JP2012190607A - Manufacturing method of hermetic container - Google Patents

Manufacturing method of hermetic container Download PDF

Info

Publication number
JP2012190607A
JP2012190607A JP2011051695A JP2011051695A JP2012190607A JP 2012190607 A JP2012190607 A JP 2012190607A JP 2011051695 A JP2011051695 A JP 2011051695A JP 2011051695 A JP2011051695 A JP 2011051695A JP 2012190607 A JP2012190607 A JP 2012190607A
Authority
JP
Japan
Prior art keywords
substrate
bonding material
manufacturing
airtight container
bonding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011051695A
Other languages
Japanese (ja)
Inventor
Yasushi Shioya
泰史 塩谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011051695A priority Critical patent/JP2012190607A/en
Publication of JP2012190607A publication Critical patent/JP2012190607A/en
Withdrawn legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To prevent excessive stress or the generation of deformation on substrates, when both substrates are cut by adding mechanical external force.SOLUTION: An assembly 20, in which a plurality of joint materials 2 and a plurality of supporting members 3 are disposed between a first substrate 1 and a second substrate 7 opposing to each other, is prepared. Each of the supporting members 3 is provided on a surface of the first substrate 1 which opposes to the second substrate, along a first virtual line 10 for partitioning the adjacent joint materials. The joint materials 2 are heated to join the first substrate 1 and the second substrate 7 with the joint materials, and each of the supporting member 3 abuts on the second substrate 7. The second substrate 7 is cut along the first virtual line 10 by adding mechanism external force, and the first substrate 1 is cut along a second virtual line 12 positioned between the joint materials and the first virtual line by adding mechanism external force.

Description

本発明は、気密容器の製造方法に関し、特に一対のガラス基板から複数の気密容器を切り出す方法に関する。   The present invention relates to a method for manufacturing an airtight container, and more particularly to a method for cutting a plurality of airtight containers from a pair of glass substrates.

有機LEDディスプレイ(OLED)、フィールドエミッションディスプレイ(FED)、プラズマディスプレイパネル(PDP)などの、フラットパネルタイプの画像表示装置が公知である。これらの画像表示装置は、対向するガラス基板を気密接合して製造され、内部空間が外部空間に対して仕切られた気密容器を備えている。このような気密容器を製造するには、対向するガラス基板の間に必要に応じて間隔規定部材や局所的な接着材を配置し、周辺部に接合材を枠状に配置して、ガラス基板同士を加熱接合する。この方法は、内部に機能デバイスを具備しない真空断熱ガラスの製造にも適用できる。   Flat panel type image display devices such as an organic LED display (OLED), a field emission display (FED), and a plasma display panel (PDP) are known. These image display devices are manufactured by hermetically bonding opposing glass substrates, and include an airtight container in which an internal space is partitioned from an external space. In order to manufacture such an airtight container, a gap defining member and a local adhesive material are arranged between opposing glass substrates as necessary, and a bonding material is arranged in a frame shape around the periphery, and a glass substrate Heat-join each other. This method can also be applied to the manufacture of vacuum heat insulating glass that does not have a functional device inside.

一対のガラス基板から複数の気密容器を製造する技術も知られている。具体的には、対向するガラス基板の間に枠状の接合材をマトリクス状に複数配置し、各々の接合材を加熱接合した後に、個々の気密容器に切断する。   A technique for manufacturing a plurality of hermetic containers from a pair of glass substrates is also known. Specifically, a plurality of frame-shaped bonding materials are arranged in a matrix between opposing glass substrates, and each bonding material is heated and bonded, and then cut into individual airtight containers.

特許文献1には、OLEDの外囲器の製造方法が開示されている。マザー基板上に複数の発光素子をマトリックス状に形成し、封止基板上に発光素子と対応した複数の枠状の密封材(封止材)を形成する。発光素子が対応する密封材に取り囲まれるように封止基板とマザー基板とを対向させ、接合材を溶融し、マザー基板と封止基板を接合する。その後、マザー基板と封止基板を切断して、個々のパネルに分離する。   Patent Document 1 discloses a method for manufacturing an OLED envelope. A plurality of light emitting elements are formed in a matrix on the mother substrate, and a plurality of frame-shaped sealing materials (sealing materials) corresponding to the light emitting elements are formed on the sealing substrate. The sealing substrate and the mother substrate are opposed so that the light emitting element is surrounded by the corresponding sealing material, the bonding material is melted, and the mother substrate and the sealing substrate are bonded. Thereafter, the mother substrate and the sealing substrate are cut and separated into individual panels.

特許文献2には、OLEDの外囲器の製造方法が開示されている。第1マザー基板と第2マザー基板の間に密封材(封止材)を格子状に配置し、両基板を接合する。次に、密封材を切断ラインとして両基板を切断し、個々の気密容器に分離する。密封材が無機物で形成されている場合、切断にはスクライバが用いられる。   Patent Document 2 discloses a method for manufacturing an OLED envelope. A sealing material (sealing material) is arranged in a lattice shape between the first mother substrate and the second mother substrate, and both the substrates are joined. Next, both substrates are cut using the sealing material as a cutting line, and separated into individual airtight containers. When the sealing material is formed of an inorganic material, a scriber is used for cutting.

特開2008-165170号公報JP 2008-165170 A 特開2009-042719号公報JP 2009-042719 A

特許文献1に記載の方法は、枠状の密封材(封止材)が個々の発光素子を取り囲んで個別に設けられているため、基板を切断する際には、隣接する密封材の間のスペースを切断ラインとして用いることになる。しかし、このスペースには何も設けられていないため、機械的な外力を与えて切断する場合、基板自身で外力を支持する必要があり、基板が大きな変形や応力を受ける。その結果切断が不安定となり、歩留まりも低下する可能性がある。   In the method described in Patent Document 1, since a frame-shaped sealing material (sealing material) is individually provided surrounding each light emitting element, when the substrate is cut, a gap between adjacent sealing materials is determined. Space will be used as a cutting line. However, since nothing is provided in this space, when cutting by applying a mechanical external force, it is necessary to support the external force by the substrate itself, and the substrate is subjected to great deformation and stress. As a result, the cutting becomes unstable and the yield may be reduced.

特許文献2に記載の方法は、密封材(封止材)を切断ラインとして用いているため、機械的な外力を密封材が支持し、ガラス基板への影響は抑えられる。しかしながら、接合材自体を切断するため、接合材にクラックが生じるなど、気密容器としての信頼性が低下する可能性がある。   Since the method described in Patent Document 2 uses a sealing material (sealing material) as a cutting line, the sealing material supports a mechanical external force, and the influence on the glass substrate can be suppressed. However, since the bonding material itself is cut, there is a possibility that the reliability of the hermetic container is lowered, for example, a crack is generated in the bonding material.

本発明は、互いに対向する第1の基板と第2の基板の間に複数の枠状の接合材を設け、両基板を切断することによって個々の気密容器を得る、気密容器の製造方法を対象とする。本発明は、機械的な外力を加えて両基板を切断する際に、基板での過大な応力や変形の発生を防止し、歩留まりの向上が可能な気密容器の製造方法を提供することを目的とする。   The present invention is directed to a method for manufacturing an airtight container in which a plurality of frame-shaped bonding materials are provided between a first substrate and a second substrate facing each other, and individual airtight containers are obtained by cutting the two substrates. And An object of the present invention is to provide a method for manufacturing an airtight container capable of preventing the occurrence of excessive stress and deformation in a substrate and improving the yield when cutting both substrates by applying a mechanical external force. And

本発明の気密容器の製造方法は、互いに対向する第1の基板と第2の基板の間に複数の接合材と複数の支持部材とが配置され、接合材の各々は、閉じた線状の形状を有し、第1及び第2の基板の双方に接し、かつ他の接合材の外側に互いに離間して配置され、支持部材の各々は、第1の基板の第2の基板と対向する面に、接合材同士を仕切る第1の仮想線に沿って設けられた組立体を用意する工程と、接合材を加熱して第1の基板と第2の基板とを接合材によって接合するとともに、支持部材の各々と第2の基板とを当接させる工程と、第1の基板と接合された第2の基板を、第1の基板と対向する面の裏面から、第1の仮想線に沿って機械的な外力を与えて切断することと、第2の基板と接合された第1の基板を、第2の基板と対向する面の裏面から、接合材と第1の仮想線の間に位置する第2の仮想線に沿って機械的な外力を与えて切断することと、によって、複数の気密容器を切り出す工程と、を有している。   In the method for manufacturing an airtight container of the present invention, a plurality of bonding materials and a plurality of support members are disposed between a first substrate and a second substrate facing each other, and each of the bonding materials is a closed linear shape. Each of the supporting members is opposed to the second substrate of the first substrate, and is in contact with both the first and second substrates and spaced apart from the other bonding material. A step of preparing an assembly provided on a surface along a first imaginary line that partitions the bonding materials; and heating the bonding material to bond the first substrate and the second substrate with the bonding material. The step of bringing each of the support members into contact with the second substrate, and the second substrate bonded to the first substrate from the back surface of the surface facing the first substrate to the first imaginary line Cutting the surface by applying a mechanical external force along the surface, and the surface of the first substrate bonded to the second substrate facing the second substrate Cutting a plurality of hermetic containers by applying a mechanical external force along the second imaginary line located between the bonding material and the first imaginary line from the back surface. ing.

第2の基板の切断ラインとなる第1の仮想線には支持部材が設けられている。支持部材は、第1の基板と第2の基板とが接合されるときに、第2の基板と当接する。このため、第2の基板を切断する際に加えられる機械的な外力が支持部材によって支持され、第2の基板への大きな変形や応力が防止される。一方、第1の基板の切断ラインとなる第2の仮想線は接合材と第1の仮想線の間に位置しているため、第1の基板を切断する際に加えられる機械的な外力は、接合材と支持部材とによって支持される。支持部材を設けることによって、外力の支持位置の間隔が縮小するため、第1の基板についても、大きな変形や応力が防止される。以上によって基板の切断が安定し、歩留まりの向上も可能となる。   A support member is provided on the first imaginary line, which is a cutting line for the second substrate. The support member contacts the second substrate when the first substrate and the second substrate are joined. For this reason, a mechanical external force applied when cutting the second substrate is supported by the support member, and large deformation and stress to the second substrate are prevented. On the other hand, since the second imaginary line serving as the cutting line of the first substrate is located between the bonding material and the first imaginary line, the mechanical external force applied when cutting the first substrate is It is supported by the bonding material and the support member. By providing the support member, the distance between the support positions of the external force is reduced, so that large deformation and stress are prevented even for the first substrate. Thus, the substrate can be cut stably and the yield can be improved.

本発明によれば、機械的な外力を加えて両基板を切断する際に、基板での過大な応力や変形の発生を防止し、歩留まりの向上が可能な気密容器の製造方法を提供することができる。   According to the present invention, when a mechanical external force is applied to cut both substrates, there is provided an airtight container manufacturing method capable of preventing the occurrence of excessive stress and deformation on the substrates and improving the yield. Can do.

本発明の第1の実施形態の第1のステップを示す断面図である。It is sectional drawing which shows the 1st step of the 1st Embodiment of this invention. 本発明の第1の実施形態の第2のステップを示す断面図である。It is sectional drawing which shows the 2nd step of the 1st Embodiment of this invention. 本発明の第1の実施形態の第3のステップを示す断面図である。It is sectional drawing which shows the 3rd step of the 1st Embodiment of this invention. 本発明の第1の実施形態の第3のステップを示す断面図である。It is sectional drawing which shows the 3rd step of the 1st Embodiment of this invention. 本発明の第1の実施形態で形成される組立体の平面図である。It is a top view of the assembly formed in the 1st Embodiment of the present invention. 比較例の組立体の平面図である。It is a top view of the assembly of a comparative example. 本発明の効果を示す断面図である。It is sectional drawing which shows the effect of this invention. 本発明の第2の実施形態で形成される組立体の平面図である。It is a top view of the assembly formed in the 2nd Embodiment of this invention.

以下、本発明の実施形態について説明する。本発明の気密容器の製造方法は、内部空間が外部空間から気密遮断されることが必要なデバイスを有するOLED、FED、PDPなどの画像表示装置の外囲器の製造方法に適用可能である。本発明の気密容器の製造方法は、画像表示装置の外囲器などの気密容器の製造に限定されるものではなく、真空断熱ガラスなど、対向する基板の周辺部領域に、気密性の要求される接合部を有する気密容器の製造に広く適用可能である。   Hereinafter, embodiments of the present invention will be described. The method for manufacturing an airtight container of the present invention can be applied to a method for manufacturing an envelope of an image display device such as an OLED, FED, or PDP having a device that requires the internal space to be hermetically cut off from the external space. The method for manufacturing an airtight container of the present invention is not limited to the manufacture of an airtight container such as an envelope of an image display device, and airtightness is required in the peripheral region of the opposing substrate such as vacuum heat insulating glass. It can be widely applied to the manufacture of an airtight container having a joint portion.

本発明に係る気密容器の製造方法の第1の実施形態について、図1〜5を参照して説明する。図1はステップ1を示す工程図、図2はステップ2を示す工程図、図3,4はステップ3を示す工程図、図5はステップ2が終了した時点での平面図である。図5(a)と図5(b)は、後述する第1の仮想線と第2の仮想線を別々に示していることを除き、同じ状態を示している。図1〜4は図5中のA−A線で見た断面図である。   1st Embodiment of the manufacturing method of the airtight container which concerns on this invention is described with reference to FIGS. 1 is a process diagram showing Step 1, FIG. 2 is a process diagram showing Step 2, FIGS. 3 and 4 are process diagrams showing Step 3, and FIG. 5 is a plan view at the time when Step 2 is completed. FIG. 5A and FIG. 5B show the same state except that a first imaginary line and a second imaginary line described later are shown separately. 1 to 4 are cross-sectional views taken along line AA in FIG.

(ステップ1)
図1(a)、5に示すように、まず、第1の基板1上に複数の枠状の接合材2を、マトリクス状に配列するように形成する。いずれの接合材2も他の接合材2の外側に、他の接合材2に対し互いに離間して配置される。次に、第1の基板1上の、各接合材2の外側領域に、接合材2に沿って支持部材3を形成する。支持部材3の各々は、第1の基板の第2の基板7(後述)と対向する面に、隣接する接合材2同士を仕切る第1の仮想線10に沿って設けられる。第1の仮想線10は複数本設定されており、本実施形態では一部の第1の仮想線10が互いに隣接する接合材2の間を平行に延び、残りが当該一部の第1の仮想線10と直交する方向に延びている。第1の仮想線10は後述する切断ラインと一致しており、第1の仮想線10に沿って第2の基板7が切断される。支持部材3は、互いに隣接する接合材2の互いに対向する辺2a,2bの間に連続的に設けられている。
(Step 1)
As shown in FIGS. 1A and 5, first, a plurality of frame-shaped bonding materials 2 are formed on a first substrate 1 so as to be arranged in a matrix. Any of the bonding materials 2 are arranged outside the other bonding materials 2 and spaced from each other. Next, the support member 3 is formed along the bonding material 2 in the outer region of each bonding material 2 on the first substrate 1. Each of the support members 3 is provided on a surface of the first substrate facing a second substrate 7 (described later) along a first imaginary line 10 that partitions adjacent bonding materials 2. A plurality of first imaginary lines 10 are set. In the present embodiment, some of the first imaginary lines 10 extend in parallel between the bonding materials 2 adjacent to each other, and the rest are the first imaginary lines 10. It extends in a direction perpendicular to the virtual line 10. The first virtual line 10 coincides with a cutting line to be described later, and the second substrate 7 is cut along the first virtual line 10. The support member 3 is continuously provided between the sides 2a and 2b of the bonding material 2 adjacent to each other.

本実施形態では、画像表示装置の外囲器としての気密容器を想定しているため、複数の接合材2は同一の矩形形状を有している。しかし、接合材2の外形はこれに限定されず、任意の閉じた線状の形状を有していればよい。   In the present embodiment, since a hermetic container as an envelope of the image display device is assumed, the plurality of bonding materials 2 have the same rectangular shape. However, the outer shape of the bonding material 2 is not limited to this, and may have any closed linear shape.

次に、図1(b)及び図5に示すように、発光部5が形成され、発光部5の周辺に電極6が配置された第2の基板7を用意する。発光部5は、TFT回路、平坦化膜、コンタクトホール、下部電極、有機EL層、上部電極、及び保護層(いずれも不図示)で構成されている。電極6はOLED素子の駆動に使用する周辺回路を接続するために設けられている。   Next, as shown in FIGS. 1B and 5, a second substrate 7 is prepared in which the light emitting part 5 is formed and the electrode 6 is disposed around the light emitting part 5. The light emitting unit 5 includes a TFT circuit, a planarizing film, a contact hole, a lower electrode, an organic EL layer, an upper electrode, and a protective layer (all not shown). The electrode 6 is provided to connect a peripheral circuit used for driving the OLED element.

次に、図1(c)に示すように、接合材2及び支持部材3が形成された第1の基板1と、発光部5が形成され第2の基板7と、を互いに対向配置し、内部空間8を規定する。このとき、接合材2の各々は、第1及び第2の基板1,7の双方に接している。接合材2は発光部5を、支持部材3は電極6を、それぞれ取り囲むように配置されている。このようにして、第1の基板と第2の基板7の間に複数の接合材2と複数の支持部材3とが配置された組立体20を用意する。   Next, as shown in FIG. 1 (c), the first substrate 1 on which the bonding material 2 and the support member 3 are formed and the second substrate 7 on which the light emitting portion 5 is formed are arranged to face each other. An internal space 8 is defined. At this time, each of the bonding materials 2 is in contact with both the first and second substrates 1 and 7. The bonding material 2 is disposed so as to surround the light emitting portion 5, and the support member 3 is disposed so as to surround the electrode 6. In this way, an assembly 20 is prepared in which a plurality of bonding materials 2 and a plurality of support members 3 are arranged between the first substrate and the second substrate 7.

接合材2は、粘度が負の温度係数を有し、高温度側で軟化し、かつ第1の基板1と第2の基板7のいずれよりも軟化点Tsが低いことが望ましい。これによって、熱によるダメージを軽減することができる。接合材2は後述する局所加熱光の波長に対して高い吸収性を示すことが望ましい。接合材2の例として、ガラスフリット、無機接着剤、有機接着剤などが挙げられる。   It is desirable that the bonding material 2 has a negative temperature coefficient of viscosity, softens on the high temperature side, and has a lower softening point Ts than both the first substrate 1 and the second substrate 7. Thereby, damage due to heat can be reduced. It is desirable that the bonding material 2 exhibits high absorbability with respect to the wavelength of the local heating light described later. Examples of the bonding material 2 include glass frit, inorganic adhesive, and organic adhesive.

第1の基板1及び第2の基板7は、接合材2への局所加熱光の照射を阻害しないように、局所加熱光に対して透明性を有する材料が望ましい。第1の基板1及び第2の基板7の例として、ソーダライムガラス、高歪点ガラス、無アルカリガラスなどが挙げられる。気密容器の残留応力を抑制するため、第1の基板1と第2の基板7に用いる材料は、線膨張係数が一致していることが望ましい。   The first substrate 1 and the second substrate 7 are desirably made of a material that is transparent to the local heating light so as not to hinder the irradiation of the local heating light to the bonding material 2. Examples of the first substrate 1 and the second substrate 7 include soda lime glass, high strain point glass, and alkali-free glass. In order to suppress the residual stress of the hermetic container, it is desirable that the materials used for the first substrate 1 and the second substrate 7 have the same linear expansion coefficient.

(ステップ2)
接合材2を加熱し、第1の基板と第2の基板7とを接合材2によって接合する。まず、図2(a)に示すように、加圧治具(不図示)を使用して、第2の基板7を枠状の接合材2に押し付けて、接合材2の全周にわたっての密着性を確保する。次に、局所加熱光9を接合材2に照射しながら走査し、接合材2を加熱する。これによって、図2(b)に示すように、第2の基板7と第1の基板1とが気密接合される。加圧された接合材2が溶融するため、各支持部材3は第2の基板7と当接する。気密接合された後の組立体20は、枠状の接合材2で区画された複数の気密容器21を含んでいる。接合材2は、組立体20の全体を加熱炉でベークすることによって加熱してもよい。局所加熱は接合材2の周辺を選択的に加熱するため、加熱冷却時間、加熱に要するエネルギ、生産性、容器の熱変形防止、及び容器内部に配置された機能デバイスの熱劣化防止などの観点から、全体加熱より有利である。局所加熱の手段としてはレーザ光が好適に用いられる。
(Step 2)
The bonding material 2 is heated to bond the first substrate and the second substrate 7 with the bonding material 2. First, as shown in FIG. 2 (a), the second substrate 7 is pressed against the frame-shaped bonding material 2 using a pressing jig (not shown), and the bonding material 2 is adhered to the entire circumference. Ensure sex. Next, scanning is performed while irradiating the bonding material 2 with the local heating light 9 to heat the bonding material 2. As a result, as shown in FIG. 2B, the second substrate 7 and the first substrate 1 are hermetically bonded. Since the pressed bonding material 2 melts, each support member 3 comes into contact with the second substrate 7. The assembly 20 after being hermetically bonded includes a plurality of hermetic containers 21 partitioned by the frame-shaped bonding material 2. The bonding material 2 may be heated by baking the entire assembly 20 in a heating furnace. Since local heating selectively heats the periphery of the bonding material 2, viewpoints such as heating and cooling time, energy required for heating, productivity, prevention of thermal deformation of the container, and prevention of thermal deterioration of the functional device disposed inside the container Therefore, it is more advantageous than the whole heating. Laser light is preferably used as the means for local heating.

(ステップ3)
次に、気密容器21が多数形成された組立体20を切断し、個々の気密容器21に分離する。このステップは第1の基板1を切断する工程と、第2の基板7を切断する工程とからなり、以下の説明では先に第2の基板7を切断するが、先に第1の基板1を切断することもできる。
(Step 3)
Next, the assembly 20 in which many airtight containers 21 are formed is cut and separated into individual airtight containers 21. This step includes a step of cutting the first substrate 1 and a step of cutting the second substrate 7. In the following description, the second substrate 7 is cut first, but the first substrate 1 is cut first. Can also be cut.

まず、第1の基板1と接合された第2の基板7を、第1の基板1と対向する面の裏面7aから、第1の仮想線10に沿って機械的な外力を与えて切断する。具体的には、図3(a)に示すように、第2の基板7の裏面7aにガラススクライバ等の切断ツール11を押し付ける。切断ツール11の位置は、支持部材3と対向する位置、すなわち第1の仮想線10上とする。その状態から、第1の仮想線10を切断ラインとして、切断ツール11を第1の仮想線10に沿って移動させて、図3(b)に示すように第2の基板7を切断する。以上の作業を全ての第1の仮想線10について行い、第2の基板7をマトリックス状に切断する。   First, the second substrate 7 bonded to the first substrate 1 is cut from the back surface 7a of the surface facing the first substrate 1 by applying a mechanical external force along the first virtual line 10. . Specifically, as shown in FIG. 3A, a cutting tool 11 such as a glass scriber is pressed against the back surface 7 a of the second substrate 7. The position of the cutting tool 11 is a position facing the support member 3, that is, on the first imaginary line 10. From that state, the cutting tool 11 is moved along the first virtual line 10 using the first virtual line 10 as a cutting line, and the second substrate 7 is cut as shown in FIG. The above operation is performed on all the first virtual lines 10 to cut the second substrate 7 into a matrix.

次に、第2の基板7と接合された第1の基板1を、第2の基板7と対向する面の裏面1aから、接合材2と第1の仮想線10の間に位置する第2の仮想線12に沿って機械的な外力を与えて切断する。具体的には、図4(a)に示すように、第1の基板1の裏面1aの外周部にガラススクライバ等の切断ツール11を押し付ける。このとき切断ツール11の位置は、支持部材3と接合材2の間の位置、すなわち第2の仮想線12上とする。第2の仮想線12は好ましくは電極6と接合材2の間の位置に設定する。図5(b)に示すように、一部の第2の仮想線12は互いに隣接する接合材2の間を平行に延び、残りの第2の仮想線12は当該一部の第2の仮想線12と直交する方向に延びている。隣接する接合材2の間にはそれぞれ2本の第2の仮想線12が設定される。   Next, the first substrate 1 bonded to the second substrate 7 is positioned between the bonding material 2 and the first imaginary line 10 from the rear surface 1a of the surface facing the second substrate 7. Along the imaginary line 12, a mechanical external force is applied for cutting. Specifically, as shown in FIG. 4A, a cutting tool 11 such as a glass scriber is pressed against the outer peripheral portion of the back surface 1 a of the first substrate 1. At this time, the cutting tool 11 is positioned between the support member 3 and the bonding material 2, that is, on the second imaginary line 12. The second imaginary line 12 is preferably set at a position between the electrode 6 and the bonding material 2. As shown in FIG. 5B, some of the second imaginary lines 12 extend in parallel between the bonding materials 2 adjacent to each other, and the remaining second imaginary lines 12 are the second imaginary lines of the part. It extends in a direction perpendicular to the line 12. Two second virtual lines 12 are set between the adjacent bonding materials 2.

その状態から、第2の仮想線12を切断ラインとして、切断ツール11を第2の仮想線12に沿って移動させて、図4(b)に示すように第2の基板7を切断する。以上の作業を全ての第2の仮想線12について行い、第1の基板1をマトリックス状に切断する。接合材2の間の支持部材3を含む小片22が分離され、電極6が露出する。図示の例では組立体20が4個の気密容器21に分離される。端部の小片22を切断することで、第2の基板7に設けられた全ての電極6が露出する。   From this state, the second virtual line 12 is used as a cutting line, the cutting tool 11 is moved along the second virtual line 12, and the second substrate 7 is cut as shown in FIG. The above operation is performed on all the second virtual lines 12 to cut the first substrate 1 into a matrix. The small piece 22 including the support member 3 between the bonding materials 2 is separated, and the electrode 6 is exposed. In the illustrated example, the assembly 20 is separated into four airtight containers 21. By cutting the small piece 22 at the end, all the electrodes 6 provided on the second substrate 7 are exposed.

以上の工程に従い第1の基板1と第2の基板7を個別に切断することによって、複数の気密容器21を組立体20から切り出すことができる。切り出されたそれぞれの気密容器21は、第1の基板1と第2の基板7が接合材2によって気密接合され、内部に内部空間8が規定されている。第2の基板7には、接合材2の外側、かつ接合材2の周辺に沿って、駆動回路を接続するための電極6が配置されている。   A plurality of hermetic containers 21 can be cut out from the assembly 20 by individually cutting the first substrate 1 and the second substrate 7 according to the above steps. Each cut-out airtight container 21 is hermetically bonded to the first substrate 1 and the second substrate 7 by the bonding material 2, and an internal space 8 is defined inside. On the second substrate 7, an electrode 6 for connecting a drive circuit is disposed outside the bonding material 2 and along the periphery of the bonding material 2.

本実施形態では、一対のガラス基板に2行2列に配列された計4個の気密容器21を形成したが、2行3列(計6個)、3行3列(計9個)など任意の配列で任意の数の気密容器を形成することができる。電極6は発光部5の隣接する2辺に沿って形成したが、1辺のみ、または対向する2辺に沿って形成することもできる。   In the present embodiment, a total of four airtight containers 21 arranged in two rows and two columns are formed on a pair of glass substrates, but two rows and three columns (total of six), three rows and three columns (total of nine), etc. Any number of hermetic containers can be formed in any arrangement. The electrode 6 is formed along two adjacent sides of the light emitting unit 5, but may be formed along only one side or two opposite sides.

ここで、本実施形態の効果について説明する。図6は、支持部材3が設けられないことを除き、組立体20と同じ構成の組立体23を示している。図6(a)は図5と同様の平面図を、図6(b)は図6(a)中のB−B線に沿った断面図を示している。支持部材3が設けられていないため、組立体23の切断ラインとなる仮想線14は上記実施形態と異なり、隣接する接合材2から等距離の位置に設定される。図7(a)は図6(b)の中央領域Eにおける部分詳細図を、図7(b)は端部領域Fにおける部分詳細図を示している。   Here, the effect of this embodiment will be described. FIG. 6 shows an assembly 23 having the same configuration as the assembly 20 except that the support member 3 is not provided. 6A is a plan view similar to FIG. 5, and FIG. 6B is a cross-sectional view taken along line BB in FIG. 6A. Since the support member 3 is not provided, the virtual line 14 serving as the cutting line of the assembly 23 is set at a position equidistant from the adjacent bonding material 2, unlike the above embodiment. FIG. 7A shows a partial detail view in the central region E of FIG. 6B, and FIG. 7B shows a partial detail view in the end region F. FIG.

切断ツール11を仮想線14に沿って第2の基板7に押し付けると、その押し付け力で第2の基板7は変形する。この変形のため、切断ツール11を第2の基板7上で仮想線14を切断ラインとして移動させるときに、切断ツール11の移動方向及び姿勢が安定しなくなる。このため、第2の基板7を安定して切断することが困難となる。しかも、最大曲げモーメントが第2の基板7と接合材2との接合部13に生じるため、接合材2が破損しやすくなる。   When the cutting tool 11 is pressed against the second substrate 7 along the imaginary line 14, the second substrate 7 is deformed by the pressing force. Due to this deformation, when the cutting tool 11 is moved on the second substrate 7 using the virtual line 14 as a cutting line, the moving direction and posture of the cutting tool 11 become unstable. For this reason, it becomes difficult to cut the second substrate 7 stably. In addition, since the maximum bending moment is generated in the joint portion 13 between the second substrate 7 and the joining material 2, the joining material 2 is easily damaged.

本実施形態のように切断部の近傍に電極6が形成されている場合、さらに別の問題が生じる。すなわち、第2の基板7が曲げ変形を受ける結果、その近傍にある電極6も曲げ変形を受けるため、電極6が破損しやすくなる。特に、電極6を設けた場合は、仮想線14が電極6と重ならないように、仮想線14を接合材2から離れた位置に設定する必要がある。この結果、曲げモーメントがさらに増え、接合材2と電極6とが一層破損しやすくなる。以上の現象は、気密容器の歩留まりと、接合強度の低下の原因となり、望ましくない。   When the electrode 6 is formed in the vicinity of the cut portion as in this embodiment, another problem occurs. That is, as a result of the second substrate 7 being subjected to bending deformation, the electrode 6 in the vicinity thereof is also subjected to bending deformation, so that the electrode 6 is easily damaged. In particular, when the electrode 6 is provided, it is necessary to set the virtual line 14 at a position away from the bonding material 2 so that the virtual line 14 does not overlap the electrode 6. As a result, the bending moment is further increased, and the bonding material 2 and the electrode 6 are more easily damaged. The above phenomenon is undesirable because it causes the yield of the hermetic container and a decrease in bonding strength.

本実施形態では、このような課題が改善される。図7(c),(d)は各々図1(c)のC部とD部の部分詳細図を示している。これらの図から明らかな通り、第2の基板7の切断ラインである第1の仮想線10は支持部材3上に設定されているため、切断ツール11の押し付け力を支持部材3が受け、第2の基板7の変形が抑制される。このため、切断ツール11を切断ラインに沿って移動させるときに、切断ツール11の移動方向と姿勢が安定し、第2の基板7を安定して切断することが可能となる。第2の基板7と接合材2との接合部13に曲げモーメントが生じないため、接合材2の破損を防止することが可能となる。電極6が設置されている場合には電極6の破損を防止することも可能となる。   In the present embodiment, such a problem is improved. FIGS. 7C and 7D are partial detailed views of the C part and D part of FIG. 1C, respectively. As is clear from these drawings, since the first imaginary line 10 that is the cutting line of the second substrate 7 is set on the support member 3, the support member 3 receives the pressing force of the cutting tool 11, and The deformation of the second substrate 7 is suppressed. For this reason, when the cutting tool 11 is moved along the cutting line, the moving direction and posture of the cutting tool 11 are stabilized, and the second substrate 7 can be stably cut. Since no bending moment is generated in the joint portion 13 between the second substrate 7 and the joining material 2, it is possible to prevent the joining material 2 from being damaged. When the electrode 6 is installed, it is possible to prevent the electrode 6 from being damaged.

さらに、第1の基板1を切断する場合、図6の例では接合材2同士の間の中央に仮想線14が設定されるため、切断ツール11からの押し付け力は両方の接合材2が支持する。一方、本実施形態の場合、切断ツール11からの押し付け力は、第2の仮想線12上に設けられた支持部材3と、第2の仮想線12に隣接する接合材2と、が支持する。つまり、本実施形態では支持点の間の距離は図6の場合の半分となっており、接合材2に掛る曲げモーメントが低減する。   Further, when the first substrate 1 is cut, in the example of FIG. 6, the imaginary line 14 is set at the center between the bonding materials 2, so that the pressing force from the cutting tool 11 is supported by both the bonding materials 2. To do. On the other hand, in the case of this embodiment, the pressing force from the cutting tool 11 is supported by the support member 3 provided on the second imaginary line 12 and the bonding material 2 adjacent to the second imaginary line 12. . That is, in this embodiment, the distance between the support points is half that in the case of FIG. 6, and the bending moment applied to the bonding material 2 is reduced.

このように、本実施形態によれば、切断ツール11の押し付け力を支持部材3が受けるため、基板の変形が抑制されて安定した切断が可能となる。よって、基板の破損を減らし、歩留まりと接合強度の両立を実現した気密容器の製造方法を提供することが可能となる。   Thus, according to this embodiment, since the supporting member 3 receives the pressing force of the cutting tool 11, the deformation | transformation of a board | substrate is suppressed and the stable cutting | disconnection is attained. Therefore, it is possible to provide a method for manufacturing an airtight container that reduces breakage of the substrate and realizes both yield and bonding strength.

図7は本発明の第2の実施形態を示す、図5と同様の平面図である。本実施形態では支持部材3は、互いに隣接する接合材2の互いに対向する辺2a,2bの間に分割して設けられている。本実施形態でも切断ツール11の押し付け力が支持部材3によって支持されるため、同様の効果を得ることができる。図7では1辺当たり5分割された支持部材3を示しているが、分割数は特に限定されず、分割された支持部材3の形状も、矩形、楕円形、円形など適宜に選定することができる。   FIG. 7 is a plan view similar to FIG. 5, showing a second embodiment of the present invention. In this embodiment, the support member 3 is divided and provided between the sides 2 a and 2 b facing each other of the bonding material 2 adjacent to each other. Also in this embodiment, since the pressing force of the cutting tool 11 is supported by the support member 3, the same effect can be obtained. Although FIG. 7 shows the support member 3 divided into five parts per side, the number of divisions is not particularly limited, and the shape of the divided support member 3 can be selected as appropriate, such as a rectangle, an ellipse, or a circle. it can.

以下、具体的な実施例をあげて、本発明を詳しく説明する。   Hereinafter, the present invention will be described in detail with specific examples.

(第1の実施例)
前述の第1の実施形態を適用して、気密容器が多数形成された基板を分断し、基板の端面処理を行い、気密容器を製造した。
(First embodiment)
By applying the first embodiment described above, a substrate on which a large number of hermetic containers were formed was divided, and the end face treatment of the substrate was performed to manufacture the hermetic container.

(ステップ1)
まず、第1の基板1を用意した。以下、手順を具体的に示す。板厚0.7mmのガラス基材(AN100、旭硝子株式会社製)を切断し、外形380mm×290mm×0.7mmの板ガラスを用意した。次に、板ガラスに有機溶媒洗浄、純水リンス、及びUVオゾン洗浄を実施し、板ガラスの表面を脱脂した。
(Step 1)
First, a first substrate 1 was prepared. The procedure is specifically shown below. A glass substrate (AN100, manufactured by Asahi Glass Co., Ltd.) having a plate thickness of 0.7 mm was cut to prepare a plate glass having an outer shape of 380 mm × 290 mm × 0.7 mm. Next, organic solvent cleaning, pure water rinsing, and UV ozone cleaning were performed on the plate glass to degrease the surface of the plate glass.

次に、板ガラスの片面に、枠状の接合材2と支持部材3を形成した。本実施例では、接合材2及び支持部材3の材料としてガラスフリットを使用した。使用したガラスフリットは、粘度が負の温度係数(温度依存性)を有し、線膨張係数α=45×10-7(1/℃)、軟化点Ts=348℃のP25系鉛(Pb)非含有のガラスフリットを母材とし、バインダとして有機物を分散混合したペーストである。 Next, the frame-shaped bonding material 2 and the support member 3 were formed on one surface of the plate glass. In this example, glass frit was used as the material for the bonding material 2 and the support member 3. The glass frit used has a negative temperature coefficient (temperature dependency), P 2 O 5 lead having a linear expansion coefficient α = 45 × 10 −7 (1 / ° C.) and a softening point Ts = 348 ° C. (Pb) A paste in which a non-containing glass frit is used as a base material and an organic substance is dispersed and mixed as a binder.

以下、形成の手順を具体的に示す。まず、第1の基板1上に、1つ当たり幅1mm、厚さ100μm、外形150mm×110mmの枠状の接合材2を、2×2のマトリクス状に計4個、スクリーン印刷にて形成した。次に、同様にして、幅1mm、厚さ80μmの支持部材3を接合材2の外側の領域に、接合材2の外周に沿ってスクリーン印刷にて形成した。次に、接合材2及び支持部材3を、支持基板である第1の基板1とともに120℃で乾燥した。そして、有機物をバーンアウトするため460℃で加熱、焼成し、接合材2と支持部材3を形成した。以上のようにして、枠状の接合材2と支持部材3が形成された第1の基板1を用意した(図1(a))。   Hereinafter, the formation procedure will be specifically described. First, a total of four frame-shaped bonding materials 2 each having a width of 1 mm, a thickness of 100 μm, and an outer shape of 150 mm × 110 mm were formed on a first substrate 1 by screen printing in a 2 × 2 matrix. . Next, similarly, a support member 3 having a width of 1 mm and a thickness of 80 μm was formed by screen printing along the outer periphery of the bonding material 2 in a region outside the bonding material 2. Next, the bonding material 2 and the support member 3 were dried at 120 ° C. together with the first substrate 1 as a support substrate. And in order to burn out organic substance, it heated and baked at 460 degreeC, and the joining material 2 and the supporting member 3 were formed. As described above, the first substrate 1 on which the frame-shaped bonding material 2 and the support member 3 were formed was prepared (FIG. 1A).

次に、第2の基板7を用意した。以下、形成の手順を具体的に示す。板厚0.7mmのガラス基材(AN100)を切断し、外形380mm×290mm×0.7mmの板ガラスを用意した。次に、第1の基板1と同様に洗浄した後、TFT回路12、平坦化膜13、コンタクトホール14及び発光部3を順次形成した(図1(b))。   Next, a second substrate 7 was prepared. Hereinafter, the formation procedure will be specifically described. A glass substrate (AN100) having a plate thickness of 0.7 mm was cut to prepare a plate glass having an outer shape of 380 mm × 290 mm × 0.7 mm. Next, after cleaning in the same manner as the first substrate 1, a TFT circuit 12, a planarizing film 13, a contact hole 14, and a light emitting portion 3 were sequentially formed (FIG. 1B).

次に、第1の基板1と第2の基板7とを、接合材2及び支持部材3が形成された面と、第2の基板7の発光部5が形成された面とが対向するように配置し、アライメントした後、接触させて、内部空間8が規定された組立体20を形成した(図1(c))。   Next, the first substrate 1 and the second substrate 7 are arranged such that the surface on which the bonding material 2 and the support member 3 are formed and the surface on which the light emitting portion 5 of the second substrate 7 is formed face each other. After being placed in alignment with each other, they were brought into contact with each other to form an assembly 20 in which the internal space 8 was defined (FIG. 1C).

(ステップ2)
まず、第1の基板1と第2の基板7からなる組立体20を加圧治具(不図示)で加圧し、第2の基板7を枠状の接合材2に押し付けて、接合材2の全周にわたっての密着性を確保した。
(Step 2)
First, the assembly 20 composed of the first substrate 1 and the second substrate 7 is pressed with a pressing jig (not shown), and the second substrate 7 is pressed against the frame-shaped bonding material 2 to bond the bonding material 2. The adhesion over the entire circumference was ensured.

次に、局所加熱光9としてレーザ光を接合材2に照射しながら接合材2に沿って走査して、第2の基板7と第1の基板1を気密接合した。具体的には、レーザ光9の出射源として、加工用レーザ装置(不図示)を1台用意し、レーザ光9の光軸を被照射物である基板に対して垂直となるように設定した。レーザ光9の照射条件は、波長980nm、レーザパワー40W、スポット径2mmとし、10mm/secの速度で走査した。   Next, the second substrate 7 and the first substrate 1 were hermetically bonded by scanning along the bonding material 2 while irradiating the bonding material 2 with laser light as the local heating light 9. Specifically, one processing laser device (not shown) is prepared as an emission source of the laser light 9, and the optical axis of the laser light 9 is set to be perpendicular to the substrate that is the object to be irradiated. . The irradiation conditions of the laser beam 9 were a wavelength of 980 nm, a laser power of 40 W, a spot diameter of 2 mm, and scanning was performed at a speed of 10 mm / sec.

枠状の接合材2は粘度が負の温度係数を有するため、レーザ光で加熱されることによって軟化する。接合材2は加圧治具(不図示)によって第2の基板7に押し付けられているため、接合材2はつぶされて、第2の基板7と支持部材3が当接した。   Since the frame-shaped bonding material 2 has a negative temperature coefficient, the frame-shaped bonding material 2 is softened by being heated with laser light. Since the bonding material 2 is pressed against the second substrate 7 by a pressurizing jig (not shown), the bonding material 2 is crushed and the second substrate 7 and the support member 3 are brought into contact with each other.

(ステップ3)
次に、第2の基板7の裏面の第1の仮想線10上にガラススクライバ(不図示)を押し付け、その状態でガラススクライバを第1の仮想線10に沿って移動させて、第2の基板7を切断した。同様に、第1の基板1の裏面の第2の仮想線12上にガラススクライバ(不図示)を押し付け、その状態でガラススクライバを第2の仮想線12に沿って移動させて、第1の基板1を切断した。以上の工程によって組立体20を4個の気密容器21に分離した。同時に、第1の基板1の縁部(小片22)を切除して、第2の基板7に設けられた全ての電極6を露出させた。
(Step 3)
Next, a glass scriber (not shown) is pressed onto the first imaginary line 10 on the back surface of the second substrate 7, and in this state, the glass scriber is moved along the first imaginary line 10, and the second The substrate 7 was cut. Similarly, a glass scriber (not shown) is pressed onto the second imaginary line 12 on the back surface of the first substrate 1, and in this state, the glass scriber is moved along the second imaginary line 12 to The substrate 1 was cut. The assembly 20 was separated into four airtight containers 21 by the above process. At the same time, the edge (small piece 22) of the first substrate 1 was cut out to expose all the electrodes 6 provided on the second substrate 7.

以上の手順で製造した真空気密容器21に、通常の方法に従って駆動回路などを実装し、OLEDを完成させた。完成したOLEDを動作させたところ、長時間にわたって、安定した画像表示が可能であり、かつOLEDに適用可能な接合材強度と気密性が確保されていることが確認された。   A drive circuit or the like was mounted on the vacuum hermetic container 21 manufactured by the above procedure according to a normal method to complete an OLED. When the completed OLED was operated, it was confirmed that stable image display was possible over a long period of time, and that the bonding material strength and hermeticity applicable to the OLED were ensured.

(実施例2)
本実施例では、図7に示すように、実施例1の支持部材3を不連続な支持部材3に置換したことを除き、実施例1と同様とした。完成したOLEDを動作させたところ、長時間にわたって、安定した画像表示が可能であり、かつOLEDに適用可能な接合材強度と気密性が確保されていることが確認された。
(Example 2)
In this example, as shown in FIG. 7, it was the same as Example 1 except that the support member 3 of Example 1 was replaced with a discontinuous support member 3. When the completed OLED was operated, it was confirmed that stable image display was possible over a long period of time, and that the bonding material strength and hermeticity applicable to the OLED were ensured.

1 第1の基板
3 支持部材
7 第2の基板
10 第1の仮想線
12 第2の仮想線
DESCRIPTION OF SYMBOLS 1 1st board | substrate 3 Support member 7 2nd board | substrate 10 1st virtual line 12 2nd virtual line

Claims (7)

互いに対向する第1の基板と第2の基板の間に複数の接合材と複数の支持部材とが配置され、前記接合材の各々は、閉じた線状の形状を有し、前記第1及び第2の基板の双方に接し、かつ他の前記接合材の外側に互いに離間して配置され、前記支持部材の各々は、前記第1の基板の前記第2の基板と対向する面に、前記接合材同士を仕切る第1の仮想線に沿って設けられた組立体を用意する工程と、
前記接合材を加熱して前記第1の基板と前記第2の基板とを前記接合材によって接合するとともに、前記支持部材の各々と前記第2の基板とを当接させる工程と、
前記第1の基板と接合された前記第2の基板を、前記第1の基板と対向する面の裏面から、前記第1の仮想線に沿って機械的な外力を与えて切断することと、前記第2の基板と接合された前記第1の基板を、前記第2の基板と対向する前記面の裏面から、前記接合材と前記第1の仮想線の間に位置する第2の仮想線に沿って機械的な外力を与えて切断することと、によって、複数の気密容器を切り出す工程と、
を有する、気密容器の製造方法。
A plurality of bonding materials and a plurality of support members are disposed between the first substrate and the second substrate facing each other, and each of the bonding materials has a closed linear shape, Each of the support members is disposed on a surface of the first substrate facing the second substrate, and is in contact with both of the second substrates and spaced apart from each other outside the bonding material. Preparing an assembly provided along a first imaginary line that partitions the bonding materials;
Heating the bonding material to bond the first substrate and the second substrate with the bonding material, and bringing each of the support members into contact with the second substrate;
Cutting the second substrate bonded to the first substrate from the back surface of the surface facing the first substrate by applying a mechanical external force along the first imaginary line; A second imaginary line positioned between the bonding material and the first imaginary line from the back surface of the surface facing the second substrate, the first substrate bonded to the second substrate. Cutting a plurality of hermetic containers by applying a mechanical external force along
A method for manufacturing an airtight container.
前記複数の接合材は同一の矩形形状を有し、かつマトリックス状に配列されており、前記支持部材は、互いに隣接する前記接合材の互いに対向する辺の間に連続的にまたは分割して設けられている、請求項1に記載の気密容器の製造方法。   The plurality of bonding materials have the same rectangular shape and are arranged in a matrix, and the support member is provided continuously or divided between adjacent sides of the bonding materials adjacent to each other. The method for producing an airtight container according to claim 1. 前記接合材は粘度が負の温度依存性を有している、請求項1または2に記載の気密容器の製造方法。   The method for manufacturing an airtight container according to claim 1, wherein the bonding material has a temperature dependency with a negative viscosity. 前記接合材はガラスフリットである、請求項3に記載の気密容器の製造方法。   The method for manufacturing an airtight container according to claim 3, wherein the bonding material is a glass frit. 前記接合材は局所加熱光によって加熱される、請求項1から4のいずれか1項に記載の気密容器の製造方法。   The method for manufacturing an airtight container according to claim 1, wherein the bonding material is heated by local heating light. 前記気密容器は画像表示装置の外囲器である、請求項1から5のいずれか1項に記載の気密装置の製造方法。   The method of manufacturing an airtight device according to any one of claims 1 to 5, wherein the airtight container is an envelope of an image display device. 前記第1及び第2の基板はガラススクライバによって切断される、請求項1から6のいずれか1項に記載の気密容器の製造方法。   The method for manufacturing an airtight container according to claim 1, wherein the first and second substrates are cut by a glass scriber.
JP2011051695A 2011-03-09 2011-03-09 Manufacturing method of hermetic container Withdrawn JP2012190607A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011051695A JP2012190607A (en) 2011-03-09 2011-03-09 Manufacturing method of hermetic container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011051695A JP2012190607A (en) 2011-03-09 2011-03-09 Manufacturing method of hermetic container

Publications (1)

Publication Number Publication Date
JP2012190607A true JP2012190607A (en) 2012-10-04

Family

ID=47083576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011051695A Withdrawn JP2012190607A (en) 2011-03-09 2011-03-09 Manufacturing method of hermetic container

Country Status (1)

Country Link
JP (1) JP2012190607A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017174703A (en) * 2016-03-25 2017-09-28 株式会社ジャパンディスプレイ Manufacturing method for organic el display device
CN108364981A (en) * 2018-01-31 2018-08-03 昆山国显光电有限公司 A kind of cutting method of display panel, sub- display panel and display panel
JP2022088473A (en) * 2014-07-25 2022-06-14 株式会社半導体エネルギー研究所 Light-emitting device and manufacturing method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2022088473A (en) * 2014-07-25 2022-06-14 株式会社半導体エネルギー研究所 Light-emitting device and manufacturing method thereof
JP7448579B2 (en) 2014-07-25 2024-03-12 株式会社半導体エネルギー研究所 Light-emitting device and method for manufacturing the light-emitting device
JP2017174703A (en) * 2016-03-25 2017-09-28 株式会社ジャパンディスプレイ Manufacturing method for organic el display device
CN108364981A (en) * 2018-01-31 2018-08-03 昆山国显光电有限公司 A kind of cutting method of display panel, sub- display panel and display panel

Similar Documents

Publication Publication Date Title
KR101565183B1 (en) Method of Sealing a Glass Envelope
US20120248950A1 (en) Hermetically sealed container, image display apparatus, and their manufacturing methods
TWI451610B (en) Mother substrate structure of light emitting devices and light emitting device and method of fabricating the same
KR101206608B1 (en) Laser sealing apparatus for glass substrate
US20110265518A1 (en) Manufacturing method of hermetic container and image display apparatus
JP2007008808A (en) Joining method using laser, vacuum envelope manufactured by the method, electron emission display having the vacuum envelope
JP2009104841A (en) Sealing device, sealing method, electronic device, and manufacturing method of electronic device
JP4942207B2 (en) Airtight container manufacturing method
US20100116119A1 (en) Method for separating a composite glass assembly
TW201810755A (en) Display modules with laser weld seals and modular display
JP2011210430A (en) Method for manufacturing hermetic container
KR20110109930A (en) Manufacturing method of hermetic container
JP2012009318A (en) Airtight container and method of manufacturing image display device
US8475618B2 (en) Manufacturing method of hermetic container
JP2012190607A (en) Manufacturing method of hermetic container
JP2012226978A (en) Manufacturing method of air tight container and image display apparatus
KR20110109880A (en) A hermetic container and manufacturing method of the same
JP5627370B2 (en) Depressurized airtight container and image display device manufacturing method
KR20070006861A (en) Method and device for manufacturing glass frame and method of joining band-like glass pane
JP2012169068A (en) Method for manufacturing airtight container and image display device
JP2012221642A (en) Airtight container, method of manufacturing image display device
JP2012252828A (en) Method for manufacturing assembly
JP2012256472A (en) Method of manufacturing air tight container
JP2012252827A (en) Manufacturing method of hermetic container
KR101065641B1 (en) Sealing apparatus and sealing merhod for flat panel display

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513