JP2012194110A - Method for separating and analyzing inclusion in steel - Google Patents

Method for separating and analyzing inclusion in steel Download PDF

Info

Publication number
JP2012194110A
JP2012194110A JP2011059429A JP2011059429A JP2012194110A JP 2012194110 A JP2012194110 A JP 2012194110A JP 2011059429 A JP2011059429 A JP 2011059429A JP 2011059429 A JP2011059429 A JP 2011059429A JP 2012194110 A JP2012194110 A JP 2012194110A
Authority
JP
Japan
Prior art keywords
steel
inclusions
filter
residue
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011059429A
Other languages
Japanese (ja)
Other versions
JP5569445B2 (en
Inventor
Shin Miyajima
慎 宮島
Masayuki Morimoto
雅之 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2011059429A priority Critical patent/JP5569445B2/en
Publication of JP2012194110A publication Critical patent/JP2012194110A/en
Application granted granted Critical
Publication of JP5569445B2 publication Critical patent/JP5569445B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analyzing Non-Biological Materials By The Use Of Chemical Means (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a preprocessing method by which after an inclusion in steel is extracted from an iron matrix, the inclusion can be made observable and its particle size distribution is measured accurately.SOLUTION: A steel sample is dissolved and the residue is filtered through a filter. A great amount of free carbon included in the residue is subjected to low temperature ashing processing to remove the most of them. The method is used as preprocessing to analyze the inclusion so that only inclusion can be accurately observed and the particle size distribution of the inclusion can be accurately measured.

Description

本発明は、鋼中介在物の分析方法の前処理として好適な鋼中介在物の分離方法に関する。当該方法を採用することにより、多数の介在物を迅速に精度良く計測し、高精度かつ速やかに介在物の粒度分布を得ることが可能となる。   The present invention relates to a method for separating inclusions in steel suitable as a pretreatment for an analysis method for inclusions in steel. By adopting this method, it becomes possible to measure a large number of inclusions quickly and accurately, and to obtain the particle size distribution of the inclusions with high accuracy and speed.

鉄鋼材料中に含まれる介在物はその種類、粒径、量により、材料特性に多大な影響を及ぼす。特に鋼中の微細介在物(約5μm以下)は鋼の結晶粒微細化に重要な影響を及ぼすため、介在物の粒度分布を正確に計測することは重要である。   Inclusions contained in the steel material have a great influence on the material properties depending on the type, particle size and amount. In particular, it is important to accurately measure the particle size distribution of inclusions because fine inclusions (about 5 μm or less) in steel have an important influence on the refinement of crystal grains in steel.

鋼中介在物の粒度分布を迅速に計測する手法としては、非特許文献1に試料を硝酸+硫酸の混酸で分解し、残渣をレーザー回折式粒度分布計で測定する方法が開示されている。しかしこの方法ではアルミナのような酸に安定な一部の介在物しか抽出できない。したがってTiOやZrOといった介在物はこれらに溶解し定量的に抽出することができない。 As a method for quickly measuring the particle size distribution of inclusions in steel, Non-Patent Document 1 discloses a method in which a sample is decomposed with a mixed acid of nitric acid + sulfuric acid and a residue is measured with a laser diffraction particle size distribution meter. However, this method can extract only some of the inclusions that are stable to acids such as alumina. Therefore, inclusions such as TiO 2 and ZrO 2 are dissolved in these and cannot be quantitatively extracted.

また非特許文献2には、臭素−メタノール法で溶解後、飽和過マンガン酸溶液、クエン酸水溶液を用いて遊離カーボンを除去する方法が開示されている。しかしこの方法では溶解とろ過を繰り返すため操作が煩雑であり、またクエン酸に溶解する介在物は抽出できない。   Non-Patent Document 2 discloses a method in which free carbon is removed using a saturated permanganic acid solution and a citric acid aqueous solution after being dissolved by a bromine-methanol method. However, in this method, since dissolution and filtration are repeated, the operation is complicated, and inclusions that dissolve in citric acid cannot be extracted.

酸素プラズマによる低温灰化処理は、非特許文献3に示されているように、アスベストの検出の前処理として有機フィルターの分解除去に用いられている。セルロースフィルターをアセトン蒸着してガラス基板に貼り付け、その後低温灰化処理を行うことでフィルターを分解している。しかし鋼中介在物の抽出に用いる溶液にはメタノールが含まれており、セルロースフィルターは変形するためにろ過に使用できない。また、抽出に通常用いられるポリカーボネート製フィルターはアセトンで変形するために蒸着することはできない。   As shown in Non-Patent Document 3, the low temperature ashing treatment using oxygen plasma is used to decompose and remove the organic filter as a pretreatment for detecting asbestos. A cellulose filter is vapor-deposited in acetone and attached to a glass substrate, and then the filter is decomposed by performing a low-temperature ashing treatment. However, the solution used for extraction of inclusions in steel contains methanol, and the cellulose filter is deformed and cannot be used for filtration. Moreover, the polycarbonate filter usually used for extraction cannot be deposited because it is deformed by acetone.

非特許文献4では、水素プラズマを用いた低温灰化処理にてポリカーボネート製フィルターを分解しているが、この方法を遊離カーボンの除去には用いておらず、遊離カーボンが除去できるかどうかは不明である。また爆発の危険性のある水素を使用しており、操作の取り扱いに注意が必要である。   In Non-Patent Document 4, the polycarbonate filter is decomposed by low-temperature ashing treatment using hydrogen plasma, but this method is not used for removing free carbon, and it is unclear whether or not free carbon can be removed. It is. In addition, hydrogen is used because of the danger of explosion, so care must be taken in handling the operation.

また特許文献1には、鋼の分解前にあらかじめ水素雰囲気化で脱炭処理を行うことで鋼中炭素量を減少させることで、介在物抽出時に同時に抽出されるセメンタイトや遊離カーボンの発生を抑え、その後に鉄マトリクスを分解し介在物を抽出することで粒度分布を計測することを提案している。この手法では酸を用いないため介在物を安定的に抽出することができるが、脱炭処理に50から100時間もの長時間を要するという問題があり、なおかつ取り扱いに注意が必要な水素を使用する必要がある。   In addition, Patent Document 1 discloses that the amount of carbon in steel is reduced by decarburizing treatment in advance in a hydrogen atmosphere before the decomposition of steel, thereby suppressing the generation of cementite and free carbon that are simultaneously extracted during inclusion extraction. Then, it is proposed to measure the particle size distribution by decomposing the iron matrix and extracting inclusions. In this method, inclusions can be stably extracted because no acid is used, but there is a problem that the decarburization process takes a long time of 50 to 100 hours, and hydrogen that needs to be handled with care is used. There is a need.

また特許文献2では水素プラズマを用いた低温灰化処理にて有機フィルターおよび硫化物系介在物のTiSを分解することで、MnSとTiSの形態別分析を行っている。この方法では介在物であるTiSを分解すること、また試料の炭素量が高い場合(0.01%以上)にはセメンタイト、遊離炭素が影響して粒度分布には適さない。   In Patent Document 2, analysis of MnS and TiS is performed by decomposing the organic filter and sulfide inclusion TiS by low-temperature ashing treatment using hydrogen plasma. In this method, the inclusion TiS is decomposed, and when the amount of carbon in the sample is high (0.01% or more), cementite and free carbon affect the particle size distribution, which is not suitable.

特開平8−292187号公報JP-A-8-292187 特開平8−292188号公報JP-A-8-292188

千野淳ら、「極低酸素鋼中のアルミナ介在物の粒度分布測定法」、鉄と鋼、第12号、1991、pp.2163−2170Chino et al., “Method for measuring particle size distribution of alumina inclusions in ultra-low oxygen steel”, Iron and Steel, No. 12, 1991, pp. 2163-2170 安原久雄ら、「高炭素Si−Mn脱酸鋼中の酸化物粒度分布測定法の確立」、鉄と鋼、85巻、1999、pp.160−163Yasuhara Hisao et al., “Establishment of measurement method of oxide particle size distribution in high carbon Si-Mn deoxidized steel”, Iron and Steel, Vol. 85, 1999, pp. 160-163 JIS K3850−1 空気中の繊維状粒子測定方法JIS K3850-1 Method for measuring fibrous particles in air 川崎製鉄技報、12(1980)4、pp.93−104Kawasaki Steel Technical Report, 12 (1980) 4, pp. 93-104

鋼中に炭素量を多く含む(0.05%以上)場合、電気分解、ハロゲン分解で鋼を分解すると、セメンタイト、遊離カーボンが同時に抽出される。そのため、介在物の粒度分布測定を行う場合、析出炭化物、遊離カーボンが測定を妨害する。   When the steel contains a large amount of carbon (0.05% or more), cementite and free carbon are extracted simultaneously when the steel is decomposed by electrolysis or halogen decomposition. Therefore, when measuring the particle size distribution of inclusions, the precipitated carbides and free carbon interfere with the measurement.

本発明は、上記の問題を解決し、鋼中介在物の粒度分布計測を迅速に計測するための前処理方法となりうる鋼中介在物の分離方法および当該方法を前処理とする分析方法を提供することを目的とする。   The present invention solves the above problems and provides a method for separating inclusions in steel, which can be a pretreatment method for quickly measuring the particle size distribution measurement of inclusions in steel, and an analysis method using the method as a pretreatment. The purpose is to do.

本発明者らが上記の課題を解決すべく検討した結果、鋼中介在物および遊離カーボンを含む残渣をフィルターろ過し、酸素プラズマを用いた灰化処理によってフィルターごと遊離カーボンを除去することにより、残渣中の介在物のみを取り出すことができるという知見を得た。   As a result of studies by the present inventors to solve the above-mentioned problems, by filtering the residue containing inclusions and free carbon in the steel, by removing the free carbon together with the filter by ashing using oxygen plasma, The knowledge that only the inclusions in the residue can be taken out was obtained.

本発明は、上記新知見に基づいてなされたものであり、一態様として、鋼試料の溶解液をフィルターろ過して得られた残渣を含むフィルターを、酸素プラズマを用いて低温灰化処理して、残渣に含まれる遊離カーボンをフィルターとともに除去することにより、残渣中の鋼中介在物を分離する方法を提供する。   The present invention has been made on the basis of the above-mentioned new knowledge. As one aspect, a filter containing a residue obtained by filtering a solution of a steel sample is subjected to low-temperature ashing treatment using oxygen plasma. The present invention provides a method of separating inclusions in steel in a residue by removing free carbon contained in the residue together with a filter.

上記の残渣を含むフィルターを基板上に固定し、その基板ごと低温灰化処理することにより、分離された鋼中介在物が載置された基板を得ることが好ましい
上記の低温灰化処理されるフィルターに含まれる残渣中のカーボン量を1mg/cm以下とすることが好ましい。
It is preferable to obtain a substrate on which separated inclusions in steel are obtained by fixing the filter containing the residue on the substrate and subjecting the substrate to a low-temperature ashing treatment. The amount of carbon in the residue contained in the filter is preferably 1 mg / cm 2 or less.

上記のろ過にポリカーボネート製フィルターを用い、基板とフィルターとの固定に有機系接着剤を用いることが好ましい。
鋼中介在物の種類が酸化物および窒化物の少なくとも一方を含む場合には、臭素−メタノール、またはヨウ素−メタノール法を用いて鋼試料の溶解液を得ることが好ましい。
It is preferable to use a polycarbonate filter for the filtration and an organic adhesive to fix the substrate and the filter.
When the type of inclusions in the steel contains at least one of oxide and nitride, it is preferable to obtain a solution of the steel sample using a bromine-methanol or iodine-methanol method.

鋼中介在物の種類が硫化物を含む場合には、非水溶媒系電解液を用いた電解を行うことにより鋼試料の溶解液を得ることが好ましい。
本発明は、他の一態様として、上記の方法により得られる、分離された鋼中介在物が載置された基板を用いて、鋼に含まれる介在物を分析する方法を提供する。
When the type of inclusions in steel contains sulfide, it is preferable to obtain a solution of the steel sample by performing electrolysis using a non-aqueous solvent electrolyte.
As another aspect, the present invention provides a method for analyzing inclusions contained in steel using a substrate on which separated inclusions in steel obtained by the above method are placed.

本発明によれば鋼中介在物と同時に抽出される遊離カーボンの大部分を除去できるので、鋼中介在物の多数個を簡便に観察することが可能であり、これら介在物の粒度分布計測を容易にすることができる。   According to the present invention, most of the free carbon extracted simultaneously with the inclusions in the steel can be removed, so it is possible to easily observe a large number of inclusions in the steel, and the particle size distribution of these inclusions can be measured. Can be easily.

本発明による介在物分析法の概要を示す工程図である。It is process drawing which shows the outline | summary of the inclusion analysis method by this invention. 本発明方法により観察できた介在物の観察像を示す図である。It is a figure which shows the observation image of the inclusion which was able to be observed by the method of this invention. 観察した介在物のEDSスペクトルを示すグラフである。It is a graph which shows the EDS spectrum of the observed inclusion. 本発明方法を用いなかった場合の比較例としての観察像である。It is an observation image as a comparative example at the time of not using the method of this invention. 本発明方法により計測した粒度分布図を示すグラフである。It is a graph which shows the particle size distribution figure measured by the method of this invention.

本発明は、鋼中介在物の分析に適用することができ、特にハロゲン−メタノール溶液(ハロゲン:臭素、ヨウ素)により抽出可能な介在物に極めて有効に適用できる。
以下、本発明について、臭素−メタノール溶液を用いた抽出法により介在物を抽出し、低温灰化処理を行った場合を例に詳細に説明する。分析フローを図1に示す。対象とする鋼中介在物は臭素−メタノール溶液により残渣中に回収できる。一方で、鋼中の炭素もアモルファスなカーボンとして残渣中に回収され、遊離カーボンと呼ばれる。
The present invention can be applied to the analysis of inclusions in steel, and can be applied particularly effectively to inclusions that can be extracted with a halogen-methanol solution (halogen: bromine, iodine).
Hereinafter, the present invention will be described in detail by taking as an example a case where inclusions are extracted by an extraction method using a bromine-methanol solution and subjected to a low-temperature ashing treatment. The analysis flow is shown in FIG. The inclusions in the steel can be recovered in the residue with a bromine-methanol solution. On the other hand, carbon in steel is also recovered in the residue as amorphous carbon and is called free carbon.

鋼試料が溶解する臭素−メタノール溶液をフィルター濾過し、残渣を含むそのフィルターを基板に貼り付けて固定し、酸素プラズマを用いてフィルターの低温灰化処理を行う。低温灰化は処理時の温度が100℃以下であるため、無機物である鋼中介在物を溶解、変形することなく基板上に残すことができる一方、酸素プラズマを用いていることから遊離カーボンを一酸化炭素や二酸化炭素にして除去することができる。灰化処理後は、そのままの形態(表面に鋼中介在物が残留する基板の状態)で光学顕微鏡、走査型顕微鏡等で観察することが可能である。   The bromine-methanol solution in which the steel sample is dissolved is filtered through a filter, and the filter containing the residue is attached to a substrate and fixed, and the filter is subjected to low-temperature ashing using oxygen plasma. Low-temperature ashing has a processing temperature of 100 ° C. or less, so that inclusions in the steel, which are inorganic substances, can be left on the substrate without being dissolved and deformed. Carbon monoxide and carbon dioxide can be removed. After the ashing treatment, it can be observed with an optical microscope, a scanning microscope or the like in the form as it is (a state of a substrate in which inclusions in steel remain on the surface).

抽出処理に供する鋼試料の上限量は、残渣を飛散させることなくフィルターを貼付することができる最大の残渣量をあらかじめ見積もり、残渣が遊離カーボンからなり鋼中の炭素は全量遊離カーボンとなると仮定して、その最大量の残渣を与える鋼試料の重量として求めることができる。残渣のほとんどが遊離カーボンからなり、残渣における鋼中介在物の割合はわずかであるため、残渣量を上記のように鋼中の炭素量に基づいて計算しても差し支えない。残渣量が過度に多いと灰化が完了する前に遊離カーボンが酸素プラズマによる急激な反応で飛散してしまうため、フィルター上に抽出された遊離カーボン量は1mg/cm以下(基板上に固定されたフィルター1cmあたり1mg)とすることが望ましい。 The upper limit of the amount of steel sample to be subjected to the extraction process is preliminarily estimated as the maximum amount of residue that can be attached to the filter without scattering the residue, assuming that the residue consists of free carbon and the carbon in the steel is entirely free carbon. Thus, it can be determined as the weight of the steel sample giving the maximum amount of residue. Since most of the residue is composed of free carbon and the proportion of inclusions in the steel in the residue is small, the amount of residue can be calculated based on the amount of carbon in the steel as described above. If the amount of the residue is excessively large, free carbon will be scattered by an abrupt reaction by oxygen plasma before ashing is completed, so the amount of free carbon extracted on the filter is 1 mg / cm 2 or less (fixed on the substrate) 1 mg per 1 cm 2 of the applied filter).

フィルターの材質は低温灰化処理によって全量灰化除去されるものであれば特に限定されない。鋼試料の溶解処理においてメタノールを含む溶液を用いる場合には、その溶液による変質を防止する観点からポリカーボネート製のフィルターを用いることが好ましい。   The material of the filter is not particularly limited as long as the entire amount is removed by ashing by the low temperature ashing treatment. When using a solution containing methanol in the dissolution treatment of a steel sample, it is preferable to use a polycarbonate filter from the viewpoint of preventing deterioration due to the solution.

フィルターを貼り付ける基板は低温灰化処理によって劣化しない材質であれば特に限定されない。基板表面に平滑性があり、低温灰化処理によって錆が発生しないことから、シリコンウエハーまたはガラスが好ましい基板である。   The substrate to which the filter is attached is not particularly limited as long as it is a material that does not deteriorate by the low-temperature ashing treatment. A silicon wafer or glass is a preferred substrate because the substrate surface is smooth and rust is not generated by the low-temperature ashing treatment.

基板へのフィルターの貼付に使用する薬剤は、低温灰化処理によって全量灰化除去されるものであれば特に限定されない。低温灰化処理中にフィルターの収縮を発生させず、基板との密着性が良いものであることが好ましい。入手のし易さから、市販の有機系接着剤で無機物質を含まないものが望ましい。   The chemical | medical agent used for sticking of the filter to a board | substrate will not be specifically limited if the whole quantity is ashed and removed by low temperature ashing process. It is preferable that the filter does not shrink during the low-temperature ashing treatment and has good adhesion to the substrate. In view of easy availability, a commercially available organic adhesive that does not contain an inorganic substance is desirable.

低温灰化処理条件(プラズマ発生用電源出力、酸素流量、処理時間など)は、低温灰化によってフィルターおよび遊離カーボンが除去され、処理終了時に鋼中介在物が基板上に適切に残留する、という目的を果たす範囲で適宜設定されるべきものである。プラズマ発生用電源の出力が過小の場合には遊離カーボンを灰化する反応が不十分となることが懸念され、出力が過大であるとこの反応が激しくなって灰化処理中に介在物が基板から飛散してしまうことが懸念される。酸素の使用量は灰化処理のための装置における通常の使用量でよい。処理時間が過度に短い場合には未反応の遊離カーボンが基板上に残留する可能性が高まる。具体的な条件の一例を挙げれば、20W〜150Wで酸素ガス流量30ml/min〜100ml/minで30分以上である。   Low-temperature ashing treatment conditions (plasma generation power output, oxygen flow rate, treatment time, etc.) indicate that low-temperature ashing removes the filter and free carbon, and that the inclusions in the steel remain properly on the substrate at the end of treatment It should be set as appropriate as long as the purpose is achieved. If the output of the power source for plasma generation is too small, there is a concern that the reaction for ashing free carbon will be insufficient, and if the output is too large, this reaction will become intense and inclusions will be formed during the ashing process. There is a concern that it will be scattered. The amount of oxygen used may be a normal amount used in an apparatus for ashing treatment. When the treatment time is excessively short, there is a high possibility that unreacted free carbon remains on the substrate. If an example of specific conditions is given, it will be 30 minutes or more by oxygen gas flow rate 30ml / min-100ml / min at 20W-150W.

低温灰化処理後の試料は介在物のサイズによるが、主に走査電子顕微鏡を用いて観察し、粒度分布の計測は目視でも画像処理を行ってもどちらでもよい。
以上の説明は、鋼中介在物の抽出に臭素−メタノール溶液を用いる場合(化学抽出法)を例としているが、介在物の抽出方法は特に限定されず、他の抽出方法を行ってもよい。ヨウ素−メタノール法を用いた場合も、臭素−メタノール溶液の場合と同様の方法にて介在物を観察することができる。また、介在物の抽出に電解抽出を用いる場合には、あらかじめ抽出前に鋼を1100℃程度の高温から急冷させる溶体化処理でセメンタイトを減らし、遊離カーボンの状態でフィルターに回収させ、同様に低温灰化処理を行えば良い。
The sample after the low-temperature ashing treatment depends on the size of the inclusions, but is mainly observed using a scanning electron microscope, and the particle size distribution may be measured either visually or by image processing.
In the above description, the case where a bromine-methanol solution is used for extraction of inclusions in steel (chemical extraction method) is taken as an example, but the extraction method of inclusions is not particularly limited, and other extraction methods may be performed. . Even when the iodine-methanol method is used, inclusions can be observed by the same method as in the bromine-methanol solution. In addition, when electrolytic extraction is used for extraction of inclusions, cementite is reduced in advance by solution treatment in which the steel is rapidly cooled from a high temperature of about 1100 ° C. before extraction, and is recovered in a filter in the state of free carbon. An ashing process may be performed.

なお、抽出中に鋼中介在物が変質したり溶解したりすることを回避する観点から、鋼中介在物の種類が酸化物および窒化物の少なくとも一方を含む場合、特に酸化物および窒化物の少なくとも一方である場合には、臭素−メタノール、またはヨウ素−メタノール法を鋼中介在物の抽出方法とすることが好ましく、鋼中介在物の種類が硫化物を含む場合、特硫化物である場合には、非水溶媒系電解液を用いた電解を鋼中介在物の抽出方法とすることが好ましい。   In addition, from the viewpoint of preventing the inclusions in the steel from being altered or dissolved during extraction, when the type of inclusions in the steel contains at least one of oxide and nitride, particularly the oxide and nitride In the case of at least one, bromine-methanol or iodine-methanol method is preferably used as an extraction method for inclusions in steel. When the inclusions in steel contain sulfides, they are special sulfides. For this, electrolysis using a nonaqueous solvent electrolyte is preferably used as the method for extracting inclusions in steel.

鋼として化学成分が表1である炭素鋼を用いた。試料約1gを10%臭素−メタノール溶液300ml中で溶解し、残渣を0.05μm孔径のろ過直径35mmのポリカーボネート製フィルターに回収した。回収後のフィルターをシリコンウエハー上に接着剤で貼付し、酸素ガス流量60ml/min、および50W×18時間の条件で酸素プラズマを用い低温灰化処理を行った。   Carbon steel whose chemical composition is shown in Table 1 was used as the steel. About 1 g of a sample was dissolved in 300 ml of a 10% bromine-methanol solution, and the residue was collected on a polycarbonate filter having a pore size of 0.05 μm and a filtration diameter of 35 mm. The recovered filter was attached to a silicon wafer with an adhesive and subjected to low-temperature ashing treatment using oxygen plasma under the conditions of an oxygen gas flow rate of 60 ml / min and 50 W × 18 hours.

低温灰化処理後の試料を走査型電子顕微鏡(加速電圧は2kV)により観察した結果を図2に示す。図中に球状に見えるのが介在物であり、代表的な介在物のEDSスペクトルデータを図3に示す。この場合、介在物はTi,Zr,MnおよびAlを含む複合的な介在物である。比較例として同試料について低温灰化処理を行わなかった結果を示す。観察視野内のフィルターは全面が遊離カーボンに覆われており、一部の介在物しか観察できなかった。   The result of having observed the sample after a low-temperature ashing process with the scanning electron microscope (acceleration voltage is 2 kV) is shown in FIG. In the figure, inclusions appear to be spherical, and EDS spectrum data of typical inclusions is shown in FIG. In this case, the inclusion is a complex inclusion containing Ti, Zr, Mn and Al. The result which did not perform low-temperature ashing process about the same sample as a comparative example is shown. The filter in the observation field was entirely covered with free carbon, and only some inclusions could be observed.

表2に低温灰化処理前後の介在物構成元素の抽出量を示す。介在物の回収量はICP発光分光分析によって求めた。低温灰化処理を行っても介在物を80%以上回収できることが確認された。   Table 2 shows the amount of inclusion constituent elements extracted before and after the low-temperature ashing treatment. The amount of inclusions recovered was determined by ICP emission spectroscopic analysis. It was confirmed that more than 80% of the inclusions could be recovered even after low-temperature ashing treatment.

図4に本発明方法により計測した粒度分布図を示す。多数個を一度に観察できるため、画像処理により迅速に粒度分布が計測可能であることが確認された。   FIG. 4 shows a particle size distribution diagram measured by the method of the present invention. Since many can be observed at once, it was confirmed that the particle size distribution can be measured quickly by image processing.

Claims (7)

鋼試料の溶解液をフィルターろ過して得られた残渣を含むフィルターを、酸素プラズマを用いて低温灰化処理して、前記残渣に含まれる遊離カーボンを前記フィルターとともに除去することにより、前記残渣中の鋼中介在物を分離することを特徴とする、鋼中介在物の分離方法。   The filter containing the residue obtained by filtering the solution of the steel sample is subjected to low-temperature ashing treatment using oxygen plasma, and the free carbon contained in the residue is removed together with the filter. A method for separating inclusions in steel, characterized by separating inclusions in steel. 前記残渣を含むフィルターを基板上に固定し、該基板ごと前記低温灰化処理することにより、前記分離された鋼中介在物が載置された基板を得る請求項1記載の分離方法。   The separation method according to claim 1, wherein the substrate containing the separated inclusions in steel is obtained by fixing the filter containing the residue on a substrate and subjecting the substrate together with the low-temperature ashing treatment. 前記低温灰化処理されるフィルターに含まれる残渣中のカーボン量を1mg/cm以下とする請求項2記載の分離方法。 The separation method according to claim 2, wherein the amount of carbon in the residue contained in the low-temperature ashing filter is 1 mg / cm 2 or less. 前記ろ過にポリカーボネート製フィルターを用い、前記基板と前記フィルターとの固定に有機系接着剤を用いる請求項2または3記載の分離方法。   The separation method according to claim 2 or 3, wherein a polycarbonate filter is used for the filtration, and an organic adhesive is used for fixing the substrate and the filter. 前記鋼中介在物の種類が酸化物および窒化物の少なくとも一方を含む場合には、臭素−メタノール、またはヨウ素−メタノール法を用いて前記鋼試料の溶解液を得る請求項1から4のいずれか記載の分離方法。   When the kind of inclusion in the steel includes at least one of oxide and nitride, the bromine-methanol or iodine-methanol method is used to obtain a solution of the steel sample. The separation method described. 前記鋼中介在物の種類が硫化物を含む場合には、非水溶媒系電解液を用いた電解を行うことにより前記鋼試料の溶解液を得る請求項1から4のいずれか記載の分離方法。   The separation method according to any one of claims 1 to 4, wherein when the type of inclusions in the steel contains sulfide, the solution of the steel sample is obtained by electrolysis using a non-aqueous solvent electrolyte. . 請求項2から6にいずれかに記載される方法により得られる、分離された鋼中介在物が載置された基板を用いて、鋼に含まれる介在物を分析する方法。   A method for analyzing inclusions contained in steel using a substrate on which separated inclusions in steel obtained by the method according to any one of claims 2 to 6 are placed.
JP2011059429A 2011-03-17 2011-03-17 Method for separating inclusions in steel and analysis method for particle size distribution Expired - Fee Related JP5569445B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011059429A JP5569445B2 (en) 2011-03-17 2011-03-17 Method for separating inclusions in steel and analysis method for particle size distribution

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059429A JP5569445B2 (en) 2011-03-17 2011-03-17 Method for separating inclusions in steel and analysis method for particle size distribution

Publications (2)

Publication Number Publication Date
JP2012194110A true JP2012194110A (en) 2012-10-11
JP5569445B2 JP5569445B2 (en) 2014-08-13

Family

ID=47086138

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059429A Expired - Fee Related JP5569445B2 (en) 2011-03-17 2011-03-17 Method for separating inclusions in steel and analysis method for particle size distribution

Country Status (1)

Country Link
JP (1) JP5569445B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610682A2 (en) 2011-12-22 2013-07-03 Ricoh Company, Ltd. Image forming apparatus, detachable unit, and plural detachable units

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292188A (en) * 1995-04-24 1996-11-05 Kawasaki Steel Corp Analysis of sulfide in steel by form
JP2000327768A (en) * 1999-05-25 2000-11-28 Asahi Chem Ind Co Ltd Polycarbonate composition for optical information substrate material and optical information substrate material
JP2001021553A (en) * 1999-07-02 2001-01-26 Kawasaki Steel Corp Preparation of sample for analyzing oxide type inclusion in metallic material
JP2002303620A (en) * 2001-04-04 2002-10-18 Nippon Steel Corp Electrolytic solution composition for iron and steel material and method for analyzing inclusion or precipitation thereby
JP2002310864A (en) * 2001-04-10 2002-10-23 Fujikura Ltd Decomposing method for resin
JP2007511911A (en) * 2003-11-14 2007-05-10 ラム リサーチ コーポレーション Silicon carbide parts of semiconductor substrate processing equipment treated to remove free carbon
JP2010127916A (en) * 2008-12-01 2010-06-10 Kobe Steel Ltd Method for extracting and evaluating inclusion

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08292188A (en) * 1995-04-24 1996-11-05 Kawasaki Steel Corp Analysis of sulfide in steel by form
JP2000327768A (en) * 1999-05-25 2000-11-28 Asahi Chem Ind Co Ltd Polycarbonate composition for optical information substrate material and optical information substrate material
JP2001021553A (en) * 1999-07-02 2001-01-26 Kawasaki Steel Corp Preparation of sample for analyzing oxide type inclusion in metallic material
JP2002303620A (en) * 2001-04-04 2002-10-18 Nippon Steel Corp Electrolytic solution composition for iron and steel material and method for analyzing inclusion or precipitation thereby
JP2002310864A (en) * 2001-04-10 2002-10-23 Fujikura Ltd Decomposing method for resin
JP2007511911A (en) * 2003-11-14 2007-05-10 ラム リサーチ コーポレーション Silicon carbide parts of semiconductor substrate processing equipment treated to remove free carbon
JP2010127916A (en) * 2008-12-01 2010-06-10 Kobe Steel Ltd Method for extracting and evaluating inclusion

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
宮島慎、谷山明: "鋼中微細介在物の粒度分布計測のための二次処理法の検討", 材料とプロセス(CD−ROM), vol. 22, JPN6014007572, 1 March 2009 (2009-03-01), pages 689, ISSN: 0002818456 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2610682A2 (en) 2011-12-22 2013-07-03 Ricoh Company, Ltd. Image forming apparatus, detachable unit, and plural detachable units

Also Published As

Publication number Publication date
JP5569445B2 (en) 2014-08-13

Similar Documents

Publication Publication Date Title
JP5098843B2 (en) Method for determining the solid solution content of the element of interest in a metal sample
Tarzimoghadam et al. Multi-scale and spatially resolved hydrogen mapping in a Ni–Nb model alloy reveals the role of the δ phase in hydrogen embrittlement of alloy 718
Boag et al. Stable pit formation on AA2024-T3 in a NaCl environment
Pacile et al. Electronic properties and atomic structure of graphene oxide membranes
FR2931989A1 (en) PROCESS FOR PURIFYING FUEL.
WO2010061487A1 (en) Method for analyzing metallic material
CN112763527B (en) Method for directly obtaining material interface oxygen potential and structure
TWI642935B (en) Device for electrolytic etching and method for extracting metal compound particles
EP2458033B1 (en) Procedure of dynamic deep etching and particle extraction from aluminium alloys
Yivlialin et al. Evolution of the graphite surface in phosphoric acid: an AFM and Raman study
TW201731572A (en) Method for extracting metal compound particles, method for analyzing metal compound particles, and electrolyte solution used in said methods
JP5569445B2 (en) Method for separating inclusions in steel and analysis method for particle size distribution
Xu et al. Application of high-spatial-resolution secondary ion mass spectrometry for nanoscale chemical mapping of lithium in an Al-Li alloy
Giese et al. The evolution of polycyclic aromatic hydrocarbons under simulated inner asteroid conditions
JP3943488B2 (en) Analytical method of composition and / or particle size of nonmetallic inclusions in steel samples
JP6943264B2 (en) A method for collecting inclusions and / or precipitates in a metal sample, a method for analyzing inclusions and / or precipitates in a metal sample, and an electrolytic solution.
JP3436123B2 (en) Method for analyzing metal impurities on silicon wafer surface and method for pretreatment thereof
JP5055251B2 (en) Inclusion extraction evaluation method
JP2020160009A (en) Method of analyzing inclusions and/or precipitates in metal sample, and method of collecting inclusions and/or precipitates in metal sample
JP2018130670A (en) Dispersant, dispersant for field flow fractionation, fractionation method of fine particle in steel material and analysis method of fine particle in steel material
JP2009008584A (en) Analysis method of particulate in steel
JP5324141B2 (en) Method for analyzing inclusions containing CaO in steel
JP2009008586A (en) Method of obtaining solid solution content rate of target element in metal sample
Click et al. Innovative recycling of high purity silver from silicon solar cells by acid leaching and ultrasonication
Enami et al. AMS 14C dating of iron artifacts: development and application

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140214

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140225

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140425

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140527

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140609

R151 Written notification of patent or utility model registration

Ref document number: 5569445

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees