JP2012193919A - Velocity-heat converter and heating/cooling system utilizing the same - Google Patents

Velocity-heat converter and heating/cooling system utilizing the same Download PDF

Info

Publication number
JP2012193919A
JP2012193919A JP2011059375A JP2011059375A JP2012193919A JP 2012193919 A JP2012193919 A JP 2012193919A JP 2011059375 A JP2011059375 A JP 2011059375A JP 2011059375 A JP2011059375 A JP 2011059375A JP 2012193919 A JP2012193919 A JP 2012193919A
Authority
JP
Japan
Prior art keywords
heat
heat medium
speed
component
spiral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2011059375A
Other languages
Japanese (ja)
Inventor
Takao Hara
隆雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ETL KK
Original Assignee
ETL KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ETL KK filed Critical ETL KK
Priority to JP2011059375A priority Critical patent/JP2012193919A/en
Publication of JP2012193919A publication Critical patent/JP2012193919A/en
Ceased legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a cooling system or the like having a new helical pipe type velocity-heat converter using a clean multi-component refrigerant or the like that causes no environmental pollution.SOLUTION: The cooling system employs a multi-component heat medium produced by combining and mixing two or more kinds of heat mediums having different properties. A plurality of helical pipes 31, 32, and 33 dedicated for velocity-heat conversion for each of heat medium components having different properties are provided in multiple stages. Optimum liquefaction/cooling conditions are established for each of the heat medium components having different properties inside each of the helical pipes 31, 32 and 33. The heat medium components are almost completely liquefied and decompressed/cooled.

Description

本発明は速度−熱変換器及びこれを利用した加熱又は冷却システムに関する。   The present invention relates to a speed-heat converter and a heating or cooling system using the same.

エアコン等の冷暖房システムは、システムの大小、用途に拘らず同じ原理に基づき、ほぼ同じ構成要素から構成されている。   An air conditioning system such as an air conditioner is composed of almost the same components based on the same principle regardless of the size and use of the system.

図2は、一般的な家庭用エアコンの概略の構成図であり、図3はその動作を示す図である。図2に示すように、エアコン200は、コンプレッサ1に対して、コンデンサ13、レシーバタンク14、膨張弁15、熱交換器3が媒体管で接続され、能力に応じた量の熱媒が封入されて構成されている。   FIG. 2 is a schematic configuration diagram of a general home air conditioner, and FIG. 3 is a diagram illustrating the operation thereof. As shown in FIG. 2, in the air conditioner 200, the condenser 13, the receiver tank 14, the expansion valve 15, and the heat exchanger 3 are connected to the compressor 1 through a medium pipe, and an amount of heat medium corresponding to the capacity is enclosed. Configured.

上記構成において、暖房サイクル(図3、矢印21(a))では、まず、コンプレッサ1で気熱媒は圧縮され高温・高圧気熱媒となり熱交換器3に送られる。熱交換器3では、図3の熱交換器3の下方に示した熱媒の相変化説明図のように、熱媒は熱交換器3の入口付近では気体であるが、熱交換器3内を進むに従い、液化して液体が増え、熱交換器3の出口付近では略液化(90%液、10%気体)する。すなわち、熱交換器3では高温・高圧気熱媒が熱を環境に放出して冷却され、中温・液熱媒となり、膨張弁15に導入される。膨張弁15を開くと、中温・液熱媒は気化され、コンプレッサ1によって引き圧になっているコンデンサ13に入り、完全気化され、低温気熱媒となり、コンプレッサ1に入り、再び圧縮されて高温・高圧気熱媒となって循環する。   In the above configuration, in the heating cycle (FIG. 3, arrow 21 (a)), the air heat medium is first compressed by the compressor 1 to be sent to the heat exchanger 3 as a high temperature / high pressure air heat medium. In the heat exchanger 3, the heat medium is a gas in the vicinity of the inlet of the heat exchanger 3 as illustrated in the phase change explanatory diagram of the heat medium shown below the heat exchanger 3 in FIG. As the flow proceeds, the liquid is liquefied and the liquid increases, and the liquid is substantially liquefied (90% liquid, 10% gas) near the outlet of the heat exchanger 3. That is, in the heat exchanger 3, the high-temperature and high-pressure air heat medium is cooled by releasing heat to the environment, becomes a medium-temperature / liquid heat medium, and is introduced into the expansion valve 15. When the expansion valve 15 is opened, the medium temperature / liquid heat medium is vaporized and enters the condenser 13 which is pulled by the compressor 1, completely vaporized, becomes a low temperature gas heat medium, enters the compressor 1, and is compressed again to become a high temperature.・ It circulates as a high-pressure air heat medium.

一方、冷房サイクル(矢印21(b))では、コンプレッサ1で気熱媒は圧縮され高温・高圧気熱媒となりコンデンサ13に送られる。コンデンサ13では高温・高圧気熱媒が熱を放出して冷却され、中温・液熱媒(大よそ90%液・10%ガス状態のまま)となり、これがレシーバタンク14に一端貯留され、膨張弁に導入される。膨張弁15を開くと、中温の液熱媒はコンプレッサ1によって吸引され減圧されている熱交換器3に入り、対象環境から熱を奪って、低温気熱媒となり、コンプレッサ1に入り、再び圧縮されて高温・高圧気熱媒となって循環する。冷房サイクルでは、熱媒が熱交換器3で周囲の雰囲気から熱を吸収、ここで得た熱をコンデンサ13で放熱して循環する。   On the other hand, in the cooling cycle (arrow 21 (b)), the air heating medium is compressed by the compressor 1 to become a high temperature / high pressure air heating medium and sent to the condenser 13. In the condenser 13, the high-temperature / high-pressure air heat transfer medium releases heat and is cooled to become a medium-temperature / liquid heat transfer medium (approximately 90% liquid / 10% gas state), which is stored in the receiver tank 14 once and is expanded. To be introduced. When the expansion valve 15 is opened, the medium-temperature liquid heat medium enters the heat exchanger 3 that is sucked and decompressed by the compressor 1, takes heat from the target environment, becomes a low-temperature air heat medium, enters the compressor 1, and is compressed again. It circulates as a high-temperature, high-pressure air heat medium. In the cooling cycle, the heat medium absorbs heat from the surrounding atmosphere by the heat exchanger 3, and the heat obtained here is radiated and circulated by the capacitor 13.

これに対し、本発明者は、先に、螺旋管からなる速度−熱変換器を利用した冷却システム等を開発した(例えば、特許文献1及び2参照)。かかる冷却システム等によれば、コンデンサでの液化率を50%程度に留め(コンデンサ容量を小さくし)、該螺旋管内で熱媒の液化・冷却条件を形成して、熱媒を略完全に液化し、減圧、冷却するので、それまでの冷却システムのような膨張弁、コンデンサ、レシーバタンクを必要とせず、かつコンデンサ容量の小さい冷却システム等を構築することができるものである。   On the other hand, the present inventor has previously developed a cooling system using a speed-heat converter composed of a helical tube (see, for example, Patent Documents 1 and 2). According to such a cooling system, the liquefaction rate in the condenser is kept at about 50% (capacitor capacity is reduced), the liquefaction / cooling conditions of the heat medium are formed in the spiral tube, and the heat medium is almost completely liquefied. Since the pressure is reduced and cooled, an expansion valve, a condenser, and a receiver tank as in the conventional cooling system are not required, and a cooling system having a small condenser capacity can be constructed.

国際公開第2007/318947号International Publication No. 2007/318947 特開2010−281558号JP 2010-281558 A

一方、従来熱媒として用いられていたCFC冷媒(R12)、HCFC(R22)等のフロン類はオゾン層を破壊し地球温暖化の原因となることから利用が制限され、その代替としてイソブタンや二酸化炭素等の単一成分或いは混合成分による新冷媒が利用されるようになってきたが、上記従来のシステムにそのまま導入しても十分な冷却効率が得られない等の問題があった。   On the other hand, chlorofluorocarbons such as CFC refrigerant (R12) and HCFC (R22), which have been used as a conventional heat medium, are restricted in use because they destroy the ozone layer and cause global warming. Although new refrigerants using a single component or mixed components such as carbon have come to be used, there has been a problem that sufficient cooling efficiency cannot be obtained even if introduced into the conventional system as it is.

本発明は上記従来技術の有する問題点に鑑みなされたものであり、その目的とするところは、環境汚染の問題のないクリーンな多成分系冷媒等を導入した新規な螺旋管型の速度−熱変換器を有する冷却システム等を提供することにある。   The present invention has been made in view of the above-mentioned problems of the prior art, and the object of the present invention is to provide a novel spiral tube type velocity-heat that introduces a clean multi-component refrigerant or the like that has no environmental pollution problem. It is in providing the cooling system etc. which have a converter.

本発明の上記目的は、下記の手段によって達成される。   The above object of the present invention is achieved by the following means.

(1)即ち、本発明は、性質の異なる複数種類の熱媒を組み合わせて配合した多成分系熱媒が導入された加熱又は冷却システムにおいて利用される速度−熱変換器であって、前記多成分系熱媒の熱媒成分ごとにその速度−熱変換を担う螺旋管を多段に複数設けたことを特徴とする、速度−熱変換器である。   (1) That is, the present invention is a speed-heat converter used in a heating or cooling system into which a multi-component heat medium in which a plurality of types of heat mediums having different properties are combined is introduced. A speed-heat converter characterized in that a plurality of spiral tubes for performing speed-heat conversion for each heat medium component of a component heat medium are provided in multiple stages.

(2)本発明はまた、前記螺旋管は、互いに管径が異なることを特徴とする(1)に記載の速度−熱変換器である。   (2) The present invention is also the speed-heat converter according to (1), wherein the spiral tubes have different tube diameters.

(3)本発明はまた、前記螺旋管は、互いに巻数が異なることを特徴とする(1)又は(2)に記載の速度−熱変換器である。   (3) The present invention is also the speed-heat converter according to (1) or (2), wherein the spiral tubes have different numbers of turns.

(4)本発明はまた、前記多成分系熱媒は、第1の熱媒成分として炭化水素ガスを含み、第2の熱媒成分として希ガス又は不活性ガスを含むことを特徴とする(1)乃至(3)の何れか1項に記載の速度−熱変換器である。   (4) The present invention is also characterized in that the multi-component heat medium includes a hydrocarbon gas as the first heat medium component and includes a rare gas or an inert gas as the second heat medium component ( It is a speed-heat converter given in any 1 paragraph of 1) thru / or (3).

(5)本発明はまた、管径の異なる螺旋管を3段に直列連結してなり、第2の螺旋管の内径が第1の螺旋管の内径に対して40〜70%であり、第3の螺旋管の内径が第2の螺旋管の内径に対して30〜70である、(1)乃至(4)の何れか1項に記載の速度−熱変換器である。   (5) In the present invention, spiral tubes having different tube diameters are connected in series in three stages, and the inner diameter of the second spiral tube is 40 to 70% with respect to the inner diameter of the first spiral tube. 3. The speed-heat converter according to any one of (1) to (4), wherein the inner diameter of the third helical tube is 30 to 70 with respect to the inner diameter of the second helical tube.

(6)本発明はまた、第1の螺旋管の巻数が20〜32巻であり、第2の螺旋管の巻数が14〜30巻であり、第3の螺旋管の巻数が10〜28巻である、(5)に記載の速度−熱変換器である。   (6) In the present invention, the number of turns of the first spiral tube is 20 to 32, the number of turns of the second spiral tube is 14 to 30, and the number of turns of the third spiral tube is 10 to 28. The speed-heat converter according to (5).

(7)さらに、本発明は、性質の異なる複数種類の熱媒を組み合わせて配合した多成分系熱媒と、前記多成分系熱媒の熱媒成分ごとにその速度−熱変換を担う螺旋管を多段に複数設けてなる速度−熱変換器と、を有することを特徴とする、加熱又は冷却システムである。   (7) Furthermore, the present invention relates to a multi-component heat medium in which a plurality of types of heat mediums having different properties are combined and a spiral tube that performs speed-heat conversion for each heat medium component of the multi-component heat medium. A heating-cooling system comprising: a plurality of speed-heat converters provided in multiple stages.

本発明の冷却・加熱システムによれば、性質の異なる複数種類の熱媒を組み合わせて配合した多成分系熱媒を用い、当該性質の異なる熱媒成分ごとにその速度−熱変換を専ら担う螺旋管を多段に複数設けているので、それぞれの螺旋管内で当該性質の異なる熱媒成分ごとに最適な液化・冷却条件が形成され、当該熱媒成分をそれぞれ略完全に液化し、減圧・冷却することができる。従って、従来の冷凍システム等では十分な冷却効率等の得られなかった熱媒を複数組み合わせて、小型でかつ環境汚染の問題がなく極めて冷却効率等の高い冷却・加熱システムを提供することができる。   According to the cooling / heating system of the present invention, a multi-component heat medium in which a plurality of types of heat mediums having different properties are combined is used, and the speed-heat conversion is exclusively performed for each heat medium component having different characteristics. Since multiple tubes are provided in multiple stages, optimal liquefaction / cooling conditions are formed for each heat transfer medium component having different properties in each spiral tube, and each heat transfer medium component is liquefied almost completely, and reduced in pressure and cooled. be able to. Therefore, it is possible to provide a cooling and heating system that is compact and has no problem of environmental pollution and has a very high cooling efficiency by combining a plurality of heat mediums that have not been able to obtain sufficient cooling efficiency or the like with conventional refrigeration systems. .

本発明の実施形態にかかる冷却・加熱システム100の全体構成を示す概略図である。1 is a schematic diagram showing an overall configuration of a cooling / heating system 100 according to an embodiment of the present invention. 一般的な家庭用エアコン200の全体構成を示す概略図である。It is the schematic which shows the whole structure of the general household air conditioner 200. FIG. エアコン200の動作を説明するための概念図である。It is a conceptual diagram for demonstrating operation | movement of the air conditioner 200. FIG.

以下、本発明の実施の形態を、図面を参照して詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

本発明の冷却・加熱システムにおいては、熱媒として、性質の異なる複数種類の熱媒を組み合わせて配合した多成分系熱媒が利用される。利用する熱媒としては、第1の熱媒成分として、メタン、エタン、ブタン等の炭化水素ガス等、第2の熱媒成分として、ヘリウム、ネオン、アルゴン、クリプトン、キセノン等の希ガス、窒素、二酸化炭素等の不活性ガス等が挙げられ、前記第1の熱媒成分及び第2の熱媒成分からそれぞれ1種以上の熱媒を選択して組み合わせて配合する。なお、前記第1の熱媒成分及び第2の熱媒成分に加えて、前記第1の熱媒成分及び第2の熱媒成分とは性質の異なる更に他の熱媒成分を組み合わせても構わない。   In the cooling / heating system of the present invention, a multi-component heat medium in which plural kinds of heat mediums having different properties are combined and used is used as the heat medium. As the heat medium to be used, the first heat medium component is a hydrocarbon gas such as methane, ethane, or butane. The second heat medium component is a rare gas such as helium, neon, argon, krypton, or xenon, nitrogen. Inert gas such as carbon dioxide, and the like, and one or more kinds of heating media are selected from the first heating medium component and the second heating medium component, and are combined in combination. In addition to the first heat medium component and the second heat medium component, another heat medium component having different properties from the first heat medium component and the second heat medium component may be combined. Absent.

次に、本発明の冷却・加熱システムの構成について説明する。図1は、本発明の実施形態にかかる冷却・加熱システム100の全体構成を示す概略図である。図1に示すように、冷却・加熱システム100は、圧縮機(コンプレッサ)1と、凝縮器(コンデンサ)11と、速度−熱変換器30と、蒸発器3とを備え、これらは熱媒管21、22、23及び24によりそれぞれ連通されている。   Next, the configuration of the cooling / heating system of the present invention will be described. FIG. 1 is a schematic diagram showing an overall configuration of a cooling / heating system 100 according to an embodiment of the present invention. As shown in FIG. 1, the cooling / heating system 100 includes a compressor 1, a condenser 11, a speed-heat converter 30, and an evaporator 3, which are heat transfer tubes. 21, 22, 23 and 24, respectively.

凝縮器11は、従来の圧縮機・凝縮器・膨張弁・蒸発器を有する循環型冷却システムのものと比べて30〜70%に小型化したものが利用され、圧縮機11における熱交換が不十分になるように構成されている。   The condenser 11 is 30% to 70% smaller than that of a conventional circulation type cooling system having a compressor / condenser / expansion valve / evaporator, and heat exchange in the compressor 11 is not required. It is configured to be sufficient.

速度−熱変換器30は、管径及び巻数の異なる3種類の螺旋管31、32及び33が多段に直列連結されて構成されている。このように、本発明に係る冷却・加熱システムでは、導入される多成分系熱媒の性質の異なる熱媒成分ごとにその速度−熱変換を専ら担う螺旋管を多段に複数設けているので、それぞれの螺旋管内で当該性質の異なる熱媒成分ごとに最適な液化・冷却条件が形成され(螺旋管内壁を熱媒分子が超高速回転(スピン回転・楕円回転)しながら、熱及び運動エネルギーを移動(熱放出も含む)させ、熱媒の液化・減圧・冷却を促す)、当該熱媒成分をそれぞれ略完全に液化し、減圧・冷却することができる。従って、従来の冷凍システム等では十分な冷却効率等の得られなかった熱媒を複数組み合わせて利用しても、極めて高い冷却効率等を達成することができる。   The speed-heat converter 30 is configured by connecting three types of spiral tubes 31, 32, and 33 having different tube diameters and winding numbers in series. Thus, in the cooling / heating system according to the present invention, a plurality of spiral tubes exclusively for speed-heat conversion are provided in multiple stages for each heat medium component having different properties of the introduced multi-component heat medium. Optimum liquefaction and cooling conditions are formed for each heat transfer medium component with different properties in each helical tube (heat medium molecules rotate on the inner wall of the helical tube at a high speed (spin rotation / elliptical rotation) while heat and kinetic energy are reduced). It is possible to move (including heat release) to promote liquefaction / decompression / cooling of the heat medium), and to substantially completely liquefy the heat medium components, and to depressurize / cool. Accordingly, even when a plurality of heat media that cannot obtain sufficient cooling efficiency or the like in a conventional refrigeration system or the like are used in combination, extremely high cooling efficiency or the like can be achieved.

本発明の冷却・加熱システムにおいて、速度−熱変換器を構成する多段の螺旋管の巻数及び管径は、導入される多成分系熱媒の各熱媒成分の性質によって適宜設計され得るものであるが、具体例を示せば、速度−熱変換器を例えば3種類の螺旋管を連結して構成する場合、第1の螺旋管の巻数は20〜32巻、好ましくは22〜26巻がよく、第2の螺旋管の巻数は14〜30巻、好ましくは16〜20巻がよく、第3の螺旋管の巻数は10〜28巻、好ましくは12〜20巻がよい。第1〜3の螺旋管の各巻数が上記範囲未満では十分なスピンが得られず、上記範囲を超えると内部抵抗が大きくなり、いずれも熱媒の分子を高速回転させられず分子間エネルギーの移動がスムーズに行われなくなり、十分な冷却・加熱効率が得られないので好ましくない。   In the cooling / heating system of the present invention, the number of turns and the pipe diameter of the multi-stage helical tube constituting the speed-heat converter can be appropriately designed according to the properties of each heating medium component of the introduced multi-component heating medium. However, as a specific example, when the speed-heat converter is configured by connecting three types of spiral tubes, for example, the number of turns of the first spiral tube is 20 to 32, preferably 22 to 26. The number of turns of the second spiral tube is 14 to 30, preferably 16 to 20, and the number of turns of the third spiral tube is 10 to 28, preferably 12 to 20. If the number of turns of each of the first to third spiral tubes is less than the above range, sufficient spin cannot be obtained. If the number of turns exceeds the above range, the internal resistance increases, and none of the heat medium molecules can rotate at high speed. It is not preferable because the movement is not performed smoothly and sufficient cooling / heating efficiency cannot be obtained.

また、第1〜3の螺旋管の内径の比率は、第2の螺旋管の内径が第1の螺旋管の内径に対して40〜70%、好ましくは40〜60%であり、第3の螺旋管の内径が第2の螺旋管の内径に対して30〜70、好ましくは30〜50である。第1〜3の螺旋管の内径の比率が上記範囲未満では、十分なスピンが得られず、上記範囲を超えると内部抵抗が大きくなり、いずれも熱媒の分子を高速回転させられず分子間エネルギーの移動がスムーズに行われなくなり、十分な冷却・加熱効率が得られないので好ましくない。   The ratio of the inner diameters of the first to third spiral tubes is such that the inner diameter of the second spiral tube is 40 to 70%, preferably 40 to 60% with respect to the inner diameter of the first spiral tube. The inner diameter of the spiral tube is 30 to 70, preferably 30 to 50 with respect to the inner diameter of the second spiral tube. If the ratio of the inner diameters of the first to third spiral tubes is less than the above range, sufficient spin cannot be obtained, and if the ratio exceeds the above range, the internal resistance increases, and none of the heat medium molecules can rotate at high speed. This is not preferable because energy transfer is not performed smoothly and sufficient cooling / heating efficiency cannot be obtained.

なお、速度−熱変換器30は、螺旋管31、32及び33が直列に連結された速度−熱変換器ユニットが2列に並列に連結されて構成されているが、速度−熱変換器は、前記速度−熱変換器ユニットを単列で、又は3列以上で構成しても構わない。   The speed-heat converter 30 is composed of speed-heat converter units in which spiral tubes 31, 32, and 33 are connected in series, and connected in parallel in two rows. The speed-heat converter unit may be configured in a single row or in three or more rows.

また、冷却・加熱システム100において、速度−熱変換器30と蒸発器3との間に図示しない膨張弁(キャピラリ管)を設けてもよく、例えば熱媒の10〜20%を膨張弁により膨張減圧させるように構成しても構わない。   In the cooling / heating system 100, an expansion valve (capillary tube) (not shown) may be provided between the speed-heat converter 30 and the evaporator 3, for example, 10 to 20% of the heat medium is expanded by the expansion valve. You may comprise so that it may reduce pressure.

冷却・加熱システム100は、冷却サイクルにおいて、圧縮機1で高温高圧に圧縮された気体熱媒が、凝縮器11で冷却されて気液混合熱媒になり、更に速度−熱変換器30で熱媒成分ごとに完全液化され、減圧・冷却されて液体熱媒となる。そして、液体熱媒は蒸発器3で膨張気化して再び圧縮機1に戻される。また、冷却・加熱システム100は、切換器16により圧縮機1の入力と出力を繋ぎ換えることにより、加熱サイクルとして動作する。   In the cooling / heating system 100, in the cooling cycle, the gas heat medium compressed to high temperature and high pressure by the compressor 1 is cooled by the condenser 11 to become a gas-liquid mixed heat medium, and further heated by the speed-heat converter 30. Each medium component is completely liquefied and reduced in pressure and cooled to become a liquid heat medium. The liquid heat medium is expanded and vaporized by the evaporator 3 and returned to the compressor 1 again. The cooling / heating system 100 operates as a heating cycle by switching the input and output of the compressor 1 by the switch 16.

次に、本発明の冷却・加熱システムの実施例について説明するが、本発明の冷却・加熱システムは係る実施例に限定されるものでないことはいうまでもない。   Next, although the Example of the cooling / heating system of this invention is described, it cannot be overemphasized that the cooling / heating system of this invention is not limited to the Example which concerns.

図1の冷却・加熱システム100と同様の構成によるシステムを用い、熱媒としてメタン4.85vol%と、アルゴン59.95vol%と、窒素35.2vol%とを配合した3成分熱媒を導入して冷却システムを構成した。この際、螺旋管31、32及び33の巻数は、それぞれ23巻、19巻及び17巻とし、内径比は100:60:30とした。この冷却システムを運転したところ、庫内温度−22℃を達成した。   Using a system having the same configuration as the cooling / heating system 100 of FIG. 1, a three-component heat medium containing 4.85 vol% methane, 59.95 vol% argon, and 35.2 vol% nitrogen is introduced as a heat medium. The cooling system was configured. At this time, the numbers of turns of the spiral tubes 31, 32, and 33 were 23, 19, and 17, respectively, and the inner diameter ratio was 100: 60: 30. When this cooling system was operated, an internal temperature of -22 ° C was achieved.

上述したように、本発明の冷却・加熱システムによれば、小型でかつ環境汚染の問題がなく極めて冷却効率等の高い冷却・加熱システムを構築することができる。   As described above, according to the cooling / heating system of the present invention, it is possible to construct a cooling / heating system that is small in size and has no problem of environmental pollution and has extremely high cooling efficiency.

1 圧縮機
11 凝縮器
16 切換器
21、22、23、24 熱媒管
3 蒸発器
30 速度−熱変換器
31、32、33 螺旋管
DESCRIPTION OF SYMBOLS 1 Compressor 11 Condenser 16 Switcher 21, 22, 23, 24 Heat medium pipe 3 Evaporator 30 Speed-heat converter 31, 32, 33 Spiral pipe

Claims (7)

性質の異なる複数種類の熱媒を組み合わせて配合した多成分系熱媒が導入された加熱又は冷却システムにおいて利用される速度−熱変換器であって、
前記多成分系熱媒の熱媒成分ごとにその速度−熱変換を担う螺旋管を多段に複数設けたことを特徴とする、速度−熱変換器。
A speed-heat converter used in a heating or cooling system in which a multi-component heat medium in which a plurality of types of heat mediums having different properties are combined and mixed is introduced,
A speed-heat converter characterized in that a plurality of spiral tubes for performing speed-heat conversion for each heat medium component of the multi-component heat medium are provided in multiple stages.
前記螺旋管は、互いに管径が異なることを特徴とする請求項1に記載の速度−熱変換器。   The speed-heat converter according to claim 1, wherein the spiral tubes have different tube diameters. 前記螺旋管は、互いに巻数が異なることを特徴とする請求項1又は2に記載の速度−熱変換器。   The speed-heat converter according to claim 1 or 2, wherein the spiral tubes have different numbers of turns. 前記多成分系熱媒は、第1の熱媒成分として炭化水素ガスを含み、第2の熱媒成分として希ガス又は不活性ガスを含むことを特徴とする請求項1乃至3の何れか1項に記載の速度−熱変換器。   4. The multi-component heat medium includes a hydrocarbon gas as a first heat medium component and a rare gas or an inert gas as a second heat medium component. The speed-heat converter as described in the paragraph. 管径の異なる螺旋管を3段に直列連結してなり、第2の螺旋管の内径が第1の螺旋管の内径に対して40〜70%であり、第3の螺旋管の内径が第2の螺旋管の内径に対して30〜70である、請求項1乃至4の何れか1項に記載の速度−熱変換器。   The spiral tubes having different tube diameters are connected in series in three stages, the inner diameter of the second spiral tube is 40 to 70% of the inner diameter of the first spiral tube, and the inner diameter of the third spiral tube is the first The speed-heat converter according to any one of claims 1 to 4, wherein the speed-to-heat converter is 30 to 70 with respect to an inner diameter of the two helical tubes. 第1の螺旋管の巻数が20〜32巻であり、第2の螺旋管の巻数が14〜30巻であり、第3の螺旋管の巻数が10〜28巻である、請求項5に記載の速度−熱変換器。   The number of turns of the first spiral tube is 20 to 32, the number of turns of the second spiral tube is 14 to 30, and the number of turns of the third spiral tube is 10 to 28. Speed-to-heat converter. 性質の異なる複数種類の熱媒を組み合わせて配合した多成分系熱媒と、
前記多成分系熱媒の熱媒成分ごとにその速度−熱変換を担う螺旋管を多段に複数設けてなる速度−熱変換器と、
を有することを特徴とする、加熱又は冷却システム。
A multi-component heat medium formulated by combining multiple types of heat mediums with different properties;
A speed-heat converter in which a plurality of spiral tubes responsible for speed-heat conversion for each heat medium component of the multi-component heat medium are provided in multiple stages,
A heating or cooling system comprising:
JP2011059375A 2011-03-17 2011-03-17 Velocity-heat converter and heating/cooling system utilizing the same Ceased JP2012193919A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011059375A JP2012193919A (en) 2011-03-17 2011-03-17 Velocity-heat converter and heating/cooling system utilizing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011059375A JP2012193919A (en) 2011-03-17 2011-03-17 Velocity-heat converter and heating/cooling system utilizing the same

Publications (1)

Publication Number Publication Date
JP2012193919A true JP2012193919A (en) 2012-10-11

Family

ID=47085977

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011059375A Ceased JP2012193919A (en) 2011-03-17 2011-03-17 Velocity-heat converter and heating/cooling system utilizing the same

Country Status (1)

Country Link
JP (1) JP2012193919A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819404A (en) * 2018-03-13 2020-10-23 株式会社E·T·L Refrigerating and heating system
CN112856588A (en) * 2021-01-22 2021-05-28 青岛海尔空调器有限总公司 Air conditioner indoor unit and air conditioner

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122365A (en) * 2000-10-15 2002-04-26 Shoko Iwasaki Refrigerating system
JP2007169331A (en) * 2005-12-19 2007-07-05 Kanou Reiki Kogyo:Kk Non-azeotropic mixture coolant for super low temperature and single unit type freezing circuit for super low temperature
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
JP2009197128A (en) * 2008-02-21 2009-09-03 Yuta Mizutani Refrigerant composition and its usage
JP2010281558A (en) * 2009-01-13 2010-12-16 Takao Hara Velocity-heat convertor, heating system utilizing the same, and heating and cooling system

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002122365A (en) * 2000-10-15 2002-04-26 Shoko Iwasaki Refrigerating system
JP2007169331A (en) * 2005-12-19 2007-07-05 Kanou Reiki Kogyo:Kk Non-azeotropic mixture coolant for super low temperature and single unit type freezing circuit for super low temperature
JP2007187407A (en) * 2006-01-16 2007-07-26 Mitsubishi Electric Corp Refrigeration cycle device and operation method for refrigeration cycle device
JP2009197128A (en) * 2008-02-21 2009-09-03 Yuta Mizutani Refrigerant composition and its usage
JP2010281558A (en) * 2009-01-13 2010-12-16 Takao Hara Velocity-heat convertor, heating system utilizing the same, and heating and cooling system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111819404A (en) * 2018-03-13 2020-10-23 株式会社E·T·L Refrigerating and heating system
CN111819404B (en) * 2018-03-13 2021-08-17 株式会社E·T·L Refrigerating and heating system
CN112856588A (en) * 2021-01-22 2021-05-28 青岛海尔空调器有限总公司 Air conditioner indoor unit and air conditioner

Similar Documents

Publication Publication Date Title
Qian et al. A review of regenerative heat exchange methods for various cooling technologies
US7669428B2 (en) Vortex tube refrigeration systems and methods
JP4832563B2 (en) Refrigeration system
JP4102845B2 (en) Method for cooling products (especially natural gas) and apparatus for carrying out this method
JP2011112351A (en) Refrigerating device
JP5017611B2 (en) Refrigeration apparatus and multistage refrigeration apparatus
WO2011148567A1 (en) Refrigeration device and cooling and heating device
CN104236160A (en) Hybrid system combining cooling device and absorption heat pump
JP4595121B2 (en) Cryogenic refrigerator using mechanical refrigerator and Joule Thomson expansion
JP2014102030A (en) Heat-pump hot water supply device
JP2012193919A (en) Velocity-heat converter and heating/cooling system utilizing the same
JPH10259958A (en) Refrigeration and air cooling system and heat exchanger device for condensation
JP5506638B2 (en) Refrigeration equipment
JPWO2019155644A1 (en) Air conditioning system
JPH09145076A (en) Heat exchanger
JP5485602B2 (en) Refrigeration system
JP2012057849A (en) Heat transfer tube, heat exchanger, and refrigerating cycle device
JP2020525745A (en) Refrigeration system and method
JP2004019995A (en) Refrigeration device
JP2008267731A (en) Air-conditioning device
JP2003279197A (en) Heat exchanger for condensation of freezer-refrigerator system
JP2004226018A (en) Refrigeration unit
JP6682081B1 (en) Freezing method
JP2005326073A (en) Refrigeration device
JPH08178445A (en) Heat pump type air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140317

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140930

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141021

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150519

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160112

A045 Written measure of dismissal of application [lapsed due to lack of payment]

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20160531