JP2012189199A - Toroidal continuously variable transmission - Google Patents

Toroidal continuously variable transmission Download PDF

Info

Publication number
JP2012189199A
JP2012189199A JP2011114912A JP2011114912A JP2012189199A JP 2012189199 A JP2012189199 A JP 2012189199A JP 2011114912 A JP2011114912 A JP 2011114912A JP 2011114912 A JP2011114912 A JP 2011114912A JP 2012189199 A JP2012189199 A JP 2012189199A
Authority
JP
Japan
Prior art keywords
outer ring
trunnion
toroidal
continuously variable
variable transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011114912A
Other languages
Japanese (ja)
Other versions
JP5696586B2 (en
Inventor
Tomomi Yamaguchi
智巳 山口
Toshiro Toyoda
俊郎 豊田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2011114912A priority Critical patent/JP5696586B2/en
Priority to PCT/JP2012/052432 priority patent/WO2012105663A1/en
Priority to US13/500,344 priority patent/US20130035200A1/en
Priority to EP12710433.9A priority patent/EP2677198B1/en
Priority to CN201280000051.3A priority patent/CN102762894B/en
Publication of JP2012189199A publication Critical patent/JP2012189199A/en
Application granted granted Critical
Publication of JP5696586B2 publication Critical patent/JP5696586B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To implement a structure with which the manufacturing of the parts, the management of parts, and the assembly work are easy, and the cost can easily be reduced, and the gear change operation can be stabilized.SOLUTION: An interval D between a pair of stepped surfaces 26, 26 with each other which are provided in each trunnion 7b, 7b is made larger than an outer diameter dof each outer ring 16b, 16b. Pressing pieces 27, 27 and anchor pieces 28, 28 are installed between each stepped surface 26, 26 and an outer peripheral surface of each outer ring 16, 16. The pressing pieces 27, 27 thereof are pressed toward each outer ring 16b, 16b by compression coil springs 37, 37. The pressing direction and an action direction of force 2Ft applied during an operation are matched to prevent displacement of each power roller 6a, 6a in axial directions of support beam parts 23, 23.

Description

この発明は、例えば車両(自動車)用の自動変速機、建設機械(建機)用の自動変速機、航空機(固定翼機、回転翼機、飛行船等)等で使用されるジェネレータ(発電機)用の自動変速機、ポンプ等の各種産業機械の運転速度を調節する為の自動変速機として利用する、ハーフトロイダル型のトロイダル型無段変速機の改良に関する。   The present invention relates to a generator (generator) used in, for example, an automatic transmission for a vehicle (automobile), an automatic transmission for a construction machine (construction machine), an aircraft (a fixed wing aircraft, a rotary wing aircraft, an airship, etc.), etc. The present invention relates to improvement of a half toroidal toroidal continuously variable transmission that is used as an automatic transmission for adjusting the operating speed of various industrial machines such as automatic transmissions and pumps.

自動車用変速装置としてハーフトロイダル型のトロイダル型無段変速機を使用する事が、特許文献1〜4等の多くの刊行物に記載されると共に一部で実施されていて周知である。又、トロイダル型無段変速機と遊星歯車機構とを組み合わせて変速比の調整幅を広くする構造も、特許文献5等、やはり多くの刊行物に記載されて、従来から広く知られている。図13〜14は、これら各特許文献に記載されて従来から広く知られているトロイダル型無段変速機の第1例を示している。この従来構造の第1例の場合、入力回転軸1の両端寄り部分の周囲に1対の入力ディスク2、2を、それぞれがトロイド曲面である内側面同士を互いに対向させた状態で、前記入力回転軸1と同期した回転を自在に支持している。又、この入力回転軸1の中間部周囲に出力筒3を、この入力回転軸1に対する回転を自在に支持している。又、この出力筒3の外周面には、軸方向中央部に出力歯車4を固設すると共に、軸方向両端部に1対の出力ディスク5、5を、スプライン係合により、前記出力筒3と同期した回転を自在に支持している。又、この状態で、それぞれがトロイド曲面である、前記両出力ディスク5、5の内側面を、前記両入力ディスク2、2の内側面に対向させている。   The use of a half-toroidal toroidal continuously variable transmission as a transmission for an automobile is described in many publications such as Patent Documents 1 to 4 and partially implemented, and is well known. Further, a structure in which a toroidal type continuously variable transmission and a planetary gear mechanism are combined to widen the adjustment range of the gear ratio is also described in many publications such as Patent Document 5 and has been widely known. 13 to 14 show a first example of a toroidal-type continuously variable transmission described in these patent documents and widely known in the past. In the case of the first example of this conventional structure, a pair of input disks 2 and 2 are disposed around the portions near both ends of the input rotation shaft 1 in a state where the inner surfaces, each of which is a toroidal curved surface, face each other. The rotation synchronized with the rotating shaft 1 is freely supported. An output tube 3 is supported around the intermediate portion of the input rotary shaft 1 so as to freely rotate with respect to the input rotary shaft 1. Further, on the outer peripheral surface of the output cylinder 3, an output gear 4 is fixed at the center in the axial direction, and a pair of output disks 5 and 5 are connected to both ends in the axial direction by spline engagement. Supports rotation synchronized with the motor. In this state, the inner surfaces of the output disks 5 and 5, each of which is a toroidal curved surface, are opposed to the inner surfaces of the input disks 2 and 2.

又、前記両入力ディスク2、2と前記両出力ディスク5、5との間に、それぞれの周面を球状凸面とした複数個のパワーローラ6、6を挟持している。これら各パワーローラ6、6は、それぞれトラニオン7、7に回転自在に支持されており、これら各トラニオン7、7は、それぞれ前記各ディスク2、5の中心軸に対し捩れの位置にある傾転軸8、8を中心とする揺動変位自在に支持されている。即ち、これら各トラニオン7、7は、それぞれの軸方向両端部に互いに同心に設けられた1対の傾転軸8、8と、これら各傾転軸8、8同士の間に存在する支持梁部9、9とを備えており、これら各傾転軸8、8が、支持板10、10に対し、ラジアルニードル軸受11、11を介して枢支されている。   Further, a plurality of power rollers 6, 6 each having a spherical convex surface are sandwiched between the input disks 2, 2 and the output disks 5, 5. The power rollers 6 and 6 are rotatably supported by trunnions 7 and 7, respectively. The trunnions 7 and 7 are tilted with respect to the central axes of the disks 2 and 5, respectively. The shafts 8 and 8 are supported so as to be swingable and displaceable. That is, each of the trunnions 7 and 7 includes a pair of tilting shafts 8 and 8 provided concentrically with each other at both axial ends, and a supporting beam existing between the tilting shafts 8 and 8. These tilting shafts 8 and 8 are pivotally supported with respect to the support plates 10 and 10 via radial needle bearings 11 and 11, respectively.

又、前記各パワーローラ6、6は、前記各トラニオン7、7を構成する支持梁部9、9の内側面に、基半部と先半部とが互いに偏心した支持軸12、12と、複数の転がり軸受とを介して、これら各支持軸12、12の先半部回りの回転、及び、これら各支持軸12、12の基半部を中心とする若干の揺動変位自在に支持されている。この様な各パワーローラ6、6の外側面と、前記各トラニオン7、7を構成する支持梁部9、9の内側面との間には、それぞれが前記複数の転がり軸受の一部である、スラスト玉軸受13、13と、スラストニードル軸受14、14とを、前記各パワーローラ6、6の側から順番に設けている。このうちのスラスト玉軸受13、13は、前記各パワーローラ6、6に加わるスラスト方向の荷重を支承しつつ、これら各パワーローラ6、6の回転を許容するものである。これら各スラスト玉軸受13、13は、前記各パワーローラ6、6の外側面に形成された内輪軌道15と、外輪16の内側面に形成された外輪軌道17との間に複数個の玉18、18を、転動自在に設けて成る。又、前記各スラストニードル軸受14、14は、前記各パワーローラ6、6から前記各スラスト玉軸受13、13を構成する外輪16、16に加わるスラスト荷重を支承しつつ、これら各外輪16、16及び前記各支持軸12、12の先半部が、これら各支持軸12、12の基半部を中心に揺動する事を許容するものである。   Each of the power rollers 6 and 6 includes support shafts 12 and 12 in which the base half portion and the tip half portion are eccentric to each other on the inner surface of the support beam portions 9 and 9 constituting the trunnions 7 and 7, respectively. Via a plurality of rolling bearings, the support shafts 12 and 12 are supported so as to be able to rotate around the front half of each of the support shafts 12 and 12 and to be slightly oscillated and displaced about the base half of each of the support shafts 12 and 12. ing. Between the outer side surfaces of the power rollers 6 and 6 and the inner side surfaces of the support beam portions 9 and 9 constituting the trunnions 7 and 7, each is a part of the plurality of rolling bearings. The thrust ball bearings 13 and 13 and the thrust needle bearings 14 and 14 are provided in order from the power rollers 6 and 6 side. Of these, the thrust ball bearings 13, 13 allow the power rollers 6, 6 to rotate while supporting a load in the thrust direction applied to the power rollers 6, 6. Each of these thrust ball bearings 13, 13 has a plurality of balls 18 between an inner ring raceway 15 formed on the outer side surface of each of the power rollers 6, 6 and an outer ring raceway 17 formed on the inner side surface of the outer ring 16. , 18 are provided to be freely rollable. The thrust needle roller bearings 14, 14 support thrust loads applied to the outer rings 16, 16 constituting the thrust ball bearings 13, 13 from the power rollers 6, 6. The front half of each of the support shafts 12 and 12 is allowed to swing around the base half of each of the support shafts 12 and 12.

上述の様なトロイダル型無段変速機の運転時には、駆動軸19により一方(図13の左方)の入力ディスク2を、押圧装置20を介して回転駆動する。この結果、前記入力回転軸1の両端部に支持された1対の入力ディスク2、2が、互いに近づく方向に押圧されつつ同期して回転する。そして、この回転が、前記各パワーローラ6、6を介して前記両出力ディスク5、5に伝わり、前記出力歯車4から取り出される。前記入力回転軸1と前記出力歯車4との間の変速比を変える場合は、油圧式のアクチュエータ21、21により前記各トラニオン7、7を前記各傾転軸8、8の軸方向に変位させる。この結果、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との転がり接触部(トラクション部)に作用する、接線方向の力の向きが変化する(転がり接触部にサイドスリップが発生する)。そして、この力の向きの変化に伴って前記各トラニオン7、7が、自身の傾転軸8、8を中心に揺動し、前記各パワーローラ6、6の周面と前記各ディスク2、5の内側面との接触位置が変化する。これら各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向外寄り部分と、前記両出力ディスク5、5の内側面の径方向内寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が増速側になる。これに対して、前記各パワーローラ6、6の周面を、前記両入力ディスク2、2の内側面の径方向内寄り部分と、前記両出力ディスク5、5の内側面の径方向外寄り部分とに転がり接触させれば、前記入力回転軸1と前記出力歯車4との間の変速比が減速側になる。   During operation of the toroidal-type continuously variable transmission as described above, one input disk 2 (left side in FIG. 13) is rotationally driven by the drive shaft 19 via the pressing device 20. As a result, the pair of input disks 2 and 2 supported at both ends of the input rotating shaft 1 rotate synchronously while being pressed in a direction approaching each other. The rotation is transmitted to the output disks 5 and 5 through the power rollers 6 and 6 and is taken out from the output gear 4. When changing the gear ratio between the input rotary shaft 1 and the output gear 4, the trunnions 7, 7 are displaced in the axial direction of the tilt shafts 8, 8 by hydraulic actuators 21, 21. . As a result, the direction of the tangential force acting on the rolling contact portion (traction portion) between the peripheral surface of each of the power rollers 6 and 6 and the inner surface of each of the disks 2 and 5 changes (in the rolling contact portion). Side slip occurs). As the direction of the force changes, the trunnions 7 and 7 swing around their tilting shafts 8 and 8, and the peripheral surfaces of the power rollers 6 and 6 and the disks 2 and 8. The contact position with the inner surface of 5 changes. The circumferential surfaces of the power rollers 6 and 6 are in rolling contact with the radially outer portions of the inner surfaces of the input disks 2 and 2 and the radially inner portions of the inner surfaces of the output disks 5 and 5. By doing so, the gear ratio between the input rotary shaft 1 and the output gear 4 is increased. On the other hand, the peripheral surfaces of the power rollers 6 and 6 are arranged radially inwardly on the inner side surfaces of the input disks 2 and 2 and radially outwardly on the inner side surfaces of the output disks 5 and 5. If it is brought into rolling contact with the portion, the gear ratio between the input rotary shaft 1 and the output gear 4 becomes the deceleration side.

上述の様なトロイダル型無段変速機の運転時には、動力の伝達に供される各部材、即ち、前記入力、出力各ディスク2、5と前記各パワーローラ6、6とが、前記押圧装置20が発生する押圧力に基づいて弾性変形する。そして、この弾性変形に伴って、前記入力、出力各ディスク2、5が軸方向に変位する。又、前記押圧装置20が発生する押圧力は、前記トロイダル型無段変速機により伝達するトルクが大きくなる程大きくなり、それに伴って前記各部材2、5、6の弾性変形量も多くなる。従って、前記トルクの変動に拘らず、前記入力、出力各ディスク2、5の内側面と前記各パワーローラ6、6の周面との接触状態を適正に維持する為に、前記各トラニオン7、7に対して前記各パワーローラ6、6を、前記各ディスク2、5の軸方向に変位させる機構が必要になる。上述した従来構造の第1例の場合には、前記各パワーローラ6、6を支持した前記各支持軸12、12の先半部を、同じく基半部を中心として揺動変位させる事により、前記各パワーローラ6、6を前記軸方向に変位させる様にしている。   When the toroidal type continuously variable transmission as described above is operated, the members used for power transmission, that is, the input and output disks 2 and 5 and the power rollers 6 and 6 are connected to the pressing device 20. It is elastically deformed based on the pressing force generated. In accordance with this elastic deformation, the input and output disks 2 and 5 are displaced in the axial direction. The pressing force generated by the pressing device 20 increases as the torque transmitted by the toroidal continuously variable transmission increases, and the amount of elastic deformation of the members 2, 5, 6 increases accordingly. Accordingly, in order to properly maintain the contact state between the inner surface of each of the input and output disks 2 and 5 and the peripheral surface of each of the power rollers 6 and 6 regardless of the fluctuation of the torque, the trunnions 7 and 7 7, a mechanism for displacing the power rollers 6 and 6 in the axial direction of the disks 2 and 5 is required. In the case of the above-described first example of the conventional structure, the tip half of each of the support shafts 12 and 12 that support the power rollers 6 and 6 is also oscillated and displaced about the base half as well. The power rollers 6 and 6 are displaced in the axial direction.

上述の様な従来構造の第1例の場合、前記各パワーローラ6、6を前記軸方向に変位させる為の構造が複雑で、部品製作、部品管理、組立作業が何れも面倒になり、コストが嵩む事が避けられない。この様な問題を解決する為の技術として前記特許文献3には、図15〜20に示す様な構造が記載されている。本発明は、この図15〜20に示した従来構造の第2例を改良するものであるから、次に、この従来構造の第2例に就いて説明する。この従来構造の第2例の特徴は、トラニオン7aに対してパワーローラ6aを、入力、出力各ディスク2、5(図13参照)の軸方向の変位を可能に支持する部分の構造にあり、トロイダル型無段変速機全体としての構造及び作用は、前述の図13〜14に示した従来構造の第1例と同様である。   In the case of the first example of the conventional structure as described above, the structure for displacing each of the power rollers 6 and 6 in the axial direction is complicated, and parts manufacturing, parts management, and assembly work are all troublesome and costly. It is inevitable that the volume increases. As a technique for solving such a problem, Patent Document 3 describes a structure as shown in FIGS. Since the present invention improves the second example of the conventional structure shown in FIGS. 15 to 20, the second example of the conventional structure will be described next. The feature of the second example of this conventional structure is the structure of the portion that supports the trunnion 7a so that the power roller 6a can be displaced in the axial direction of the input and output disks 2, 5 (see FIG. 13). The overall structure and operation of the toroidal type continuously variable transmission are the same as those of the first example of the conventional structure shown in FIGS.

前記従来構造の第2例を構成するトラニオン7aは、両端部に互いに同心に設けられた1対の傾転軸8a、8bと、これら両傾転軸8a、8b同士の間に存在し、少なくとも入力、出力各ディスク2、5(図13参照)の径方向(図16、18〜20の上下方向)に関する内側(図16、18〜20の上側)の側面を円筒状凸面22とした、支持梁部23とを備える。前記両傾転軸8a、8bは、それぞれラジアルニードル軸受11a、11aを介して、支持板10、10(図14参照)に、揺動を可能に支持する。   The trunnion 7a constituting the second example of the conventional structure exists between a pair of tilting shafts 8a and 8b concentrically provided at both ends, and between these tilting shafts 8a and 8b, and at least A support having a cylindrical convex surface 22 on the inner side (upper side in FIGS. 16 and 18) in the radial direction (up and down direction in FIGS. 16 and 18 to 20) of the input and output disks 2 and 5 (see FIG. 13). And a beam portion 23. The tilt shafts 8a and 8b are supported on the support plates 10 and 10 (see FIG. 14) so as to be swingable via radial needle bearings 11a and 11a, respectively.

又、前記円筒状凸面22の中心軸イは、図16、19に示す様に、前記両傾転軸8a、8bの中心軸ロと平行で、これら両傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側(図16、18〜20の下側)に存在する。又、前記支持梁部23とパワーローラ6aの外側面との間に設けるスラスト玉軸受13aを構成する外輪16aの外側面に、部分円筒面状の凹部24を、この外側面を径方向に横切る状態で設けている。そして、この凹部24と、前記支持梁部23の円筒状凸面22とを係合させ、前記トラニオン7aに対して前記外輪16aを、前記各ディスク2、5の軸方向に関する揺動変位を可能に支持している。   Further, as shown in FIGS. 16 and 19, the center axis A of the cylindrical convex surface 22 is parallel to the center axis B of the both tilt axes 8a and 8b, and the center axis B of these tilt axes 8a and 8b. Rather than the outer side in the radial direction of each of the disks 2 and 5 (the lower side of FIGS. 16 and 18 to 20). Further, a concave portion 24 having a partially cylindrical surface is radially crossed on the outer surface of the outer ring 16a constituting the thrust ball bearing 13a provided between the support beam portion 23 and the outer surface of the power roller 6a. It is provided in the state. And this recessed part 24 and the cylindrical convex surface 22 of the said support beam part 23 are engaged, and the said outer ring 16a is rockable displacement about the axial direction of each said disks 2 and 5 with respect to the said trunnion 7a. I support it.

又、前記外輪16aの内側面中央部に支持軸12aを、この外輪16aと一体に固設して、前記パワーローラ6aをこの支持軸12aの周囲に、ラジアルニードル軸受25を介して、回転自在に支持している。更に、前記トラニオン7aの内側面のうち、前記支持梁部23の両端部と1対の傾転軸8a、8bとの連続部に、互いに対向する1対の段差面26、26を設けている。そして、これら両段差面26、26と、前記スラスト玉軸受13aを構成する外輪16aの外周面とを、当接若しくは近接対向させて、前記パワーローラ6aからこの外輪16aに加わるトラクション力を、何れかの段差面26、26で支承可能としている。   Further, a support shaft 12a is fixed to the center of the inner surface of the outer ring 16a integrally with the outer ring 16a, and the power roller 6a is rotatable around the support shaft 12a via a radial needle bearing 25. I support it. Furthermore, a pair of stepped surfaces 26 and 26 facing each other are provided on the inner surface of the trunnion 7a at a continuous portion between both end portions of the support beam portion 23 and the pair of tilting shafts 8a and 8b. . Then, these stepped surfaces 26, 26 and the outer peripheral surface of the outer ring 16a constituting the thrust ball bearing 13a are brought into contact with or in close proximity to each other, and any traction force applied from the power roller 6a to the outer ring 16a is selected. These step surfaces 26 and 26 can be supported.

上述の様に構成する従来構造の第2例のトロイダル型無段変速機によれば、前記パワーローラ6aを前記各ディスク2、5の軸方向に変位させて、構成各部材の弾性変形量の変化に拘らず、このパワーローラ6aの周面と前記各ディスク2、5との接触状態を適正に維持できる構造を、簡単で低コストに構成できる。
即ち、トロイダル型無段変速機の運転時に、入力、出力各ディスク2、5、各パワーローラ6aの弾性変形に基づき、これら各パワーローラ6aをこれら各ディスク2、5の軸方向に変位させる必要が生じると、これら各パワーローラ6aを回転自在に支持している前記スラスト玉軸受13aの外輪16aが、外側面に設けた部分円筒面状の凹部24と支持梁部23の円筒状凸面22との当接面を滑らせつつ、この円筒状凸面22の中心軸イを中心として揺動変位する。この揺動変位に基づき、前記各パワーローラ6aの周面のうちで、前記各ディスク2、5の軸方向片側面と転がり接触する部分が、これら各ディスク2、5の軸方向に変位し、前記接触状態を適正に維持する。
According to the toroidal type continuously variable transmission of the second example of the conventional structure configured as described above, the power roller 6a is displaced in the axial direction of each of the disks 2 and 5, and the amount of elastic deformation of each constituent member is increased. Regardless of the change, a structure capable of appropriately maintaining the contact state between the peripheral surface of the power roller 6a and the disks 2 and 5 can be configured simply and at low cost.
That is, when the toroidal continuously variable transmission is operated, it is necessary to displace the power rollers 6a in the axial direction of the disks 2 and 5 based on the elastic deformation of the input and output disks 2 and 5 and the power rollers 6a. When this occurs, the outer ring 16a of the thrust ball bearing 13a that rotatably supports each of the power rollers 6a is provided with a concave portion 24 of a partial cylindrical surface provided on the outer surface and a cylindrical convex surface 22 of the support beam portion 23. The cylindrical convex surface 22 is oscillated and displaced about the central axis A while sliding the contact surface. Based on this oscillating displacement, a portion of the peripheral surface of each power roller 6a that is in rolling contact with one axial side surface of each disk 2, 5 is displaced in the axial direction of each disk 2, 5; The contact state is properly maintained.

前述した通り、前記円筒状凸面22の中心軸イは、変速動作の際に各トラニオン7aの揺動中心となる傾転軸8a、8bの中心軸ロよりも、前記各ディスク2、5の径方向に関して外側に存在する。従って、前記円筒状凸面22の中心軸イを中心とする揺動変位の半径は、前記変速動作の際の揺動半径よりも大きく、前記両入力ディスク2、2と前記両出力ディスク5、5との間の変速比の変動に及ぼす影響は少ない(無視できるか、容易に修正できる範囲に留まる)。   As described above, the central axis A of the cylindrical convex surface 22 is larger in diameter than the central axes B of the tilting shafts 8a and 8b, which are the oscillation centers of the trunnions 7a during the shifting operation. Exists with respect to the direction. Therefore, the radius of the rocking displacement about the central axis A of the cylindrical convex surface 22 is larger than the rocking radius at the time of the speed change operation, and both the input disks 2 and 2 and the both output disks 5, 5 Has little effect on the change in the transmission ratio between (and can be neglected or remain within an easily modifiable range).

図15〜20に示した従来構造の第2例の場合、図13〜14に示した同第1例に比べて、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易いが、変速動作を安定させる面からは、改良の余地がある。この理由は、前記各支持梁部23を中心とする前記各外輪16aの揺動変位を円滑に行わせる為、これら各支持梁部23の両端部分に1対ずつ設けた、前記各段差面26、26同士の間隔Dを、前記各外輪16aの外径dよりも少し大きく(D>d)する為である。これら各外輪16a、及び、この外輪16aと同心に支持された前記各パワーローラ6aは、前記間隔Dと前記外径dとの差(D−d)分だけ、前記各支持梁部23の軸方向に変位可能になる。   In the case of the second example of the conventional structure shown in FIGS. 15 to 20, parts production, parts management, and assembly work are all easier and cost reduction is possible compared to the first example shown in FIGS. Although easy to achieve, there is room for improvement in terms of stabilizing the shifting operation. The reason for this is that each step surface 26 is provided in a pair at each end of each support beam 23 so that the outer ring 16a can be smoothly moved and displaced about each support beam 23. , 26 to make the distance D between the outer rings 16a slightly larger than the outer diameter d (D> d). The outer rollers 16a and the power rollers 6a supported concentrically with the outer ring 16a have shafts of the support beam portions 23 corresponding to a difference (D−d) between the distance D and the outer diameter d. Displaceable in the direction.

一方、トロイダル型無段変速機を搭載した車両の運転時、前記各パワーローラ6aには前記各ディスク2、5から、加速時と減速時(エンジンブレーキの作動時)とで逆方向の力(トロイダル型無段変速機の技術分野で周知の「2Ft」)が加わる。そして、この力2Ftにより、前記各パワーローラ6aが、前記各外輪16aと共に、前記各支持梁部23の軸方向に変位する。この変位の方向は、前述した各アクチュエータ21、21による各トラニオン7、7(図14参照)の変位方向と同じであり、変位量が0.1mm程度であっても、変速動作が開始される可能性を生じる。そして、この様な原因で変速動作が開始された場合には、運転動作とは直接関連しない変速動作となり、何れ修正されるにしても、運転者に違和感を与える。特に、トロイダル型無段変速機が伝達するトルクが低い状態で、上述の様な、運転者が意図しない変速が行なわれると、運転者に与える違和感が大きくなり易い。   On the other hand, during operation of a vehicle equipped with a toroidal-type continuously variable transmission, each power roller 6a receives a force in the opposite direction from the respective disks 2 and 5 during acceleration and deceleration (when the engine brake is activated) ( "2Ft", which is well known in the technical field of toroidal-type continuously variable transmissions, is added. Then, the force 2Ft causes the power rollers 6a to be displaced in the axial direction of the support beam portions 23 together with the outer rings 16a. The direction of this displacement is the same as the direction of displacement of each trunnion 7 and 7 (see FIG. 14) by each actuator 21 and 21 described above, and the shifting operation is started even if the amount of displacement is about 0.1 mm. Create a possibility. When the shifting operation is started for such a reason, the shifting operation is not directly related to the driving operation, and the driver feels uncomfortable regardless of any correction. In particular, when a shift that is not intended by the driver as described above is performed in a state where the torque transmitted by the toroidal-type continuously variable transmission is low, a sense of discomfort given to the driver tends to increase.

上述の様にして生じる、運転動作とは直接関連しない変速動作の発生を抑える為には、前記間隔Dと前記外径dとの差(D−d)を僅少に(例えば数十μm程度に)抑える事が考えられる。但し、ハーフトロイダル型のトロイダル型無段変速機の運転時には、トラクション部から前記各パワーローラ6a、前記各外輪16aを介して前記各支持梁部23に加わるスラスト荷重により、前記各トラニオン7aが、図21に誇張して示す様に、前記各外輪16aを設置した側が凹となる方向に弾性変形する。そして、この弾性変形の結果、前記各トラニオン7a毎に1対ずつ設けた段差面26、26同士の間隔が縮まる。この様な状態でも、これら両段差面26、26同士の間隔Dが前記各外輪16aの外径d以下にならない様にする為には、通常状態(前記各トラニオン7aが弾性変形していない状態)での、前記間隔Dと前記外径dとの差を或る程度確保する必要がある。この結果、特に違和感が大きくなり易い、低トルクでの運転時に、上述の様な、運転動作とは直接関連しない変速動作が発生し易くなる。   In order to suppress the occurrence of the speed change operation that is not directly related to the driving operation as described above, the difference (D−d) between the distance D and the outer diameter d is made small (for example, about several tens of μm). ) Can be suppressed. However, during the operation of the half-toroidal toroidal continuously variable transmission, each trunnion 7a is caused by a thrust load applied to each support beam portion 23 from the traction portion via each power roller 6a and each outer ring 16a. As exaggeratedly shown in FIG. 21, the side where each outer ring 16a is installed is elastically deformed in a concave direction. As a result of this elastic deformation, the distance between the step surfaces 26, 26 provided in pairs for each trunnion 7a is reduced. Even in such a state, in order to prevent the distance D between the two step surfaces 26 and 26 from becoming smaller than the outer diameter d of each outer ring 16a, the normal state (the state where each trunnion 7a is not elastically deformed). It is necessary to ensure a certain difference between the distance D and the outer diameter d. As a result, a shift operation that is not directly related to the driving operation as described above is likely to occur particularly during driving at a low torque, which tends to increase the sense of discomfort.

特開2003−214516号公報JP 2003-214516 A 特開2007−315595号公報JP 2007-315595 A 特開2008−25821号公報JP 2008-25821 A 特開2008−275088号公報JP 2008-275088 A 特開2004−169719号公報JP 2004-169719 A

本発明は、上述の様な事情に鑑み、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現すべく発明したものである。   In view of the circumstances as described above, the present invention was invented to realize a structure that facilitates parts production, parts management, and assembly work, facilitates cost reduction, and stabilizes the speed change operation. is there.

本発明のトロイダル型無段変速機は、少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数組の転がり軸受とを備える。
特に、本発明のトロイダル型無段変速機に於いては、前記各トラニオン毎に1対ずつ設けた各段差面同士の間隔が、前記各スラスト転がり軸受を構成する外輪の外径よりも大きい。又、前記各外輪を径方向両側から挟む位置に存在する、これら各外輪毎に1対ずつの段差面のうちの一方の段差面と前記外輪の外周面との間部分に弾性部材を設置し、この弾性部材によりこの外輪を他方の段差面に向け押圧している。
The toroidal continuously variable transmission of the present invention includes at least a pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, and the same number of sets of rolling bearings.
In particular, in the toroidal type continuously variable transmission of the present invention, the distance between the step surfaces provided for each trunnion is larger than the outer diameter of the outer ring constituting each thrust rolling bearing. In addition, an elastic member is installed in a portion between one step surface of each pair of step surfaces and the outer peripheral surface of the outer ring, which exists at a position sandwiching each outer ring from both radial sides. The elastic member presses the outer ring toward the other step surface.

上述の様に構成する本発明のトロイダル型無段変速機によれば、部品製作、部品管理、組立作業が何れも容易になり、コスト低廉化を図り易く、しかも変速動作を安定させられる構造を実現できる。
このうちのコスト低廉化は、前述の図15〜20に示した従来構造の第2例と同様の理由により、図り易い。
又、変速動作の安定化は、弾性部材により外輪を他方の段差面に向け押圧し、この外輪がトラニオンに対して、支持梁部の軸方向に変位しにくくする事により図れる。
According to the toroidal-type continuously variable transmission of the present invention configured as described above, it is easy to manufacture parts, manage parts, and assemble work, easily reduce costs, and stabilize the speed change operation. realizable.
Of these, cost reduction is easy to achieve for the same reason as in the second example of the conventional structure shown in FIGS.
Further, stabilization of the speed change operation can be achieved by pressing the outer ring toward the other stepped surface by the elastic member and making it difficult for the outer ring to be displaced in the axial direction of the support beam portion with respect to the trunnion.

本発明の実施の形態の第1例を示す、図14の左側に対応する要部断面図(A)及び右側に対応する要部断面図(B)。The principal part sectional view (A) corresponding to the left side of Drawing 14, and the principal part sectional view (B) corresponding to the right side which show the 1st example of an embodiment of the invention. 本発明の実施の形態の第2例を、一部の部材を省略して示す、図1の(B)に対応する要部断面図。The principal part sectional view corresponding to (B) of Drawing 1 which shows the 2nd example of an embodiment of the invention in which some members are omitted. 同じく分解斜視図。Similarly disassembled perspective view. 図2のa部拡大断面図。The a section expanded sectional view of FIG. 外輪を取り出して図3と反対側から見た状態で示す斜視図(A)と、板ばねを拡大して(A)と同じ方向から見た斜視図(B)。The perspective view (A) shown in the state which took out the outer ring | wheel and was seen from the opposite side to FIG. 3, and the perspective view (B) which expanded the leaf | plate spring and was seen from the same direction as (A). 外輪と板ばねとを組み合わせて図5と同方向から見た状態で示す斜視図。The perspective view shown in the state seen combining the outer ring | wheel and the leaf | plate spring from the same direction as FIG. 本発明の実施の形態の第3例を示す、図2と同様の図。The figure similar to FIG. 2 which shows the 3rd example of embodiment of this invention. 同じく図3と同様の図。The same figure as FIG. 図7のb部拡大図。The b section enlarged view of FIG. 外輪を取り出して図8と反対側から見た状態で示す斜視図(A)と、ばねホルダを拡大して(A)と同じ方向から見た斜視図(B)。The perspective view (A) shown in the state which took out the outer ring | wheel and was seen from the opposite side to FIG. 8, and the perspective view (B) which expanded the spring holder and was seen from the same direction as (A). 外輪とばねホルダと板ばねとを組み合わせて図10と同方向から見た状態で示す斜視図。The perspective view shown in the state seen combining the outer ring | wheel, the spring holder, and the leaf | plate spring from the same direction as FIG. 本発明の実施の形態の第4例を示す、図9と同様の図。The figure similar to FIG. 9 which shows the 4th example of embodiment of this invention. 従来構造の第1例を示す断面図。Sectional drawing which shows the 1st example of a conventional structure. 図13のc−c断面図。Cc sectional drawing of FIG. 従来構造の第2例を示す、スラスト玉軸受を介してパワーローラを支持したトラニオンを、各ディスクの径方向外側から見た斜視図。The perspective view which looked at the trunnion which supported the power roller via the thrust ball bearing which shows the 2nd example of the conventional structure from the radial direction outer side of each disk. 同じく、ディスクの周方向から見た状態で示す正面図。Similarly, the front view shown in the state seen from the circumferential direction of the disk. 図16の上方から見た平面図。The top view seen from the upper part of FIG. 図16の右方から見た側面図。The side view seen from the right side of FIG. 図17のd−d断面図。Dd sectional drawing of FIG. 図16のe−e断面図。Ee sectional drawing of FIG. パワーローラから加わるスラスト荷重に基づいてトラニオンが弾性変形した状態を誇張して示す、図19と同方向から見た断面図。FIG. 20 is a cross-sectional view seen from the same direction as FIG. 19, exaggeratingly showing a state where the trunnion is elastically deformed based on a thrust load applied from a power roller.

[実施の形態の第1例]
図1は、請求項1、6〜8に対応する、本発明の実施の形態の第1例を示している。尚、本例の特徴は、変速動作を安定させるべく、各トラニオン7b、7bの支持梁部23、23に対してスラスト玉軸受13b、13bの外輪16b、16bを、これら各支持梁部23、23の軸方向に軽い力で変位しない様にする為の構造にある。その他の部分の構造及び作用は、前述の図15〜20に示した従来構造の第2例と同様であるから、同等部分に関する図示並びに説明は、省略若しくは簡略にし、以下、本例の特徴部分を中心に説明する。
[First example of embodiment]
FIG. 1 shows a first example of an embodiment of the present invention corresponding to claims 1 and 6 to 8. The feature of this example is that the outer rings 16b and 16b of the thrust ball bearings 13b and 13b are connected to the support beam portions 23 and 23 of the trunnions 7b and 7b in order to stabilize the speed change operation. It has a structure for preventing displacement with a light force in the axial direction of 23. Since the structure and operation of the other parts are the same as those of the second example of the conventional structure shown in FIGS. 15 to 20 described above, the illustration and description of the equivalent parts are omitted or simplified. The explanation will be focused on.

本例の構造の場合、前記各外輪16b、16bの外径(或いは、これら各外輪16b、16bの径方向反対側2箇所位置に形成した、互いに平行な1対の平坦面同士の間隔)d0を、前記各トラニオン7b、7b毎に1対ずつ設けた段差面26、26同士の間隔Dよりも十分に(次述する各駒27、28の主部29の2個分の厚さよりも大きな寸法分)小さくしている。そして、これら各段差面26、26と前記各外輪16b、16bの外周面との間に、押圧駒27、27とアンカ駒28、28とを設置している。これら各押圧駒27、27と各アンカ駒28、28とは、前記各外輪16b、16bを径方向反対側から挟む状態で、前記各トラニオン7b、7b毎に、それぞれ1対ずつ配置している。 In the case of the structure of the present example, the outer diameter of each outer ring 16b, 16b (or the distance between a pair of parallel flat surfaces formed at two positions opposite to the radial direction of each outer ring 16b, 16b) d 0 is sufficiently larger than the distance D between the stepped surfaces 26, 26 provided for each pair of trunnions 7b, 7b (thickness of two main portions 29 of the respective pieces 27, 28 described below). The size is reduced). And between these each level | step difference surface 26 and 26 and the outer peripheral surface of each said outer ring | wheel 16b, 16b, the press pieces 27 and 27 and the anchor pieces 28 and 28 are installed. Each of the pressing pieces 27, 27 and the anchor pieces 28, 28 are arranged in pairs for each of the trunnions 7b, 7b with the outer rings 16b, 16b being sandwiched from the opposite side in the radial direction. .

前記各押圧駒27、27と前記各アンカ駒28、28とは、互いに同じ形状を有するもので、それぞれが、主部29と凸部30とを備える。このうちの主部29は、前記各段差面26、26と前記各外輪16b、16bの外周面との間に配置されるもので、前記各段差面26、26と当接する面を静止側平坦面31とし、前記各外輪16b、16bの外周面と当接する面を摺動側平坦面32としている。この摺動側平坦面32は、前記各外輪16b、16bが前記各支持梁部23、23を中心として揺動変位する際に、これら各外輪16b、16bの外周面の一部と摺接する。又、前記主部29のうちで前記支持梁部23の外周面に対向する面を、この支持梁部23の外周面に沿った形状を有する、凹曲面33としている。更に、前記凸部30は、円柱状で、前記主部29のうちの静止側平坦面31を設けた側で、且つ、この静止側平坦面31よりもパワーローラ6aに寄った側から、前記各外輪16b、16bと反対側に突設されている。これら各外輪16b、16bの周方向に関する、前記凸部30の形成位置は、前記主部29の中央位置としている。   The pressing pieces 27 and 27 and the anchor pieces 28 and 28 have the same shape, and each includes a main portion 29 and a convex portion 30. Of these, the main portion 29 is disposed between the step surfaces 26 and 26 and the outer peripheral surfaces of the outer rings 16b and 16b, and the surface contacting the step surfaces 26 and 26 is flat on the stationary side. A surface 31 is a sliding side flat surface 32 which is in contact with the outer peripheral surface of each outer ring 16b, 16b. The sliding flat surface 32 is in sliding contact with a part of the outer peripheral surface of each of the outer rings 16b, 16b when the outer rings 16b, 16b are oscillated and displaced about the support beam portions 23, 23. A surface of the main portion 29 that faces the outer peripheral surface of the support beam portion 23 is a concave curved surface 33 having a shape along the outer peripheral surface of the support beam portion 23. Further, the convex portion 30 is cylindrical, on the side of the main portion 29 on which the stationary side flat surface 31 is provided, and from the side closer to the power roller 6a than the stationary side flat surface 31, It protrudes on the opposite side to each outer ring 16b, 16b. The formation position of the convex portion 30 in the circumferential direction of each of the outer rings 16 b and 16 b is the central position of the main portion 29.

又、前記各トラニオン7b、7bの両端部に互いに同心に設けた傾転軸8a、8bの中心部に、それぞれ保持孔34a、34bを形成している。これら各保持孔34a、34bのうち、アクチュエータ21、21(図14参照)により押し引きする為のロッド35を設置した側の傾転軸8aに形成した保持孔34aは、この傾転軸8aの内端面(前記各外輪16b、16bに対向する面)にのみ開口する、有底の円孔としている。これに対して、逆側の傾転軸8bに形成した保持孔34bはこの傾転軸8bの両端面に開口する、断面円形の貫通孔としている。この理由は、ボール盤等の一般的な工作機械により、これら各保持孔34a、34bの加工を可能にする為である。そして、貫通孔である保持孔34bの外半部に、円柱状の盲栓36を、締り嵌めで内嵌固定して、この保持孔34bに関しても、実質的に有底の円孔としている。   In addition, holding holes 34a and 34b are formed at the center portions of the tilting shafts 8a and 8b provided concentrically at both ends of the trunnions 7b and 7b, respectively. Of these holding holes 34a and 34b, the holding hole 34a formed in the tilting shaft 8a on the side where the rod 35 for pushing and pulling by the actuators 21 and 21 (see FIG. 14) is installed is the tilting shaft 8a. It is a bottomed circular hole that opens only on the inner end surface (the surface facing each outer ring 16b, 16b). On the other hand, the holding hole 34b formed in the tilt shaft 8b on the opposite side is a through-hole having a circular cross section that opens at both end faces of the tilt shaft 8b. This is because the holding holes 34a and 34b can be processed by a general machine tool such as a drilling machine. A cylindrical blind plug 36 is fitted and fixed to the outer half of the holding hole 34b, which is a through hole, by an interference fit, and the holding hole 34b is also a substantially bottomed circular hole.

前記各押圧駒27、27と前記各アンカ駒28、28とは、それぞれの凸部30を前記各保持孔34a、34bの内端面側開口部に、がたつきなく、但しこれら各保持孔34a、34bの軸方向の変位を可能に内嵌している。又、前記各押圧駒27、27を構成する凸部30、30の先端面と、前記保持孔34aの奥端面又は前記盲栓36の内端面との間に、特許請求の範囲に記載した弾性部材である、圧縮コイルばね37、37を設けている。そして、これら各圧縮コイルばね37、37の弾力により、前記各押圧駒27、27の主部29、29を、前記各外輪16b、16bの外周面に押圧している。   Each of the pressing pieces 27, 27 and each of the anchor pieces 28, 28 does not rattle the respective protrusions 30 to the openings on the inner end face side of the holding holes 34a, 34b, but the holding holes 34a , 34b are fitted in such a manner that they can be displaced in the axial direction. Further, the elasticity described in the claims is provided between the front end surfaces of the convex portions 30 and 30 constituting the pressing pieces 27 and 27 and the inner end surface of the blind plug 36 or the inner end surface of the holding hole 34a. The compression coil springs 37 and 37 which are members are provided. The main portions 29, 29 of the pressing pieces 27, 27 are pressed against the outer peripheral surfaces of the outer rings 16b, 16b by the elasticity of the compression coil springs 37, 37.

前記各押圧駒27、27により前記各外輪16b、16bの外周面を押圧する方向は、トロイダル型無段変速機の運転時に、前記入力、出力各ディスク2、5から前記各パワーローラ6a、6aを介して前記各外輪16b、16bに加わる力2Ftの作用方向と同じとしている。即ち、前記トロイダル型無段変速機の運転時に前記各外輪16b、16bにはトラクション部から、前記各ディスク2、5の回転方向に関して同じ方向の力2Ftが加わる。図1の構造では、前記入力ディスク2が、矢印αで示す様に時計方向に、前記出力ディスク5が反時計方向にそれぞれ回転する。そして、エンジンから駆動輪に動力を伝達する状態では、一方{図1の左側(A)}の外輪16bには図1で上向きの、他方{図1の右側(B)}の外輪16bには図1で下向きの、それぞれ力2Ftが加わる。前記各ディスク2、5同士の間に配置した1対のトラニオン7b、7bの設置方向は、前記回転方向に関して互いに逆向きであるから、一方のトラニオン7bに関しては、押圧駒28及び圧縮コイルばね37を、有底の保持孔34a部分に組み付けている。これに対して、他方のトラニオン7bに関しては、押圧駒28及び圧縮コイルばね37を、貫通孔である保持孔34bのうちで、前記盲栓36により塞がれていない、内半部分に組み付けている。   The direction in which the outer circumferential surfaces of the outer rings 16b, 16b are pressed by the pressing pieces 27, 27 is determined from the input / output disks 2, 5 to the power rollers 6a, 6a during operation of the toroidal continuously variable transmission. The direction of action of the force 2Ft applied to each outer ring 16b, 16b via the same is set. That is, during the operation of the toroidal-type continuously variable transmission, a force 2Ft in the same direction is applied to the outer wheels 16b, 16b from the traction portion with respect to the rotational direction of the disks 2,5. In the structure of FIG. 1, the input disk 2 rotates clockwise as indicated by an arrow α, and the output disk 5 rotates counterclockwise. In a state where power is transmitted from the engine to the driving wheel, the outer wheel 16b on one side {left side (A)} of FIG. 1 faces upward in FIG. 1, and the outer wheel 16b on the other side (right side (B) of FIG. 1) In FIG. 1, a downward force 2Ft is applied. The installation direction of the pair of trunnions 7b and 7b disposed between the disks 2 and 5 is opposite to each other with respect to the rotation direction. Therefore, with respect to one trunnion 7b, the pressing piece 28 and the compression coil spring 37 are arranged. Is assembled to the bottomed holding hole 34a. On the other hand, with respect to the other trunnion 7b, the pressing piece 28 and the compression coil spring 37 are assembled to the inner half portion of the holding hole 34b which is a through hole, which is not blocked by the blind plug 36. Yes.

尚、前記各押圧駒27、27及び前記各アンカ駒28、28としては、互いに同種の(同一の形状及び寸法を有する)部品を使用する。そして、このうちのアンカ駒28、28は、トロイダル型無段変速機の運転時に、前記力2Ftを支承する。更に、前記各外輪16b、16bが前記各支持梁部23、23を中心として揺動変位する際に、これら各外輪16b、16bの外周面と摺接する。前記各アンカ駒28、28は、前記力2Ftを支承する必要上、大きな耐圧縮性能を有する(降伏応力が大きな)金属材料により造る。又、前記揺動変位を円滑に行わせる為に、摩擦係数の低い材料により造る事が好ましい。これらの事を考慮すると、前記各アンカ駒28、28(及び同種の部品を使用する前記各押圧駒27、27)を、含油メタルの如き、低摩擦材により造る事が好ましい。   The pressing pieces 27 and 27 and the anchor pieces 28 and 28 are of the same type (having the same shape and dimensions). Of these, the anchor pieces 28, 28 support the force 2Ft during operation of the toroidal-type continuously variable transmission. Further, when the outer rings 16b, 16b are oscillated and displaced about the support beam portions 23, 23, they come into sliding contact with the outer peripheral surfaces of the outer rings 16b, 16b. Each of the anchor pieces 28, 28 is made of a metal material having a large compression resistance (high yield stress) in order to support the force 2Ft. Further, in order to smoothly perform the rocking displacement, it is preferable to use a material having a low friction coefficient. Considering these things, it is preferable that the anchor pieces 28 and 28 (and the pressing pieces 27 and 27 using the same type of parts) are made of a low friction material such as oil-impregnated metal.

更に、前記各アンカ駒28、28の摺動側平坦面32、32と、前記各外輪16b、16bの外周面との摺接部は、前記力2Ftが加わった状態で、前記各支持梁部23、23を中心とする、これら各外輪16b、16bの揺動変位を許容する必要がある。従って、前記各摺接部の面圧を低く抑えるべく、これら各外輪16b、16bの径方向反対側2箇所位置に互いに平行な1対の平坦面を形成し、これら各平坦面と前記各摺動側平坦面32、32とを摺接させる事が好ましい。   Further, the sliding contact portions between the sliding side flat surfaces 32, 32 of the respective anchor pieces 28, 28 and the outer peripheral surfaces of the respective outer rings 16b, 16b are provided with the respective supporting beam portions in a state where the force 2Ft is applied. It is necessary to allow the swinging displacement of each of the outer rings 16b and 16b with 23 and 23 as the center. Accordingly, in order to keep the surface pressure of each sliding contact portion low, a pair of flat surfaces parallel to each other are formed at two positions on the radially opposite sides of the outer rings 16b, 16b. It is preferable that the moving side flat surfaces 32 are in sliding contact.

上述の様に構成する本例のトロイダル型無段変速機の運転時、エンジンから駆動輪に動力を伝達する状態では、前記各外輪16b、16bに対する力の作用方向が、前記力2Ftと前記各圧縮コイルばね37、37とで一致する。この為、前記各支持梁部23、23の軸方向に関する、前記各トラニオン7b、7bと前記各外輪16b、16bとの位置関係が一義的に定まる。言い換えれば、前記外径(或いは間隔)d0及び前記各駒27、28の主部30の厚さtの合計と、前記間隔Dとの差(D−d0−2t)に拘らず、前記各外輪16b、16bが前記各トラニオン7b、7bに対し、前記各支持梁部23、23の軸方向に変位する事はない。この為、運転動作とは直接関連しない変速動作が発生する事を防止して、変速動作の安定化を図れる。又、前記差(D−d0−2t)を十分に確保して、大きなトルクを伝達する際にも、前記各外輪16b、16bを前記各トラニオン7b、7bに対し、円滑に揺動変位させられる。 During operation of the toroidal type continuously variable transmission of this example configured as described above, in the state where power is transmitted from the engine to the drive wheels, the direction of the force applied to the outer wheels 16b, 16b is the force 2Ft and the force The compression coil springs 37 and 37 coincide with each other. For this reason, the positional relationship between the trunnions 7b and 7b and the outer rings 16b and 16b with respect to the axial direction of the support beam portions 23 and 23 is uniquely determined. In other words, regardless of the difference (D−d 0 −2t) between the outer diameter (or interval) d 0 and the total thickness t of the main portion 30 of each of the pieces 27 and 28 and the interval D, The outer rings 16b and 16b are not displaced in the axial direction of the support beam portions 23 and 23 with respect to the trunnions 7b and 7b. For this reason, it is possible to prevent the occurrence of a shift operation not directly related to the driving operation and stabilize the shift operation. Also, when the difference (D−d 0 −2t) is sufficiently secured and a large torque is transmitted, the outer rings 16b and 16b are smoothly swung and displaced with respect to the trunnions 7b and 7b. It is done.

尚、制動時(エンジンブレーキの作動時)には、前記力2Ftの作用方向と前記各圧縮コイルばね37、37の弾力の作用方向とが逆になる。但し、この場合でも、これら各圧縮コイルばね37、37の弾力を或る程度大きくしておけば、前記各アンカ駒28、28の摺動側平坦面32、32と前記各外輪16b、16bの外周面とを当接したままの状態にして、変速動作の安定化を図れる。制動時に加わる、前記力2Ftが大きくなると、運転動作とは直接関連しない変速動作が発生する可能性があるが、この場合には、トロイダル型無段変速機を通過するトルクが大きく、しかも、制動時である為、運転者に与える違和感はあまり問題とはならない。   During braking (when the engine brake is activated), the direction of action of the force 2Ft and the direction of action of the elasticity of the compression coil springs 37, 37 are reversed. However, even in this case, if the elasticity of each of the compression coil springs 37, 37 is increased to some extent, the sliding-side flat surfaces 32, 32 of the anchor pieces 28, 28 and the outer rings 16b, 16b The shifting operation can be stabilized by keeping the outer peripheral surface in contact. When the force 2Ft applied during braking increases, there is a possibility that a shifting operation not directly related to the driving operation may occur. In this case, the torque passing through the toroidal continuously variable transmission is large, and the braking operation is performed. Because it is time, the uncomfortable feeling given to the driver is not a problem.

[実施の形態の第2例]
図2〜6は、請求項1、2に対応する、本発明の実施の形態の第2例を示している。本例の場合には、弾性部材である板ばね38を、トラニオン7cに設けた1対の段差面26、26のうちの一方(図2の上方)の段差面26と、外輪16cの外周面のうちの径方向一端部との間に、直接設置している。又、他方(図2の下方)の段差面と、この外輪16cの外周面の径方向他端部とを、直接当接させている。上述した実施の形態の第1例に設けていた、押圧駒27及びアンカ駒28(図1参照)は、何れも設けていない。
[Second Example of Embodiment]
2 to 6 show a second example of an embodiment of the present invention corresponding to claims 1 and 2. In the case of this example, the leaf spring 38, which is an elastic member, is connected to the step surface 26 of one of the pair of step surfaces 26, 26 (upper side in FIG. 2) provided on the trunnion 7c and the outer peripheral surface of the outer ring 16c. It is directly installed between one of the radial ends. Further, the other step surface (downward in FIG. 2) and the other radial end of the outer peripheral surface of the outer ring 16c are in direct contact with each other. None of the pressing piece 27 and the anchor piece 28 (see FIG. 1) provided in the first example of the embodiment described above is provided.

前記板ばね38は、ばね鋼等の帯状の弾性金属板を部分円弧状に曲げ形成して成る。この様な板ばね38を設置する為、前記外輪16cの外周面のうちの径方向一端部で前記一方の段差面26と対向する部分に、保持凹部39を形成している。この保持凹部39は、前記外輪16cの一部を削り取る事により、円周方向に隣り合う部分よりも径方向内方に凹ませたもので、底面を平坦面としている。又、前記保持凹部39の径方向に関する深さH(図4参照)は、前記板ばね38の自由状態での厚さTよりも浅く、この板ばね38を構成する前記弾性金属板の厚さt{図5の(B)参照}よりも深い(T>H>t)。   The plate spring 38 is formed by bending a belt-shaped elastic metal plate such as spring steel into a partial arc shape. In order to install such a leaf spring 38, a holding recess 39 is formed in a portion of the outer peripheral surface of the outer ring 16c at one end portion in the radial direction facing the one step surface 26. The holding recess 39 is formed by cutting a part of the outer ring 16c so as to be recessed inward in the radial direction from a portion adjacent in the circumferential direction, and has a flat bottom surface. Further, the depth H (see FIG. 4) in the radial direction of the holding recess 39 is shallower than the thickness T in the free state of the leaf spring 38, and the thickness of the elastic metal plate constituting the leaf spring 38 is smaller. Deeper than t (see FIG. 5B) (T> H> t).

従って、この板ばね38を前記保持凹部39内に、両端部をこの保持凹部39の底面に当接させた状態で設置すると、前記板ばね38の自由状態では、この板ばね38の中央部(凸湾曲面)が、前記外輪16cの外周面よりも径方向外方に、十分に(前記両段差面26、26同士の間隔と前記外輪16cの外径との差よりも大きく)突出する。そして、この状態では、この外輪16cの外周面の径方向他端部と前記他方の段差面26とを、隙間なく当接させる。尚、図2は、前述の実施の形態の第1例に於ける、図1の(B)に対応する部分を表している為、前記板ばね38を前記外輪16cの上側に設けて、この外輪16cを下方に押圧している。これに対して、図1の(A)に対応する部分に関しては、板ばねを外輪の下側に設けて、この外輪を上方に押圧する。   Accordingly, when the leaf spring 38 is installed in the holding recess 39 with both end portions being in contact with the bottom surface of the holding recess 39, the leaf spring 38 is in the free state of the leaf spring 38 in the central portion ( The convex curved surface) protrudes sufficiently outward in the radial direction from the outer peripheral surface of the outer ring 16c (larger than the difference between the gap between the stepped surfaces 26 and 26 and the outer diameter of the outer ring 16c). In this state, the other end in the radial direction of the outer peripheral surface of the outer ring 16c and the other step surface 26 are brought into contact with each other without a gap. 2 shows a portion corresponding to (B) of FIG. 1 in the first example of the above-described embodiment. Therefore, the leaf spring 38 is provided on the upper side of the outer ring 16c. The outer ring 16c is pressed downward. On the other hand, regarding the part corresponding to FIG. 1A, a leaf spring is provided on the lower side of the outer ring, and this outer ring is pressed upward.

尚、図示の様に、板ばね38を上側に設ける場合には、前記外輪16cの外周面の径方向他端部を前記他方の段差面26に押し付ける方向に作用する力が、トラクション力(2Ft)と、前記トラニオン7c及び外輪16c等の重量に見合う力との和になる。これに対して、板ばねを下側に設ける場合には、この板ばねは、トラニオン及び外輪等の重量を支える事になる為、外輪の外周面の径方向他端部を前記他方の段差面に押し付ける方向に作用する力は、トラクション力とトラニオン及び外輪等の重量に見合う力との差になる。従って、前記板ばねを下側に設ける場合には、図示の例の様に上側に設ける場合に比べて、この重量の2倍分だけ大きな弾力を有するものを使用する事が好ましい。各トラニオン7cを上下方向に配置する場合には、左右の板ばね38の弾力に、上記重量の2倍分の差を設ければ、左右のトラニオン7cを押圧する力がほぼ均等になって、バランスの良い設計となる。この点は、前述した実施の形態の第1例の圧縮コイルばね37、37の場合も同様である。   As shown in the figure, when the leaf spring 38 is provided on the upper side, the force acting in the direction of pressing the other end in the radial direction of the outer peripheral surface of the outer ring 16c against the other stepped surface 26 is a traction force (2 Ft ) And a force commensurate with the weight of the trunnion 7c, outer ring 16c, and the like. On the other hand, when the leaf spring is provided on the lower side, the leaf spring supports the weight of the trunnion, the outer ring, and the like. The force acting in the direction of pressing against the traction force is the difference between the traction force and the force commensurate with the weight of the trunnion and outer ring. Accordingly, when the leaf spring is provided on the lower side, it is preferable to use a spring having elasticity that is twice as much as this weight compared to the case of providing the leaf spring on the upper side as in the illustrated example. When each trunnion 7c is arranged in the vertical direction, if the difference between the elastic force of the left and right leaf springs 38 is twice as much as the above weight, the force for pressing the left and right trunnions 7c becomes substantially equal. A well-balanced design. This also applies to the case of the compression coil springs 37, 37 of the first example of the embodiment described above.

本例の場合も、入力ディスク及び出力ディスクの回転方向と、前記板ばね38による外輪16cの押圧方向との関係は、前記実施の形態の第1例と同様であるから、運転動作とは直接関連しない変速動作が発生する事を防止して、変速動作の安定化を図れる。本例の場合には、前述した実施の形態の第1例の場合に比べて構造が簡単であり、小型化並びに低コスト化を図れる。   Also in this example, since the relationship between the rotation direction of the input disk and the output disk and the pressing direction of the outer ring 16c by the leaf spring 38 is the same as that in the first example of the embodiment, it is directly related to the driving operation. It is possible to prevent the occurrence of an unrelated shift operation and stabilize the shift operation. In the case of this example, the structure is simpler than in the case of the first example of the embodiment described above, and the size and cost can be reduced.

又、強いエンジンブレーキが作動した場合の如く、前記外輪16cが前記板ばね38の弾力の付与方向と逆方向に、大きな力で変位した場合、この板ばね38の撓み量(弾性的圧縮量)が大きくなる。この場合でも、前記保持凹部39の深さDと前記弾性金属板の厚さtの関係で、前記板ばね38が完全に押し潰される事はない。この為、この板ばね38の耐久性を十分に確保できる。即ち、板ばね等の金属ばねは、完全に押し潰される状態が繰り返されると、比較的早期にへたる(弾力が低下する)事が知られているが、本例の構造は、この様な原因でのへたりを防止できる。   Further, when the outer ring 16c is displaced by a large force in the direction opposite to the direction in which the elastic force of the leaf spring 38 is applied, such as when a strong engine brake is operated, the amount of bending (elastic compression amount) of the leaf spring 38 is increased. Becomes larger. Even in this case, the leaf spring 38 is not completely crushed due to the relationship between the depth D of the holding recess 39 and the thickness t of the elastic metal plate. For this reason, the durability of the leaf spring 38 can be sufficiently ensured. That is, it is known that metal springs such as leaf springs sag relatively quickly (elasticity decreases) when the state of being completely crushed is repeated, but the structure of this example is like this. Can prevent sag due to the cause.

[実施の形態の第3例]
図7〜11は、請求項1、3に対応する、本発明の実施の形態の第3例を示している。本例の場合も上述した実施の形態の第2例の場合と同様に、弾性部材として、弾性金属板を部分円弧状に湾曲させた板ばね38を使用している。特に、本例の場合には、この板ばね38を外輪16dの外周面のうちで一方の段差面26と対向する部分に、ばねホルダ40を介して設置している。このばねホルダ40は、焼結金属製の含油メタルの如く、優れた耐圧縮性及び耐摩耗性を有し、且つ、摩擦係数の低い材料により造っている。この様なばねホルダ40には、上述した実施の形態の第2例で外輪16cの外周面に形成した保持凹部39(図5、6参照)と同様の形状及び寸法を有する保持凹部39aを形成している。又、前記ばねホルダ40のうち、この保持凹部39aを形成した面と反対側の面は平坦面としている。
[Third example of embodiment]
FIGS. 7-11 has shown the 3rd example of embodiment of this invention corresponding to Claim 1, 3. FIG. In the case of this example as well, as in the case of the second example of the above-described embodiment, a plate spring 38 in which an elastic metal plate is curved in a partial arc shape is used as the elastic member. In particular, in the case of this example, the leaf spring 38 is installed on a portion of the outer peripheral surface of the outer ring 16d facing the one step surface 26 via a spring holder 40. The spring holder 40 is made of a material having excellent compression resistance and wear resistance and a low coefficient of friction, such as an oil-impregnated metal made of sintered metal. In such a spring holder 40, a holding recess 39a having the same shape and size as the holding recess 39 (see FIGS. 5 and 6) formed on the outer peripheral surface of the outer ring 16c in the second example of the embodiment described above is formed. is doing. The surface of the spring holder 40 opposite to the surface on which the holding recess 39a is formed is a flat surface.

上述の様なばねホルダ40を設置する為に本例の場合には、前記外輪16dの外周面のうちで一方の段差面26と対向する部分に平坦面41を、この一方の段差面26と平行に形成している。そして、これら平坦面41と段差面26との間に、前記ばねホルダ40と前記板ばね38とを、この平坦面41の側から順番に配置している。そして、この板ばね38の弾力により前記外輪16dを、他方の段差面26に向け、弾性的に押圧している。尚、前記ばねホルダ40と、前記外輪16d又はトラニオン7dとの間には、このばねホルダ40が前記平坦面41と前記段差面26との間から抜け出る事を阻止する為のストッパ機構(図示省略)を設ける。
上述の様に構成する本例の場合には、前記外輪16dと独立して前記ばねホルダ40を設ける為、軸受鋼の如き硬質金属製の外輪16cに直接保持凹部39(図2〜6参照)を形成する場合に比べ、小型・軽量化の面からは多少不利になるが、加工が容易になる事に加えて、板ばねを設置する部分の材質選択の自由度も高くできる。
In the case of the present example in order to install the spring holder 40 as described above, a flat surface 41 is formed on a portion of the outer peripheral surface of the outer ring 16d facing the one step surface 26, and this one step surface 26 is connected. They are formed in parallel. The spring holder 40 and the leaf spring 38 are arranged in this order from the flat surface 41 side between the flat surface 41 and the step surface 26. The elastic force of the leaf spring 38 elastically presses the outer ring 16d toward the other stepped surface 26. A stopper mechanism (not shown) is provided between the spring holder 40 and the outer ring 16d or trunnion 7d to prevent the spring holder 40 from coming out between the flat surface 41 and the stepped surface 26. ).
In the case of this example configured as described above, since the spring holder 40 is provided independently of the outer ring 16d, a holding recess 39 (see FIGS. 2 to 6) is directly provided in the outer ring 16c made of hard metal such as bearing steel. Compared to the case of forming the metal plate, it is somewhat disadvantageous in terms of size and weight reduction, but in addition to facilitating processing, the degree of freedom in selecting the material of the portion where the leaf spring is installed can be increased.

[実施の形態の第4例]
図12は、請求項1、3、4に対応する、本発明の実施の形態の第4例を示している。本例の場合には、ばねホルダ40aを設置すべく、外輪16eの外周面に形成した平坦面41aが、この外輪16eの軸方向に対し傾斜している。具体的には、この平坦面41aは、この外輪16eの外周面に対し接線方向に形成されてはいるが、この平坦面41aとトラニオン7dに形成した一方の段差面26との間隔が、支持梁部23の側に向かうに従って広くなる方向に傾斜している。そして、前記平坦面41aと前記段差面26との間に設置する前記ばねホルダ40aの片面に関しても、同方向に傾斜している。この様な本例の構造によれば、前記平坦面41aと前記段差面26との間から前記ホルダ40aが、前記支持梁部23から遠ざかる方向に抜け出る事を防止できる。その他の部分の構成及び作用は、上述した実施の形態の第3例と同様であるから、重複する図示並びに説明は省略する。
[Fourth Example of Embodiment]
FIG. 12 shows a fourth example of the embodiment of the present invention corresponding to the first, third, and fourth aspects. In the case of this example, in order to install the spring holder 40a, the flat surface 41a formed on the outer peripheral surface of the outer ring 16e is inclined with respect to the axial direction of the outer ring 16e. Specifically, the flat surface 41a is formed tangential to the outer peripheral surface of the outer ring 16e, but the distance between the flat surface 41a and the one step surface 26 formed on the trunnion 7d is not supported. It inclines in the direction which becomes wide as it goes to the beam part 23 side. The one side of the spring holder 40a installed between the flat surface 41a and the stepped surface 26 is also inclined in the same direction. According to such a structure of this example, it is possible to prevent the holder 40a from slipping out from the space between the flat surface 41a and the stepped surface 26 in a direction away from the support beam portion 23. Since the configuration and operation of other parts are the same as in the third example of the above-described embodiment, overlapping illustrations and descriptions are omitted.

本発明は、トロイダル型無段変速機単独で実施できる他、特許文献5に記載されている様な、遊星歯車機構と組み合わせた無段変速装置として実施する事もできる。   The present invention can be implemented by a toroidal continuously variable transmission alone, or can be implemented as a continuously variable transmission in combination with a planetary gear mechanism as described in Patent Document 5.

1 入力回転軸
2 入力ディスク
3 出力筒
4 出力歯車
5 出力ディスク
6、6a パワーローラ
7、7a、7b、7c、7d トラニオン
8、8a、8b 傾転軸
9 支持梁部
10 支持板
11、11a ラジアルニードル軸受
12、12a 支持軸
13、13a、13b スラスト玉軸受
14 スラストニードル軸受
15 内輪軌道
16、16a、16b、16c、16d、16e 外輪
17 外輪軌道
18 玉
19 駆動軸
20 押圧装置
21 アクチュエータ
22 円筒状凸面
23 支持梁部
24 凹部
25 ラジアルニードル軸受
26 段差面
27 押圧駒
28 アンカ駒
29 主部
30 凸部
31 静止側平坦面
32 揺動側平坦面
33 凹曲面
34a、34b 保持孔
35 ロッド
36 盲栓
37 圧縮コイルばね
38 板ばね
39、39a 保持凹部
40、40a ばねホルダ
41、41a 平坦面
DESCRIPTION OF SYMBOLS 1 Input rotating shaft 2 Input disk 3 Output cylinder 4 Output gear 5 Output disk 6, 6a Power roller 7, 7a, 7b, 7c, 7d Trunnion 8, 8a, 8b Tilt axis 9 Support beam part 10 Support plate 11, 11a Radial Needle bearing 12, 12a Support shaft 13, 13a, 13b Thrust ball bearing 14 Thrust needle bearing 15 Inner ring raceway 16, 16a, 16b, 16c, 16d, 16e Outer ring 17 Outer ring raceway 18 ball 19 Drive shaft 20 Pressing device 21 Actuator 22 Cylindrical Convex surface 23 Support beam portion 24 Concave portion 25 Radial needle bearing 26 Stepped surface 27 Pressing piece 28 Anchor piece 29 Main portion 30 Convex portion 31 Still side flat surface 32 Oscillating side flat surface 33 Concave surface 34a, 34b Holding hole 35 Rod 36 Blind plug 37 Compression coil spring 38 Leaf spring 39, 39a Holding recess 0,40a spring holder 41,41a flat surface

Claims (8)

少なくとも1対のディスクと、複数のトラニオンと、これら各トラニオンと同数のパワーローラと、同じく同数組の転がり軸受とを備え、
このうちの各ディスクは、それぞれが断面円弧形のトロイド曲面である互いの軸方向片側面同士を対向させた状態で、互いに同心に、相対回転を自在に支持されたものであり、
前記各トラニオンは、それぞれの両端部に互いに同心に設けられた1対の傾転軸と、これら両傾転軸同士の間に存在し、少なくとも前記各ディスクの径方向に関する内側の側面を、前記両傾転軸の中心軸と平行でこの傾転軸の中心軸よりも前記各ディスクの径方向に関して外側に存在する中心軸を有する、円筒状凸面とした支持梁部とを備えたもので、軸方向に関して前記各ディスクの軸方向側面同士の間位置の円周方向に関して複数箇所に、これら各ディスクの中心軸に対し捩れの位置にある傾転軸を中心とする揺動変位を自在に設けられており、
前記各パワーローラは、前記各トラニオンの内側面に、それぞれスラスト転がり軸受を介して回転自在に支持され、球状凸面としたそれぞれの周面を、前記各ディスクの軸方向片側面にそれぞれ当接させており、
前記各スラスト転がり軸受は、前記各トラニオンの支持梁部と前記各パワーローラの外側面との間に設けられたもので、これら各支持梁部側に設けられた外輪と、これら各外輪の内側面に設けられた外輪軌道と前記各パワーローラの外側面に設けられた内輪軌道との間に転動自在に、それぞれ複数個ずつ設けられた転動体とを備えたものであり、
前記各スラスト転がり軸受の外輪は、これら各外輪の外側面に設けられた凹部と前記各支持梁部の円筒状凸面とを係合させると共に、これら各外輪の外周面の一部と、前記トラニオンの一部で前記円筒状凸面を挟む位置に設けた段差面とを係合させる事により、これら各トラニオンに対し、前記各ディスクの軸方向に関する揺動変位を可能に、且つ、これら各ディスクの回転に伴って前記各パワーローラに加わるトルクを支承可能に支持されているトロイダル型無段変速機に於いて、
前記各トラニオンに1対ずつ設けた前記各段差面同士の間隔が前記各外輪の外径よりも大きく、前記各外輪を径方向両側から挟む位置に存在する、これら各外輪毎に1対ずつの段差面のうちの一方の段差面と前記外輪の外周面との間部分に弾性部材を設置し、この弾性部材によりこの外輪を他方の段差面に向け押圧した事を特徴とするトロイダル型無段変速機。
At least one pair of disks, a plurality of trunnions, the same number of power rollers as each trunnion, and the same number of sets of rolling bearings,
Each of these discs is a toroidal curved surface having a circular arc cross section, with the axial one side surfaces facing each other, concentrically supported and freely supported by relative rotation,
Each trunnion exists between a pair of tilting shafts provided concentrically with each other at both ends, and between the two tilting shafts, and at least the inner side surface in the radial direction of each of the disks, A support beam portion having a cylindrical convex surface having a central axis that is parallel to the central axis of both tilting axes and that is present outside the central axis of the tilting axis with respect to the radial direction of each disk. With respect to the axial direction, swinging displacements about the tilting shaft that is twisted with respect to the central axis of each disk are freely provided at a plurality of locations in the circumferential direction between the axial side surfaces of the respective disks. And
Each of the power rollers is rotatably supported on the inner side surface of each trunnion via a thrust rolling bearing, and each circumferential surface having a spherical convex surface is brought into contact with one axial side surface of each disk. And
Each thrust rolling bearing is provided between the support beam portion of each trunnion and the outer surface of each power roller, and an outer ring provided on each support beam portion side, and an inner ring of each outer ring. A plurality of rolling elements are provided between the outer ring raceway provided on the side surface and the inner ring raceway provided on the outer side surface of each of the power rollers, respectively.
The outer ring of each thrust rolling bearing engages a concave portion provided on an outer surface of each outer ring and a cylindrical convex surface of each support beam portion, and a part of the outer peripheral surface of each outer ring, and the trunnion By engaging the stepped surface provided at a position sandwiching the cylindrical convex surface with a part of the disc, the trunnion can be oscillated and displaced in the axial direction of each disc, and In the toroidal type continuously variable transmission that is supported so as to be able to support the torque applied to each power roller as it rotates,
A pair of each step surface provided in each trunnion is larger than the outer diameter of each outer ring, and each outer ring exists at a position sandwiching each outer ring from both sides in the radial direction. A toroidal stepless machine characterized in that an elastic member is installed between one step surface of the step surfaces and the outer peripheral surface of the outer ring, and the outer ring is pressed against the other step surface by the elastic member. transmission.
前記弾性部材が、弾性金属板を部分円弧状に湾曲させた板ばねであり、前記外輪の外周面のうちで前記一方の段差面と対向する部分に、円周方向に隣り合う部分よりも径方向に凹んだ、前記板ばねの自由状態での厚さよりも浅く、前記弾性金属板の厚さよりも深い保持凹部が設けられていて、前記板ばねがこの保持凹部内に設置されている、請求項1に記載したトロイダル型無段変速機。   The elastic member is a leaf spring in which an elastic metal plate is bent in a partial arc shape, and the diameter of the outer peripheral surface of the outer ring opposite to the circumferentially adjacent portion is opposite to the one step surface. A holding recess that is recessed in a direction and is shallower than a thickness of the leaf spring in a free state and deeper than a thickness of the elastic metal plate is provided, and the leaf spring is disposed in the holding recess. Item 2. A toroidal-type continuously variable transmission according to item 1. 前記弾性部材が、弾性金属板を部分円弧状に湾曲させた板ばねであり、前記外輪の外周面のうちで前記一方の段差面と対向する部分に、当該部分の接線方向に拡がる平坦面が形成されており、この段差面に、前記板ばねの自由状態での厚さよりも浅く、前記弾性金属板の厚さよりも深い保持凹部を片面に有するばねホルダの他面が当接しており、前記板ばねがこの保持凹部内に設置されている、請求項1に記載したトロイダル型無段変速機。   The elastic member is a leaf spring in which an elastic metal plate is curved in a partial arc shape, and a flat surface that extends in a tangential direction of the portion of the outer peripheral surface of the outer ring is opposed to the one step surface. The other surface of the spring holder having a holding recess on one side that is shallower than the thickness of the plate spring in a free state and deeper than the thickness of the elastic metal plate is in contact with the step surface. The toroidal type continuously variable transmission according to claim 1, wherein a leaf spring is installed in the holding recess. 前記平坦面が、この平坦面と前記一方の段差面との間隔が、前記各支持梁部の側に向かうに従って広くなる方向に傾斜している、請求項3に記載したトロイダル型無段変速機。   4. The toroidal continuously variable transmission according to claim 3, wherein the flat surface is inclined in a direction in which an interval between the flat surface and the one stepped surface increases toward the support beam portion. . 前記各外輪毎に1対ずつの段差面のうちの少なくとも一方の段差面と前記外輪の外周面との間部分に押圧駒を設置し、前記弾性部材によりこの押圧駒をこの外輪に向け押圧している、請求項1に記載したトロイダル型無段変速機。   A pressing piece is installed in a portion between at least one step surface of the pair of step surfaces for each outer ring and the outer peripheral surface of the outer ring, and the pressing member is pressed toward the outer ring by the elastic member. The toroidal continuously variable transmission according to claim 1. 前記各トラニオンに1対ずつ設けた前記各段差面と前記各外輪の外周面との間に、互いに同じ形状を有する前記各押圧駒と各アンカ駒とが設置されており、
前記各段差面に、前記各トラニオン毎に互いに同心の保持孔が設けられており、
前記各押圧駒及び前記各アンカ駒は、それぞれ、前記各段差面と前記各外輪の外周面との間に配置される主部と、この主部のうちで前記各パワーローラと反対面に突設された凸部とを備えたものであり、
前記各押圧駒及び前記各アンカ駒を構成する前記各凸部は、前記各保持孔に嵌合されており、前記各トラニオン毎に1対ずつ設けられた保持孔のうちの一方の保持孔内に装着された前記各弾性部材により前記各押圧駒を前記各外輪の外周面に押し付けて、これら各外輪を前記各アンカ駒に向け押圧している、請求項5に記載したトロイダル型無段変速機。
Each of the pressing pieces and each of the anchor pieces having the same shape are installed between each stepped surface provided for each trunnion and the outer peripheral surface of each outer ring,
Each step surface is provided with a concentric holding hole for each trunnion,
Each of the pressing pieces and each of the anchor pieces protrudes from a main portion disposed between the stepped surface and the outer peripheral surface of the outer ring, and the main portion projects on the opposite surface to the power roller. And provided convex portions,
Each convex part constituting each pressing piece and each anchor piece is fitted in each holding hole, and is in one holding hole among the holding holes provided for each trunnion. The toroidal continuously variable transmission according to claim 5, wherein each of the pressing pieces is pressed against an outer peripheral surface of each of the outer rings by each of the elastic members attached to the outer ring, and the outer rings are pressed toward the anchor pieces. Machine.
互いの軸方向片側面同士を対向させた1対のディスク同士の間に配置されている複数のトラニオンにそれぞれ設置されている、前記各押圧駒と前記各アンカ駒との設置位置が、前記各ディスクの回転に伴って前記各トラニオンに加わる力の作用方向に関し、互いに同じである、請求項6に記載したトロイダル型無段変速機。   The installation positions of the respective pressing pieces and the respective anchor pieces, which are respectively installed on a plurality of trunnions arranged between a pair of disks facing each other in the axial direction, The toroidal-type continuously variable transmission according to claim 6, which is the same as each other with respect to the direction of action of the force applied to each trunnion as the disk rotates. 前記各押圧駒と前記各アンカ駒とが低摩擦材製である、請求項6〜7のうちの何れか1項に記載したトロイダル型無段変速機。   The toroidal continuously variable transmission according to any one of claims 6 to 7, wherein each pressing piece and each anchor piece are made of a low friction material.
JP2011114912A 2011-02-03 2011-05-23 Toroidal continuously variable transmission Active JP5696586B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2011114912A JP5696586B2 (en) 2011-02-25 2011-05-23 Toroidal continuously variable transmission
PCT/JP2012/052432 WO2012105663A1 (en) 2011-02-03 2012-02-02 Toroidal continuously variable transmission
US13/500,344 US20130035200A1 (en) 2011-02-03 2012-02-02 Toroidal continuously variable transmission
EP12710433.9A EP2677198B1 (en) 2011-02-03 2012-02-02 Toroidal continuously variable transmission
CN201280000051.3A CN102762894B (en) 2011-02-03 2012-02-02 Toroidal type stepless speed change device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011039749 2011-02-25
JP2011039749 2011-02-25
JP2011114912A JP5696586B2 (en) 2011-02-25 2011-05-23 Toroidal continuously variable transmission

Publications (2)

Publication Number Publication Date
JP2012189199A true JP2012189199A (en) 2012-10-04
JP5696586B2 JP5696586B2 (en) 2015-04-08

Family

ID=47082596

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011114912A Active JP5696586B2 (en) 2011-02-03 2011-05-23 Toroidal continuously variable transmission

Country Status (1)

Country Link
JP (1) JP5696586B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248049A (en) * 1994-03-11 1995-09-26 Nissan Motor Co Ltd Toroidal type continuously variable transmission
JP2001227611A (en) * 1999-12-09 2001-08-24 Nissan Motor Co Ltd Troidal type continuously variable transmission
JP2008025821A (en) * 2006-06-02 2008-02-07 Nsk Ltd Toroidal continuously variable transmission
JP2009150537A (en) * 2007-11-27 2009-07-09 Nsk Ltd Toroidal continuously variable transmission
JP2009210080A (en) * 2008-03-06 2009-09-17 Nsk Ltd Toroidal type continuously variable transmission

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07248049A (en) * 1994-03-11 1995-09-26 Nissan Motor Co Ltd Toroidal type continuously variable transmission
JP2001227611A (en) * 1999-12-09 2001-08-24 Nissan Motor Co Ltd Troidal type continuously variable transmission
JP2008025821A (en) * 2006-06-02 2008-02-07 Nsk Ltd Toroidal continuously variable transmission
JP2009150537A (en) * 2007-11-27 2009-07-09 Nsk Ltd Toroidal continuously variable transmission
JP2009210080A (en) * 2008-03-06 2009-09-17 Nsk Ltd Toroidal type continuously variable transmission

Also Published As

Publication number Publication date
JP5696586B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
WO2012105663A1 (en) Toroidal continuously variable transmission
WO2012111562A1 (en) Toroidal type continuously variable transmission
JP5569724B2 (en) Toroidal continuously variable transmission
JP5990921B2 (en) Toroidal continuously variable transmission
JP5696586B2 (en) Toroidal continuously variable transmission
JP5007600B2 (en) Toroidal continuously variable transmission
JP5857473B2 (en) Toroidal continuously variable transmission
JP5742297B2 (en) Toroidal continuously variable transmission
JP5673205B2 (en) Toroidal continuously variable transmission
JP5862335B2 (en) Toroidal continuously variable transmission
JP5834525B2 (en) Toroidal continuously variable transmission
JP5803378B2 (en) Toroidal continuously variable transmission
JP5126206B2 (en) Toroidal continuously variable transmission
JP2013044412A (en) Toroidal continuously variable transmission
JP5939015B2 (en) Toroidal continuously variable transmission
JP6508380B2 (en) Power roller unit for toroidal type continuously variable transmission
JP6311451B2 (en) Power roller unit for toroidal type continuously variable transmission
JP6221754B2 (en) Toroidal continuously variable transmission
JP6432207B2 (en) Toroidal continuously variable transmission
JP6582564B2 (en) Toroidal continuously variable transmission
JP2013024322A (en) Toroidal continuously variable transmission
JP2013024362A (en) Toroidal type continuously variable transmission
JP4561126B2 (en) Toroidal continuously variable transmission
JP4623365B2 (en) Toroidal continuously variable transmission
JP2012117569A (en) Toroidal continuously variable transmission

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140328

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150126

R150 Certificate of patent or registration of utility model

Ref document number: 5696586

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150