JP2012189314A - Refrigeration equipment - Google Patents

Refrigeration equipment Download PDF

Info

Publication number
JP2012189314A
JP2012189314A JP2012051290A JP2012051290A JP2012189314A JP 2012189314 A JP2012189314 A JP 2012189314A JP 2012051290 A JP2012051290 A JP 2012051290A JP 2012051290 A JP2012051290 A JP 2012051290A JP 2012189314 A JP2012189314 A JP 2012189314A
Authority
JP
Japan
Prior art keywords
cryogen
cooling
cooled
expansion device
cold
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012051290A
Other languages
Japanese (ja)
Other versions
JP6032905B2 (en
Inventor
Lutz Decker
デッカー ルッツ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Linde GmbH
Original Assignee
Linde GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Linde GmbH filed Critical Linde GmbH
Publication of JP2012189314A publication Critical patent/JP2012189314A/en
Application granted granted Critical
Publication of JP6032905B2 publication Critical patent/JP6032905B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant

Abstract

PROBLEM TO BE SOLVED: To provide refrigeration equipment, in which the entire compressor mass flow can be used in substantially any temperature level without requiring usage of an auxiliary cryogen.SOLUTION: The refrigeration equipment includes: at least one compressor operating to compress a cryogen that circulates in a cold cyclic path; a plurality of heat exchangers HX1, HX2, HX3, HX4, HX5 and HX6; and expansion devices TU1 and TU2 that operate at different temperature levels from each other. In the expansion devices, at least temporarily, at least one partial stream of the cryogen is expanded to generate cold. The refrigeration equipment is further provided with at least one additional expansion device TU3. The additional expansion device TU3 is embedded in the cold cyclic path in such a manner that the cryogen circulating in the cold cyclic path is, at least temporarily after cooling a cooling target, at least partially expanded in the additional expansion device TU3 to generate cold.

Description

本発明は、冷却対象を冷却するための冷凍設備であって、
− 寒冷循環路が設けられており、
− 寒冷循環路内を循環する寒剤を圧縮するために働く少なくとも1つの圧縮機が設けられており、
− 複数の熱交換器が設けられており、該熱交換器内で寒剤が、該寒剤自体に対して冷却されるようになっており、
− 互いに異なる温度レベルで作動する少なくとも2つの膨張装置が設けられており、該膨張装置内で少なくとも一時的に寒剤の少なくとも一部分流が膨張されて寒冷を発生させるようになっている、
形式の冷凍設備に関する。
The present invention is a refrigeration facility for cooling an object to be cooled,
-A cold circuit is provided,
-At least one compressor is provided which serves to compress the cryogen circulating in the cold circuit;
-A plurality of heat exchangers are provided, in which the cryogen is cooled relative to the cryogen itself;
-At least two expansion devices operating at different temperature levels are provided, in which at least a partial flow of the cryogen is expanded at least temporarily to generate cold.
Relating to the type of refrigeration equipment.

さらに本発明は、冷凍設備を運転するための方法に関する。   The invention further relates to a method for operating a refrigeration facility.

冒頭で述べた形式の冷凍設備ならびに冒頭で述べた、冷凍設備を運転するための方法は、たとえば未公開のドイツ連邦共和国特許出願第102011009965号明細書に基づき公知である。   A refrigeration installation of the type mentioned at the outset and a method for operating the refrigeration installation mentioned at the outset are known, for example, from the unpublished German patent application 102011009655.

このような形式の冷凍設備は通常、冷却対象である極低温負荷(kryogen. Last)、たとえば超伝導電磁石の冷却もしくは加熱のために使用される。このためには、クロードプロセス(Claude-Prozess)が使用される。冷却はたいていの場合、周辺温度から5Kの温度にまで行われる。クロードプロセスは規定された冷却温度に合わせて設計されている。たとえば超伝導電磁石のコントロールされた冷却または加熱の際のように、別の温度レベルにおける冷却が必要とされる場合、特に寒冷を発生させる膨張段の内部には流れ横断面が十分に与えられている。このことは、存在する圧縮機質量流がこれらの膨張段において部分的にしか利用され得なくなるという結果を招く。すなわち、設備駆動出力はこのような時間の間、制限された規模でしか寒冷発生のために提供されていない。   Such a type of refrigeration equipment is usually used for cooling or heating a cryogenic load (kryogen. Last), for example a superconducting magnet, to be cooled. For this, the Claude-Prozess is used. Cooling is usually done from ambient temperature to a temperature of 5K. The Claude process is designed for the specified cooling temperature. When cooling at another temperature level is required, such as during controlled cooling or heating of a superconducting electromagnet, there is sufficient flow cross-section, especially inside the expansion stage that generates cold. Yes. This results in the existing compressor mass flow being only partially available in these expansion stages. That is, facility drive output is provided for cold generation only at a limited scale during such times.

この問題を回避するために、既に実現されている解決手段では、利用不可能な圧縮機質量流が冷却対象の冷却を補助する前に、この圧縮機質量流が補助寒剤(通常は液体窒素)によって付加的な熱交換器を介して冷却され、かつ混合区間にわたり温度調節される。しかしこの場合に不都合となるのは、全圧縮機質量流の利用が、付加的な補助寒剤消費によってしか可能とならないことである。   In order to avoid this problem, the already realized solution is that the compressor mass flow is supplemented with a supplemental cryogen (usually liquid nitrogen) before the unavailable compressor mass flow assists in cooling the object to be cooled. Is cooled via an additional heat exchanger and temperature controlled over the mixing section. However, a disadvantage in this case is that the use of the full compressor mass flow is only possible due to the additional auxiliary cryogen consumption.

ドイツ連邦共和国特許出願第102011009965号明細書German Patent Application No. 102011009965

本発明の課題は、冒頭で述べた形式の冷凍設備を改良して、補助寒剤が使用されなければならない必要なしに、ほぼあらゆる温度レベルにおいても全圧縮機質量流の利用が可能となるような冷凍設備を提供することである。   The problem of the present invention is to improve the refrigeration system of the type mentioned at the outset so that the full compressor mass flow can be used at almost any temperature level without the need for supplemental cryogens to be used. It is to provide refrigeration equipment.

さらに本発明の課題は、このような冷凍設備を運転するための方法を提供することである。   It is a further object of the present invention to provide a method for operating such a refrigeration facility.

この課題を解決するために本発明の冷凍設備の構成では、少なくとも1つの別の膨張装置(第3の膨張装置)が設けられており、該別の膨張装置は、寒冷循環路内を循環する寒剤が冷却対象の冷却後に少なくとも一時的に少なくとも部分的に前記別の膨張装置内で膨張されて寒冷を発生させるように寒冷循環路内に組み込まれているようにした。   In order to solve this problem, in the configuration of the refrigeration equipment of the present invention, at least one other expansion device (third expansion device) is provided, and the other expansion device circulates in the cold circuit. The cryogen is incorporated in the cold circuit so that it is at least temporarily expanded at least partially in the separate expansion device after the cooling of the object to be cooled to generate cold.

さらに上記課題を解決するために本発明の冷凍設備を運転するための方法では、圧縮機質量流を冷却過程および/または加熱過程の間、実質的にいかなる時点でも全圧縮機質量流が、冷却したい冷却対象の冷却のために働くように前記3つの膨張装置に分配するようにした。   Furthermore, in order to solve the above problems, the method for operating the refrigeration equipment of the present invention is such that the compressor mass flow is cooled during the cooling process and / or the heating process. The three expansion devices are distributed so as to work for cooling the cooling target.

本発明による冷凍設備では、補助寒剤が使用されなければならない必要なしに、ほぼあらゆる温度レベルにおいても全圧縮機質量流の利用が可能となる。   The refrigeration facility according to the present invention allows the use of full compressor mass flow at almost any temperature level, without the need for supplemental cryogens to be used.

本発明による冷凍設備の1実施形態を示す回路図である。1 is a circuit diagram showing an embodiment of a refrigeration facility according to the present invention.

以下に、本発明を実施するための形態を図面につき詳しく説明する。   In the following, embodiments for carrying out the invention will be described in detail with reference to the drawings.

図1に示した冷凍設備は、複数の熱交換、つまり第1〜第6の熱交換器HX1,HX2,HX3,HX4,HX5,HX6と、分離器Dと、複数の制御弁、つまり第1〜第9の制御弁V1,V2,V3,V4,V5,V6,V7,V8,V9と、3つの膨張装置、つまり3つの膨張装置TU1,TU2,TU3とを有している。以下に、本発明による冷凍設備によって冷却したい極低温の冷却対象の冷却過程ならびに加熱過程について詳しく説明する。   The refrigeration equipment shown in FIG. 1 includes a plurality of heat exchanges, that is, first to sixth heat exchangers HX1, HX2, HX3, HX4, HX5, HX6, a separator D, and a plurality of control valves, that is, a first heat exchanger. To ninth control valve V1, V2, V3, V4, V5, V6, V7, V8, V9 and three expansion devices, that is, three expansion devices TU1, TU2, TU3. Below, the cooling process and heating process of the cryogenic cooling object to be cooled by the refrigeration equipment according to the present invention will be described in detail.

冷却過程の開始時に、冷却したい極低温冷却対象の温度は約300Kである。管路1を介して、図示されていない圧縮機によって所望の循環圧にまで圧縮された寒剤が第1の熱交換器HX1に供給される。第7の制御弁V7が開放された状態で、寒剤の部分流が管路区分1,2,3を介して、冷却したい冷却対象(負荷)に供給される。加熱された寒剤は、第9の制御弁V9が開放された状態において、冷却対象から管路4を介して引き出されて、第2の熱交換器HX2における冷却後に管路区分4´,20,21を介して第3の膨張装置TU3に供給され、この第3の膨張装置TU3において膨張されて寒冷を発生させる。   At the start of the cooling process, the temperature of the cryogenic cooling object to be cooled is about 300K. A cryogen compressed to a desired circulation pressure by a compressor (not shown) is supplied to the first heat exchanger HX1 via the pipe line 1. In the state where the seventh control valve V7 is opened, the partial flow of the cryogen is supplied to the cooling target (load) to be cooled through the pipeline sections 1, 2, and 3. The heated cryogen is withdrawn from the object to be cooled through the pipeline 4 in the state in which the ninth control valve V9 is opened, and after the cooling in the second heat exchanger HX2, the pipeline sections 4 ', 20, It is supplied to the third expansion device TU3 via 21 and is expanded in the third expansion device TU3 to generate cold.

引き続き、膨張された寒剤部分流は管路区分22,23,6を介して第4の熱交換器HX4と第3の熱交換器HX3と第2の熱交換器HX2と第1の熱交換器HX1とを通過した後に再び本発明による冷凍設備の圧縮機もしくは圧縮ユニットの手前(上流側)に案内される。   Subsequently, the expanded cryogen partial flow passes through the pipe sections 22, 23, 6 to the fourth heat exchanger HX4, the third heat exchanger HX3, the second heat exchanger HX2, and the first heat exchanger. After passing through HX1, it is again guided to the front (upstream side) of the compressor or compression unit of the refrigeration equipment according to the present invention.

冷却対象に供給された寒剤の部分流は、第2の制御弁V2が開放されている状態で管路13を介して第2の膨張装置TU2に供給され、この第2の膨張装置TU2において膨張されて寒冷を発生させ、そして引き続き管路区分14,15を介して、管路区分4´内の、冷却対象から引き出された寒剤流に混加される。第3の熱交換器HX3はバイパス管路12を有しており、このバイパス管路12には第4の制御弁V4が配置されている。第2第4の両制御弁V2,V4によって、第2の膨張装置TU2の入口温度を閉ループ式に制御することができる。   The partial flow of the cryogen supplied to the object to be cooled is supplied to the second expansion device TU2 via the pipe line 13 with the second control valve V2 opened, and the second expansion device TU2 expands. Then, cold is generated, and subsequently mixed with the cryogen flow drawn from the object to be cooled in the pipe section 4 ′ via the pipe sections 14 and 15. The third heat exchanger HX3 has a bypass line 12, and a fourth control valve V4 is arranged in the bypass line 12. The inlet temperature of the second expansion device TU2 can be controlled in a closed loop manner by the second and fourth control valves V2, V4.

第3の膨張装置TU3に供給されなかった寒剤流は、第5の制御弁V5が配置されている管路5を介して低圧へ膨張されるか、もしくは管路6内の寒剤流に混加される。戻し温度が低下するにつれて、第5の制御弁V5を経由する通流量は徐々に減少し、最終的には完全に減少する。   The cryogen flow that has not been supplied to the third expansion device TU3 is expanded to a low pressure via the pipe line 5 in which the fifth control valve V5 is arranged, or mixed into the cryogen flow in the pipe line 6. Is done. As the return temperature decreases, the flow rate through the fifth control valve V5 gradually decreases and finally decreases completely.

それと同時に、第1の膨張装置TU1が接続され、この第1の膨張装置TU1は、戻し温度が低下するにつれて増幅されて出力負荷される。このためには、第1の制御弁V1が配置されている管路10を介して、圧縮された寒剤流の一部が第1の膨張装置TU1に供給され、膨張が行われた後に、管路11を介して、第3の膨張装置TU3に供給された寒剤流に混加される。   At the same time, a first expansion device TU1 is connected, and this first expansion device TU1 is amplified and output loaded as the return temperature decreases. For this purpose, a part of the compressed cryogen flow is supplied to the first expansion device TU1 via the line 10 in which the first control valve V1 is arranged, and after the expansion is performed, the pipe It mixes with the cryogen flow supplied to the 3rd expansion apparatus TU3 via the path | route 11.

この冷却段階の間、永続的に小量の寒剤部分流が、僅かに開放された第6の制御弁V6と第8の制御弁V8とを介して、第6の熱交換器HX6と第5のHX5とに供給され、これにより第6の熱交換器HX6と第5の熱交換器HX5とが同時に一緒に冷却される。   During this cooling phase, a permanently small amount of cryogen partial flow is passed through the sixth heat exchanger HX6 and the fifth through the sixth control valve V6 and the eighth control valve V8, which are slightly opened. The sixth heat exchanger HX6 and the fifth heat exchanger HX5 are simultaneously cooled together.

前で説明したプロセスもしくは過程によって、冷却対象を約100Kの温度に冷却することができる。引き続き約30Kの温度への冷却を達成するためには、第7の制御弁V7と第9の制御弁V9とが閉鎖され、第6の制御弁V6と第8の制御弁V8とがさらに開放される。   The object to be cooled can be cooled to a temperature of about 100K by the process or process described above. In order to continue cooling to a temperature of about 30 K, the seventh control valve V7 and the ninth control valve V9 are closed, and the sixth control valve V6 and the eighth control valve V8 are further opened. Is done.

次いで、冷却対象に供給される寒剤は、2つの部分流に分割される。第1の寒剤部分流は第1の膨張装置TU1を介して案内され、ひいては管路区分10,11,20,15,40を介して、冷却対象に供給され、それに対して第2の寒剤部分流は、第2の膨張装置TU2を介して、ひいては管路区分2,13,14,40を介して、冷却対象に供給される。冷却過程の間、第3の膨張装置TU3に供給される質量流は徐々に減じられ、最終的に第3の膨張装置TU3には、この第3の膨張装置TU3の上流側に接続された第1の膨張装置TU1からのみ質量流が供給される。   The cryogen supplied to the object to be cooled is then divided into two partial streams. The first cryogen partial stream is guided via the first expansion device TU1, and thus supplied to the object to be cooled via the duct sections 10, 11, 20, 15, 40, while the second cryogen part is supplied to it. The flow is supplied to the object to be cooled via the second expansion device TU2 and thus via the pipeline sections 2, 13, 14, 40. During the cooling process, the mass flow supplied to the third expansion device TU3 is gradually reduced, and finally the third expansion device TU3 is connected to the upstream side of the third expansion device TU3. Mass flow is supplied only from one expansion device TU1.

冷却過程の最後の段階(この場合には約5Kの温度への冷却対象の冷却が行われる)を実現するために、第3の膨張装置TU3は戻し温度が低下するにつれてますます強く絞られてゆき、最後には停止させられる。圧縮機質量流は、この場合に並列に、ただし互いに異なる温度レベルで作業する第1第2の両膨張装置TU1,TU2を介してのみ、冷却対象へ流れる。冷却対象から戻る寒剤流は、第8の制御弁V8を介して相分離器D内へ放出される。この温度で生じるジュール・トムソン効果(Joule-Thomson-Effekt)により、この寒剤流はもう一度冷却され、かつ部分的に液化する。液化された寒剤は管路区分32を介して第6の熱交換器HX6を通って案内され、向流の形で蒸発され、相分離器Dからの蒸気成分は管路区分31を介して直接に第5の熱交換器HX5に案内される。   In order to achieve the last stage of the cooling process (in this case, cooling of the object to be cooled to a temperature of about 5K takes place), the third expansion device TU3 is increasingly tightened as the return temperature decreases. Yuki is finally stopped. The compressor mass flow then flows to the object to be cooled only in parallel in this case, but only via the first and second expansion devices TU1, TU2 working at different temperature levels. The cryogen flow returning from the object to be cooled is discharged into the phase separator D through the eighth control valve V8. Due to the Joule-Thomson-Effekt effect occurring at this temperature, the cryogen stream is once again cooled and partially liquefied. The liquefied cryogen is guided through the sixth heat exchanger HX6 via the line section 32 and evaporated in countercurrent form, and the vapor component from the phase separator D is directly passed through the line section 31. To the fifth heat exchanger HX5.

加熱過程の間は、前で説明した方法シーケンスが逆の順序で実施される。   During the heating process, the previously described method sequence is carried out in reverse order.

前で説明した方法実施から判るように、全圧縮機質量流は冷却過程および加熱過程のいずれの段階においても完全に冷却のために提供されている。   As can be seen from the method implementation described above, the total compressor mass flow is provided for complete cooling at both the cooling and heating stages.

たとえば冒頭で挙げたドイツ連邦共和国特許出願第102011009965号明細書に記載されているような冷凍設備に比べて、本発明による冷凍設備は、所属の弁を含めて少なくとも3つの付加的なプロセス管路を有している。これにより、残った圧縮機質量流の分配が可能となる。この分配は、いかなる時点でも全圧縮機質量流を極低温冷却対象の冷却のために利用することを可能にする。   Compared to a refrigeration facility, for example as described in the German patent application 102011009655 mentioned at the outset, the refrigeration facility according to the invention comprises at least three additional process lines, including the associated valve. have. This allows distribution of the remaining compressor mass flow. This distribution allows the entire compressor mass flow to be utilized for cooling the cryogenic cooling object at any point in time.

本発明による冷凍設備を用いると、もしくは本発明による冷凍設備により実現可能となる方法を用いると、全圧縮機質量流を寒冷発生のために利用することができる。これによって、本発明による冷凍設備は運転時に、つまり極低温冷却対象の冷却過程ならびに加熱過程の間、最大効率を達成する。これにより、これまで必要とされていた付加的な補助寒剤の使用を不要にすることができる。   When using a refrigeration facility according to the present invention, or using a method that can be realized by the refrigeration facility according to the present invention, the entire compressor mass flow can be utilized for cold generation. Thereby, the refrigeration equipment according to the present invention achieves maximum efficiency during operation, that is, during the cooling process and heating process of the cryogenic cooling object. This can obviate the use of additional supplemental cryogens that were previously required.

HX1,HX2,HX3,HX4,HX5,HX6 熱交換器
D 分離器
V1,V2,V3,V4,V5,V6,V7,V8,V9 制御弁
TU1,TU2,TU3 膨張装置
HX1, HX2, HX3, HX4, HX5, HX6 Heat exchanger D Separator V1, V2, V3, V4, V5, V6, V7, V8, V9 Control valve TU1, TU2, TU3 Expansion device

Claims (3)

冷却対象を冷却するための冷凍設備であって、
− 寒冷循環路が設けられており、
− 寒冷循環路内を循環する寒剤を圧縮するために働く少なくとも1つの圧縮機が設けられており、
− 複数の熱交換器(HX1,HX2,HX3,HX4,HX5,HX6)が設けられており、該熱交換器内で寒剤が、該寒剤自体に対して冷却されるようになっており、
− 互いに異なる温度レベルで作動する2つの膨張装置(TU1,TU2)が設けられており、該膨張装置内で少なくとも一時的に寒剤の少なくとも一部分流が膨張されて寒冷を発生させるようになっている、
形式の冷凍設備において、
少なくとも1つの別の膨張装置(TU3)が設けられており、該別の膨張装置(TU3)は、寒冷循環路内を循環する寒剤が冷却対象の冷却後に少なくとも一時的に少なくとも部分的に前記別の膨張装置(TU3)内で膨張されて寒冷を発生させるように寒冷循環路内に組み込まれていることを特徴とする、冷却対象を冷却するための冷凍設備。
A refrigeration facility for cooling an object to be cooled,
-A cold circuit is provided,
-At least one compressor is provided which serves to compress the cryogen circulating in the cold circuit;
-A plurality of heat exchangers (HX1, HX2, HX3, HX4, HX5, HX6) are provided, in which the cryogen is cooled against the cryogen itself;
-Two expansion devices (TU1, TU2) operating at different temperature levels are provided, in which at least a partial flow of the cryogen is expanded at least temporarily in the expansion devices to generate cold. ,
In the type of refrigeration equipment,
At least one other expansion device (TU3) is provided, and the other expansion device (TU3) is at least temporarily at least partially after the cooling agent circulating in the cold circuit is cooled to be cooled. A refrigeration facility for cooling an object to be cooled, which is incorporated in a cold circuit so as to be expanded in the expansion device (TU3) and generate cold.
請求項1に記載の冷凍設備を運転するための方法において、圧縮機質量流を冷却過程および/または加熱過程の間、実質的にいかなる時点でも全圧縮機質量流が、冷却対象の冷却のために働くように前記3つの膨張装置(TU1,TU2,TU3)に分配することを特徴とする、冷凍設備を運転するための方法。   2. A method for operating a refrigeration facility as claimed in claim 1, wherein the compressor mass flow during the cooling and / or heating process is such that the entire compressor mass flow is at substantially any time for cooling the object to be cooled. A method for operating a refrigeration facility, characterized in that it is distributed to the three expansion devices (TU1, TU2, TU3) so as to work. 請求項1に記載の冷凍設備の使用において、当該冷凍設備が、極低温冷却対象、有利には超伝導電磁石の冷却のために働くことを特徴とする、冷凍設備の使用。   Use of a refrigeration facility according to claim 1, characterized in that the refrigeration facility serves for cooling a cryogenic cooling object, preferably a superconducting electromagnet.
JP2012051290A 2011-03-08 2012-03-08 Refrigeration equipment Expired - Fee Related JP6032905B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102011013345.3 2011-03-08
DE102011013345A DE102011013345A1 (en) 2011-03-08 2011-03-08 refrigeration plant

Publications (2)

Publication Number Publication Date
JP2012189314A true JP2012189314A (en) 2012-10-04
JP6032905B2 JP6032905B2 (en) 2016-11-30

Family

ID=46705354

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012051290A Expired - Fee Related JP6032905B2 (en) 2011-03-08 2012-03-08 Refrigeration equipment

Country Status (4)

Country Link
US (1) US20120227418A1 (en)
JP (1) JP6032905B2 (en)
DE (1) DE102011013345A1 (en)
FR (1) FR2972521A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011112911A1 (en) * 2011-09-08 2013-03-14 Linde Aktiengesellschaft refrigeration plant
CN109478453A (en) * 2016-07-27 2019-03-15 新日铁住金株式会社 Block shaped magnet structural body and NMR block shaped magnet system

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379960A (en) * 1989-08-22 1991-04-04 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Apparatus for removal of hydrogen or the like in helium refrigerated liquefaction machine
JPH03247965A (en) * 1990-02-26 1991-11-06 Hitachi Ltd Helium refrigerating plant
JPH0420754A (en) * 1990-05-15 1992-01-24 Nippon Sanso Kk Freezer and method for adjusting its freezing capacity
JPH04359760A (en) * 1991-06-04 1992-12-14 Hitachi Ltd Helium freezer
JPH06101919A (en) * 1992-09-18 1994-04-12 Hitachi Ltd Cryogenic freezing apparatus
US20080184722A1 (en) * 2007-02-01 2008-08-07 Linde Aktiengesellschaft Method and apparatus for a refrigeration circuit
WO2009066044A2 (en) * 2007-11-23 2009-05-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic refrigeration method and device
JP2010036056A (en) * 2008-07-31 2010-02-18 Chiyoda Kako Kensetsu Kk Heating module and cooling module

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3060699A (en) * 1959-10-01 1962-10-30 Alco Valve Co Condenser pressure regulating system
US3194025A (en) * 1963-01-14 1965-07-13 Phillips Petroleum Co Gas liquefactions by multiple expansion refrigeration
NL125897C (en) * 1964-04-29
US3360955A (en) * 1965-08-23 1968-01-02 Carroll E. Witter Helium fluid refrigerator
US3371500A (en) * 1966-05-13 1968-03-05 Trane Co Refrigeration system starting
JPS5440512B1 (en) * 1968-11-04 1979-12-04
CH501321A (en) * 1968-12-19 1970-12-31 Sulzer Ag Method for cooling a load consisting of a partially stabilized superconducting magnet
US3581511A (en) * 1969-07-15 1971-06-01 Inst Gas Technology Liquefaction of natural gas using separated pure components as refrigerants
DE2110417A1 (en) * 1971-03-04 1972-09-21 Linde Ag Process for liquefying and subcooling natural gas
DE2308301A1 (en) * 1973-02-20 1974-08-22 Linde Ag METHOD AND DEVICE FOR COOLING A REFRIGERATED OBJECT
US4267701A (en) * 1979-11-09 1981-05-19 Helix Technology Corporation Helium liquefaction plant
US4765813A (en) * 1987-01-07 1988-08-23 Air Products And Chemicals, Inc. Hydrogen liquefaction using a dense fluid expander and neon as a precoolant refrigerant
DE4017611A1 (en) * 1990-05-31 1991-12-05 Linde Ag METHOD FOR LIQUIDATING GASES
JP3208547B2 (en) * 1991-08-09 2001-09-17 日本酸素株式会社 Liquefaction method of permanent gas using cold of liquefied natural gas
US5347819A (en) * 1992-11-05 1994-09-20 Ishikawajima-Harima Heavy Industries, Co., Ltd. Method and apparatus for manufacturing superfluidity helium
US5430423A (en) * 1994-02-25 1995-07-04 General Electric Company Superconducting magnet having a retractable cryocooler sleeve assembly
FR2775518B1 (en) * 1998-03-02 2000-05-05 Air Liquide PROCESS AND INSTALLATION FOR REFRIGERATING PRODUCTION FROM A THERMAL CYCLE OF A FLUID WITH LOW BOILING POINT
JP4085694B2 (en) * 2002-02-27 2008-05-14 株式会社デンソー Air conditioner
RU2362099C2 (en) * 2004-11-15 2009-07-20 Майекава Мфг. Ко., Лтд. Method for cryogenic liquefaction/cooling and system for method realisation
US7409834B1 (en) * 2005-03-10 2008-08-12 Jefferson Science Associates Llc Helium process cycle
DE102011009965A1 (en) 2011-02-01 2012-08-02 Linde Aktiengesellschaft Method for operating refrigeration circuit, involves temporarily varying flow rates of cooling medium so that partial streams of cooling medium are branched from main stream of cooling medium and are expanded

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0379960A (en) * 1989-08-22 1991-04-04 Chiyoudendou Hatsuden Kanren Kiki Zairyo Gijutsu Kenkyu Kumiai Apparatus for removal of hydrogen or the like in helium refrigerated liquefaction machine
JPH03247965A (en) * 1990-02-26 1991-11-06 Hitachi Ltd Helium refrigerating plant
JPH0420754A (en) * 1990-05-15 1992-01-24 Nippon Sanso Kk Freezer and method for adjusting its freezing capacity
JPH04359760A (en) * 1991-06-04 1992-12-14 Hitachi Ltd Helium freezer
JPH06101919A (en) * 1992-09-18 1994-04-12 Hitachi Ltd Cryogenic freezing apparatus
US20080184722A1 (en) * 2007-02-01 2008-08-07 Linde Aktiengesellschaft Method and apparatus for a refrigeration circuit
WO2009066044A2 (en) * 2007-11-23 2009-05-28 L'air Liquide Societe Anonyme Pour L'etude Et L'exploitation Des Procedes Georges Claude Cryogenic refrigeration method and device
JP2010036056A (en) * 2008-07-31 2010-02-18 Chiyoda Kako Kensetsu Kk Heating module and cooling module

Also Published As

Publication number Publication date
FR2972521A1 (en) 2012-09-14
JP6032905B2 (en) 2016-11-30
US20120227418A1 (en) 2012-09-13
DE102011013345A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
CN102889707B (en) The method of refrigerant circulation in compound air conditioner and control compound air conditioner
US20090145151A1 (en) Air conditioner
CN103842742B (en) Aircondition
JPWO2010131378A1 (en) Air conditioner
CN103238034A (en) Air-conditioning device
CN104704300B (en) Air-conditioning device
CN103562660B (en) Conditioner
CN105423656B (en) refrigeration system and its control method
EP3171096A1 (en) Refrigerating and air conditioning device
CN103958977A (en) Air conditioning device
US20150345834A1 (en) Refrigeration and/or liquefaction device, and corresponding method
JP2012107836A (en) Binary refrigeration cycle apparatus
JP2010181093A (en) Defrosting device in carbon dioxide circulation cooling system
JP6032905B2 (en) Refrigeration equipment
JP6362780B2 (en) Refrigeration cycle equipment
CN106489057B (en) For adjusting the method and relevant device of cryogenic refrigeration equipment
JP2009079863A (en) Refrigeration device
US10508835B2 (en) Refrigeration cycle apparatus
JP6495284B2 (en) Refrigeration method and corresponding cold box and cryogenic equipment
JP2018523082A (en) Method for cooling a process stream
CN114923291A (en) Overflow helium refrigerator with negative pressure protection module
JP6238935B2 (en) Refrigeration cycle equipment
KR20140115714A (en) Hybrid Type Heat-Pump System using air heat
JP7348547B2 (en) Heat source unit and refrigeration equipment
JP7229256B2 (en) Freezer and heat source side unit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160208

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160926

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161025

R150 Certificate of patent or registration of utility model

Ref document number: 6032905

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees