통해 DC고장전류가 DC 선로(10)에 계속해서 흐르게 된다. 따라서 본 발명에서는 이러한 아크를 소호하여 고장전류를 완전히 차단하기 위해 추가적인 장치 또는 회로가 필요하게 된다.In this embodiment, since a high voltage is applied to the DC line 10, a large current flows through the main switch 110. Therefore, when a failure occurs, an arc occurs between the switch terminals of the main switch 110 when the main switch 110 is opened, and the DC fault current continues to flow in the DC line 10 through the arc. Therefore, in the present invention, an additional device or circuit is needed to completely extinguish the fault current by extinguishing such an arc.
구체적으로, 상호 반대방향으로 직렬연결된 제1 및 제2 스위칭소자(140,150)가 메인스위치(110)에 병렬로 연결된다. 또한, 서로 반대방향으로 직렬연결된 제3 및 제4 스위칭소자(160,170)가 메인스위치(110)에 병렬로 연결된다. 이로써 제1 및 제2 스위칭소자(140,150)의 직렬연결 쌍은 제3 및 제4 스위칭소자(160,170)의 직렬연결 쌍에 병렬로 연결되는 것이다. 이때, 제1 및 제2 스위칭소자(140,150)는 제3 및 제4 스위칭소자(160,170)과 각각 반대방향으로 설치된다.Specifically, the first and second switching elements 140 and 150 connected in series in opposite directions are connected to the main switch 110 in parallel. In addition, the third and fourth switching devices 160 and 170 connected in series in opposite directions are connected to the main switch 110 in parallel. Thus, the series connection pairs of the first and second switching elements 140 and 150 are connected in parallel to the series connection pairs of the third and fourth switching elements 160 and 170. In this case, the first and second switching devices 140 and 150 are installed in opposite directions to the third and fourth switching devices 160 and 170, respectively.
또한, 제1 및 제2 스위칭소자(140,150)의 중간점(N1)과 제3 및 제4 스위칭소자(160,170)의 중간점(N2) 사이에 LC 공진을 발생하기 위해 서로 직렬연결된 커패시터(131) 및 리액터(132)를 포함하는 L/C 회로(130)가 설치된다. L/C 회로(130)는 커패시터(131)와 리액터(132)가 직렬연결로 구성되며 정상상태에서 L/C 회로(130)에 공급되는 전류에 의해 커패시터(131)에 전압이 충전되고, 고장발생시에 커패시터(131)에 충전된 전압에 의해 전류가 메인스위치(110)로 전달된다. 이러한 L/C 회로(130)에는 제5 스위칭소자(180)가 병렬연결되는데, 이러한 스위칭소자(180)는 L/C 회로(130)에서 LC 공진을 발생시켜 커패시터(131)에서의 충전전압의 극성을 반전시키도록 스위칭한다. 도면에 도시되지 않았으나 이러한 제1 내지 제5 스위칭소자(140~180)는 제어부(미도시)에 의해 그 동작(온/오프)이 제어된다. 본 실시 예에서 이러한 제1 내지 제5 스위칭소자(140~180)는 턴온(turn-on) 제어가능한 소자로서, 예컨대 싸이리스터(thyristor) 등으로 구현될 수 있고, 또는 턴온(turn-on)/턴오프(turn-off) 제어가능한 소자로서, 예컨대 GTO, IGCT, IGBT 등으로 구현될 수도 있다.In addition, a capacitor 131 connected in series with each other to generate LC resonance between the midpoint N1 of the first and second switching devices 140 and 150 and the midpoint N2 of the third and fourth switching devices 160 and 170. And a L / C circuit 130 including a reactor 132. In the L / C circuit 130, the capacitor 131 and the reactor 132 are configured in series and a voltage is charged to the capacitor 131 by a current supplied to the L / C circuit 130 in a normal state. When generated, current is transmitted to the main switch 110 by the voltage charged in the capacitor 131. A fifth switching device 180 is connected in parallel to the L / C circuit 130. The switching device 180 generates LC resonance in the L / C circuit 130 to generate a charge voltage of the capacitor 131. Switch to reverse polarity. Although not shown in the drawings, the operation (on / off) of the first to fifth switching devices 140 to 180 is controlled by a controller (not shown). In the present embodiment, the first to fifth switching elements 140 to 180 may be implemented as turn-on controllable elements, for example, thyristors, or the like, or turn-on / As a turn-off controllable element, for example, it may be implemented with GTO, IGCT, IGBT, or the like.
제1 및 제4 스위칭소자(140,170)는 L/C 회로(130) 및 메인스위치(110)의 각 양단에 하나씩 연결되어 L/C 회로(130) 및 메인스위치(110) 간에 제1 폐회로를 형성하도록 한다. 이로써 이러한 제1 및 제4 스위칭소자(140,170)는 L/C 회로(130)의 커패시터(131)에 충전된 전압에 의해 제1 폐회로를 따라 제1 방향으로 전류가 흐르도록 스위칭된다. 또한, 제2 및 제3 스위칭소자(150,160)는 L/C 회로(130) 및 메인스위치(110)의 각 양단에 하나씩 연결되어 L/C 회로(130) 및 메인스위치(110) 간에 형성한다. 이로써 이러한 제2 및 제3 스위칭소자(150,160)는 L/C 회로(130)의 커패시터(131)에 충전된 전압에 의해 제2 폐회로를 따라 제2 방향으로 전류가 흐르도록 스위칭된다. 여기서, 제1 폐회로는 제2 폐회로와 다르며 제1 방향과 제2 방향은 전류의 방향을 의미하는 것으로 서로 다른 방향의 전류 흐름을 나타낸다.The first and fourth switching elements 140 and 170 are connected to each of both ends of the L / C circuit 130 and the main switch 110 to form a first closed circuit between the L / C circuit 130 and the main switch 110. Do it. As a result, the first and fourth switching devices 140 and 170 are switched so that current flows in the first direction along the first closed circuit by the voltage charged in the capacitor 131 of the L / C circuit 130. In addition, the second and third switching devices 150 and 160 are connected to both ends of the L / C circuit 130 and the main switch 110, respectively, and are formed between the L / C circuit 130 and the main switch 110. As a result, the second and third switching devices 150 and 160 are switched such that current flows in the second direction along the second closed circuit by the voltage charged in the capacitor 131 of the L / C circuit 130. Here, the first closed circuit is different from the second closed circuit, and the first direction and the second direction mean the direction of the current, and indicate current flow in different directions.
본 실시 예에서, 제1 및 제4 스위칭소자(140,170)는 턴온될 때 제1 방향으로 전류가 흐르도록 서로 동일한 방향으로 설치되고, 제2 및 제3 스위칭소자(150,160)는 턴온될 때 제2 방향으로 전류가 흐르도록 서로 동일한 방향으로 설치된다. 이때 제1 방향 또는 제2 방향으로 흐르게 되는 전류는 L/C 회로(130)의 커패시터(131)에 초기에 충전된 전압(+Vc)이 극성반전용 제5 스위칭소자(180)에 의해 극성반전된 전압(-Vc)에 의한 것이다. 이러한 전류는 제1 또는 제2 방향으로 메인스위치(110)에 제공되어 메인스위치(110)의 개방시 메인스위치(110)에 발생된 아크를 소호하도록 한다.In the present embodiment, the first and fourth switching elements 140 and 170 are installed in the same direction so that current flows in the first direction when turned on, and the second and third switching elements 150 and 160 are turned on when the second and third switching elements 150 and 160 are turned on. Are installed in the same direction so that current flows in the direction. At this time, the current flowing in the first direction or the second direction is the voltage (+ Vc) initially charged in the capacitor 131 of the L / C circuit 130 is the polarity inversion by the fifth switching element 180 for polarity inversion Voltage (-Vc). This current is provided to the main switch 110 in the first or second direction to extinguish the arc generated in the main switch 110 when the main switch 110 is opened.
이를 위하여 메인스위치(110)에 발생한 아크를 통해 흐르는 전류의 반대방향으로 전류가 메인스위치(110)로 공급되어야 한다. 따라서, 제1 방향 또는 제2 방향은 메인스위치(110)에서의 아크를 통해 흐르는 전류의 방향에 의해 결정되는 것이다. 즉, 제1 방향으로 전류를 흘리고자 할 때는 제1 및 제4 스위칭소자(140,170)가 턴온되고, 제2 방향으로 전류를 흘리고자 할 때는 제2 및 제3 스위칭소자(150,160)가 턴온된다. 물론, 제1,4 스위칭소자(140,170)와 제2,3 스위칭소자(150,160)의 턴온/턴오프는 반대로 구현됨은 당연하다.To this end, the current must be supplied to the main switch 110 in a direction opposite to the current flowing through the arc generated in the main switch 110. Therefore, the first direction or the second direction is determined by the direction of the current flowing through the arc in the main switch 110. That is, the first and fourth switching devices 140 and 170 are turned on to flow current in the first direction, and the second and third switching devices 150 and 160 are turned on to flow current in the second direction. Of course, the turn-on / turn-off of the first and fourth switching elements 140 and 170 and the second and third switching elements 150 and 160 may be implemented in reverse.
나아가, 본 실시 예의 DC 차단기(100)는 L/C 회로(130)와 제1 양방향 스위칭소자(140)의 접점과 접지(GND) 사이에 충전저항(R)이 연결된다. 이러한 충전저항(R)를 통해 L/C 회로(130)의 커패시터(131)가 DC 전압(Vc)만큼 초기 충전되도록 한다.Furthermore, in the DC circuit breaker 100 according to the present embodiment, the charging resistor R is connected between the contact of the L / C circuit 130 and the first bidirectional switching element 140 and the ground GND. Through the charging resistor R, the capacitor 131 of the L / C circuit 130 is initially charged by the DC voltage Vc.
도 3은 본 발명의 실시 예에 따른 정상상태에서 단일회로로 양방향 고장전류를 차단하는 DC 차단기에서의 전류흐름을 보이는 개요도이다.Figure 3 is a schematic diagram showing the current flow in the DC circuit breaker for blocking the bidirectional fault current in a single circuit in a steady state according to an embodiment of the present invention.
도 3에서 (a)는 일측(A)에서 타측(B)으로 전류를 공급하는 경우이고, (b)는 타측(B)에서 일측(A)으로 전류를 공급하는 경우를 도시한다. 정상상태에서는 메인스위치(110)가 닫혀(close)있고 제1 및 제4 스위칭소자(140,170)가 온(ON)되어 도통되며 제2 및 제3 스위칭소자(150,160)는 오프(OFF)되어 전류가 흐르지 않는다. 따라서 일측(A)에서 공급되는 전류는 제1 스위칭소자(140), L/C 회로(130), 제4 스위칭소자(170) 및 충전저항(Rc)를 통해 흐르게 되고, 이로써 L/C 회로(130)의 커패시터(131)에 DC 전압 +Vc가 충전된다. 이하에서는, 설명의 편의상 도 3의 (a)에 도시된 바와 같이 N1에서 N2로 전원이 공급될 때 커패시터(131)에 충전되는 전압을 +Vc로 표기하고, 이에 대하여 극성반전된 전압은 -Vc로 표기하기로 한다.In FIG. 3, (a) illustrates a case where current is supplied from one side A to the other side B, and (b) illustrates a case where current is supplied from the other side B to one side A. As shown in FIG. In the normal state, the main switch 110 is closed, the first and fourth switching elements 140 and 170 are turned on and conducting, and the second and third switching elements 150 and 160 are turned off to turn off the current. Does not flow Therefore, the current supplied from one side A flows through the first switching element 140, the L / C circuit 130, the fourth switching element 170, and the charging resistor Rc, thereby allowing the L / C circuit ( The capacitor 131 of 130 is charged with the DC voltage + Vc. Hereinafter, for convenience of description, as shown in FIG. 3A, when the power is supplied from N1 to N2, the voltage charged in the capacitor 131 is represented by + Vc, and the polarity reversed voltage is -Vc. It is written as.
나아가, (b)의 경우에는 정상상태에서 메인스위치(110)가 닫혀(close) 있으므로 타측(B)에서 공급되는 전류가 메인스위치(110)를 거쳐 DC 선로(10)를 따라 일측(A)으로 전달된다. 이때, 제2 및 제4 스위칭소자(150,170)가 온(ON)되어 도통되고, 제1 및 제3 스위칭소자(140,160)는 오프(OFF)되어 전류가 흐르지 않는다. 따라서 타측(B)에서 공급된 전류는 제2 스위칭소자(150), L/C 회로(130), 제4 스위칭소자(170) 및 충전저항(Rc)를 통해 흐르고, 이로써 L/C 회로(130)의 커패시터(131)에 DC 전압 +Vc가 충전된다.Furthermore, in the case of (b), since the main switch 110 is closed in the normal state, the current supplied from the other side B passes through the main switch 110 to one side A along the DC line 10. Delivered. At this time, the second and fourth switching elements 150 and 170 are turned on and conducting, and the first and third switching elements 140 and 160 are turned off to not flow current. Therefore, the current supplied from the other side B flows through the second switching element 150, the L / C circuit 130, the fourth switching element 170, and the charging resistor Rc, thereby providing the L / C circuit 130. DC capacitor + Vc is charged in the capacitor 131 of the N-axis.
이와 같이 정상상태에서는 제어부에서 제1,2,4 스위칭소자(140,150,170)를 적절히 온(ON)시켜 일측(A) 또는 타측(B)에서 공급된 전류에 의해 L/C 회로(130)의 커패시터(131)를 +Vc로 충전된다.As described above, in the steady state, the control unit turns on the first, second, and fourth switching elements 140, 150, and 170, and the capacitor of the L / C circuit 130 by the current supplied from one side A or the other side B. 131 is charged to + Vc.
도 4는 본 발명의 일 실시 예에 따른 단일회로로 양방향 고장전류를 차단하는 DC 차단기의 타측(B)에 고장발생시 고장전류 차단과정을 보이는 개요도이고, 도 5는 본 발명의 다른 실시 예에 따른 단일회로로 양방향 고장전류를 차단하는 DC 차단기의 일측(A)에 고장발생시 고장전류 차단과정을 보이는 개요도이다.4 is a schematic view showing a fault current blocking process when a fault occurs in the other side (B) of the DC circuit breaker for blocking a bidirectional fault current in a single circuit according to an embodiment of the present invention, Figure 5 is according to another embodiment of the present invention This is a schematic diagram showing the fault current blocking process when a fault occurs at one side (A) of the DC circuit breaker that blocks the bidirectional fault current in a single circuit.
우선, 상기의 도 3에서와 같은 정상상태에서 커패시터(131)에 +Vc의 DC 전압이 충전되어 있다. 이 상태에서 B측에 고장이 발생하면, 도 4에 도시된 바와 같이, 제어부에서 고장발생을 감지하여 닫혀 있던 메인스위치(110)를 개방시킨다. 이때, 메인스위치(110)의 개방시 메인스위치(110)의 스위치단자 간에 아크(arc)가 발생하여 그 아크를 통해 A측→B측으로 고장전류가 지속적으로 흐르게 된다.First, the DC voltage of + Vc is charged in the capacitor 131 in the normal state as shown in FIG. 3. If a failure occurs in the B side in this state, as shown in Figure 4, the control unit detects the failure to open the main switch 110 that was closed. At this time, an arc is generated between the switch terminals of the main switch 110 when the main switch 110 is opened, and the fault current continuously flows from the A side to the B side through the arc.
또한, 메인스위치(110)의 개방과 함께 제1 내지 제4 스위칭소자(140~170)를 오프(OFF)시키고 제5 스위칭소자(180)는 온(ON)시킨다. 상기 제5 스위칭소자(180)가 온(ON)으로 전환되면 제5 스위칭소자(180)를 통해 L/C 회로(130)에서 LC 공진이 발생하고 커패시터(131)에 초기에 충전된 전압(+Vc)은 극성반전이 일어나 -Vc로 충전된다. 즉, 제5 스위칭소자(180)를 통해 L/C 회로(130) 내에서 LC 공진에 발생하여 커패시터(131)에 초기에 충전된 전압(+Vc)에서 극성반전된 전압(-Vc)이 커패시터에(131)에 재충전되는 것이다.In addition, with the opening of the main switch 110, the first to fourth switching devices 140 to 170 are turned off and the fifth switching device 180 is turned on. When the fifth switching device 180 is turned on, LC resonance occurs in the L / C circuit 130 through the fifth switching device 180 and the voltage initially charged in the capacitor 131 (+). Vc) is reversed in polarity and charged to -Vc. That is, the voltage (-Vc) polarized inverted at the voltage (+ Vc) initially charged in the capacitor 131 by LC resonance in the L / C circuit 130 through the fifth switching element 180 is a capacitor. Is recharged in 131.
이후, 제2 및 제3 스위칭소자(150,160)가 오프(OFF)된 상태에서 제1 및 제4 스위칭소자(140,170)가 온(ON)되어 커패시터(131)에 충전된 전압(-Vc)에 의해 전류가 제4 스위칭소자(170), 메인스위치(110), 제1 스위칭소자(140)을 통해 제1 방향으로 흐르게 된다. 이와 같이 공급된 전류에 의해 메인스위치(110)에서의 전류는 0(zero)가 되어 아크가 소호된다. 상기와 같이 제1 방향으로 메인스위치(110)에 공급되는 전류는 메인스위치(110)에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 큰 것이 바람직하다. 이를 위해 커패시터의 충전용량이 결정될 수 있다.Subsequently, the first and fourth switching devices 140 and 170 are turned on in the state in which the second and third switching devices 150 and 160 are turned off to be charged by the voltage (-Vc) charged in the capacitor 131. Current flows in the first direction through the fourth switching device 170, the main switch 110, and the first switching device 140. By the current supplied in this way, the current in the main switch 110 becomes 0 (zero) and the arc is extinguished. As described above, the current supplied to the main switch 110 in the first direction is opposite in direction to the fault current sustained through the arc in the main switch 110 and is larger in size. To this end, the charging capacity of the capacitor can be determined.
이후에, 메인스위치(110)에 발생한 아크(arc)가 완전히 소호되어 고장전류가 메인스위치(110)에 의해 차단되면 상대적으로 B측에 비해 A측 전압이 급격히 상승하게 된다. 이와 같이 상승한 A측 전압은 메인스위치(110)에 병렬연결된 비선형 저항기(120)에서 소모된다. 이와 동시에 제5 스위칭소자(180)는 다시 오프(OFF)되어 제1 스위칭소자(140), L/C 회로(130), 제4 스위칭소자(170) 및 충전저항(Rc)를 통해 전류가 흐르면서 L/C 회로(130)의 커패시터(131)에는 다시 +Vc의 DC 전압이 재충전된다.Subsequently, when the arc generated in the main switch 110 is completely extinguished and the fault current is blocked by the main switch 110, the voltage on the A side is increased rapidly compared to the B side. The voltage on the A side thus increased is consumed in the nonlinear resistor 120 connected in parallel to the main switch 110. At the same time, the fifth switching device 180 is turned off again, and current flows through the first switching device 140, the L / C circuit 130, the fourth switching device 170, and the charging resistor Rc. The capacitor 131 of the L / C circuit 130 is again recharged with a DC voltage of + Vc.
여기서, 본 발명의 DC 차단기(100)는 메인스위치(110)의 재폐로 동작이 가능하다는 특징이 있다. 즉, 메인스위치(110)의 개방 이후에 B측의 고장이 제거되면 제어부는 메인스위치(110)을 닫아 DC 선로(10)에서 폐로를 형성할 수 있다. 메인스위치(110)를 닫아 폐로를 형성한 경우에 만약 B측 고장이 제거되지 않은 상태라면 상기한 과정들을 반복하도록 한다. 이러한 재폐로는 메인스위치(110)에서 아크가 소호된 이후에 L/C 회로(130)에서 커패시터(131)가 +Vc로 충전상태를 유지하기 때문에 가능한 것이다.Here, the DC circuit breaker 100 of the present invention is characterized in that the operation of reclosing the main switch 110 is possible. That is, when the failure of the B side is removed after the opening of the main switch 110, the control unit may close the main switch 110 to form a closed in the DC line (10). When closing the main switch 110 to form a closed, if the B-side failure is not eliminated to repeat the above process. This reclosing is possible because the capacitor 131 remains charged at + Vc in the L / C circuit 130 after the arc is extinguished in the main switch 110.
상기에서 설명한 바와 같이, 본 발명에 따른 단일회로로 양방향 고장전류를 차단하는 DC 차단기(100)는 L/C 회로(130)에서의 LC 공진에 의해 초기에 커패시터(131)에 충전된 전압(+Vc)에서 극성이 반전된 전압(-Vc)를 이용하여 메인스위치(110)로 전류를 공급함으로써 메인스위치(110)에 0 전류를 이루게 하여 아크를 소호함으로써 그 아크를 통해 흐르는 고장전류를 완전히 차단하도록 한다.As described above, the DC circuit breaker 100 for blocking the bidirectional fault current in a single circuit according to the present invention is a voltage (+) initially charged in the capacitor 131 by LC resonance in the L / C circuit 130 By supplying a current to the main switch 110 by using the voltage (-Vc) inverted polarity at Vc) to achieve a zero current to the main switch 110 to arc the arc to completely block the fault current flowing through the arc Do it.
한편, A측에 고장이 발생한 경우는 도 5에 도시된 바와 같이, 제어부에서 고장발생을 감지하여 메인스위치(110)를 개방시킨다. 메인스위치(110)가 개방될 때 메인스위치(110)의 스위칭 단자 간에 아크(arc)가 발생하여 B측→A측으로 고장전류가 지속적으로 흐르게 된다.On the other hand, when a failure occurs in the A side, as shown in Figure 5, the control unit detects the failure to open the main switch 110. When the main switch 110 is opened, an arc occurs between the switching terminals of the main switch 110 so that a fault current continuously flows from the B side to the A side.
또한, 메인스위치(110)의 개방과 함께 제1 내지 제4 스위칭소자(140~170)를 오프(OFF)시키고 제5 스위칭소자(180)는 온(ON)시킨다. 상기 제5 스위칭소자(180)가 온(ON)으로 전환되면 제5 스위칭소자(180)를 통해 L/C 회로(130)에서 LC 공진이 발생하여 커패시터(131)에 초기 충전된 +Vc 전압은 극성반전이 일어나 -Vc 전압으로 충전된다. 즉, L/C 회로(130)에서 제5 스위칭소자(180)를 통해 LC 공진에 발생하여 커패시터(131)에 초기 충전된 전압(+Vc)에서 극성반전된 전압(-Vc)으로 되어 커패시터에(131)에 재충전되는 것이다.In addition, with the opening of the main switch 110, the first to fourth switching devices 140 to 170 are turned off and the fifth switching device 180 is turned on. When the fifth switching device 180 is turned on, LC resonance occurs in the L / C circuit 130 through the fifth switching device 180, and the + Vc voltage initially charged in the capacitor 131 is Polarity reversal occurs, charging to -Vc voltage. That is, in the L / C circuit 130, the voltage is generated in the LC resonance through the fifth switching device 180 and becomes the voltage (-Vc) polarized inverted from the voltage (+ Vc) initially charged in the capacitor 131. Recharged at 131.
이후에, 제1 및 제4 스위칭소자(140,170)가 오프(OFF)된 상태에서 제2 및 제3 스위칭소자(150,160)가 온(ON)되어 커패시터(131)에 충전된 전압(-Vc)에 의해 전류가 제3 스위칭소자(160), 메인스위치(110), 제2 스위칭소자(150)을 통해 제2 방향으로 흐르게 된다. 이와 같이 공급된 전류에 의해 메인스위치(110)에서의 전류는 0(zero)가 되어 아크가 소호된다. 상기와 같이 제2 방향으로 메인스위치(110)에 공급되는 전류는 메인스위치(110)에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 큰 것이 바람직하다. 이를 위해 커패시터의 충전용량이 결정될 수 있다.Thereafter, the second and third switching devices 150 and 160 are turned on while the first and fourth switching devices 140 and 170 are turned off to the voltage (-Vc) charged in the capacitor 131. As a result, current flows in the second direction through the third switching device 160, the main switch 110, and the second switching device 150. By the current supplied in this way, the current in the main switch 110 becomes 0 (zero) and the arc is extinguished. As described above, the current supplied to the main switch 110 in the second direction is opposite in direction to the fault current sustained through the arc in the main switch 110 and is larger in size. To this end, the charging capacity of the capacitor can be determined.
이후에, 메인스위치(110)에 발생한 아크(arc)가 완전히 소호되어 고장전류가 메인스위치(110)에 의해 차단되면 상대적으로 B측에 비해 A측 전압이 급격히 상승하게 된다. 이와 같이 상승한 A측 전압은 메인스위치(110)에 병렬연결된 비선형 저항기(120)에서 소모된다. 이와 동시에 제5 스위칭소자(180)는 다시 오프(OFF)되어 제2 스위칭소자(150), L/C 회로(130), 제4 스위칭소자(170) 및 충전저항(Rc)를 통해 전류가 흐르면서 L/C 회로(130)의 커패시터(131)에는 다시 +Vc의 DC 전압이 재충전된다.Subsequently, when the arc generated in the main switch 110 is completely extinguished and the fault current is blocked by the main switch 110, the voltage on the A side is increased rapidly compared to the B side. The voltage on the A side thus increased is consumed in the nonlinear resistor 120 connected in parallel to the main switch 110. At the same time, the fifth switching device 180 is turned off again, and current flows through the second switching device 150, the L / C circuit 130, the fourth switching device 170, and the charging resistor Rc. The capacitor 131 of the L / C circuit 130 is again recharged with a DC voltage of + Vc.
여기서, 도 5에서도 본 발명의 DC 차단기(100)는 메인스위치(110)의 재폐로 동작이 가능하다. 즉, 메인스위치(110)의 개방 이후에 A측 고장이 제거되면 제어부는 메인스위치(110)을 닫아 DC 선로(10)에서 폐로를 형성할 수 있다. 이때, 메인스위치(110)를 닫아 폐로를 형성한 경우에, 만약 A측 고장이 제거되지 않은 상태라면 상기한 과정들을 반복하도록 한다. 이러한 재폐로는 메인스위치(110)에서 아크가 소호된 이후에 L/C 회로(130)에서 커패시터(131)가 +Vc로 충전상태를 유지하기 때문에 가능한 것이다.Here, also in FIG. 5, the DC circuit breaker 100 of the present invention may operate to reclose the main switch 110. That is, when the A side fault is removed after the opening of the main switch 110, the control unit may close the main switch 110 to form a closure in the DC line 10. At this time, in the case of closing the main switch 110 to form a closed, if the A-side failure is not removed to repeat the above process. This reclosing is possible because the capacitor 131 remains charged at + Vc in the L / C circuit 130 after the arc is extinguished in the main switch 110.
이상에서 설명한 바와 같이, 본 발명에 따른 단일회로로 양방향 고장전류를 차단하는 DC 차단기(100)는 LC 공진에 의한 전류가 도 1에 도시된 종래기술과 같이 메인스위치(CB)가 아니라 제5 스위칭소자(180)를 통해 이루어진다는 특징이 있다. 따라서, 종래기술과 같이 LC 공진에 의한 전류 진동이 커지는 것이 아니라, 본 발명에서는 LC 공진에 의해 L/C 회로(130)의 커패시터(131)의 전압의 극성이 반전되도록 LC 공진이 한번만 이루어지면 된다. 이는 종래기술에 비해 차단속도가 증가하는 원인이 된다. 또한, 종래기술에서는 LC 공진을 통해 공진전류의 크기를 계속 증가시켜 고장전류의 크기가 되는 시점에서 아크를 소호하지만, 본 발명에서는 종래기술과는 달리 커패시터(131)의 용량에 따라 결정된 커패시터(131)의 충전전압에 의해 메인스위치(110)에 흐르는 고장전류와 반대방향의 전류를 메인스위치(110)에 주입시켜 zero 전류를 만들어 아크를 소호하도록 한다.As described above, in the DC circuit breaker 100 for blocking the bidirectional fault current in a single circuit according to the present invention, the current caused by the LC resonance is not the main switch CB as shown in FIG. The device 180 is characterized in that it is made. Therefore, the current oscillation due to the LC resonance is not increased as in the prior art, but in the present invention, the LC resonance needs to be performed only once so that the polarity of the voltage of the capacitor 131 of the L / C circuit 130 is reversed by the LC resonance. . This causes the blocking speed to increase compared to the prior art. In addition, in the prior art, the arc is extinguished at the time when the magnitude of the fault current is increased by continuously increasing the magnitude of the resonance current through LC resonance. However, in the present invention, unlike the prior art, the capacitor 131 determined according to the capacity of the capacitor 131 By injecting the current in the opposite direction to the fault current flowing in the main switch 110 by the charging voltage of the main to the main switch 110 to make a zero current arc arc arc.
이상에서 설명한 본 발명은 바람직한 실시 예들을 통하여 상세하게 설명되었지만, 본 발명은 이러한 실시 예들의 내용에 한정되는 것이 아님을 밝혀둔다. 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면, 비록 실시 예에 제시되지 않았지만 첨부된 청구항의 기재 범위 내에서 다양한 본 발명에 대한 모조나 개량이 가능하며, 이들 모두 본 발명의 기술적 범위에 속함은 너무나 자명하다 할 것이다. 이에, 본 발명의 진정한 기술적 보호 범위는 첨부된 특허청구범위의 기술적 사상에 의해 정해져야 할 것이다.Although the present invention described above has been described in detail through the preferred embodiments, the present invention is not limited to the content of these embodiments. Those skilled in the art to which the present invention pertains, although not shown in the embodiments, can be imitated or improved for various inventions within the scope of the appended claims, all of which fall within the technical scope of the present invention. Belonging will be too self-evident. Therefore, the true technical protection scope of the present invention will be defined by the technical spirit of the appended claims.

Claims (11)

  1. 직류(DC) 선로에 흐르는 전류를 차단하기 위한 단일회로로 양방향 고장전류를 차단하는 DC 차단기에 있어서,In the DC circuit breaker to block the bidirectional fault current in a single circuit to block the current flowing on the DC line,
    상기 DC 선로에 설치되고 상기 DC 선로의 일측 또는 타측에 고장발생시 개방되어 상기 DC 선로의 전류를 차단하기 위한 메인스위치(110);A main switch (110) installed on the DC line and opened when a failure occurs on one side or the other side of the DC line to cut off the current of the DC line;
    상기 메인스위치(110)에 병렬연결되고 상호 반대방향으로 직렬연결된 제1 및 제2 스위칭소자(140,150);First and second switching devices 140 and 150 connected in parallel to the main switch 110 and connected in series in opposite directions;
    상기 메인스위치(110)에 병렬연결되고 상호 반대방향으로 직렬연결되되, 상기 제1 및 제2 스위칭소자(140,150)와 반대방향으로 배치되어 서로 직렬연결된 제3 및 제4 스위칭소자(160,170);Third and fourth switching devices 160 and 170 connected in parallel to the main switch 110 and connected in series in opposite directions, respectively, arranged in opposite directions to the first and second switching devices 140 and 150 and connected in series to each other;
    상기 제1 및 제2 스위칭소자(140,150)의 중간점(N1)과 상기 제3 및 제4 스위칭소자(160,170)의 중간점(N2) 사이에 연결되고 LC 공진을 발생하기 위해 서로 직렬연결된 커패시터(131) 및 리액터(132)를 포함하는 L/C 회로(130); 및A capacitor connected between an intermediate point N1 of the first and second switching elements 140 and 150 and an intermediate point N2 of the third and fourth switching elements 160 and 170 and connected in series with each other to generate an LC resonance. L / C circuit 130 including 131 and reactor 132; And
    상기 L/C 회로(130)에 병렬연결되어 상기 L/C 회로(130)에서 LC 공진을 발생시켜 상기 커패시터(131)에서의 충전전압의 극성을 반전시키도록 스위칭하는 제5 스위칭소자(180); 를 포함하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.A fifth switching device 180 connected in parallel to the L / C circuit 130 to generate LC resonance in the L / C circuit 130 to switch to invert the polarity of the charging voltage in the capacitor 131. ; DC circuit breaker for blocking bidirectional fault current in a single circuit comprising a.
  2. 제1항에 있어서, The method of claim 1,
    정상상태에서 상기 커패시터(131)의 전압충전을 위하여 상기 LC 회로(130)와 접지(GND) 사이에 설치되는 충전저항(Rc)를 더 포함하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.DC circuit breaker for blocking a bidirectional fault current in a single circuit further comprising a charge resistor (Rc) is installed between the LC circuit 130 and the ground (GND) for the voltage charging of the capacitor (131) in the normal state.
  3. 제1항 또는 제2항에 있어서, 상기 제1 내지 제5 스위칭소자(140~180)는,The method according to claim 1 or 2, wherein the first to fifth switching elements (140 to 180),
    각각 턴온 또는 턴온/턴오프 제어가능한 전력 반도체 스위치를 포함하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.A DC circuit breaker that blocks bidirectional fault currents in a single circuit, each of which includes a power semiconductor switch that can be turned on or turned on / off.
  4. 제3항에 있어서, 상기 제1 및 제4 스위칭소자(140,170)는,The method of claim 3, wherein the first and fourth switching elements (140, 170),
    상기 L/C 회로(130) 및 메인스위치(110)의 각 양단에 하나씩 연결되어 상기 L/C 회로(130) 및 메인스위치(110) 간에 형성되는 제1 폐회로를 따라 제1 방향의 전류를 도통시키도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.One end of each of the L / C circuit 130 and the main switch 110 is connected to conduct current in a first direction along a first closed circuit formed between the L / C circuit 130 and the main switch 110. DC circuit breaker that blocks bidirectional fault currents in a single circuit.
  5. 제3항에 있어서, 상기 제2 및 제3 스위칭소자(150,160)는,The method of claim 3, wherein the second and third switching device (150, 160),
    상기 L/C 회로(130) 및 메인스위치(110)의 각 양단에 하나씩 연결되어 상기 L/C 회로(130) 및 메인스위치(110) 간에 형성되는 제2 폐회로를 따라 제2 방향의 전류를 도통시키도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.One end of each of the L / C circuit 130 and the main switch 110 is connected to conduct current in the second direction along a second closed circuit formed between the L / C circuit 130 and the main switch 110. DC circuit breaker that blocks bidirectional fault currents in a single circuit.
  6. 제3항에 있어서,The method of claim 3,
    상기 제5 스위칭소자(180)는 정상상태에서는 오프(OFF)상태를 유지하고 상기 메인스위치(110)의 개방시에 온(ON)상태로 전환되어 상기 커패시터(131)에 충전된 전압의 극성을 반전시키도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.The fifth switching device 180 maintains an OFF state in a normal state, and is switched to an ON state when the main switch 110 is opened to change the polarity of the voltage charged in the capacitor 131. DC circuit breaker that blocks bidirectional fault currents with a single circuit that inverts.
  7. 제6항에 있어서,The method of claim 6,
    상기 메인스위치(110)의 개방시 상기 커패시터(131)의 극성반전된 전압에 의해 상기 제1 및 제4 스위칭소자(140,170) 또는 제2 및 제3 스위칭소자(150,160)를 통해 전류를 상기 메인스위치(110)로 공급하여 상기 메인스위치(110)에 발생한 아크를 소호하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.When the main switch 110 is opened, current is supplied through the first and fourth switching elements 140 and 170 or the second and third switching elements 150 and 160 by the polarity inverted voltage of the capacitor 131. DC circuit breaker for supplying to the (110) to block the bidirectional fault current in a single circuit to extinguish the arc generated in the main switch 110.
  8. 제6항에 있어서,The method of claim 6,
    상기 메인스위치(110)의 개방시에 아크(arc)가 발생하면,If an arc occurs when the main switch 110 is opened,
    상기 제2 및 제3 스위칭소자(150,160)는 오프(OFF)된 상태에서 상기 제1 및 제4 스위칭소자(140,170)가 온(ON)되어 상기 커패시터(131)에서 극성반전된 전압에 의해 전류가 상기 제1 및 제4 스위칭소자(140,170)를 통해 상기 메인스위치(110)로 공급되고 상기 공급된 전류에 의해 상기 메인스위치(110)에서 0(zero) 전류가 되어 상기 메인스위치(110)에 발생된 아크가 소호되도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.The first and fourth switching devices 140 and 170 are turned on while the second and third switching devices 150 and 160 are turned off, so that a current is generated by the polarity inverted voltage in the capacitor 131. The main switch 110 is supplied to the main switch 110 through the first and fourth switching elements 140 and 170 and becomes zero current in the main switch 110 by the supplied current, which occurs in the main switch 110. DC circuit breaker that cuts bidirectional fault currents in a single circuit to ensure that arcs are extinguished.
  9. 제8항에 있어서,The method of claim 8,
    상기 메인스위치(110)로 공급되는 전류는 상기 메인스위치(110)에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 큰 단일회로로 양방향 고장전류를 차단하는 DC 차단기.The current supplied to the main switch 110 is a DC circuit breaker to block the bidirectional fault current in a single circuit of the opposite direction and larger in magnitude and the direction of the fault current persisted through the arc in the main switch (110).
  10. 제6항에 있어서,The method of claim 6,
    상기 메인스위치(110)의 개방시에 아크(arc)가 발생하면,If an arc occurs when the main switch 110 is opened,
    상기 제1 및 제4 스위칭소자(140,170)는 오프(OFF)된 상태에서 상기 제2 및 제3 스위칭소자(150,160)가 온(ON)되어 상기 커패시터(131)에서 극성반전된 전압에 의해 전류가 상기 제2 및 제3 스위칭소자(150,160)를 통해 상기 메인스위치(110)로 공급되고 상기 공급된 전류에 의해 상기 메인스위치(110)에서 0(zero) 전류가 되어 상기 메인스위치(110)에 발생된 아크가 소호되도록 하는 단일회로로 양방향 고장전류를 차단하는 DC 차단기.The second and third switching devices 150 and 160 are turned on while the first and fourth switching devices 140 and 170 are turned off, so that a current is generated by the voltage reversed in polarity in the capacitor 131. The main switch 110 is supplied to the main switch 110 through the second and third switching elements 150 and 160 and becomes a zero current in the main switch 110 by the supplied current to occur in the main switch 110. DC circuit breaker that cuts bidirectional fault currents in a single circuit to ensure that arcs are extinguished.
  11. 제10항에 있어서,The method of claim 10,
    상기 메인스위치(110)로 공급되는 전류는 상기 메인스위치(110)에서 아크를 통해 지속되는 고장전류와 방향은 반대이고 크기는 더 큰 단일회로로 양방향 고장전류를 차단하는 DC 차단기.The current supplied to the main switch 110 is a DC circuit breaker to block the bidirectional fault current in a single circuit of the opposite direction and larger in magnitude and the direction of the fault current persisted through the arc in the main switch (110).
PCT/KR2014/012856 2013-12-26 2014-12-24 Dc circuit breaker for breaking bidirectional fault current using single circuit WO2015099467A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130163718A KR101522411B1 (en) 2013-12-26 2013-12-26 DC circuit breaker for shutting off bi-direction fault current using single circuit
KR10-2013-0163718 2013-12-26

Publications (1)

Publication Number Publication Date
WO2015099467A1 true WO2015099467A1 (en) 2015-07-02

Family

ID=53395326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/012856 WO2015099467A1 (en) 2013-12-26 2014-12-24 Dc circuit breaker for breaking bidirectional fault current using single circuit

Country Status (2)

Country Link
KR (1) KR101522411B1 (en)
WO (1) WO2015099467A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509466B1 (en) * 2018-08-24 2019-05-08 三菱電機株式会社 DC blocking device
CN112531633A (en) * 2020-11-24 2021-03-19 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Forced commutation loop and method of direct current breaker
CN113824083A (en) * 2021-07-09 2021-12-21 天津大学 Hybrid direct current breaker with self-adaptive reclosing

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101688921B1 (en) 2015-06-22 2017-01-02 주식회사 효성 Direct current circuit breaker
KR101894973B1 (en) * 2016-12-02 2018-10-18 공주대학교 산학협력단 Zero-voltage/zero-current dc circuit breaker
CN107086541B (en) * 2017-06-05 2020-02-07 国家电网公司 Bidirectional breaking hybrid circuit breaker and breaking method thereof
KR102607990B1 (en) 2021-04-28 2023-11-30 전남대학교 산학협력단 4-port Type DC Circuit Breaker and Two-way DC Circuit Braker comprising the Same

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0628952A (en) * 1992-07-10 1994-02-04 Mitsubishi Electric Corp Direct current circuit breaker
JP2679997B2 (en) * 1986-10-15 1997-11-19 株式会社日立製作所 DC circuit breaker
KR20000060552A (en) * 1999-03-17 2000-10-16 차동해 Two-Stage Mechanical-Thyristor Switch
JP2012195121A (en) * 2011-03-16 2012-10-11 Fuji Electric Co Ltd Circuit breaker

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2679997B2 (en) * 1986-10-15 1997-11-19 株式会社日立製作所 DC circuit breaker
JPH0628952A (en) * 1992-07-10 1994-02-04 Mitsubishi Electric Corp Direct current circuit breaker
KR20000060552A (en) * 1999-03-17 2000-10-16 차동해 Two-Stage Mechanical-Thyristor Switch
JP2012195121A (en) * 2011-03-16 2012-10-11 Fuji Electric Co Ltd Circuit breaker

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6509466B1 (en) * 2018-08-24 2019-05-08 三菱電機株式会社 DC blocking device
WO2020039580A1 (en) * 2018-08-24 2020-02-27 三菱電機株式会社 Dc breaker device
CN112531633A (en) * 2020-11-24 2021-03-19 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Forced commutation loop and method of direct current breaker
CN112531633B (en) * 2020-11-24 2023-03-17 武汉船用电力推进装置研究所(中国船舶重工集团公司第七一二研究所) Forced commutation loop and method of direct current breaker
CN113824083A (en) * 2021-07-09 2021-12-21 天津大学 Hybrid direct current breaker with self-adaptive reclosing

Also Published As

Publication number Publication date
KR101522411B1 (en) 2015-05-21

Similar Documents

Publication Publication Date Title
WO2015099468A1 (en) Bidirectional direct current circuit breaker
WO2015102383A1 (en) High-voltage dc circuit breaker
WO2015102311A1 (en) High-voltage dc circuit breaker
WO2015099467A1 (en) Dc circuit breaker for breaking bidirectional fault current using single circuit
WO2015023157A1 (en) High voltage dc breaker
WO2016108530A1 (en) Dc circuit breaker
WO2015102307A1 (en) High-voltage dc circuit breaker
WO2015053484A1 (en) Device and method for blocking high voltage direct current
WO2016108524A1 (en) High voltage dc circuit breaker
RU2740012C1 (en) Longitudinal compensator and control method
CN106537544B (en) The devices, systems, and methods of interruptive current
WO2016108528A1 (en) Dc circuit breaker
CA2874029C (en) Method of fault clearance
WO2015099470A1 (en) Direct current circuit breaker using magnetic field
WO2016208968A1 (en) Dc breaker
CA2178356C (en) A high voltage electric power line current limiter
KR101872869B1 (en) High Speed DC Circuit Breaker using Charging Capacitor and Parallel LC Circuit
WO2016043508A1 (en) Apparatus and method for cutting off direct current
KR102541790B1 (en) High voltage battery cluster and overcurrent protection circuit and switch box of high voltage battery cluster
WO2018130557A1 (en) Dc power switching assembly and method
WO2015102384A1 (en) Z-source circuit apparatus
WO2017069371A1 (en) Current cutoff switch using supercritical fluid, and current cutoff device and current cutoff method using same
WO2019139276A1 (en) Dc circuit breaker
CN108808835A (en) A kind of UPS fault secure circuits and UPS devices
KR20190116745A (en) Bidirectional DC current interruption device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14875500

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14875500

Country of ref document: EP

Kind code of ref document: A1