JP2012191895A - Culture apparatus - Google Patents

Culture apparatus Download PDF

Info

Publication number
JP2012191895A
JP2012191895A JP2011058730A JP2011058730A JP2012191895A JP 2012191895 A JP2012191895 A JP 2012191895A JP 2011058730 A JP2011058730 A JP 2011058730A JP 2011058730 A JP2011058730 A JP 2011058730A JP 2012191895 A JP2012191895 A JP 2012191895A
Authority
JP
Japan
Prior art keywords
surface portion
culture
tank body
light receiving
culture solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011058730A
Other languages
Japanese (ja)
Other versions
JP5817159B2 (en
Inventor
Kosuke Ishii
浩介 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
IHI Corp
Original Assignee
IHI Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by IHI Corp filed Critical IHI Corp
Priority to JP2011058730A priority Critical patent/JP5817159B2/en
Publication of JP2012191895A publication Critical patent/JP2012191895A/en
Application granted granted Critical
Publication of JP5817159B2 publication Critical patent/JP5817159B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M23/00Constructional details, e.g. recesses, hinges
    • C12M23/02Form or structure of the vessel
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M31/00Means for providing, directing, scattering or concentrating light
    • C12M31/08Means for providing, directing, scattering or concentrating light by conducting or reflecting elements located inside the reactor or in its structure

Abstract

PROBLEM TO BE SOLVED: To provide a culture apparatus capable of surely cooling a culture solution using a simple arrangement without using a special device for cooling the culture solution, thereby keeping the temperature of the culture solution from rising due to direct light, etc.SOLUTION: The culture apparatus 100 includes a tank body 110 filled with a culture solution M, and an overflow unit 130 which, when the culture solution M in the tank body 110 reaches a predetermined level, causes the culture solution M in the tank body 110 to overflow out of the tank body 110 and causes the overflowing culture solution M to flow down along an outer surface of the tank body 110.

Description

本発明は、藻類等を培養する培養装置に関する。   The present invention relates to a culture apparatus for culturing algae and the like.

近年、バイオ燃料(炭化水素やバイオディーゼル)や、アスタキサンチン等の生理活性物質を産生することができる藻類(特に、微細藻類)が注目されており、このような藻類を大量に培養し、石油に換わるエネルギーとして利用したり、薬や化粧品、食品等に利用したりすることが検討されている。   In recent years, algae (particularly microalgae) that can produce biofuels (hydrocarbons and biodiesel) and physiologically active substances such as astaxanthin have attracted attention. It is being studied to use it as energy to replace it, or to use it for medicines, cosmetics, foods, and the like.

藻類等の大量培養用の培養装置の例として、水面が開放されている培養装置であるオープンポンド(屋外池)型が挙げられる(例えば、非特許文献1)。藻類等の植物は、光合成を行って、増殖したり、炭化水素等を産生したりするため、培養槽内部まで光を到達させることが望ましいが、オープンポンド型は、水面からしか光が入射しないため、藻類の増殖に伴って、藻類自体が光を遮ってしまい、光の到達距離が短くなり、藻類の光合成の効率が低下してしまう。また、水面から他の微生物が混入してしまい藻類の培養効率が低下してしまうこともある。   As an example of a culture apparatus for mass culture of algae and the like, there is an open pond (outdoor pond) type which is a culture apparatus having an open water surface (for example, Non-Patent Document 1). For plants such as algae, it is desirable to allow light to reach the inside of the culture tank because it grows and produces hydrocarbons etc. by photosynthesis, but light is only incident from the water surface in the open pond type Therefore, with the growth of algae, the algae itself blocks light, the light reach distance is shortened, and the photosynthesis efficiency of the algae is reduced. Moreover, other microorganisms may mix from the surface of the water, and the culture efficiency of algae may decrease.

そこで、チューブ形状の培養槽で構成されるチューブ型の培養装置(例えば、非特許文献1)や、直方体形状の培養槽で構成されるパネル型の培養装置(例えば、特許文献1)が検討されている。なお、チューブ型やパネル型の培養装置を構成する培養槽は、光合成効率を向上させるために、光を透過する、例えば、ガラス、プラスチック等の部材で構成される。   Therefore, a tube-type culture apparatus (for example, Non-Patent Document 1) configured with a tube-shaped culture tank and a panel-type culture apparatus (for example, Patent Document 1) configured with a rectangular parallelepiped-shaped culture tank have been studied. ing. In addition, the culture tank which comprises a tube-type or panel-type culture apparatus is comprised with members, such as glass and a plastic, which permeate | transmit light, in order to improve photosynthesis efficiency.

Elsevier, Bioresource Technology 101, 2010:1406-1413Elsevier, Bioresource Technology 101, 2010: 1406-1413 特開2000−139444号公報JP 2000-139444 A

ところで、藻類には培養に適した温度範囲があり、この温度範囲を大きく逸脱すると、藻類の培養効率が低下してしまう。例えば、培養液の温度が高すぎると、藻類を構成するタンパク質等が変性してしまうといった問題が生じる。   By the way, algae has a temperature range suitable for culturing, and if it deviates greatly from this temperature range, the culturing efficiency of algae will decrease. For example, if the temperature of the culture solution is too high, there arises a problem that the proteins constituting the algae are denatured.

しかし、上述したように、チューブ型や、パネル型の培養装置は、培養槽内部まで光を到達させるために、光を透過する部材で構成されている。このため、太陽光の照射量が多い日中等は、培養槽全体に光が当たり、培養槽内の培養液の温度が上昇し、藻類を構成するタンパク質や核酸等が変性してしまうことがある。したがって、チューブ型やパネル型の培養装置を利用して藻類を培養する場合、培養液を冷却するための専用の装置を用いて、培養液を冷却する必要があり、コスト高となったり、培養装置全体の占有体積が大きくなってしまったりしていた。   However, as described above, the tube-type and panel-type culture apparatuses are configured with a member that transmits light in order to allow light to reach the inside of the culture tank. For this reason, during the daytime when the amount of sunlight is high, the whole culture tank is exposed to light, the temperature of the culture solution in the culture tank rises, and proteins, nucleic acids, etc. constituting algae may be denatured. . Therefore, when culturing algae using a tube-type or panel-type culture device, it is necessary to cool the culture solution using a dedicated device for cooling the culture solution, which increases the cost or culture. The occupied volume of the entire device has become large.

そこで本発明は、このような課題に鑑み、培養液を冷却するための専用装置を利用せずとも、簡易な構成で培養液を確実に冷却することができ、直接光等による培養液の温度上昇を抑制することが可能な培養装置を提供することを目的としている。   Therefore, in view of such problems, the present invention can reliably cool the culture solution with a simple configuration without using a dedicated device for cooling the culture solution, and the temperature of the culture solution by direct light or the like. It aims at providing the culture apparatus which can suppress a raise.

上記課題を解決するために、本発明の培養装置は、培養液が満たされる槽本体と、槽本体内の培養液が所定水位となったときに、槽本体内の培養液を槽本体外に越流させるとともに、当該越流した培養液を槽本体の外面に沿って流下させる越流部とを備えたことを特徴とする。   In order to solve the above-described problems, the culture apparatus of the present invention has a tank body filled with a culture solution, and the culture solution in the tank body is placed outside the tank body when the culture solution in the tank body reaches a predetermined water level. And an overflow section for flowing the overflowed culture solution along the outer surface of the tank body.

上記槽本体は、受光した光を槽本体内に透過させる受光面部を備え、越流部は、越流した培養液を槽本体における受光面部の外面以外の外面に沿って流下させてもよい。   The said tank main body is provided with the light-receiving surface part which permeate | transmits the received light in a tank main body, and an overflow part may flow down the culture solution which overflowed along outer surfaces other than the outer surface of the light-receiving surface part in a tank main body.

上記槽本体は、受光面部より、当該受光面部から透過される光の透過方向前方に位置し、受光面部と対向する位置に配置される背面部を備え、越流部は、越流した培養液を背面部の外面に沿って流下させてもよい。   The tank body includes a back surface portion positioned in front of the light receiving surface portion in the transmission direction of light transmitted from the light receiving surface portion and opposed to the light receiving surface portion. May flow down along the outer surface of the back surface portion.

上記槽本体における越流部の下方位置には、新たな培養液を供給する培養液供給部をさらに備えてもよい。   You may further provide the culture solution supply part which supplies a new culture solution in the downward position of the overflow part in the said tank main body.

本発明によれば、培養液を冷却するための専用装置を利用せずとも、簡易な構成で培養液を確実に冷却することができ、直接光等による培養液の温度上昇を抑制することが可能となる。   According to the present invention, the culture medium can be reliably cooled with a simple configuration without using a dedicated device for cooling the culture liquid, and the temperature rise of the culture liquid due to direct light or the like can be suppressed. It becomes possible.

培養装置の外観斜視図である。It is an external appearance perspective view of a culture apparatus. 図1におけるX−Y断面図である。It is XY sectional drawing in FIG. 槽本体内の培養液Mの循環過程を説明するための説明図である。It is explanatory drawing for demonstrating the circulation process of the culture solution M in a tank main body. 越流部を越流する培養液Mの流動過程を説明するための説明図である。It is explanatory drawing for demonstrating the flow process of the culture solution M which overflows an overflow part. 培養装置の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of a culture apparatus. 培養装置の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of a culture apparatus. 培養装置の変形例を説明するための説明図である。It is explanatory drawing for demonstrating the modification of a culture apparatus.

以下に添付図面を参照しながら、本発明の好適な実施形態について詳細に説明する。かかる実施形態に示す寸法、材料、その他具体的な数値等は、発明の理解を容易とするための例示にすぎず、特に断る場合を除き、本発明を限定するものではない。なお、本明細書及び図面において、実質的に同一の機能、構成を有する要素については、同一の符号を付することにより重複説明を省略し、また本発明に直接関係のない要素は図示を省略する。   Hereinafter, preferred embodiments of the present invention will be described in detail with reference to the accompanying drawings. The dimensions, materials, and other specific numerical values shown in the embodiments are merely examples for facilitating the understanding of the invention, and do not limit the present invention unless otherwise specified. In the present specification and drawings, elements having substantially the same function and configuration are denoted by the same reference numerals, and redundant description is omitted, and elements not directly related to the present invention are not illustrated. To do.

(培養装置100)
図1は、培養装置100の外観斜視図であり、図2は、図1におけるX−Y断面図である。図1および図2に示すように、培養装置100は、槽本体110と、培養液回収部150とを備えて構成されている。
(Culture apparatus 100)
1 is an external perspective view of the culture apparatus 100, and FIG. 2 is an XY cross-sectional view in FIG. As shown in FIGS. 1 and 2, the culture apparatus 100 includes a tank body 110 and a culture solution recovery unit 150.

(槽本体110の構成)
槽本体110は、図1中X方向に対向配置された受光面部112および背面部114と、図1中Z方向に対面配置された右側面部116aおよび左側面部116bと、背面部114の下端と受光面部112の下端とを連続する底面部118とを備えている。
(Configuration of tank body 110)
The tank main body 110 includes a light receiving surface portion 112 and a back surface portion 114 that are disposed to face each other in the X direction in FIG. A bottom surface portion 118 that is continuous with the lower end of the surface portion 112 is provided.

受光面部112は、ガラスや樹脂(例えば、アクリル、ポリエチレンテレフタレート等)等の光を透過させる部材で構成され、主に、太陽や照明から照射される直接光(直射光)Lを受光し、受光した光を槽本体110内に透過させる。   The light receiving surface portion 112 is configured by a member that transmits light such as glass or resin (for example, acrylic, polyethylene terephthalate, etc.), and mainly receives direct light (direct light) L emitted from the sun or illumination. The transmitted light is transmitted into the tank body 110.

背面部114は、受光面部112よりも熱伝導度または放熱効率が高い部材(例えば、金属等)で構成され、受光面部112よりも透過方向T(図2参照)の前方に位置し、受光面部112と対向する位置に配置される。ここで透過方向Tは、受光面部112から透過される光の方向である。   The back surface portion 114 is made of a member (for example, metal) having higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion 112, and is positioned in front of the light receiving surface portion 112 in the transmission direction T (see FIG. 2). 112 is disposed at a position opposite to 112. Here, the transmission direction T is the direction of light transmitted from the light receiving surface portion 112.

右側面部116aおよび左側面部116bは、受光面部112と同様に、光を透過させる部材で構成され、主に散乱光や反射光を受光して、受光した光を槽本体110内に透過させる。   Like the light receiving surface portion 112, the right side surface portion 116a and the left side surface portion 116b are configured by a member that transmits light, mainly receive scattered light and reflected light, and transmit the received light into the tank body 110.

底面部118は、受光面部112よりも熱伝導度または放熱効率が高い部材(例えば、金属等)で構成され、図2に示すように、背面部114の下端と受光面部112の下端とを連続するとともに、背面部114側から受光面部112側に向かうに従って連続的に鉛直下方に傾斜している。   The bottom surface portion 118 is made of a member (for example, metal) having higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion 112, and continuously connects the lower end of the back surface portion 114 and the lower end of the light receiving surface portion 112 as shown in FIG. In addition, it is continuously inclined downward in the vertical direction from the back surface portion 114 side toward the light receiving surface portion 112 side.

このように、受光面部112、背面部114、右側面部116a、左側面部116b、底面部118で囲まれた槽本体110の内部空間は、図2に示すように、鉛直断面(図1におけるX−Y断面)の形状が三角形であり、この内部空間には藻類が分散された培養液Mが満たされることになる。   Thus, as shown in FIG. 2, the internal space of the tank body 110 surrounded by the light receiving surface portion 112, the back surface portion 114, the right side surface portion 116a, the left side surface portion 116b, and the bottom surface portion 118 has a vertical cross section (X− in FIG. The shape of the (Y cross section) is a triangle, and this internal space is filled with the culture solution M in which algae are dispersed.

また、図1および図2に示すように、槽本体110には、ガス導入部120と、越流部130と、培養液供給部140と、ガス取出部142とが設けられている。   As shown in FIGS. 1 and 2, the tank body 110 is provided with a gas introduction part 120, an overflow part 130, a culture solution supply part 140, and a gas extraction part 142.

ガス導入部120は、例えば、受光面部112と底面部116との連続部122に設けられており、培養液M中に被培養体(藻類等)が消費する消費ガス(例えば、光合成時には二酸化炭素、呼吸時には酸素)を導入する。   The gas introduction unit 120 is provided, for example, in a continuous portion 122 of the light receiving surface portion 112 and the bottom surface portion 116, and consumes gas (for example, carbon dioxide at the time of photosynthesis) consumed by an object to be cultured (algae or the like) in the culture solution M. Introduce oxygen when breathing).

越流部130は、背面部114に設けられ、槽本体110内の培養液Mが所定水位となったときに、槽本体110内の培養液Mを槽本体110外に越流させる。なお、本実施形態において越流部130は、背面部114および底面部118を冷却する冷却手段に該当する。越流部130による冷却処理については後に詳述する。   The overflow part 130 is provided in the back surface part 114, and makes the culture solution M in the tank main body 110 overflow outside the tank main body 110 when the culture medium M in the tank main body 110 reaches a predetermined water level. In this embodiment, the overflow part 130 corresponds to a cooling unit that cools the back part 114 and the bottom part 118. The cooling process by the overflow section 130 will be described in detail later.

培養液供給部140は、越流部130の下方位置に設けられ、新たな培養液Mを供給する。   The culture solution supply unit 140 is provided below the overflow unit 130 and supplies a new culture solution M.

ガス取出部142は、例えば、背面部114における喫水面よりも上方位置に設けられ、藻類が光合成を行うことによって生じる酸素や、藻類が呼吸を行うことによって生じる二酸化炭素を取り出す。これにより、藻類が光合成を行う際に培養液Mに酸素が供給されてしまい光合成効率が低下したり、藻類が呼吸を行う際に培養液Mに二酸化炭素が供給されてしまい呼吸効率が低下したりする事態を回避することが可能となる。   The gas extraction unit 142 is provided, for example, at a position higher than the draft surface in the back surface 114, and extracts oxygen generated by algae photosynthesis and carbon dioxide generated by algae respiration. As a result, oxygen is supplied to the culture medium M when the algae performs photosynthesis, and the photosynthesis efficiency is reduced, or carbon dioxide is supplied to the culture medium M when the algae respires, resulting in a decrease in respiratory efficiency. Can be avoided.

以下に、培養液Mの循環過程について説明する。   Below, the circulation process of the culture solution M is demonstrated.

(槽本体110における培養液Mの循環過程)
図3は、槽本体110内の培養液Mの循環過程を説明するための説明図である。上述したように受光面部112は、主に直接光Lを受光し、受光した光を槽本体110内に透過させる。ここで、槽本体110は、藻類が分散された培養液Mで満たされているため、培養液M中の藻類によって、受光した光が受光面部112から槽本体110の内部に向かうに従って徐々に減衰する。その結果、槽本体110内の領域ごとに、受光によって生じる培養液Mの温度上昇に差が生じる。
(Circulating process of the culture medium M in the tank body 110)
FIG. 3 is an explanatory diagram for explaining the circulation process of the culture solution M in the tank main body 110. As described above, the light receiving surface portion 112 mainly receives the light L directly and transmits the received light into the tank body 110. Here, since the tank body 110 is filled with the culture solution M in which algae are dispersed, the received light is gradually attenuated by the algae in the culture solution M from the light receiving surface portion 112 toward the inside of the tank body 110. To do. As a result, a difference occurs in the temperature rise of the culture medium M generated by light reception for each region in the tank body 110.

具体的に説明すると、図3に示す、受光面部112の近傍の領域Aに位置する培養液Mは、受光した光によって、背面部114の近傍の領域Bや、底面部118の近傍の領域Cに位置する培養液Mと比較して高温になる。   Specifically, the culture medium M located in the region A in the vicinity of the light receiving surface portion 112 shown in FIG. 3 is subjected to the received light by the region B in the vicinity of the back surface portion 114 and the region C in the vicinity of the bottom surface portion 118. Compared with the culture medium M located in the area, the temperature becomes high.

そうすると、領域Aに位置する培養液Mは、図3に示すように、受光面部112に沿って鉛直上方に上昇し(図3中、矢印aで示す)、喫水面に到達する。喫水面に到達した培養液Mは、背面部114に沿って、鉛直下方に下降し(図3中、矢印bで示す)、領域Bに位置していた培養液Mは押し出されて底面部118に到達する。ここで、上述したように、底面部118は、背面部114側から受光面部112側に向かうに従って鉛直下方に傾斜しているため、底面部118に到達した培養液Mは、底面部118に沿って(図3中矢印cで示す)、受光面部112に向かって流動する。そうすると、領域Cに位置していた培養液Mは、押し出されて、受光面部112の下端に到達する。   Then, as shown in FIG. 3, the culture medium M located in the region A rises vertically upward along the light receiving surface portion 112 (indicated by an arrow a in FIG. 3) and reaches the draft surface. The culture medium M that has reached the draft surface descends vertically downward (indicated by an arrow b in FIG. 3) along the back surface portion 114, and the culture medium M located in the region B is pushed out to be the bottom surface portion 118. To reach. Here, as described above, since the bottom surface portion 118 is inclined vertically downward from the back surface portion 114 side toward the light receiving surface portion 112 side, the culture medium M that has reached the bottom surface portion 118 follows the bottom surface portion 118. (Indicated by an arrow c in FIG. 3) and flows toward the light receiving surface portion 112. Then, the culture medium M located in the region C is pushed out and reaches the lower end of the light receiving surface portion 112.

したがって、培養装置100は、図3中、矢印a、b、cで示す順で、培養液Mを循環させることができ、培養液M中で、藻類が沈殿する事態を回避することが可能となる。これにより、藻類の光合成効率の低下や培養液Mの消費効率の低下を抑制することができる。   Therefore, the culture apparatus 100 can circulate the culture medium M in the order indicated by arrows a, b, and c in FIG. 3, and can avoid a situation where algae precipitate in the culture medium M. Become. Thereby, the fall of the photosynthesis efficiency of algae and the fall of the consumption efficiency of the culture solution M can be suppressed.

また、ガス導入部120が連続部122に設けられる構成により、培養液Mに満遍なく消費ガスを供給するとともに、領域Aにおける培養液Mの上昇を補助することができる。   In addition, with the configuration in which the gas introduction part 120 is provided in the continuous part 122, the consumption gas can be uniformly supplied to the culture medium M, and the rise of the culture medium M in the region A can be assisted.

さらに、上述したように、本実施形態にかかる背面部114および底面部118は、受光面部112よりも熱伝導度または放熱効率が高い部材で構成されるため、背面部114の近傍の領域Bおよび底面部118の近傍の領域Cに位置する培養液Mをより低温にすることができる。したがって、領域Bおよび領域Cに位置する培養液Mを、効率よく受光面部112の近傍(領域A)に流動させることが可能となる。   Furthermore, as described above, the back surface portion 114 and the bottom surface portion 118 according to the present embodiment are composed of members having higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion 112. The culture medium M located in the region C in the vicinity of the bottom surface part 118 can be made to have a lower temperature. Therefore, the culture medium M located in the region B and the region C can be efficiently flowed to the vicinity (region A) of the light receiving surface portion 112.

また、本実施形態において、槽本体110は、受光面部112と背面部114との距離が、鉛直上方に向かうに従って漸減するように形成される。このように、喫水面において、受光面部112側から背面部114側への培養液Mの流動距離を短くすることにより、光によって加温され喫水面に到達した培養液Mが背面部114に到達する途中で下降してしまい、循環の流れを乱してしまう事態を回避することが可能となる。したがって、培養液Mの循環効率を向上させることができる。   Moreover, in this embodiment, the tank main body 110 is formed so that the distance between the light receiving surface portion 112 and the back surface portion 114 gradually decreases as it goes vertically upward. In this way, by reducing the flow distance of the culture medium M from the light receiving surface 112 side to the back surface 114 side on the draft surface, the culture medium M that has been heated by light and reaches the draft surface reaches the back surface 114. It is possible to avoid a situation in which the flow descends in the middle of the process and disturbs the circulation flow. Therefore, the circulation efficiency of the culture solution M can be improved.

また、受光面部112を傾斜させることにより、受光面積を大きくすることが可能となり、藻類の光合成効率を向上させることが可能となる。   In addition, by tilting the light receiving surface portion 112, the light receiving area can be increased, and the photosynthesis efficiency of algae can be improved.

ここで、藻類の循環について説明すると、藻類は、培養液Mに分散されているため、上述した培養液Mの循環に伴って、図3中、矢印a、b、cで示す順で循環する。このような培養液Mの循環に加えて、上述したように、底面部118が、背面部114側から受光面部112側に向かうに従って鉛直下方に傾斜しているため、重力によって、背面部114の端側に位置する藻類を受光面部112の下端側に流動させることができる。そして、受光面部112の下端側に移動した藻類は、ガス導入部120による消費ガスの供給に伴って、喫水面まで到達し、その後、重力によって底面部118に向かって下降する。   Here, the circulation of the algae will be described. Since the algae are dispersed in the culture medium M, the algae circulate in the order indicated by arrows a, b, and c in FIG. . In addition to the circulation of the culture medium M, as described above, the bottom surface portion 118 is inclined vertically downward from the back surface portion 114 side toward the light receiving surface portion 112 side. The algae located on the end side can flow to the lower end side of the light receiving surface portion 112. And the algae which moved to the lower end side of the light-receiving surface part 112 reach | attain to a draft surface with supply of the consumption gas by the gas introduction part 120, and descend | fall toward the bottom face part 118 by gravity after that.

ところで、藻類には、光が当たる期間と当たらない期間とが交互になるように培養することで、光合成効率が向上するという特徴がある(ライトダークエフェクト)。しかし、上述したように、チューブ型や、パネル型の培養装置は、培養槽内部まで光を到達させるために、光を透過する部材で構成されているため、太陽光の照射量が多い日中等は、培養槽全体に光が当たり、培養槽内の明るさが均一になってしまい、ライトダークエフェクトが得られず、却って光合成効率が抑制されたり、強光阻害が引き起こされたりするという問題があった。   By the way, algae has a feature that the photosynthetic efficiency is improved by culturing so that the periods in which light is applied and the periods in which light is not applied are alternated (light dark effect). However, as described above, the tube-type and panel-type culture apparatuses are composed of a member that transmits light so that the light reaches the inside of the culture tank. However, there is a problem that light is applied to the entire culture tank, the brightness in the culture tank becomes uniform, the light dark effect cannot be obtained, and photosynthesis efficiency is suppressed or strong light inhibition is caused. there were.

本実施形態にかかる培養装置100は、受光面部112と背面部114との距離が鉛直上方に向かうに従って短くなる構成、すなわち、受光面部112と背面部114との距離が鉛直下方に向かうに従って長くなる構成により、受光面部112から透過される光の透過方向に、培養液Mが厚い領域Dを形成することができる(図2参照)。ここで、培養装置100は、槽本体110内部において培養液Mを連続して循環させることができるため、藻類を培養液Mに均一に分散させることが可能となる。これにより、領域Dにおいて、光の透過率が低い藻類の層が形成されることになり、受光面部112から背面部114に向かうに従って、光を徐々に減衰させることができる。したがって、太陽光の照射量が多い日中等であっても、槽本体110の内部に明るい領域Aと暗い領域Dとを並行して形成することができ、藻類の光合成効率を向上させるとともに、藻類に対する強光阻害を抑制することが可能となる。   The culture apparatus 100 according to the present embodiment has a configuration in which the distance between the light receiving surface portion 112 and the back surface portion 114 becomes shorter as it goes vertically upward, that is, the distance between the light receiving surface portion 112 and the back surface portion 114 becomes longer as it goes vertically downward. According to the configuration, a region D where the culture medium M is thick can be formed in the transmission direction of the light transmitted from the light receiving surface portion 112 (see FIG. 2). Here, since the culture apparatus 100 can continuously circulate the culture solution M inside the tank body 110, the algae can be uniformly dispersed in the culture solution M. Thereby, in the area | region D, the layer of algae with low light transmittance will be formed, and light can be attenuate | damped gradually as it goes to the back surface part 114 from the light-receiving surface part 112. FIG. Therefore, even during the daytime when the amount of sunlight is high, the bright region A and the dark region D can be formed in the tank body 110 in parallel, improving the photosynthetic efficiency of the algae and the algae. It is possible to suppress the strong light inhibition against the light.

(越流部130による冷却処理)
図4は、越流部130を越流する培養液Mの流動過程を説明するための説明図である。図4に示すように、槽本体110内の培養液Mが所定水位となったときに、槽本体110内の培養液Mは、越流部130を越流して槽本体110外に流動する。すなわち、槽本体110内で培養された藻類は、培養液Mとともに、越流部130を越流して外部に排出されることになる。
(Cooling process by overflow section 130)
FIG. 4 is an explanatory diagram for explaining the flow process of the culture medium M that overflows the overflow section 130. As shown in FIG. 4, when the culture medium M in the tank body 110 reaches a predetermined water level, the culture medium M in the tank body 110 flows over the overflow part 130 and flows out of the tank body 110. That is, the algae cultured in the tank main body 110 will overflow the overflow section 130 together with the culture medium M and be discharged to the outside.

そして、図4中矢印で示すように、越流部130は、越流した培養液Mを背面部114の外面に沿って流下させる。ここで、背面部114の外面は大気に曝されているため、越流部130を越流した培養液Mは、背面部114の外面に沿って流下している間に気化することになる。そうすると、背面部114は、培養液Mの気化熱によって冷却される。また、本実施形態において、背面部114の外面に沿って流下した培養液Mの少なくとも一部は、続いて底面部118の外面に沿って流下する。そうすると、培養液Mは、底面部118の外面に沿って流下している間でも気化することになるため、底面部118は、培養液Mの気化熱によって冷却される。   Then, as shown by an arrow in FIG. 4, the overflow part 130 causes the culture medium M that has overflowed to flow down along the outer surface of the back part 114. Here, since the outer surface of the back surface portion 114 is exposed to the atmosphere, the culture medium M that has overflowed the overflow portion 130 is vaporized while flowing down along the outer surface of the back surface portion 114. Then, the back surface portion 114 is cooled by the heat of vaporization of the culture medium M. Further, in the present embodiment, at least a part of the culture medium M that has flowed down along the outer surface of the back surface portion 114 subsequently flows down along the outer surface of the bottom surface portion 118. As a result, the culture medium M is vaporized even while it flows down along the outer surface of the bottom surface part 118, so that the bottom surface part 118 is cooled by the heat of vaporization of the culture medium M.

ここで、上述したように背面部114および底面部118は、受光面部112よりも熱伝導度または放熱効率が高い部材で構成されることによる、領域Bおよび領域Cに位置する培養液Mの冷却効果に加えて、越流部130を備えることによって、領域Bおよび領域Cに位置する培養液Mの温度をさらに低くすることができ、槽本体110内の培養液Mの循環効率を向上させることが可能となる。   Here, as described above, the back surface portion 114 and the bottom surface portion 118 are made of a member having higher thermal conductivity or heat dissipation efficiency than the light receiving surface portion 112, so that the culture medium M located in the region B and the region C is cooled. In addition to the effect, by providing the overflow section 130, the temperature of the culture solution M located in the region B and the region C can be further lowered, and the circulation efficiency of the culture solution M in the tank body 110 is improved. Is possible.

また、太陽光の照射量が多い日中等であっても、冷却装置を利用せずに培養液Mの温度を藻類の培養に適した温度範囲内に維持することができ、藻類の光合成効率を向上させ、藻類を構成するタンパク質や核酸等が変性して増殖が困難になる事態を回避することが可能となる。   In addition, even during the daytime when the amount of sunlight is high, the temperature of the culture medium M can be maintained within a temperature range suitable for algae culture without using a cooling device, and the photosynthesis efficiency of algae can be improved. Thus, it is possible to avoid a situation in which the protein, nucleic acid, or the like constituting the algae is denatured and difficult to grow.

また、背面部114の外面および底面部118の外面を流下する間に、培養液Mの一部が気化することにより、培養液Mに含まれる藻類の濃度を向上させることができる。   In addition, a part of the culture solution M is vaporized while flowing down the outer surface of the back surface portion 114 and the outer surface of the bottom surface portion 118, whereby the concentration of algae contained in the culture solution M can be improved.

さらに、越流部130を越流した培養液Mは、重力によって、越流部130と案内部132との間を流下することになる。すなわち、越流部130から外部に越流した培養液Mが、槽本体110内部に逆流するという事態は発生しないため、外部から槽本体110内へのコンタミネーションを防止することもできる。   Furthermore, the culture medium M that has overflowed the overflow part 130 flows down between the overflow part 130 and the guide part 132 by gravity. That is, there is no situation in which the culture medium M that has overflowed to the outside from the overflow section 130 flows back into the tank body 110, so that contamination from the outside into the tank body 110 can also be prevented.

また、上述したように、本実施形態では越流部130の下方位置に培養液供給部140を設けているため、藻類の濃度が低い(0に等しい)新たな培養液Mが越流部130から排出されてしまうことを防止することができ、また、藻類の濃度が高い培養液Mを越流部130から排出することが可能となる。   Further, as described above, in the present embodiment, since the culture solution supply unit 140 is provided at a position below the overflow unit 130, a new culture solution M having a low algal concentration (equal to 0) is introduced into the overflow unit 130. It is possible to prevent the culture medium M having a high algae concentration from being discharged from the overflow section 130.

図1および図2に戻って説明すると、培養液回収部150は、越流部130を越流し、背面部114の外面を流下した培養液Mを回収する。培養液回収部150で回収された、藻類を含む培養液Mは培養回収口152を通じて、後段のバイオ燃料生成工程等に利用される。   Returning to FIG. 1 and FIG. 2, the culture medium recovery unit 150 recovers the culture medium M that has overflowed the overflow part 130 and has flowed down the outer surface of the back part 114. The culture solution M containing algae recovered by the culture solution recovery unit 150 is used for the subsequent biofuel production process and the like through the culture recovery port 152.

以上説明したように、本実施形態にかかる培養装置100によれば、培養液Mを冷却するための専用装置を利用せずとも、簡易な構成で培養液Mを確実に冷却することができ、直接光等による培養液Mの温度上昇を抑制することが可能となる。したがって、全体的な藻類の培養効率を向上させることができる。   As described above, according to the culture device 100 according to the present embodiment, the culture solution M can be reliably cooled with a simple configuration without using a dedicated device for cooling the culture solution M. It becomes possible to suppress the temperature rise of the culture solution M due to direct light or the like. Therefore, the overall culture efficiency of algae can be improved.

以上、添付図面を参照しながら本発明の好適な実施形態について説明したが、本発明はかかる実施形態に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された範疇において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although preferred embodiment of this invention was described referring an accompanying drawing, it cannot be overemphasized that this invention is not limited to this embodiment. It will be apparent to those skilled in the art that various changes and modifications can be made within the scope of the claims, and these are naturally within the technical scope of the present invention. Is done.

上述した実施形態では、背面部114に越流部130を設けることとしたが、背面部114のみならず、槽本体110の受光面部112や、右側面部116a、左側面部116b等、槽本体110の外周のどの位置に越流部130を設けてもよい。例えば、夏の日中等、日差しが強く、受光面部112が高温になり過ぎてしまうような設置環境等においては、受光面部112に越流部130を設けて、受光面部112を冷却してもよい。   In the embodiment described above, the overflow portion 130 is provided on the back surface portion 114. However, not only the back surface portion 114 but also the light receiving surface portion 112 of the tank body 110, the right side surface portion 116a, the left side surface portion 116b, and the like. The overflow part 130 may be provided at any position on the outer periphery. For example, in an installation environment where the sunlight is strong and the light receiving surface portion 112 becomes too hot, such as during the summer, the overflow portion 130 may be provided on the light receiving surface portion 112 to cool the light receiving surface portion 112. .

また、槽本体のすべての外周に越流部を設け、槽本体の外周をすべて冷却することもできる。例えば、図5(a)に示すような、円柱形状の槽本体310を備える培養装置300であって、その上面に受光面部312が形成される場合、図5(a)および図5(b)(図5(b)は、図5(a)の鉛直断面図である)に示すように、受光面部312以外の側面部314全周に渡って越流部330を形成することもできる。この場合であっても、受光した光は槽本体310の内部に向かうに従って減衰するため、槽本体310内で温度差を生じさせることが可能となる。   Moreover, the overflow part can be provided in all the outer periphery of a tank main body, and all the outer periphery of a tank main body can also be cooled. For example, in the case of a culture apparatus 300 including a cylindrical tank body 310 as shown in FIG. 5 (a) and the light receiving surface portion 312 is formed on the upper surface thereof, FIG. 5 (a) and FIG. 5 (b). (FIG. 5B is a vertical sectional view of FIG. 5A) The overflow portion 330 can also be formed over the entire circumference of the side surface portion 314 other than the light receiving surface portion 312. Even in this case, the received light is attenuated toward the inside of the tank body 310, so that a temperature difference can be generated in the tank body 310.

さらに、上述した実施形態では、底面部118を背面部114から受光面部112に向かうに従って鉛直下方に傾斜させることにより、越流部130から背面部114の外面に沿って流下した培養液Mを、底面部118の外面にも沿って流下させている。このように、槽本体において、越流部を設ける面や、越流部より越流した培養液Mで冷却する面は、設置環境に応じて適宜決定すればよい。   Furthermore, in the above-described embodiment, the culture medium M that has flowed down from the overflow portion 130 along the outer surface of the back surface portion 114 by tilting the bottom surface portion 118 vertically downward from the back surface portion 114 toward the light receiving surface portion 112, It also flows down along the outer surface of the bottom surface portion 118. Thus, what is necessary is just to determine suitably the surface which provides an overflow part in a tank main body, and the surface cooled with the culture solution M which overflowed from the overflow part according to installation environment.

また、上述した実施形態では、槽本体110の形状によって槽本体110内に温度差を生じさせることで、培養液Mが自然に循環する構成としたが、培養液Mを循環させるための循環装置を別途に設けることとしてもよい。   In the above-described embodiment, the culture medium M circulates naturally by causing a temperature difference in the tank body 110 depending on the shape of the tank body 110. However, the circulation device for circulating the culture medium M is used. May be provided separately.

また、上述した実施形態において、受光面部112と背面部114との距離が、鉛直上方に向かうに従って漸減するように槽本体110が形成される例について説明したが、例えば、図6(a)に示すように、受光面部112が槽本体110の外部に向かって凸形状であっても、受光面部112と背面部114との距離が、鉛直上方に向かうに従って短くなるように、すなわち、受光面部112と背面部114との最上端側の距離が最下端側の距離より短くなるように槽本体110が形成されてもよい。また、図6(b)に示すように、受光面部112の下端から所定の高さまでは受光面部112と背面部114との距離が一定であり、所定の高さ以上から鉛直上方に向かうに従って漸減する形状であっても、図6(c)に示すように、受光面部112と背面部114との距離が鉛直上方に向かうに従って段階的に短くなる形状であってもよい。さらに、受光面部112の近傍の領域で培養液Mおよび藻類が上昇できる構成であれば、図6(d)に示すように、受光面部112と背面部114との距離が所定(一定)の距離(受光面部112と背面部114が平行に配される構成)であってもよい。   Further, in the above-described embodiment, the example in which the tank body 110 is formed so that the distance between the light receiving surface portion 112 and the back surface portion 114 gradually decreases in the vertical direction has been described. For example, FIG. As shown, even if the light receiving surface portion 112 is convex toward the outside of the tank body 110, the distance between the light receiving surface portion 112 and the back surface portion 114 becomes shorter as it goes vertically upward, that is, the light receiving surface portion 112. The tank main body 110 may be formed such that the distance between the uppermost end side of the back surface portion 114 and the rear surface portion 114 is shorter than the distance between the lowermost end side. In addition, as shown in FIG. 6B, the distance between the light receiving surface 112 and the back surface 114 is constant at a predetermined height from the lower end of the light receiving surface 112, and gradually decreases from the predetermined height toward the vertically upward direction. Even if it is the shape to perform, as shown in FIG.6 (c), the shape which becomes short in steps as the distance of the light-receiving surface part 112 and the back surface part 114 goes vertically upwards may be sufficient. Further, if the culture medium M and the algae can rise in the region in the vicinity of the light receiving surface portion 112, the distance between the light receiving surface portion 112 and the back surface portion 114 is a predetermined (constant) distance as shown in FIG. 6 (d). (The structure in which the light receiving surface portion 112 and the back surface portion 114 are arranged in parallel) may be used.

さらに、上述した実施形態では、底面部118全体が背面部114側から受光面部112側に向かうに従って連続的に鉛直下方に傾斜している構成について説明したが、例えば、図7(a)に示すように、底面部118が槽本体110の内部に向かって凸形状であってもよい。また、図7(b)に示すように、底面部118の一部が鉛直下方に傾斜する形状であっても、図7(c)に示すように、底面部118が段階的に鉛直下方に傾斜する形状であってもよい。   Furthermore, in the above-described embodiment, the configuration in which the entire bottom surface portion 118 is continuously inclined vertically downward from the back surface portion 114 side toward the light receiving surface portion 112 side has been described. For example, as illustrated in FIG. As described above, the bottom surface portion 118 may be convex toward the inside of the tank body 110. Further, as shown in FIG. 7B, even if a part of the bottom surface portion 118 is inclined vertically downward, as shown in FIG. 7C, the bottom surface portion 118 is gradually lowered vertically. The shape may be inclined.

なお、図7(d)に示すように、受光面部112と背面部114との距離が、鉛直上方に向かうに従って短くなるように形成すれば、受光面部112の近傍の領域において培養液および藻類を鉛直上方に上昇させることができるため、底面部118を水平に形成しても、図7中、矢印a、b、cで示す順で、培養液および藻類を循環させることが可能となる。   As shown in FIG. 7D, if the distance between the light receiving surface portion 112 and the back surface portion 114 is shortened vertically upward, the culture solution and the algae are removed in the region near the light receiving surface portion 112. Since the bottom portion 118 can be formed horizontally, the culture solution and the algae can be circulated in the order indicated by arrows a, b, and c in FIG.

また、上述した実施形態においてガス導入部120は、連続部122に設けられているが、藻類に消費ガスを供給できれば、槽本体110のどの位置に配されてもよい。   Moreover, although the gas introduction part 120 is provided in the continuous part 122 in embodiment mentioned above, as long as consumption gas can be supplied to algae, you may distribute | arrange to any position of the tank main body 110. FIG.

本発明は、藻類等を培養する培養装置に利用することができる。   The present invention can be used for a culture apparatus for culturing algae and the like.

100、300 …培養装置
110、310 …槽本体
112、312 …受光面部
114 …背面部
118 …底面部
120 …ガス導入部
130、330 …越流部
140 …培養液供給部
DESCRIPTION OF SYMBOLS 100, 300 ... Culture apparatus 110, 310 ... Tank main body 112, 312 ... Light-receiving surface part 114 ... Back part 118 ... Bottom part 120 ... Gas introduction part 130, 330 ... Overflow part 140 ... Culture solution supply part

Claims (4)

培養液が満たされる槽本体と、
前記槽本体内の培養液が所定水位となったときに、該槽本体内の培養液を該槽本体外に越流させるとともに、当該越流した培養液を該槽本体の外面に沿って流下させる越流部と、
を備えたことを特徴とする培養装置。
A tank body filled with a culture solution;
When the culture medium in the tank body reaches a predetermined water level, the culture medium in the tank body overflows outside the tank body, and the overflowed culture medium flows down along the outer surface of the tank body. And the overflow section
A culture apparatus comprising:
前記槽本体は、
受光した光を槽本体内に透過させる受光面部を備え、
前記越流部は、前記越流した培養液を前記槽本体における前記受光面部の外面以外の外面に沿って流下させることを特徴とする請求項1に記載の培養装置。
The tank body is
Provided with a light receiving surface that transmits the received light into the tank body,
The culture apparatus according to claim 1, wherein the overflow section causes the overflowed culture solution to flow along an outer surface of the tank body other than the outer surface of the light receiving surface section.
前記槽本体は、
前記受光面部より、当該受光面部から透過される光の透過方向前方に位置し、前記受光面部と対向する位置に配置される背面部を備え、
前記越流部は、前記越流した培養液を前記背面部の外面に沿って流下させることを特徴とする請求項2に記載の培養装置。
The tank body is
From the light receiving surface portion, it is located in front of the transmission direction of the light transmitted from the light receiving surface portion, and includes a back surface portion disposed at a position facing the light receiving surface portion,
The culture apparatus according to claim 2, wherein the overflow section causes the culture medium that has overflowed to flow down along the outer surface of the back surface section.
前記槽本体における前記越流部の下方位置には、新たな培養液を供給する培養液供給部をさらに備えたことを特徴とする請求項1から3のいずれか1項に記載の培養装置。   The culture apparatus according to any one of claims 1 to 3, further comprising a culture solution supply unit that supplies a new culture solution at a position below the overflow section in the tank body.
JP2011058730A 2011-03-17 2011-03-17 Incubator Expired - Fee Related JP5817159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011058730A JP5817159B2 (en) 2011-03-17 2011-03-17 Incubator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011058730A JP5817159B2 (en) 2011-03-17 2011-03-17 Incubator

Publications (2)

Publication Number Publication Date
JP2012191895A true JP2012191895A (en) 2012-10-11
JP5817159B2 JP5817159B2 (en) 2015-11-18

Family

ID=47084437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011058730A Expired - Fee Related JP5817159B2 (en) 2011-03-17 2011-03-17 Incubator

Country Status (1)

Country Link
JP (1) JP5817159B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120451U (en) * 1991-04-16 1992-10-28 株式会社フジタ Planktonic algae cultivation equipment
JPH08140662A (en) * 1994-11-22 1996-06-04 Mitsui Eng & Shipbuild Co Ltd Culture of fine algae in high concentration by utilization of deep layer water and device therefor
JP2001309778A (en) * 2000-05-02 2001-11-06 Marine Biotechnol Inst Co Ltd Method for incubating photosynthetic microorganism in high efficiency
JP2001321158A (en) * 2000-05-10 2001-11-20 Akihiko Yanagisawa Method for producing filamentous diatoms

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04120451U (en) * 1991-04-16 1992-10-28 株式会社フジタ Planktonic algae cultivation equipment
JPH08140662A (en) * 1994-11-22 1996-06-04 Mitsui Eng & Shipbuild Co Ltd Culture of fine algae in high concentration by utilization of deep layer water and device therefor
JP2001309778A (en) * 2000-05-02 2001-11-06 Marine Biotechnol Inst Co Ltd Method for incubating photosynthetic microorganism in high efficiency
JP2001321158A (en) * 2000-05-10 2001-11-20 Akihiko Yanagisawa Method for producing filamentous diatoms

Also Published As

Publication number Publication date
JP5817159B2 (en) 2015-11-18

Similar Documents

Publication Publication Date Title
Yang et al. An experimental investigation on the multiphase flows and turbulent mixing in a flat-panel photobioreactor for algae cultivation
JP6570736B2 (en) Algal aquaculture photobioreactor and algae culture system
CN102112592A (en) Breeding and reproduction system for light-intensive microorganisms (such as algae)
Kochem et al. Characterization of a novel flat‐panel airlift photobioreactor with an internal heat exchanger
Egbo et al. Photobioreactors for microalgae cultivation–an overview
Wong et al. Cultivation of Chlorella vulgaris in column photobioreactor for biomass production and lipid accumulation
KR20160000206A (en) Photo-Bioreactor for Cultivation of Photosynthesis Autotrophic Organisms
JP4588692B2 (en) Algae culture system
JP5720337B2 (en) Incubator
Ding et al. Evaluation of an enclosed air-lift photobioreactor (ALPBR) for biomass and lipid biosynthesis of microalgal cells grown under fluid-induced shear stress
US11639488B2 (en) Photo bioreactor
Yang et al. Experimental study on microalgae cultivation in novel photobioreactor of concentric double tubes with aeration pores along tube length direction
CN107828636A (en) A kind of microalgae culturing device adopting
US20120252112A1 (en) Thin-layer photobioreactor with high volume productivity
WO2017028018A1 (en) Stacked sheet photobioreactor
JP5817159B2 (en) Incubator
KR101608214B1 (en) Photobioreactor capable of controlling media temperature
KR101663108B1 (en) Light Tube for Photo-Bioreactor for Cultivation of Photosynthesis Autotrophic Organisms
KR101546289B1 (en) Flat-panel photobioreactor with side-circulation system for cultivation of microalgae
US10407653B2 (en) Photobioreactor
CN203393135U (en) Photobioreactor for culturing microalgae in large scale
Hijazi et al. Design considerations for photo-bioreactors: a review
KR20150128551A (en) Photo-Bioreactor for Photosynthesis Autotrophic Organisms
CN105462816B (en) Realize that sunlight divides uniformly distributed raceway pond microalgae reactor using nanometer light guide plate
CN204644342U (en) For cultivating the microporous culture plate of photosynthetic microorganism

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141209

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141210

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150205

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20150421

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150708

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20150715

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150901

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150914

R151 Written notification of patent or utility model registration

Ref document number: 5817159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees