JP2002122365A - Refrigerating system - Google Patents

Refrigerating system

Info

Publication number
JP2002122365A
JP2002122365A JP2000351966A JP2000351966A JP2002122365A JP 2002122365 A JP2002122365 A JP 2002122365A JP 2000351966 A JP2000351966 A JP 2000351966A JP 2000351966 A JP2000351966 A JP 2000351966A JP 2002122365 A JP2002122365 A JP 2002122365A
Authority
JP
Japan
Prior art keywords
heat
refrigerant
stage coil
compressor
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000351966A
Other languages
Japanese (ja)
Inventor
Shoko Iwasaki
照皇 岩崎
Takao Hara
隆雄 原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2000351966A priority Critical patent/JP2002122365A/en
Publication of JP2002122365A publication Critical patent/JP2002122365A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide a refrigerating system which is abundant in stability and economical efficiency by raising the compression efficiency as well as downsizing a heat-exchanging means for condensation. SOLUTION: This is a refrigerating system where a freezing cycle for getting cold for freezing and cooling is made of a compressor 1, a heat converting means 2 having a function of converting the heat energy that refrigerant gas possesses into kinetic energy and besides changing the gas-liquid phase in the process of that conversion, a decompression means 3, and a cooler 4. The heat converting means 2 is constituted of a single group of a thermal conversion unit consisting of a series-connected pipe line composed of the first-stage coil thin pipe line 5 which is made by winding a small-diameter heat conductive pipe into coil form, a large-diameter short pipe 7 which has a wider sectional area for circulation as compared with the above heat conductive pipe, and the second-stage coil thin pipe line 6 of structure analogous to the first-stage coil thin pipe line 5, or a plurality of groups where those thermal conversion units are connected in parallel.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、凝縮用熱交換手段
の小型化が可能な冷凍システムに関する。なお、本明細
書でいう冷凍システムとは、冷凍装置、冷蔵装置、冷房
装置等、フロン冷媒などの凝縮性冷媒ガスの冷媒圧力、
温度、相の各変化を伴うサイクルの過程で被冷却対象の
冷却を行わせる各種装置における冷却システムを総称す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a refrigeration system capable of reducing the size of heat exchange means for condensation. Note that the refrigeration system referred to in this specification is a refrigeration apparatus, a refrigeration apparatus, a cooling apparatus, etc., a refrigerant pressure of a condensable refrigerant gas such as a CFC refrigerant,
A cooling system in various devices that performs cooling of an object to be cooled in the course of a cycle involving changes in temperature and phase.

【0002】[0002]

【従来の技術】従来から汎用されている冷凍システムは
図示を省略するが、冷凍サイクル中に封入されたフロン
冷媒等の凝縮性ガス冷媒を圧縮機で高温高圧のガス冷媒
にして、該凝縮器で空気(又は冷却水)と熱交換させて
凝縮液化することにより常温に近い液体に相変換した
後、膨張弁などの減圧器で減圧膨張させて低温低圧の液
冷媒と成し、この液冷媒を冷却器(蒸発器)に送って空
気又は冷却用水と熱交換させることにより蒸発気化させ
低温低圧のガス冷媒とする一方、空気又は冷却用水を冷
却して冷凍・冷房用の冷熱源として利用し得るように
し、低温低圧のガス冷媒は圧縮機に戻すようにしたもの
である。この場合、凝縮器としては、空気用ではクロス
フィン形熱交換器が専ら用いられ、一方、冷却水用では
シェル形熱交換器が専ら用いられていることは周知であ
る。
2. Description of the Related Art Although a conventional refrigeration system is not shown, a condensable gas refrigerant such as a Freon refrigerant sealed in a refrigeration cycle is converted into a high-temperature and high-pressure gas refrigerant by a compressor. After heat exchange with air (or cooling water) to condense and liquefy, the liquid is phase-converted to a liquid close to normal temperature, and then decompressed and expanded by a decompressor such as an expansion valve to form a low-temperature low-pressure liquid refrigerant. Is sent to a cooler (evaporator) to exchange heat with air or cooling water to evaporate it into a low-temperature, low-pressure gas refrigerant, while cooling the air or cooling water and using it as a cold heat source for freezing and cooling. The low-temperature and low-pressure gas refrigerant is returned to the compressor. In this case, it is well known that a cross fin type heat exchanger is exclusively used for air, while a shell type heat exchanger is exclusively used for cooling water.

【0003】このような従来の冷凍システムにおいて
は、利用側熱交換器として作用する冷却器に比して、熱
源側熱交換器として作用する凝縮器の方が大型構造とな
らざるを得ないことから、装置のコンパクト化を図るた
めに凝縮器を小型化しようと種々の検討が成されている
が、現状の冷凍システムにおいて凝縮液化に必要とされ
る熱交換面積は使用冷媒の種類に対して設計上から決ま
った値となっていて、これを大幅に減らすことは技術的
に困難とされ、依然として大型の凝縮器が用いられてい
る。
In such a conventional refrigeration system, the condenser acting as the heat source side heat exchanger has to be of a larger structure than the cooler acting as the utilization side heat exchanger. Therefore, various studies have been made to reduce the size of the condenser in order to reduce the size of the equipment.However, the heat exchange area required for condensing and liquefying in the current refrigeration system depends on the type of refrigerant used. The value is determined from the design, and it is technically difficult to greatly reduce the value, and a large condenser is still used.

【0004】自動車用エアコン(冷房用空調機)の従来
例を挙げてさらに説明すると、ラジエータの前面スペー
スに熱交換面積の大きい空冷式凝縮器を設置した例が殆
どであることから、ラジエータ本来の能力を著しく低下
させるとともに、燃料も余計に消費されるために二酸化
炭素の排出に拍車をかける結果となり、更に、真夏の外
気高温時には凝縮器の熱交換量が不足する結果、高圧カ
ットによるエアコン停止が頻繁に起こる問題もあった。
A conventional example of a vehicle air conditioner (cooling air conditioner) will be further described. In most cases, an air-cooled condenser having a large heat exchange area is installed in a space in front of a radiator. In addition to significantly lowering the capacity, fuel was also consumed excessively, which spurred the emission of carbon dioxide.Furthermore, when the outside air temperature was high in midsummer, the amount of heat exchange in the condenser was insufficient, and the air conditioner was stopped due to high pressure cut. There were also frequent problems.

【0005】また、従来の産業用冷房機,冷却機におい
ては、空冷式、水冷式共に設置スペース、特に室外の設
置スペースが大きいこともあって、配管・電気配線工事
が大掛かりとなり、工事費用が嵩むだけでなく、工事期
間も長期に及ぶ等の経済的な不利が免れなかった。
[0005] Further, in conventional industrial air conditioners and coolers, the installation space for both air-cooled and water-cooled systems, especially the outdoor installation space, is large. Not only was it bulky, but the construction period was long and economic disadvantages were inevitable.

【0006】[0006]

【発明が解決しようとする課題】このような従来の冷凍
冷房システムが抱える問題点の解消を図るためとして、
本出願人は先に特許第2835325号明細書において
凝縮用熱交換装置の小型化を図ることができる新規な冷
凍システムを提案し、以て装置コストの低減化並びに省
エネルギー化を推進して地球環境の保全に一翼を担わせ
得るに至ったものであるが、本発明は上記冷凍システム
に対し更なる簡易化を果たさせることによって、実用装
置としての価値を一層高めようとするものであり、従っ
て、本発明の目的は、凝縮用熱交換手段の小型化を図る
とともに圧縮効率を高めて、安定性及び経済性に富まし
める冷凍システムを提供することにある。
SUMMARY OF THE INVENTION In order to solve the problems of the conventional refrigeration / cooling system,
The present applicant previously proposed a novel refrigeration system capable of reducing the size of a condensing heat exchange device in Japanese Patent No. 2835325, and thereby promoted a reduction in the cost of the device and energy saving to promote the global environment. The present invention aims to further enhance the value as a practical device by further simplifying the refrigeration system, Accordingly, it is an object of the present invention to provide a refrigeration system which can reduce the size of the heat exchange means for condensation and increase the compression efficiency, thereby enhancing stability and economy.

【0007】[0007]

【課題を解決するための手段】本発明は、上記の目的を
達成するため以下に述べる構成としたものである。即
ち、本発明における請求項1の発明は、圧縮機1から吐
出される圧力及び温度が上昇したフロンなどの凝縮性冷
媒ガスを、該冷媒ガスが保有する熱エネルギーを運動エ
ネルギーに変換しかつ該変換の過程で気・液相変化させ
る機能を有する熱変換手段2に供給して冷媒液とした
後、この冷媒液を膨張弁などの減圧手段3に送って減圧
膨張させ、次いで、冷却器4に送って空気又は被冷却水
との間で蒸発潜熱を熱交換させることにより蒸発気化さ
せ、この蒸発気化した低圧凝縮性ガス冷媒を圧縮機1に
より吸引させ、前記冷却器4で冷凍・冷房用の冷熱を得
る冷凍サイクルが形成されてなる冷凍システムであっ
て、熱変換手段2が、細径の伝熱管をコイル巻きして形
成した第1段コイル細管路5と前記伝熱管に比し広い流
通断面積を持つ大径の短管7と第1段コイル細管路5に
類似の構造の第2段コイル細管路6との直列接続管路か
らなる熱変換単位体の単基又は該熱変換単位体が並列接
続された複数基により構成されることを特徴とする冷凍
システムである。
The present invention has the following configuration to achieve the above object. That is, the invention of claim 1 of the present invention converts a condensable refrigerant gas such as chlorofluorocarbon discharged from the compressor 1 with an increased pressure and temperature into heat energy held by the refrigerant gas into kinetic energy and After being supplied to the heat conversion means 2 having a function of changing the gas-liquid phase in the conversion process to be a refrigerant liquid, the refrigerant liquid is sent to a pressure reducing means 3 such as an expansion valve to be decompressed and expanded. And the latent heat of evaporation is exchanged with the air or the water to be cooled, thereby evaporating the refrigerant. The low-pressure condensable gas refrigerant thus vaporized is sucked by the compressor 1 and cooled by the cooler 4. A refrigeration system in which a refrigeration cycle for obtaining cold heat is formed, wherein the heat conversion means 2 is wider than the first-stage coil thin-tube path 5 formed by coiling a small-diameter heat transfer tube and the heat transfer tube. Large diameter with flow cross section A single heat conversion unit composed of a series connection of a short tube 7 and a second-stage coil thin line 6 having a structure similar to the first-stage coil thin line 5, or a plurality of heat conversion units connected in parallel A refrigeration system characterized by being constituted by a base.

【0008】また、本発明における請求項2の発明は、
上記請求項1記載の冷凍システムにおいて、第1段コイ
ル細管路5及び第2段コイル細管路6がそれら管路内の
冷媒の流れ方向を基準に左コイル巻きに形成されること
を特徴とする。
[0008] The invention of claim 2 of the present invention provides:
The refrigeration system according to claim 1, wherein the first-stage coil narrow tube 5 and the second-stage coil narrow tube 6 are formed in a left-hand coil winding with reference to the flow direction of the refrigerant in the tubes. .

【0009】また、本発明における請求項3の発明は、
上記請求項2記載の冷凍システムにおいて、第1段コイ
ル細管路5と第2段コイル細管路6の少なくとも第1段
コイル細管路5に冷却用のファン8が付設されてなり、
圧縮機1から吐出される前記冷媒ガスの温度が所定値以
上のときにファン8が送風運転される構成であることを
特徴とする。
Further, the invention of claim 3 of the present invention provides:
In the refrigeration system according to the second aspect, a cooling fan 8 is attached to at least the first-stage coil thin line 5 of the first-stage coil thin line 5 and the second-stage coil thin line 6,
When the temperature of the refrigerant gas discharged from the compressor 1 is equal to or higher than a predetermined value, the fan 8 performs a blowing operation.

【0010】このような本発明によれば、冷凍システム
における凝縮行程での熱交換の態様が、基本的には凝縮
性ガス冷媒に対して保有する熱エネルギーを運動エネル
ギーに変換するべく回転流を伴う増速作用を成す(僅か
であるが減圧作用も同時に行われる)過程において顕著
な気・液相変化が生じるという事象に着目して、これを
冷凍サイクルの凝縮工程に応用することによって、凝縮
・液化のために必要な熱収支の殆どを循環冷媒自体に求
めるようにした点に本発明の特徴が存在するものであ
る。
According to the present invention, the mode of heat exchange in the condensing process in the refrigeration system is basically such that the rotary flow is converted to convert the heat energy held in the condensable gas refrigerant into kinetic energy. Focusing on the phenomenon that a significant gas / liquid phase change occurs in the process of achieving the accompanying speed-up action (although a slight pressure reduction action is also performed at the same time), and applying this to the condensation step of the refrigeration cycle, The feature of the present invention resides in that most of the heat balance required for liquefaction is obtained from the circulating refrigerant itself.

【0011】即ち、従来の冷凍システムにおける凝縮行
程が、圧縮機より吐出した高温高圧の凝縮性ガス冷媒を
外気または水によって冷却して凝縮液化する方式である
のに対して、本発明に係るシステムでは、凝縮・液化の
ための冷却用熱源として空気や水等の冷却用流体を大量
に用いる必要がなく凝縮性ガス冷媒自体に熱収支を行わ
せることができる凝縮方式を採用したものであり、即
ち、圧縮機より吐出した高温高圧の凝縮性ガス冷媒を、
内部に流れるガス流体に対して回転流の下で流動速度を
増大させて熱エネルギーを運動エネルギーに変換するこ
とができる熱変換手段(熱エネルギー/運動エネルギー
変換手段のこと)に流通させることによって、流動冷媒
内で温度変化させ液化させ得るようにした点を発明要素
の重大な特徴としている。
That is, the condensing process in the conventional refrigeration system is a system in which a high-temperature and high-pressure condensable gas refrigerant discharged from a compressor is cooled by outside air or water and condensed and liquefied. In this method, a condensing method is adopted that does not require the use of a large amount of cooling fluid such as air or water as a cooling heat source for condensation and liquefaction, and allows the condensable gas refrigerant itself to perform a heat balance. That is, the high temperature and high pressure condensable gas refrigerant discharged from the compressor is
By flowing the gas fluid flowing inside to heat conversion means (heat energy / kinetic energy conversion means) capable of converting the heat energy to kinetic energy by increasing the flow velocity under a rotating flow, The fact that the temperature can be changed and liquefied in the flowing refrigerant is an important feature of the present invention.

【0012】上述する新規なシステムを採用したことに
より、本発明は同等の冷凍冷房能力の下で、従来の凝縮
器と比較して設置スペース比で数十分の一と小型化が可
能となり、換言するなれば同外形寸法で数倍程度の凝縮
能力を引き出すことが可能であり、これによって、冷凍
システムにおける装置コストの低減化並びに省エネルギ
ー化が果たされるものである。
By adopting the above-described novel system, the present invention can be downsized to a tenth of the installation space ratio as compared with the conventional condenser under the same refrigeration and cooling capacity. In other words, it is possible to draw out about several times the condensing capacity with the same external dimensions, thereby reducing the equipment cost and energy saving in the refrigeration system.

【0013】本発明はまた、冷媒自体に熱収支を求める
熱変換手段による凝縮液化方式を採用したことにより、
圧縮機の吐出圧力を従来方式に比して大幅に低下させる
ことが可能となり、その結果、圧縮機における高・低圧
の圧力差を大きくとらなくても安定した量を確保し得る
低圧凝縮性ガス冷媒の吸入が円滑に行われ、従って、圧
縮機に対して低圧域で安定した引き圧力を保持させるこ
とができて、圧縮効率が高くなることにより成績係数が
向上し、かつ、駆動モータに対する負荷が軽減されて運
転経済性に富む冷凍システムを提供することができる。
[0013] The present invention also adopts a condensed liquefaction system using heat conversion means for obtaining a heat balance for the refrigerant itself.
Low-pressure condensable gas that can reduce the discharge pressure of the compressor significantly compared to the conventional method, and as a result, can secure a stable amount without increasing the high-low pressure difference in the compressor The suction of the refrigerant is performed smoothly, so that the compressor can maintain a stable drawing pressure in a low pressure range, the compression efficiency increases, the coefficient of performance improves, and the load on the drive motor increases. Thus, a refrigeration system with a high operating economy can be provided.

【0014】更に、請求項2の発明によれば、熱変換手
段での回転流を伴う増速作用がより効果的に発揮される
ことから熱変換効率が高くなって圧縮効率が向上し、省
エネルギー化が一層が図れる。また、請求項3の発明に
よれば、圧縮機1の過熱防止が果たされ安全性に優れ
る。
Further, according to the second aspect of the present invention, since the speed increasing action accompanied by the rotational flow in the heat conversion means is more effectively exhibited, the heat conversion efficiency is increased, the compression efficiency is improved, and energy saving is achieved. Can be further improved. According to the third aspect of the present invention, the compressor 1 is prevented from being overheated, and is excellent in safety.

【0015】しかして、本発明において構成上の特徴と
される熱変換手段は、圧縮機から吐出された凝縮性冷媒
ガスに対して、即ち、圧縮機における圧縮行程で圧力エ
ネルギー及び熱エネルギーが与えられることにより圧力
及び温度が上昇した凝縮性冷媒ガスに対して、そのうち
の熱エネルギーの殆ど全部を運動エネルギーに変換し、
かつこの変換過程でガス分を効果的に凝縮する機能を有
するものであり、第1段コイル細管路5及び第2段コイ
ル細管路6では、内部を流れる冷媒に対して運動エネル
ギーに変換するための回転流を与えかつ流動速度を増大
させて、これにより下流部側においてガス分の凝縮・液
化を促進させる作用を成すものであり、他方、大径の短
管7では、第1段コイル細管路5から導出されたガス・
液混合のフラッシュ冷媒を拡散流により減速させかつ回
転流を緩める作用を成すもので、後続の第2段コイル細
管路6での回転増速作用及び凝縮・液化作用を更に向上
させる機能を有するものであり、かくして、従来の如き
空気、水などの冷却用流体による熱交換作用に全面的に
依存することなく、冷媒ガスの凝縮・液化をこの熱変換
手段により確実に行わせることが可能となったものであ
って、このことは本発明者等が研究及び実験を重ねた結
果に基づいて充分に確認されたところであり、また、後
述の発明の実施の形態の説明によっても明らかにされ
る。
The heat conversion means, which is a structural feature of the present invention, applies pressure energy and heat energy to the condensable refrigerant gas discharged from the compressor, that is, during the compression stroke of the compressor. For the condensable refrigerant gas whose pressure and temperature have risen by being converted almost all of the thermal energy into kinetic energy,
In addition, it has a function of effectively condensing a gas component in this conversion process. The first-stage coil narrow tube 5 and the second-stage coil narrow tube 6 convert the refrigerant flowing therein into kinetic energy. To increase the flow velocity and thereby promote the condensation and liquefaction of the gas on the downstream side. On the other hand, in the large-diameter short pipe 7, the first-stage coil thin tube is used. Gas derived from Road 5
A function of decelerating the liquid-mixed flash refrigerant by the diffusion flow and relaxing the rotational flow, and having a function of further improving the rotation speed-up function and the condensing / liquefaction function in the subsequent second-stage coil narrow pipe 6. Thus, the refrigerant gas can be reliably condensed and liquefied by the heat conversion means without relying entirely on the heat exchange action of the cooling fluid such as air and water as in the conventional case. This has been sufficiently confirmed based on the results of repeated studies and experiments by the present inventors, and will be made clear by the following description of embodiments of the invention.

【0016】[0016]

【発明の実施の形態】以下、本発明の実施形態の好まし
い例について添付図面を参照しながら説明する。図1に
は、本発明の実施の形態に係る冷凍システムの概略示回
路図が示される。また、図2には、図1図示の冷凍シス
テムにおける熱変換手段2の要部の拡大斜視図が示され
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Preferred embodiments of the present invention will be described below with reference to the accompanying drawings. FIG. 1 shows a schematic circuit diagram of a refrigeration system according to an embodiment of the present invention. FIG. 2 is an enlarged perspective view of a main part of the heat conversion means 2 in the refrigeration system shown in FIG.

【0017】図1図示の冷凍システムは、圧縮機1と、
熱変換手段2と、減圧手段3としての膨張弁と、冷却器
4とを要素機器として備え、それら機器を吸入管11、
吐出管12、高圧液管13及び低圧液管14の冷媒配管
によりサイクリックなループ回路として接続することに
よって、フロンを前記ループ回路内に循環冷媒として充
填してなる冷凍・冷房用の装置が構成される。
The refrigeration system shown in FIG.
A heat conversion unit 2, an expansion valve as a decompression unit 3, and a cooler 4 are provided as element devices, and these devices are connected to a suction pipe 11,
By connecting the refrigerant pipes of the discharge pipe 12, the high-pressure liquid pipe 13, and the low-pressure liquid pipe 14 as a cyclic loop circuit, an apparatus for refrigeration / cooling in which Freon is filled as a circulating refrigerant in the loop circuit is configured. Is done.

【0018】圧縮機1、膨張弁3及び冷却器4は、従来
の冷凍冷房装置に使用されるものと構造、機能が基本的
に変わらないので、ここではそれらについての詳細説明
を省略し、本発明の特徴とされる構成要素である熱変換
手段2の態様について以下説明する。
The compressor 1, the expansion valve 3, and the cooler 4 have basically the same structure and function as those used in the conventional refrigeration / cooling apparatus, and therefore detailed description thereof is omitted here. An embodiment of the heat conversion means 2 which is a constituent element of the present invention will be described below.

【0019】熱変換手段2は、細径の伝熱管例えば銅製
の細管を、管路内の冷媒の流れ方向を基準に左コイル巻
きに巻装して形成した第1段コイル細管路5と、前記伝
熱管に比し広い流通断面積を持つ大径の例えば銅管から
なる短管7と、第1段コイル細管路5に類似の構造の第
2段コイル細管路6とを、その内部を流れるフロンの流
通方向を基準に上手側から下手側に至って直列関係に接
続して形成される直列接続管路を熱変換単位体として備
えて、該熱変換単位体の単基又は該熱変換単位体が並列
接続された複数基により構成される管路であり、第1段
コイル細管路5及び第2段コイル細管路6は、内径が
1.2〜3.2mmφの範囲の所定径で、1.0〜2.
0mの範囲の所定長さの銅製細管をコイル径20〜30
mmφの範囲の所定径の螺旋状にコイル巻きして形成さ
れるコイルチューブから成っている。図示の実施形態に
おける、第1段コイル細管路5については、図2に一点
鎖線示してなる細長い筒状のケーシング9に収納して、
付設したファン8により該ケーシング9内に大気を送風
して強制冷却し得るように形成している。なお、本発明
に関しては、上記ケーシング9は、第1段コイル細管路
5と第2段コイル細管路6の少なくとも第1段コイル細
管路5を収納し得るように設けるものである。
The heat conversion means 2 comprises a first-stage coil thin tube 5 formed by winding a small-diameter heat transfer tube, for example, a copper thin tube in a left coil winding with reference to the flow direction of the refrigerant in the tube. A short tube 7 made of, for example, a copper tube having a large cross-sectional area larger than that of the heat transfer tube and made of, for example, a copper tube, and a second-stage coil thin tube 6 having a structure similar to the first-stage coil narrow tube 5 are formed. A series connection pipe formed by being connected in series from the upper side to the lower side based on the flowing direction of the flowing Freon is provided as a heat conversion unit, and a single unit of the heat conversion unit or the heat conversion unit The first-stage coil narrow tube 5 and the second-stage coil narrow tube 6 have a predetermined diameter in the range of 1.2 to 3.2 mmφ. 1.0-2.
A copper thin tube having a predetermined length in the range of 0 m and a coil diameter of 20 to 30
It consists of a coil tube formed by winding a coil in a spiral shape having a predetermined diameter in the range of mmφ. In the illustrated embodiment, the first-stage coil thin tube 5 is housed in an elongated tubular casing 9 shown by a chain line in FIG.
The air is blown into the casing 9 by the attached fan 8 so that the casing 9 can be forcibly cooled. According to the present invention, the casing 9 is provided so as to accommodate at least the first-stage coil narrow tube 5 of the first-stage coil narrow tube 5 and the second-stage coil narrow tube 6.

【0020】一方、大径の短管7は、例えば直径9.3
6mm(3/8in)、長さ十数mmの銅製短小管が用
いられ、その両端部を絞り加工などにより細径に仕上げ
て、その流入側端には、前述の通りの第1段コイル細管
路5の流出側端が接続され、流出側端には、第2段コイ
ル細管路6の流入側端が接続される。
On the other hand, the large-diameter short pipe 7 has a diameter of 9.3, for example.
A copper short tube of 6 mm (3/8 inch) and a length of several tens of mm is used, and both ends are finished to a small diameter by drawing or the like, and the first-stage coil thin tube as described above is provided at the inflow side end. The outflow-side end of the passage 5 is connected, and the inflow-side end of the second-stage coiled capillary passage 6 is connected to the outflow-side end.

【0021】なお、第1段コイル細管路3と第2段コイ
ル細管路4とは、同一構造であってもよく、また、管
長、管径に差を持たせるようにしてもよく、さらに、コ
イル巻き方向についても同一方向または、一方が左巻き
で他方が右巻きにしたものであってもよいが、運動エネ
ルギーに変換させる効率の良さの点で左コイル巻きが好
ましい。
The first-stage coil thin tube 3 and the second-stage coil narrow tube 4 may have the same structure, and may have different tube lengths and tube diameters. The coil winding direction may be the same, or one may be left-handed and the other right-handed, but left-handed winding is preferred in terms of the efficiency of conversion to kinetic energy.

【0022】このような熱変換手段2は、第1段コイル
細管路5の流入側端が、吐出管12を介して圧縮機1の
吐出口10に接続され、第2段コイル細管路6の流出側
端が、高圧液管13を介して膨張弁3の入口に接続され
る。なお、膨張弁3の出口と冷却器4の流入側端とは低
圧液管14により接続され、また、冷却器4の流出側端
と圧縮機1の吸入口とは吸入管11により接続される。
In the heat conversion means 2, the inflow side end of the first-stage coil narrow pipe 5 is connected to the discharge port 10 of the compressor 1 via the discharge pipe 12, and the second-stage coil narrow pipe 6 The outflow end is connected to the inlet of the expansion valve 3 via the high-pressure liquid pipe 13. The outlet of the expansion valve 3 and the inflow end of the cooler 4 are connected by a low-pressure liquid pipe 14, and the outflow end of the cooler 4 and the suction port of the compressor 1 are connected by a suction pipe 11. .

【0023】図示の実施形態において、熱変換手段2で
凝縮・液化した液冷媒を膨張弁3に導くための前記高圧
液管13は、螺旋状伝熱管13Aを管路の一部に又は全
部に備えている。螺旋状伝熱管13Aは、該管内を流動
する液冷媒に回転流を積極的に起こさせて、距離を稼ぐ
とともに流動速度を上げて過冷却作用を促進させ、かつ
冷媒圧力を若干下げさせるために設けられたものであ
る。
In the illustrated embodiment, the high-pressure liquid pipe 13 for guiding the liquid refrigerant condensed and liquefied by the heat conversion means 2 to the expansion valve 3 is provided by connecting the helical heat transfer pipe 13A to a part or the whole of the pipe. Have. The helical heat transfer tube 13A is used to positively generate a rotational flow in the liquid refrigerant flowing in the tube, to increase the flow speed while increasing the distance, to promote the supercooling effect, and to slightly lower the refrigerant pressure. It is provided.

【0024】このような高圧液管13を設けてなること
により、膨張弁3の入口部の圧力を下げさせてより低圧
・低温で多量の液冷媒を膨張弁3に送って入口部の液シ
ールを確実にさせことが可能となり、したがって、膨張
弁3では減圧膨張作用がスムーズにかつ安定して行われ
ることになる。
By providing such a high-pressure liquid pipe 13, the pressure at the inlet of the expansion valve 3 is reduced, and a large amount of liquid refrigerant is sent to the expansion valve 3 at a lower pressure and a lower temperature, and the liquid seal at the inlet is formed. Therefore, the expansion and reduction operation of the expansion valve 3 can be performed smoothly and stably.

【0025】なお図1中、15は冷却器4に付設された
冷却器用ファン、16は感温筒であって、感温筒16は
圧縮機1からの吐出ガスの温度を検出するために吐出管
12に添設されて、圧縮機1から吐出されるフロンガス
の温度が所定値以上のときにファン8に送風運転出力を
発するようになっている。
In FIG. 1, reference numeral 15 denotes a fan for the cooler attached to the cooler 4, reference numeral 16 denotes a temperature-sensitive cylinder, and the temperature-sensitive cylinder 16 discharges gas to detect the temperature of the gas discharged from the compressor 1. A blow operation output is output to the fan 8 when the temperature of the Freon gas discharged from the compressor 1 is equal to or higher than a predetermined value.

【0026】次いで、この冷凍システムの作用を説明す
る。冷媒にフロンR−12を使用し、圧縮機1として出
力200Wattのレシプロ形圧縮機を用い、また、熱
変換手段2としては、内径1.5mmφで1.5m長の
銅管をコイル径25mmφの螺旋状に左コイル巻きして
形成した第1段コイル細管路3、内径1.5mmφで
1.2m長の銅管をコイル径25mmφの螺旋状に左コ
イル巻きして形成した第2段コイル細管路4及び直径
9.36mmで10mm長の銅製短小管で形成した大径
の短管5からなるものを用いて、冷却器用ファン15を
備えるクロスフィン形熱交換器からなる冷却器4により
冷房を行う冷凍運転について述べる。
Next, the operation of the refrigeration system will be described. Using Freon R-12 as a refrigerant, a reciprocating type compressor with an output of 200 Watt was used as the compressor 1, and a 1.5 mm long copper tube with an inner diameter of 1.5 mmφ and a coil diameter of 25 mmφ was used as the heat conversion means 2. A first-stage coil thin tube 3 formed by spirally winding a left coil, a second-stage coil thin tube formed by spirally winding a 1.2 mm long copper tube having an inner diameter of 1.5 mmφ and a left coil of 25 mmφ. By using the path 4 and a large-diameter short pipe 5 formed of a copper short pipe having a diameter of 9.36 mm and a length of 10 mm, cooling is performed by a cooler 4 composed of a cross-fin heat exchanger equipped with a fan 15 for a cooler. The refrigeration operation to be performed will be described.

【0027】圧縮機1の運転により吸入の後、圧縮され
吐出された圧力、温度が上昇したフロンガスは熱変換手
段2に送られ、ここで圧縮機1において付与された熱エ
ネルギーが回転流を伴った流動速度の増大化現象により
運動エネルギーに変換されてその際のフロン自体での熱
収支に基づいて、フロンガスが効率的に凝縮・液化され
る。この凝縮・液化した高圧液冷媒は、高圧液管13の
螺旋状伝熱管13Aを経る間に過冷却されかつ減圧され
中圧液冷媒となる。この中圧液冷媒は膨張弁3に至り、
減圧膨張されて低圧低温液冷媒となった後、冷却器4に
送り込まれて、ここでファン15が起生する空気との間
で蒸発潜熱を熱交換することにより蒸発気化する。この
冷却器4で蒸発気化した低圧ガス冷媒は吸入管11を
経、圧縮機1に吸入され、以上のような冷凍サイクルが
形成される。この冷凍サイクルにおいて前記冷却器4で
ファン15が送風する空気が冷却されることにより、冷
房用の冷熱源が得られることになる。
After suction by the operation of the compressor 1, the compressed and discharged Freon gas whose pressure and temperature have risen is sent to the heat conversion means 2, where the heat energy applied in the compressor 1 is accompanied by a rotational flow. The flow velocity is converted to kinetic energy by the increased flow velocity, and the fluorocarbon gas is efficiently condensed and liquefied based on the heat balance of the fluorocarbon itself at that time. The condensed and liquefied high-pressure liquid refrigerant is supercooled and reduced in pressure while passing through the helical heat transfer tube 13A of the high-pressure liquid tube 13, and becomes a medium-pressure liquid refrigerant. This medium pressure liquid refrigerant reaches the expansion valve 3,
After being decompressed and expanded to become a low-pressure low-temperature liquid refrigerant, the refrigerant is sent to the cooler 4 where it evaporates by exchanging latent heat of vapor with air generated by the fan 15. The low-pressure gas refrigerant evaporated and vaporized by the cooler 4 passes through the suction pipe 11 and is sucked into the compressor 1 to form the refrigeration cycle as described above. In this refrigerating cycle, the air blown by the fan 15 is cooled by the cooler 4, so that a cooling heat source is obtained.

【0028】なお、冷凍運転時において、吐出管12の
温度が設定値例えば60℃に達した際、ファン8を送風
運転させ、一方、吸入管11の圧力又は温度が設定値以
下になることによって、圧縮機1の運転を停止させるよ
うにするものである。
In the freezing operation, when the temperature of the discharge pipe 12 reaches a set value, for example, 60 ° C., the fan 8 is operated to blow air, while the pressure or temperature of the suction pipe 11 becomes lower than the set value. The operation of the compressor 1 is stopped.

【0029】[0029]

【発明の効果】本発明は、以上説明したような形態で実
施され、以下に記載されるような効果を奏する。即ち、
従来は凝縮用熱交換面積が大きいことが冷凍システムの
大型化をもたらす主たる原因であった点に着目して、本
発明装置は熱変換手段を構成要素とする新規な冷凍サイ
クルの提案に基づき凝縮用熱交換面積の飛躍的な縮小を
図ることを可能としたものであって、その結果、冷凍シ
ステムの構造をコンパクト化し得て、過剰なエネルギー
消費を低減し、かつ、設置スペースの狭小化を図らせる
ことができる。また、請求項2の発明によれば、熱変換
手段の熱変換性能が更に良くなって圧縮機での圧縮効率
が高くなることにより成績係数が向上するとともに、エ
ンジンやモータ等の駆動源に対する負荷が軽減されて運
転経済性の面でも格段に優れる。このような本発明によ
れば、ひいては冷凍運転中における二酸化炭素の排出を
大幅に削減させることができて、地球環境の保全に多大
の役割を果たし得るものである。更にまた、請求項3の
発明によれば、圧縮機1の過熱防止が果たされ安全性の
面で優れる。
The present invention is embodied in the form described above and has the following effects. That is,
Focusing on the fact that a large heat exchange area for condensing was the main cause of the increase in size of the refrigeration system, the device of the present invention condensed based on the proposal of a new refrigeration cycle with heat conversion means as a component. The heat exchange area can be dramatically reduced, and as a result, the structure of the refrigeration system can be made compact, excess energy consumption can be reduced, and installation space can be reduced. I can make it work. According to the second aspect of the present invention, the coefficient of performance is improved by improving the heat conversion performance of the heat conversion means and the compression efficiency of the compressor, thereby increasing the load on the drive source such as the engine and the motor. And the driving economy is remarkably improved. According to the present invention, the emission of carbon dioxide during the refrigeration operation can be significantly reduced, which can play a great role in preserving the global environment. Furthermore, according to the third aspect of the present invention, the compressor 1 is prevented from being overheated and is excellent in safety.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施の形態に係る冷凍システムの概略
示回路図である。
FIG. 1 is a circuit diagram schematically showing a refrigeration system according to an embodiment of the present invention.

【図2】図1図示の冷凍システムにおける熱変換手段2
の要部の拡大斜視図である。
FIG. 2 is a heat conversion means 2 in the refrigeration system shown in FIG.
It is an expansion perspective view of the principal part of.

【符号の説明】[Explanation of symbols]

1…圧縮機 2…熱変換手段 3
…減圧手段 4…冷却器 5…第1段コイル細管路 6
…第2段コイル細管路 7…大径の短管 8…ファン 9
…ケーシング 10…吐出口 11…吸入管 1
2…吐出管 13…高圧液管 13A…螺旋状伝熱管 1
4…低圧液管 15…冷却器用ファン
DESCRIPTION OF SYMBOLS 1 ... Compressor 2 ... Heat conversion means 3
... decompression means 4 ... cooler 5 ... first-stage coil narrow pipe 6
… Second-stage coil narrow pipe 7… Large diameter short pipe 8… Fan 9
... Casing 10 ... Discharge port 11 ... Suction pipe 1
2: discharge pipe 13: high-pressure liquid pipe 13A: spiral heat transfer pipe 1
4: Low pressure liquid pipe 15: Cooler fan

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機1から吐出される圧力及び温度が
上昇したフロンなどの凝縮性冷媒ガスを、該冷媒ガスが
保有する熱エネルギーを運動エネルギーに変換しかつ該
変換の過程で気・液相変化させる機能を有する熱変換手
段2に供給して冷媒液とした後、この冷媒液を膨張弁な
どの減圧手段3に送って減圧膨張させ、次いで、冷却器
4に送って空気又は被冷却水との間で蒸発潜熱を熱交換
させることにより蒸発気化させ、この蒸発気化した低圧
凝縮性ガス冷媒を圧縮機1により吸引させ、前記冷却器
4で冷凍・冷房用の冷熱を得る冷凍サイクルが形成され
てなる冷凍システムであって、熱変換手段2が、細径の
伝熱管をコイル巻きして形成した第1段コイル細管路5
と前記伝熱管に比し広い流通断面積を持つ大径の短管7
と第1段コイル細管路5に類似の構造の第2段コイル細
管路6との直列接続管路からなる熱変換単位体の単基又
は該熱変換単位体が並列接続された複数基により構成さ
れることを特徴とする冷凍システム。
1. A method for converting condensable refrigerant gas, such as chlorofluorocarbon, discharged from a compressor 1 and having an increased pressure and temperature into thermal energy possessed by the refrigerant gas into kinetic energy, and in the process of gas / liquid conversion, After being supplied to the heat conversion means 2 having a function to change the phase and made into a refrigerant liquid, this refrigerant liquid is sent to a pressure reducing means 3 such as an expansion valve to be decompressed and expanded, and then sent to a cooler 4 to be air or cooled. A refrigeration cycle is provided in which the latent heat of vaporization is exchanged with water to evaporate the refrigerant, and the vaporized low-pressure condensable gas refrigerant is sucked by the compressor 1 and the cooler 4 obtains cooling heat for freezing and cooling. The refrigeration system thus formed, wherein the heat conversion means 2 comprises a first-stage coiled narrow tube path 5 formed by coiling a small-diameter heat transfer tube.
And a large-diameter short pipe 7 having a wider cross-sectional area than the heat transfer pipe.
And a single unit of a heat conversion unit composed of a series connection line of a second stage coil thin line 6 having a structure similar to that of the first stage coil thin line 5 or a plurality of units in which the heat conversion units are connected in parallel. A refrigeration system characterized by being performed.
【請求項2】 第1段コイル細管路5及び第2段コイル
細管路6がそれら管路内の冷媒の流れ方向を基準に左コ
イル巻きに形成される請求項1記載の冷凍システム。
2. The refrigeration system according to claim 1, wherein the first-stage coil narrow tube 5 and the second-stage coil narrow tube 6 are formed with a left coil winding based on a flow direction of the refrigerant in the lines.
【請求項3】 第1段コイル細管路5と第2段コイル細
管路6の少なくとも第1段コイル細管路5に冷却用のフ
ァン8が付設されてなり、圧縮機1から吐出される前記
凝縮性冷媒ガスの温度が所定値以上のときにファン8が
送風運転される請求項2記載の冷凍システム。
3. A cooling fan 8 is attached to at least the first-stage coil thin line 5 of the first-stage coil thin line 5 and the second-stage coil thin line 6, and the condensate discharged from the compressor 1 is provided. The refrigeration system according to claim 2, wherein the fan (8) performs a blowing operation when the temperature of the reactive refrigerant gas is equal to or higher than a predetermined value.
JP2000351966A 2000-10-15 2000-10-15 Refrigerating system Pending JP2002122365A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000351966A JP2002122365A (en) 2000-10-15 2000-10-15 Refrigerating system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000351966A JP2002122365A (en) 2000-10-15 2000-10-15 Refrigerating system

Publications (1)

Publication Number Publication Date
JP2002122365A true JP2002122365A (en) 2002-04-26

Family

ID=18824927

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000351966A Pending JP2002122365A (en) 2000-10-15 2000-10-15 Refrigerating system

Country Status (1)

Country Link
JP (1) JP2002122365A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034939A1 (en) * 2005-09-26 2007-03-29 Hara Tech Corporation Thermal converter for condensation and refrigeration system using the same
WO2010082483A1 (en) * 2009-01-13 2010-07-22 Hara Takao Velocity-heat converter, heating system utilizing same, and heating and cooling system
JP2011017513A (en) * 2009-07-10 2011-01-27 Etl:Kk Refrigerating system
JP2012193919A (en) * 2011-03-17 2012-10-11 Takao Hara Velocity-heat converter and heating/cooling system utilizing the same
WO2022107343A1 (en) * 2020-11-17 2022-05-27 株式会社E・T・L Freezing apparatus

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007034939A1 (en) * 2005-09-26 2007-03-29 Hara Tech Corporation Thermal converter for condensation and refrigeration system using the same
EP1930669A1 (en) * 2005-09-26 2008-06-11 Hara Tech Corporation Thermal converter for condensation and refrigeration system using the same
US20090241591A1 (en) * 2005-09-26 2009-10-01 Takao Hara Heat converter for condensation and refrigeration system using the same
JP2010043856A (en) * 2005-09-26 2010-02-25 Hara Tech:Kk Refrigerating system
EP1930669A4 (en) * 2005-09-26 2013-09-18 Hara Tech Corp Thermal converter for condensation and refrigeration system using the same
US8746007B2 (en) 2005-09-26 2014-06-10 Takao Hara Heat converter for condensation and refrigeration system using the same
WO2010082483A1 (en) * 2009-01-13 2010-07-22 Hara Takao Velocity-heat converter, heating system utilizing same, and heating and cooling system
JP4545824B1 (en) * 2009-01-13 2010-09-15 隆雄 原 Speed-heat converter, heating system using the same, and air conditioning system
JP2010281558A (en) * 2009-01-13 2010-12-16 Takao Hara Velocity-heat convertor, heating system utilizing the same, and heating and cooling system
JP2011017513A (en) * 2009-07-10 2011-01-27 Etl:Kk Refrigerating system
JP2012193919A (en) * 2011-03-17 2012-10-11 Takao Hara Velocity-heat converter and heating/cooling system utilizing the same
WO2022107343A1 (en) * 2020-11-17 2022-05-27 株式会社E・T・L Freezing apparatus

Similar Documents

Publication Publication Date Title
JP4832563B2 (en) Refrigeration system
JP2005077088A (en) Condensation machine
CN112050490A (en) Evaporative cooling centrifugal water chilling unit
KR20100059170A (en) Heat pump storage system
JPH1019418A (en) Refrigerator with deep freezer
Morawetz Sorption‐compression heat pumps
Minh et al. Improved vapour compression refrigeration cycles: literature review and their application to heat pumps
JP2835325B2 (en) Refrigeration system and heat exchanger for condensation
JP3218289B2 (en) Air conditioner and condenser used for it
KR20100059176A (en) Storage system
JP2005214550A (en) Air conditioner
KR100549063B1 (en) Refrigerator
JP2002122365A (en) Refrigerating system
JP2002188865A (en) Multiple stage compression type refrigerating machine
CN111174455A (en) Transcritical carbon dioxide two-stage compression refrigeration and defrosting system and using method thereof
JP5485602B2 (en) Refrigeration system
KR20100005735U (en) storage system
KR20100005734U (en) Heat pump storage system
JPS6053264B2 (en) Heat saving refrigeration system
KR200215228Y1 (en) Energy-saving Air Conditioners
JP2003279197A (en) Heat exchanger for condensation of freezer-refrigerator system
JP2008089252A (en) Cooling apparatus
CN1158498C (en) Thermoacoustic refrigerator
JP3256856B2 (en) Refrigeration system
JP3062486U (en) Refrigeration system