JP2012188774A - Nonwoven fabric and method for manufacturing nonwoven fabric - Google Patents

Nonwoven fabric and method for manufacturing nonwoven fabric Download PDF

Info

Publication number
JP2012188774A
JP2012188774A JP2011052223A JP2011052223A JP2012188774A JP 2012188774 A JP2012188774 A JP 2012188774A JP 2011052223 A JP2011052223 A JP 2011052223A JP 2011052223 A JP2011052223 A JP 2011052223A JP 2012188774 A JP2012188774 A JP 2012188774A
Authority
JP
Japan
Prior art keywords
polyolefin resin
nonwoven fabric
melting point
fibers
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011052223A
Other languages
Japanese (ja)
Inventor
Takahiro Tsukuda
貴裕 佃
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Paper Mills Ltd
Original Assignee
Mitsubishi Paper Mills Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Paper Mills Ltd filed Critical Mitsubishi Paper Mills Ltd
Priority to JP2011052223A priority Critical patent/JP2012188774A/en
Publication of JP2012188774A publication Critical patent/JP2012188774A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Filtering Materials (AREA)
  • Nonwoven Fabrics (AREA)
  • Paper (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonwoven fabric having a specific three-dimensional structure.SOLUTION: The present invention provides a nonwoven fabric comprising, between filaments, a bridge of microfiber of a polyolefin resin extending in a vertical direction in a cross-section thereof, and a method for manufacturing the nonwoven fabric. Thus, a fabric having little fluff, high tensile strength and high breaking elongation may be obtained.

Description

本発明は、不織布に関する。   The present invention relates to a nonwoven fabric.

従来、不織布としては、非フィブリル化繊維やフィブリル化繊維を含有する湿式不織布(例えば、特許文献1、2参照)、スパンボンド不織布、メルトブローン不織布などの乾式不織布、エレクトロスピニング不織布(静電紡糸不織布)がある。特許文献1、2の湿式不織布は、通常の湿式抄紙法で作製されるものであり、特異的な三次元構造を有するものではない。特異的な三次元構造を有する不織布としては、高圧水流を当てて、繊維を割繊又はフィブリル化して三次元交絡させたもの(例えば、特許文献3、4、5参照)が開示されている。本発明者は、湿式不織布などの多孔質基材にポリマー溶液を含浸させ、さらにミクロ相分離法で網目状のポリマーを析出させ、多孔質基材と一体化させてなる多孔質シート(例えば、特許文献6参照)を提案している。   Conventional non-woven fabrics include non-fibrillated fibers and wet non-woven fabrics containing fibrillated fibers (for example, see Patent Documents 1 and 2), spunbond nonwoven fabrics, melt-blown non-woven fabrics, electrospun nonwoven fabrics (electrospun nonwoven fabrics), etc. There is. The wet nonwoven fabrics of Patent Documents 1 and 2 are produced by a normal wet papermaking method and do not have a specific three-dimensional structure. Nonwoven fabrics having a specific three-dimensional structure are disclosed in which fibers are split or fibrillated by applying a high-pressure water stream and three-dimensionally entangled (see, for example, Patent Documents 3, 4, and 5). The inventor impregnates a porous substrate such as a wet non-woven fabric with a polymer solution, precipitates a network polymer by a microphase separation method, and is integrated with the porous substrate (for example, (See Patent Document 6).

特開2003−129392号公報JP 2003-129392 A 特開2002−266281号公報JP 2002-266281 A 特開平11−107149号公報JP-A-11-107149 特開2003−55873号公報JP 2003-55873 A 特開平9−31817号公報JP-A-9-31817 国際公開第2008/153117号パンフレットInternational Publication No. 2008/153117 Pamphlet

本発明の課題は、従来にない特異的な三次元構造を有する不織布を提供することにある。   An object of the present invention is to provide a non-woven fabric having a unique three-dimensional structure that has not existed before.

本発明者は、上記課題を解決するために、ポリオレフィン樹脂を含有する不織布の製造方法、不織布を構成する繊維の繊維径、ポリオレフィン樹脂の融点と熱圧処理条件について鋭意研究した結果、断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有することを特徴とする不織布を見出した。   In order to solve the above-mentioned problems, the present inventor has conducted intensive research on a method for producing a non-woven fabric containing a polyolefin resin, the fiber diameter of fibers constituting the non-woven fabric, the melting point of the polyolefin resin and the hot-pressure treatment conditions. The present inventors have found a non-woven fabric characterized by having a bridge made of polyolefin resin superfine yarns in the vertical direction between fibers.

本発明の不織布は、断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有するため、橋架けを有さない不織布に比べて、毛羽立ちにくく、引張強度が強く、破断伸度が大きいという効果が得られる。   The nonwoven fabric of the present invention has a bridge made of polyolefin resin superfine yarns in the vertical direction when viewed from the cross section, and is less fuzzy and has a higher tensile strength than a nonwoven fabric without a bridge. The effect that the elongation at break is large is obtained.

本発明の実施例4で作製した不織布の断面の電子顕微鏡写真(1500倍率)の一例を示す。An example of the electron micrograph (1500 magnification) of the cross section of the nonwoven fabric produced in Example 4 of this invention is shown. 本発明の実施例5で作製した不織布の断面の電子顕微鏡写真(1500倍率)の一例を示す。An example of the electron micrograph (1500 magnification) of the cross section of the nonwoven fabric produced in Example 5 of this invention is shown. 本発明の実施例12で作製した不織布の断面の電子顕微鏡写真(2000倍率)の一例を示す。An example of the electron micrograph (2000 magnification) of the cross section of the nonwoven fabric produced in Example 12 of this invention is shown. 本発明の実施例12で作製した不織布の表面の電子顕微鏡写真(2000倍率)の一例を示す。An example of the electron micrograph (2000 magnification) of the surface of the nonwoven fabric produced in Example 12 of this invention is shown. 本発明の実施例14で作製した不織布の断面の電子顕微鏡写真(2000倍率)の一例を示す。An example of the electron micrograph (2000 magnification) of the cross section of the nonwoven fabric produced in Example 14 of this invention is shown. 本発明の実施例25で作製した不織布の断面の電子顕微鏡写真(1500倍率)の一例を示す。An example of the electron micrograph (1500 magnification) of the cross section of the nonwoven fabric produced in Example 25 of this invention is shown. 本発明の実施例39で作製した不織布の断面の電子顕微鏡写真(2000倍率)の一例を示す。An example of the electron micrograph (2000 magnification) of the cross section of the nonwoven fabric produced in Example 39 of this invention is shown. 本発明の実施例40で作製した不織布の断面の電子顕微鏡写真(1000倍率)の一例を示す。An example of the electron micrograph (1000 magnification) of the cross section of the nonwoven fabric produced in Example 40 of this invention is shown. 本発明の比較例2で作製した不織布の断面の電子顕微鏡写真(1000倍率)の一例を示す。An example of the electron micrograph (1000 magnification) of the cross section of the nonwoven fabric produced in the comparative example 2 of this invention is shown. 本発明の比較例10で作製した不織布の断面の電子顕微鏡写真(2000倍率)の一例を示す。An example of the electron micrograph (2000 magnification) of the cross section of the nonwoven fabric produced in the comparative example 10 of this invention is shown. 本発明の比較例10で作製した不織布の表面の電子顕微鏡写真(1000倍率)の一例を示す。An example of the electron micrograph (1000 magnifications) of the surface of the nonwoven fabric produced by the comparative example 10 of this invention is shown. 本発明の比較例11で作製した不織布の断面の電子顕微鏡写真(2000倍率)の一例を示す。An example of the electron micrograph (2000 magnification) of the cross section of the nonwoven fabric produced in the comparative example 11 of this invention is shown. 本発明の比較例11で作製した不織布の表面の電子顕微鏡写真(1000倍率)の一例を示す。An example of the electron micrograph (1000 magnifications) of the surface of the nonwoven fabric produced by the comparative example 11 of this invention is shown. 不織布の断面の電子顕微鏡写真であり、橋架け本数を計測する場合の「長さ」、「断面厚み」及び「深さ」を記した説明図である。It is the electron micrograph of the cross section of a nonwoven fabric, and is explanatory drawing which described "length", "cross-sectional thickness", and "depth" in the case of measuring the number of bridges.

本発明におけるポリオレフィン樹脂の超極細糸とは、最も細い部分の太さが1μm以下の糸状のものを指し、不織布を作製する過程で形成されるものである。本発明における橋架けとは、ポリオレフィン樹脂の超極細糸の両端が別々の繊維に接着していて、繊維間をつないだ形になっていることを意味する。繊維が絡んでいるだけのものは接着とはいわない。本発明の橋架けは、不織布の内部の任意の繊維間で形成され、断面から見て上下方向に形成されていることを特徴とする。橋架けは、上下の位置関係にある繊維間をつないでいれば良く、繊維と超極細糸の接着角度に規定はない。橋架けは、2本の繊維間で形成されるだけでなく、1本以上の繊維を跨いで形成されていても良い。橋架けが2本の繊維間で形成される場合は、必ずしも2本の繊維間の最短距離で形成されるわけではない。超極細糸の長さは、0.01〜数百μmの範囲で形成される傾向がある。本発明の橋架けは、不織布表面及び内部において平面方向に形成されていても良い。   The super fine yarn of polyolefin resin in the present invention refers to a yarn having the thinnest part having a thickness of 1 μm or less, and is formed in the process of producing a nonwoven fabric. The term “bridge” in the present invention means that both ends of the polyolefin resin superfine yarn are bonded to separate fibers and are connected to each other. The thing which only the fiber is entangled is not called adhesion. The bridge of the present invention is formed between arbitrary fibers inside the nonwoven fabric, and is characterized in that it is formed in the vertical direction when viewed from the cross section. For bridging, it is only necessary to connect fibers in a vertical positional relationship, and there is no regulation for the bonding angle between the fibers and the ultrafine yarn. The bridge may be formed not only between two fibers but also across one or more fibers. When the bridge is formed between two fibers, it is not necessarily formed at the shortest distance between the two fibers. The length of the ultrafine yarn tends to be formed in the range of 0.01 to several hundred μm. The bridge of the present invention may be formed in the plane direction on the surface and inside of the nonwoven fabric.

本発明においては、不織布の断面を電子顕微鏡で観察し、連続する長さ200μm×断面厚み×深さ5μmあたりに存在する橋架け本数を計測し、その本数を4で除した値、即ち、長さ50μm×断面厚み×深さ5μmあたりの平均橋架け本数が5本以上であることが好ましく、10本以上であることがより好ましい。断面の場所は任意である。図14は、不織布の断面の電子顕微鏡写真であるが、連続する「長さ」とは、不織布の断面から見て、厚みに対して直角をなす辺の直線距離を意味する。「断面厚み」とは、不織布の厚みに相当する。「深さ」とは、断面から見て水平に奥に進んだ方向を意味する。同範囲に存在する橋架けの平均本数が5本未満の場合は、橋架けが全体的に少ないか、偏在していることを意味する。平均橋架け本数が5本未満だと、不織布の物性に橋架けの効果が現れない場合がある。本発明においては、超極細糸の最も細い部分の太さが1μmを超えているものが混在しても良い。   In the present invention, the cross-section of the nonwoven fabric is observed with an electron microscope, the number of bridges present per continuous length of 200 μm × cross-sectional thickness × depth of 5 μm is measured, and the number divided by four, that is, the length The average number of bridges per 50 μm × cross-sectional thickness × depth of 5 μm is preferably 5 or more, and more preferably 10 or more. The location of the cross section is arbitrary. FIG. 14 is an electron micrograph of a cross section of the nonwoven fabric. The continuous “length” means a linear distance of a side perpendicular to the thickness when viewed from the cross section of the nonwoven fabric. “Cross-sectional thickness” corresponds to the thickness of the nonwoven fabric. “Depth” means the direction that goes horizontally from the cross section. If the average number of bridges existing in the same range is less than 5, it means that there are few or uneven bridges as a whole. If the average number of bridges is less than 5, the effect of the bridge may not appear in the physical properties of the nonwoven fabric. In the present invention, the thinnest part of the super fine yarn may have a thickness exceeding 1 μm.

本発明におけるポリオレフィン樹脂としては、ポリエチレン、ポリプロピレン、エチレン−酢酸ビニル共重合体、エチレン−ビニルアルコール共重合体、これらの誘導体が挙げられる。ポリエチレンとしては、低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、線状低密度ポリエチレン、超低密度ポリエチレン、超高密度ポリエチレン、エチレンプロピレン共重合体、ポリエチレンと他のポリオレフィンとの混合物、ポリプロピレンとしては、ホモプロピレン(プロピレン単独重合体)、又はプロピレンとエチレン、1−ブテン、1−ペンテン、1−ヘキセン、1−ヘプテン、1−オクテン、1−ノネン若しくは1−デセンなどα−オレフィンとのランダム共重合体又はブロック共重合体が挙げられる。   Examples of the polyolefin resin in the present invention include polyethylene, polypropylene, ethylene-vinyl acetate copolymer, ethylene-vinyl alcohol copolymer, and derivatives thereof. Polyethylene includes low density polyethylene, medium density polyethylene, high density polyethylene, linear low density polyethylene, ultra low density polyethylene, ultra high density polyethylene, ethylene propylene copolymer, a mixture of polyethylene and other polyolefins, and polypropylene. , Homopropylene (propylene homopolymer), or a random copolymer of propylene and an α-olefin such as ethylene, 1-butene, 1-pentene, 1-hexene, 1-heptene, 1-octene, 1-nonene or 1-decene A polymer or a block copolymer is mentioned.

超極細糸を形成させる前のポリオレフィン樹脂の形状は、球状又は略球状が好ましい。また、ポリオレフィン樹脂は、粉末でも水分散液でも良いが、取り扱いやすさの点で、水分散液の方が好ましい。ポリオレフィン樹脂の粒子径は、粒度分布を持つ汎用型や、粒子径がほぼ揃っている単分散型が挙げられるが、均一性の高い超極細糸が得られることから、単分散型が好ましい。汎用型の粒子径は、レーザー回折式粒度分布測定装置を用いて測定することにより確認でき、単分散型の粒子径は、レーザー回折式粒度分布測定装置や電子顕微鏡観察により確認できる。汎用型をレーザー回折式粒度分布測定装置で測定したときの、質量比で積算50%のときの粒子径、すなわちD50は、0.1〜10μmが好ましく、1〜8μmがより好ましい。D50が0.1μm未満では、小さすぎてポリオレフィン樹脂の添加効果が得られにくい場合があり、10μmより大きいと、不織布中のポリオレフィン樹脂の分布が不均一になる場合がある。単分散型の平均粒子径は、0.1〜10μmが好ましく、1〜8μmがより好ましい。単分散型の平均粒子径が0.1μm未満では、小さすぎてポリオレフィン樹脂の効果が得られにくい場合があり、10μmより大きいと、不織布中のポリオレフィン樹脂の分布が不均一になる場合がある。   The shape of the polyolefin resin before forming the ultrafine yarn is preferably spherical or substantially spherical. The polyolefin resin may be a powder or an aqueous dispersion, but an aqueous dispersion is preferred from the viewpoint of ease of handling. Examples of the particle diameter of the polyolefin resin include a general-purpose type having a particle size distribution and a monodispersed type in which the particle diameters are almost uniform. However, a monodispersed type is preferable because a highly uniform ultrafine yarn can be obtained. The general-purpose particle size can be confirmed by measuring with a laser diffraction particle size distribution measuring device, and the monodisperse particle size can be confirmed with a laser diffraction particle size distribution measuring device or electron microscope observation. When the general-purpose type is measured with a laser diffraction particle size distribution analyzer, the particle diameter when the mass ratio is 50%, that is, D50 is preferably 0.1 to 10 μm, more preferably 1 to 8 μm. If D50 is less than 0.1 μm, it may be too small to obtain the effect of adding the polyolefin resin, and if it is more than 10 μm, the distribution of the polyolefin resin in the nonwoven fabric may be uneven. The average particle diameter of the monodispersed type is preferably from 0.1 to 10 μm, and more preferably from 1 to 8 μm. If the average particle size of the monodisperse type is less than 0.1 μm, the effect of the polyolefin resin may be difficult to obtain because it is too small. If it is greater than 10 μm, the distribution of the polyolefin resin in the nonwoven fabric may be uneven.

本発明におけるポリオレフィン樹脂の軟化点は150℃以下が好ましく、135℃以下がより好ましく、80℃以下がさらに好ましい。融点は、170℃以下が好ましく、150℃以下がより好ましく、110℃以下がさらに好ましい。軟化点と融点が低いほど、超極細糸からなる橋架けを形成させやすい。軟化点はJIS K6760のビカット軟化点又はJIS K2207の環球法軟化点を意味する。融点は、JIS K7121に規定されている示差熱分析により測定することができる。   The softening point of the polyolefin resin in the present invention is preferably 150 ° C. or lower, more preferably 135 ° C. or lower, and further preferably 80 ° C. or lower. The melting point is preferably 170 ° C. or lower, more preferably 150 ° C. or lower, and even more preferably 110 ° C. or lower. The lower the softening point and melting point, the easier it is to form a bridge made of superfine yarn. The softening point means the Vicat softening point of JIS K6760 or the ring and ball softening point of JIS K2207. The melting point can be measured by differential thermal analysis defined in JIS K7121.

本発明の不織布は、
1)ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥させる方法、
2)1)の方法で製造された不織布をさらに室温〜融点+80℃の温度で熱圧処理する方法、
3)ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点未満の温度で乾燥させた後、ポリオレフィン樹脂の融点〜融点+80℃の温度で熱圧処理する方法、
4)ポリオレフィン樹脂を含有しない不織布にポリオレフィン樹脂を含浸又は塗工した後、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥させる方法、
5)4)の方法で製造された不織布をさらに室温〜ポリオレフィン樹脂の融点+80℃の温度で熱圧処理する方法、
6)ポリオレフィン樹脂を含有しない不織布にポリオレフィン樹脂を含浸又は塗工した後、ポリオレフィン樹脂の融点未満の温度で乾燥させた後、ポリオレフィン樹脂の融点〜融点+80℃の温度で熱圧処理する方法
等により、製造することができる。
The nonwoven fabric of the present invention is
1) A method of wet papermaking a slurry containing an aggregate of polyolefin resin particles and fibers and drying at a temperature of the melting point of the polyolefin resin to the melting point + 80 ° C.,
2) A method in which the non-woven fabric produced by the method 1) is further subjected to hot-pressure treatment at a temperature of room temperature to melting point + 80 ° C.,
3) A method of wet-making a slurry containing an aggregate of polyolefin resin particles and fibers, drying at a temperature lower than the melting point of the polyolefin resin, and then hot-pressing at a temperature between the melting point of the polyolefin resin and the melting point + 80 ° C.,
4) A method of impregnating or applying a polyolefin resin to a non-woven fabric not containing a polyolefin resin and then drying at a temperature of the melting point of the polyolefin resin to the melting point + 80 ° C.,
5) A method in which the non-woven fabric produced by the method 4) is further subjected to hot-pressure treatment at a temperature ranging from room temperature to the melting point of the polyolefin resin + 80 ° C.,
6) After impregnating or coating a polyolefin resin on a non-woven fabric containing no polyolefin resin, drying at a temperature lower than the melting point of the polyolefin resin, and then hot pressing at a temperature between the melting point of the polyolefin resin and the melting point + 80 ° C. Can be manufactured.

これら製造方法の中でも、不織布内にポリオレフィン樹脂が満遍なく担持され、橋架けが不織布全体に形成されやすいことから、1)又は2)の方法が好ましく、毛羽の発生を抑制し、引張強度や突刺強度を強くできることから、2)の方法がより好ましい。2)、5)の方法においては、熱圧処理温度は、ポリオレフィン樹脂の融点〜融点+80℃がより好ましい。従って、最も好ましい製造方法は、ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥させた後、ポリオレフィン樹脂の融点〜融点+80℃で熱圧処理することである。3)、6)の方法は、ポリオレフィン樹脂の融点未満の温度で乾燥させるため、1)、2)、4)、5)の方法に比べて、乾燥効率が悪く、ポリオレフィン樹脂が不織布表面に偏在する場合がある。   Among these production methods, the polyolefin resin is uniformly supported in the nonwoven fabric, and the bridge is easily formed on the entire nonwoven fabric. Therefore, the method 1) or 2) is preferable, and the generation of fluff is suppressed, and the tensile strength and puncture strength are reduced. The method 2) is more preferable because In the methods 2) and 5), the hot-pressure treatment temperature is more preferably the melting point of the polyolefin resin to the melting point + 80 ° C. Accordingly, the most preferable production method is to wet-paper the slurry containing the agglomerates of polyolefin resin particles and fibers, dry at a temperature of the melting point of the polyolefin resin to the melting point + 80 ° C., and then the melting point of the polyolefin resin to the melting point + 80 ° C. It is a hot-pressure process. Since the methods 3) and 6) are dried at a temperature lower than the melting point of the polyolefin resin, the drying efficiency is lower than the methods 1), 2), 4) and 5), and the polyolefin resin is unevenly distributed on the nonwoven fabric surface. There is a case.

4)、5)、6)の方法では、不織布の細孔がポリオレフィン樹脂粒子より小さい場合は、ポリオレフィン樹脂粒子が不織布表面に堆積するため、不織布表面の繊維の一部又は全部がポリオレフィン樹脂で被覆され、繊維間隙の大部分を閉塞する場合や、熱圧処理でポリオレフィン樹脂が溶融し、無孔フィルム化して不織布表面の大部分を覆ってしまう場合がある。塗工量が少ない場合は、ポリオレフィン樹脂が不織布表面に偏在し、橋架けが形成されにくい場合がある。不織布の細孔がポリオレフィン樹脂粒子より大きい場合は、ポリオレフィン樹脂粒子が繊維間に入り込み、粒子形状のまま残存する場合や、熱圧処理で溶融して不織布の空隙の大部分を閉塞してしまう場合がある。   In the methods 4), 5), and 6), when the pores of the nonwoven fabric are smaller than the polyolefin resin particles, the polyolefin resin particles are deposited on the nonwoven fabric surface, so that some or all of the fibers on the nonwoven fabric surface are coated with the polyolefin resin. In some cases, a large portion of the fiber gap is closed, or the polyolefin resin is melted by hot-pressure treatment to form a non-porous film and cover a large portion of the nonwoven fabric surface. When the coating amount is small, the polyolefin resin is unevenly distributed on the nonwoven fabric surface, and there is a case where it is difficult to form a bridge. When the pores of the nonwoven fabric are larger than the polyolefin resin particles, the polyolefin resin particles enter between the fibers and remain in the shape of the particles, or when they melt by hot pressure treatment and block most of the voids in the nonwoven fabric There is.

ポリオレフィン樹脂粒子と繊維との凝集体を形成させるには、ポリオレフィン樹脂粒子と繊維を別々に媒体に分散させたスラリーを調製し、両スラリーを混合、攪拌すれば良い。繊維の分散には、必要に応じて分散助剤や消泡剤などを添加しても良い。媒体は水が好ましいが、アルコール類などの有機溶剤を混合しても良い。凝集したかどうかを確認するには、凝集体が形成されているかいないか、スラリーが白濁しているかいないかを目視確認すれば良い。スラリーが白濁している場合は、凝集していないポリオレフィン樹脂粒子が多く存在することを意味する。ポリオレフィン樹脂粒子と繊維を混合しただけでは凝集しにくい場合は、凝集剤を添加する。凝集体を形成させた後、必要に応じて増粘剤、紙力増強剤、消泡剤、剥離剤などの薬品を添加し、所定の固形分濃度に希釈して原料スラリーを調製する。原料スラリーを抄紙機で湿式抄紙する。湿式抄紙後の乾燥は、ヤンキードライヤー、シリンダードライヤー、エアードライヤー、赤外線ヒーター、遠赤外線ヒーター等を単独使用又は併用して行えば良い。   In order to form an aggregate of polyolefin resin particles and fibers, a slurry in which polyolefin resin particles and fibers are separately dispersed in a medium is prepared, and both slurries are mixed and stirred. For dispersion of the fiber, a dispersion aid or an antifoaming agent may be added as necessary. The medium is preferably water, but an organic solvent such as alcohols may be mixed. In order to confirm whether or not the particles are aggregated, it is only necessary to visually confirm whether or not aggregates are formed and whether or not the slurry is cloudy. When the slurry is cloudy, it means that there are many polyolefin resin particles that are not aggregated. If aggregation is difficult by simply mixing the polyolefin resin particles and fibers, a flocculant is added. After forming the agglomerates, chemicals such as a thickener, a paper strength enhancer, an antifoaming agent, and a release agent are added as necessary, and diluted to a predetermined solid content concentration to prepare a raw material slurry. The raw material slurry is wet-made with a paper machine. Drying after wet papermaking may be performed using a Yankee dryer, a cylinder dryer, an air dryer, an infrared heater, a far-infrared heater or the like alone or in combination.

不織布にポリオレフィン樹脂を含浸させるには、例えばディップコーター等の含浸機を用いることができる。不織布にポリオレフィン樹脂を塗工するには、例えばトランスファロールコーター、リバースロールコーター、ブレードコーター、エアドクターコーター、ロッドコーター、グラビアコーター、ダイコーター、ノッチバーコーター等の塗工機を用いることができる。含浸又は塗工後の乾燥は、ヤンキードライヤー、シリンダードライヤー、エアードライヤー、赤外線ヒーター、遠赤外線ヒーター等を単独使用又は併用して行えば良い。   In order to impregnate the nonwoven fabric with the polyolefin resin, for example, an impregnation machine such as a dip coater can be used. In order to apply the polyolefin resin to the nonwoven fabric, for example, a coating machine such as a transfer roll coater, a reverse roll coater, a blade coater, an air doctor coater, a rod coater, a gravure coater, a die coater, or a notch bar coater can be used. Drying after impregnation or coating may be performed using a Yankee dryer, a cylinder dryer, an air dryer, an infrared heater, a far-infrared heater or the like alone or in combination.

熱圧処理の線圧としては、50〜2500N/cmが好ましく、100〜2000N/cmがより好ましい。熱圧処理の方法としては、所定の温度に加熱したロール間に不織布を通して加圧処理する方法、所定の温度に加熱したホットプレス機で所定時間加圧処理する方法が挙げられる。熱圧状態のときに、不織布表面及び内部に分布するポリオレフィン樹脂が溶融、流動して相互に接触し、熱圧状態から開放されて冷却される間に、ポリオレフィン樹脂の超極細糸ができ、繊維間やポリオレフィン樹脂間で橋架けを形成すると考えられる。熱圧処理に使用するロールは、金属−金属、金属−弾性の組み合わせの何れでも良い。熱処理温度がポリオレフィン樹脂の融点未満だと、ポリオレフィン樹脂が完全には溶融しないため、ポリオレフィン樹脂の超極細糸からなる橋架けが形成されにくく、湿式不織布の毛羽立ちがひどくなりやすい。融点+80℃を超えると、熱圧処理の際に、ロールやホットプレス機にポリオレフィン樹脂が張り付いて均一な熱圧処理ができない場合がある。   The linear pressure for the hot press treatment is preferably 50 to 2500 N / cm, more preferably 100 to 2000 N / cm. Examples of the hot pressure treatment method include a method in which a non-woven fabric is pressed between rolls heated to a predetermined temperature, and a method in which a pressure treatment is performed for a predetermined time with a hot press machine heated to a predetermined temperature. When the polyolefin resin distributed on the surface and inside of the nonwoven fabric melts and flows when in the hot-pressed state, they contact each other and are released from the hot-pressed state and cooled down to form superfine fibers of the polyolefin resin. It is considered that a bridge is formed between the resin and the polyolefin resin. The roll used for the hot press treatment may be any of metal-metal and metal-elastic combinations. When the heat treatment temperature is lower than the melting point of the polyolefin resin, the polyolefin resin is not completely melted, so that a bridge composed of superfine fibers of the polyolefin resin is not easily formed, and the fluff of the wet nonwoven fabric tends to be severe. If the melting point exceeds + 80 ° C., there may be a case where a polyolefin resin is stuck to a roll or a hot press machine during the hot-pressure treatment and uniform hot-pressure treatment cannot be performed.

本発明の不織布におけるポリオレフィン樹脂の含有率は、1〜40質量%が好ましく、5〜30質量%がより好ましい。1質量%未満では、橋架けの形成が不十分になる場合があり、40質量%より多いと、不織布の空隙を閉塞してしまう場合がある。   1-40 mass% is preferable and, as for the content rate of the polyolefin resin in the nonwoven fabric of this invention, 5-30 mass% is more preferable. If the amount is less than 1% by mass, the formation of the bridge may be insufficient. If the amount is more than 40% by mass, the voids of the nonwoven fabric may be blocked.

本発明における「繊維」とは、非フィブリル化繊維、フィブリル化繊維の何れも包含する。本発明の不織布は、非フィブリル化繊維を含有することが好ましい。非フィブリル化繊維は、不織布の引張強度や破断伸度を大きくし、取り扱い性を良くする効果がある。   The “fiber” in the present invention includes both non-fibrillated fibers and fibrillated fibers. The nonwoven fabric of the present invention preferably contains non-fibrillated fibers. Non-fibrillated fibers have the effect of increasing the tensile strength and breaking elongation of the nonwoven fabric and improving the handleability.

非フィブリル化繊維としては、天然繊維、再生繊維、合成繊維、無機繊維が挙げられる。天然繊維としては、木材由来のセルロース繊維、麻、綿、サトウキビなどの非木材由来のセルロース繊維、バイオセルロース繊維、羊毛、絹などが挙げられる。再生繊維としては、溶剤紡糸セルロース繊維やキュプラ繊維が挙げられる。合成繊維としては、ポリプロピレン、ポリエチレン、ポリメチルペンテン、ポリエステル、ポリエステル誘導体、アクリル系重合体、ポリ酢酸ビニル、エチレン−酢酸ビニル共重合体、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリビニルエーテル、ポリビニルケトン、ポリエーテル、ポリビニルアルコール、脂肪族ポリアミド、芳香族ポリアミド、全芳香族ポリアミド、全芳香族ポリエステル、ポリアミドイミド、ポリイミド、ポリエーテルエーテルケトン、ポリフェニレンスルフィド、ポリベンゾイミダゾール、ポリ−p−フェニレンベンゾビスチアゾール、ポリ−p−フェニレンベンゾビスオキサゾール、ポリテトラフルオロエチレン、これらの誘導体からなる単繊維、これら樹脂を2種類以上複合してなる複合繊維が挙げられる。   Non-fibrillated fibers include natural fibers, regenerated fibers, synthetic fibers, and inorganic fibers. Examples of natural fibers include cellulose fibers derived from wood, cellulose fibers derived from non-wood such as hemp, cotton, and sugarcane, biocellulose fibers, wool, and silk. Examples of regenerated fibers include solvent-spun cellulose fibers and cupra fibers. Synthetic fibers include polypropylene, polyethylene, polymethylpentene, polyester, polyester derivatives, acrylic polymers, polyvinyl acetate, ethylene-vinyl acetate copolymers, polyvinyl chloride, polyvinylidene chloride, polyvinyl ether, polyvinyl ketone, poly Ether, polyvinyl alcohol, aliphatic polyamide, aromatic polyamide, wholly aromatic polyamide, wholly aromatic polyester, polyamideimide, polyimide, polyetheretherketone, polyphenylene sulfide, polybenzimidazole, poly-p-phenylenebenzobisthiazole, poly Examples include -p-phenylenebenzobisoxazole, polytetrafluoroethylene, single fibers made of these derivatives, and composite fibers made by combining two or more of these resins.

本発明におけるアクリル系重合体とは、アクリロニトリル100%の重合体からなるもの、アクリロニトリルに対して、アクリル酸、メタクリル酸、アクリル酸エステル、メタクリル酸エステル等の(メタ)アクリル酸誘導体、酢酸ビニル等を共重合させたものを指す。ポリアミドとは、脂肪族ポリアミド、半芳香族ポリアミド、全芳香族ポリアミドを指す。芳香族ポリアミドとは、主鎖の一部に脂肪鎖等を有する芳香族ポリアミドを指す。   The acrylic polymer in the present invention is a polymer composed of 100% acrylonitrile, (meth) acrylic acid derivatives such as acrylic acid, methacrylic acid, acrylic acid ester, methacrylic acid ester, vinyl acetate, etc. with respect to acrylonitrile. Refers to a copolymer of Polyamide refers to aliphatic polyamide, semi-aromatic polyamide, and wholly aromatic polyamide. The aromatic polyamide refers to an aromatic polyamide having a fatty chain or the like in a part of the main chain.

本発明における無機繊維としては、シリカ・アルミナ繊維、アルミナ繊維、ガラス繊維、マイクロガラス繊維、ジルコニア繊維、窒化珪素繊維、炭化珪素繊維等が挙げられる。   Examples of the inorganic fiber in the present invention include silica / alumina fiber, alumina fiber, glass fiber, micro glass fiber, zirconia fiber, silicon nitride fiber, silicon carbide fiber and the like.

複合繊維としては、芯鞘型、偏芯型、サイドバイサイド型、海島型、オレンジ型、多重バイメタル型、分割型が挙げられる。分割型複合繊維としては、異なる成分からなる樹脂が相互に隣接してなる繊維や海島型繊維が挙げられる。前者はパルパーやミキサーなどで攪拌する方法や高圧水流を当てる方法により機械的に、後者は海成分の樹脂を薬品で溶出する方法により化学的に分割させて、極細繊維を得ることができる。前者の分割型複合繊維の断面形状としては、放射状型、層状型、櫛型、碁盤型などが挙げられる。分割型複合繊維の平均繊維径は3.0〜18.0μmが好ましく、6.0〜16.0μmがより好ましい。3.0μm未満だと、分割しにくくなる場合があり、18.0μmより太いと、分割後の極細繊維断面の長軸が長くなるため、不織布の空隙を閉塞する場合がある。   Examples of the composite fiber include a core-sheath type, an eccentric type, a side-by-side type, a sea-island type, an orange type, a multiple bimetal type, and a split type. Examples of the split type composite fiber include a fiber in which resins made of different components are adjacent to each other and a sea-island type fiber. The former is mechanically divided by a method of stirring with a pulper or a mixer or a method of applying a high-pressure water flow, and the latter is chemically divided by a method of eluting a resin as a sea component with a chemical to obtain ultrafine fibers. Examples of the cross-sectional shape of the former split type composite fiber include a radial type, a layered type, a comb type, and a grid type. The average fiber diameter of the split composite fibers is preferably 3.0 to 18.0 μm, more preferably 6.0 to 16.0 μm. If it is less than 3.0 μm, it may be difficult to divide, and if it is thicker than 18.0 μm, the long axis of the cross section of the ultrafine fiber after division becomes long, so that the void of the nonwoven fabric may be blocked.

非フィブリル化繊維の各々の平均繊維径は、0.1〜12.0μm以下が好ましく、0.5〜10.0μm以下がより好ましい。12.0μmより太いと、不織布の厚みを薄くしにくい場合がある。0.1μm未満だと、繊維の安定製造が困難になる。さらに、本発明の不織布は、平均繊維径5.0μm以下の非フィブリル化繊維を含有することが好ましい。5.0μm以下の非フィブリル化繊維は、ポリオレフィン樹脂粒子との凝集体を形成しやすく好ましい。平均繊維径とは、繊維断面の面積を真円の同じ面積の直径に換算した値を指す。非フィブリル化繊維の繊維長は、0.1〜10mmが好ましく、0.3〜6mmがより好ましい。繊維長が0.1mm未満だと、不織布の強度が不十分になる場合があり、10mmより長いと、繊維同士が撚れて地合斑や厚み斑を生じる場合がある。   The average fiber diameter of each non-fibrillated fiber is preferably 0.1 to 12.0 μm or less, and more preferably 0.5 to 10.0 μm or less. If it is thicker than 12.0 μm, it may be difficult to reduce the thickness of the nonwoven fabric. If it is less than 0.1 μm, stable production of fibers becomes difficult. Furthermore, it is preferable that the nonwoven fabric of the present invention contains non-fibrillated fibers having an average fiber diameter of 5.0 μm or less. Non-fibrillated fibers having a size of 5.0 μm or less are preferable because they easily form aggregates with polyolefin resin particles. An average fiber diameter refers to the value which converted the area of the fiber cross section into the diameter of the same area of a perfect circle. The fiber length of the non-fibrillated fiber is preferably 0.1 to 10 mm, and more preferably 0.3 to 6 mm. When the fiber length is less than 0.1 mm, the strength of the nonwoven fabric may be insufficient. When the fiber length is longer than 10 mm, the fibers may be twisted to form formation spots or thickness spots.

本発明においては、理論扁平度が1.0〜5.0の非フィブリル化繊維を含有することが好ましい。理論扁平度とは繊維断面の長軸の最大長さを短軸長さで除した値を意味する。理論扁平度が1.0〜5.0の非フィブリル化繊維とは、扁平の紡糸口から紡糸して得られる扁平繊維又は分割後に断面が扁平状となる分割型複合繊維を分割して得られる扁平繊維を意味する。直接紡糸して得られる扁平繊維の場合は、紡糸口の扁平度から理論扁平度を計算することができる。分割型複合繊維の場合は、分割前の分割型複合繊維の繊維径と分割数から理論扁平度を計算することができる。理論扁平度が5.0より大きいと、不織布の空隙を閉塞する場合がある。理論扁平度1.0〜5.0の非フィブリル化繊維の断面の短軸長さは、1.0〜5.0μmであることが好ましく、1.0〜3.0μmであることがより好ましい。1.0μm未満だと、断面の理論扁平度が大きくなりすぎて、不織布の空隙を閉塞する場合があり、5.0μmを超えると、不織布の厚みを薄くしにくくなる場合がある。短軸長さとは、扁平繊維断面の短軸方向の最大長さを意味する。扁平繊維の理論扁平度は、1.5〜3.0がより好ましい。   In the present invention, it is preferable to contain non-fibrillated fibers having a theoretical flatness of 1.0 to 5.0. The theoretical flatness means a value obtained by dividing the maximum length of the major axis of the fiber cross section by the minor axis length. A non-fibrillated fiber having a theoretical flatness of 1.0 to 5.0 is obtained by dividing a flat fiber obtained by spinning from a flat spinning nozzle or a split type composite fiber having a flat cross section after splitting. Means flat fibers. In the case of flat fibers obtained by direct spinning, the theoretical flatness can be calculated from the flatness of the spinneret. In the case of a split type composite fiber, the theoretical flatness can be calculated from the fiber diameter and the number of splits of the split type composite fiber before splitting. When the theoretical flatness is larger than 5.0, the voids of the nonwoven fabric may be blocked. The minor axis length of the cross section of the non-fibrillated fiber having a theoretical flatness of 1.0 to 5.0 is preferably 1.0 to 5.0 μm, and more preferably 1.0 to 3.0 μm. . If it is less than 1.0 μm, the theoretical flatness of the cross section becomes too large, and the voids of the nonwoven fabric may be blocked. If it exceeds 5.0 μm, it may be difficult to reduce the thickness of the nonwoven fabric. The minor axis length means the maximum length in the minor axis direction of the flat fiber cross section. The theoretical flatness of the flat fibers is more preferably 1.5 to 3.0.

本発明の不織布における非フィブリル化繊維の含有率は、5〜95質量%が好ましく、10〜90質量%がより好ましく、15〜80質量%がさらに好ましい。5質量%未満だと、引張強度が弱くなる場合や破断しやすくなる場合があり、95質量%を超えると、毛羽立ちやすくなる場合がある。   5-95 mass% is preferable, as for the content rate of the non-fibrillated fiber in the nonwoven fabric of this invention, 10-90 mass% is more preferable, and 15-80 mass% is further more preferable. If it is less than 5% by mass, the tensile strength may be weakened or may be easily broken, and if it exceeds 95% by mass, it may be easily fuzzed.

本発明の不織布における非フィブリル化繊維全体に対する、平均繊維径5.0μm以下の非フィブリル化繊維及び理論扁平度1.0〜5.0の非フィブリル化繊維の合計含有率は、25〜100質量%が好ましく、50〜100質量%がより好ましい。25質量%未満だと、ポリオレフィン樹脂の超極細糸からなる橋架けが形成されにくくなる場合がある。   The total content of non-fibrillated fibers having an average fiber diameter of 5.0 μm or less and non-fibrillated fibers having a theoretical flatness of 1.0 to 5.0 is 25 to 100 mass with respect to the entire non-fibrillated fibers in the nonwoven fabric of the present invention. % Is preferable, and 50 to 100% by mass is more preferable. If it is less than 25% by mass, it may be difficult to form a bridge made of a superfine fiber of polyolefin resin.

本発明の不織布は、フィブリル化繊維を含有することが好ましい。不織布が、フィブリル化繊維を含有し、非フィブリル化繊維を含有しない場合は、厚みをより薄くし、より高密度にすることができる。本発明では、不織布が非フィブリル化繊維とフィブリル化繊維の両方を含有する場合に、フィブリル化繊維は非フィブリル化繊維に巻きつき、さらに、ポリオレフィン樹脂の超極細糸からなる橋架けとの相乗効果により、フィブリル化繊維を含有しない場合よりも、毛羽が発生しにくいことを見出した。本発明に用いられるフィブリル化繊維としては、天然繊維や再生繊維や合成繊維をフィブリル化してなる繊維、バクテリアセルロース繊維が挙げられる。フィブリル化繊維のフィブリル化の程度としては、JIS P8121に規定されるカナダ標準濾水度が0〜600mlであることが好ましく、0〜400mlであることがより好ましい。カナダ標準濾水度が600mlより大きいと、繊維径分布が広くなり、不織布の地合斑や厚み斑を生じる場合がある。   The nonwoven fabric of the present invention preferably contains fibrillated fibers. When the non-woven fabric contains fibrillated fibers and does not contain non-fibrillated fibers, the thickness can be reduced and the density can be increased. In the present invention, when the non-woven fabric contains both non-fibrillated fibers and fibrillated fibers, the fibrillated fibers are wound around the non-fibrillated fibers, and further, a synergistic effect with a bridge made of polyolefin resin superfine fibers. Thus, it was found that fluff is less likely to occur than when no fibrillated fiber is contained. Examples of the fibrillated fibers used in the present invention include fibers formed by fibrillating natural fibers, regenerated fibers, and synthetic fibers, and bacterial cellulose fibers. As the degree of fibrillation of the fibrillated fiber, the Canadian standard freeness specified in JIS P8121 is preferably 0 to 600 ml, and more preferably 0 to 400 ml. When the Canadian standard freeness is larger than 600 ml, the fiber diameter distribution becomes wide, and there may be formation unevenness or thickness unevenness of the nonwoven fabric.

フィブリル化繊維は、フィブリル化の程度がある程度以上になるとカナダ標準濾水度の測定に用いるふるい板の穴を通り抜けてしまうため、濾水度が異常に高くなり、正確な濾水度を計測できない。その場合は、本発明においては変法濾水度を採用する。本発明における変法濾水度とは、ふるい板として線径0.14mm、目開き0.18mmの80メッシュ金網を用い、試料濃度0.1質量%にした以外はJIS P8121に準拠して測定した濾水度である。本発明に用いられるフィブリル化繊維の変法濾水度は、0〜400mlであることが好ましく、0〜300mlであることがより好ましい。400mlを超えると、太い繊維径の割合が多くなるため、不織布の地合斑や厚み斑が生じる場合がある。本発明においては、フィブリル化繊維は1種類だけでも良いし、2種類以上併用しても良い。2種類以上併用する場合は、不織布の地合斑や厚み斑を生じない範囲であれば、カナダ標準濾水度又は変法濾水度が好ましい値ではないフィブリル化繊維を用いても良い。   When the degree of fibrillation exceeds a certain level, fibrillated fibers pass through the holes in the sieve plate used to measure Canadian standard freeness, resulting in abnormally high freeness and inaccurate freeness measurement. . In that case, modified freeness is adopted in the present invention. The modified freeness in the present invention is measured in accordance with JIS P811, except that an 80 mesh wire net having a wire diameter of 0.14 mm and an aperture of 0.18 mm is used as a sieve plate, and the sample concentration is 0.1% by mass. Freeness. The modified freeness of the fibrillated fiber used in the present invention is preferably 0 to 400 ml, more preferably 0 to 300 ml. If it exceeds 400 ml, the ratio of the thick fiber diameter increases, so that there may be formation unevenness or thickness unevenness of the nonwoven fabric. In the present invention, only one type of fibrillated fiber may be used, or two or more types may be used in combination. When two or more types are used in combination, fibrillated fibers whose Canadian freeness or modified freeness is not a preferable value may be used as long as they do not cause unevenness or thickness unevenness of the nonwoven fabric.

従って、本発明におけるフィブリル化繊維は、カナダ標準濾水度が0〜600mlの範囲にあるか、変法濾水度が0〜400mlの範囲にあれば、好ましく用いられる。一般的にカナダ標準濾水度よりも変法濾水度の方が大きな数値になる。例えば、表2に示したフィブリル化繊維において、F7は変法濾水度よりもカナダ標準濾水度の方が大きな数値を示している。これはフィブリル化繊維の繊維長が短く、カナダ標準濾水度のふるい板をすり抜けてしまったため、正確なカナダ標準濾水度を示していないことを意味する。   Therefore, the fibrillated fiber in the present invention is preferably used if the Canadian standard freeness is in the range of 0 to 600 ml or the modified freeness is in the range of 0 to 400 ml. In general, the modified freeness value is larger than the Canadian standard freeness value. For example, in the fibrillated fibers shown in Table 2, F7 shows a larger value for the Canadian standard freeness than for the modified freeness. This means that the fiber length of the fibrillated fiber is short and slips through the sieve plate of Canadian standard freeness, so that it does not show accurate Canadian standard freeness.

本発明におけるフィブリル化繊維としては、全芳香族ポリアミドや全芳香族ポリエステルからなるフィブリル化繊維が、ポリオレフィン樹脂粒子との凝集能力に優れるため好ましい。   As the fibrillated fiber in the present invention, a fibrillated fiber made of wholly aromatic polyamide or wholly aromatic polyester is preferable because of its excellent ability to aggregate with polyolefin resin particles.

本発明の不織布におけるフィブリル化繊維の含有率は、5〜70質量%が好ましく、10〜60質量%がより好ましい。5質量%未満だと、ポリオレフィン樹脂粒子との凝集体形成能が不十分になる場合があり、70質量%を超えると引張強度が弱くなる場合がある。   5-70 mass% is preferable and, as for the content rate of the fibrillated fiber in the nonwoven fabric of this invention, 10-60 mass% is more preferable. If it is less than 5% by mass, the ability to form aggregates with the polyolefin resin particles may be insufficient, and if it exceeds 70% by mass, the tensile strength may be weakened.

本発明の不織布は、金属酸化物、金属水酸化物、金属窒化物、金属ホウ化物、金属炭化物、金属炭酸物、金属、炭素化合物などの無機フィラーを含有しても良い。無機フィラーは、不織布に熱伝導性、電気伝導性、絶縁性、ガス吸着性、イオン吸着性、水分吸着性、イオン交換性、脱臭性、熱交換性、放熱性、抗菌性、耐熱性などの機能を付与できるため好ましい。本発明の不織布における無機フィラーの含有率は、1〜50質量%が好ましく、5〜30質量%がより好ましい。1質量%未満だと、無機フィラーの添加効果が現れにくい場合がある。50質量%より多いと、不織布の引張強度が弱くなる場合がある。   The nonwoven fabric of the present invention may contain inorganic fillers such as metal oxides, metal hydroxides, metal nitrides, metal borides, metal carbides, metal carbonates, metals, and carbon compounds. Inorganic filler is a non-woven fabric with thermal conductivity, electrical conductivity, insulation, gas adsorption, ion adsorption, moisture adsorption, ion exchange, deodorization, heat exchange, heat dissipation, antibacterial, heat resistance, etc. Since a function can be provided, it is preferable. 1-50 mass% is preferable and, as for the content rate of the inorganic filler in the nonwoven fabric of this invention, 5-30 mass% is more preferable. If it is less than 1% by mass, the effect of adding an inorganic filler may be difficult to appear. When it is more than 50% by mass, the tensile strength of the nonwoven fabric may be weakened.

本発明に用いられる凝集剤としては、ポリアミン、ポリアクリルアミド、アルギン酸ナトリウム、ジシアンアミドなどの有機系凝集剤、硫酸バンド、硫酸第二鉄、ポリ硫酸第二鉄、硫酸カルシウム、塩化第二鉄、ポリ塩化アルミニウムなどの無機系凝集剤が挙げられ、有機系凝集剤単独でも無機系凝集剤単独でも良く、有機系と無機系凝集剤を併用しても良い。有機系凝集剤は、ナトリウム塩やカリウム塩などの塩を含有するものでも良い。凝集剤の作用力を強めるためにスラリーのpHを調整しても良い。pH調整剤としては、水酸化ナトリウム、水酸化カリウム、水酸化リチウム、水酸化マグネシウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、二酸化炭素、アンモニア、クエン酸、グルコン酸、コハク酸、乳酸、フマル酸などが挙げられる。凝集剤の添加量としては、固形分に換算してスラリーの固形分に対して0.1〜30質量%が好ましく、0.4〜20質量%がより好ましい。凝集剤の添加量が、固形分に換算して0.1質量%未満では、原料スラリーの凝集が不十分になる場合があり、30質量%より多く添加しても凝集効果は変わらない場合がある。   As the flocculant used in the present invention, organic flocculants such as polyamine, polyacrylamide, sodium alginate, dicyanamide, sulfate band, ferric sulfate, polyferric sulfate, calcium sulfate, ferric chloride, polychlorinated Examples include inorganic flocculants such as aluminum, and organic flocculants alone or inorganic flocculants alone may be used, and organic and inorganic flocculants may be used in combination. The organic flocculant may contain a salt such as sodium salt or potassium salt. The pH of the slurry may be adjusted to increase the acting force of the flocculant. pH adjusters include sodium hydroxide, potassium hydroxide, lithium hydroxide, magnesium hydroxide, sodium carbonate, potassium carbonate, sodium bicarbonate, carbon dioxide, ammonia, citric acid, gluconic acid, succinic acid, lactic acid, fumaric acid Etc. The addition amount of the flocculant is preferably 0.1 to 30% by mass and more preferably 0.4 to 20% by mass with respect to the solid content of the slurry in terms of solid content. If the addition amount of the flocculant is less than 0.1% by mass in terms of solid content, the raw material slurry may be insufficiently agglomerated, and even if added more than 30% by mass, the agglomeration effect may not change. is there.

本発明に用いられる増粘剤としては、アルギン酸、アルギン酸ナトリウム、アルブミン、カゼイン、でんぷん、多糖類、寒天、カルボキシメチルセルロースナトリウム、カルボキメチルセルロースカルシウム、ポリアクリル酸、ポリアクリル酸ナトリウム、アクリル酸/アクリル酸アルキル共重合体、アクリルアミド/アクリル酸共重合体、カルボキシビニルポリマー、ジメチルジステアリルアンモニウムヘクトライト、ビニル系化合物、ビニリデン系化合物、ポリエステル系化合物、ポリエーテル系化合物、ポリグリコール系化合物などが挙げられる。増粘剤の添加量としては、固形分に換算して原料スラリーの全固形分に対して0.1〜10質量%が好ましく、0.3〜5質量%がより好ましい。増粘剤の添加量が、固形分に換算して0.1質量%未満では、凝集体同士の結合が弱い場合があり、10質量%を超えると、凝集体が大きくなりすぎて、不織布の地合が不均一になる場合がある。   Examples of the thickener used in the present invention include alginic acid, sodium alginate, albumin, casein, starch, polysaccharide, agar, sodium carboxymethylcellulose, calcium carboxymethylcellulose, polyacrylic acid, sodium polyacrylate, acrylic acid / alkyl acrylate. Examples include copolymers, acrylamide / acrylic acid copolymers, carboxyvinyl polymers, dimethyl distearyl ammonium hectorite, vinyl compounds, vinylidene compounds, polyester compounds, polyether compounds, and polyglycol compounds. As addition amount of a thickener, 0.1-10 mass% is preferable with respect to the total solid of raw material slurry in conversion to solid content, and 0.3-5 mass% is more preferable. When the addition amount of the thickener is less than 0.1% by mass in terms of solid content, the bonds between the aggregates may be weak. When the amount exceeds 10% by mass, the aggregates become too large, The formation may be uneven.

本発明に用いられる紙力増強剤としては、アニオン性ポリアクリルアミド、カチオン性ポリアクリルアミド、両性ポリアクリルアミド、エポキシ変性ポリアミドなどが挙げられる。紙力増強剤は、スラリーの固形分に対して1〜10質量%が好ましい。1質量%未満では、紙力増強剤の添加効果が現れない場合があり、10質量%より多く添加しても、不織布の強度が飽和する場合がある。   Examples of the paper strength enhancer used in the present invention include anionic polyacrylamide, cationic polyacrylamide, amphoteric polyacrylamide, and epoxy-modified polyamide. The paper strength enhancer is preferably 1 to 10% by mass based on the solid content of the slurry. If it is less than 1% by mass, the effect of adding a paper strength enhancer may not appear, and even if it is added more than 10% by mass, the strength of the nonwoven fabric may be saturated.

本発明における不織布は、単層でも多層でも良い。多層とは、構成材料、配合率、坪量などが全て同じである層を2層以上積層したもの、構成材料、配合率、坪量などの条件が1つ以上異なる層を2層以上積層したものを指す。多層の不織布を作製するには、円網抄紙機、長網抄紙機、短網抄紙機、傾斜型抄紙機、傾斜短網抄紙機の中から同種または異種の抄紙機を組み合わせてなるコンビネーション抄紙機を用いて多層抄紙する方法、不織布を積層して熱圧処理して接着させる方法、不織布間に熱溶融材料を配置して熱圧処理して接着させる方法が挙げられる。湿式抄紙の場合は、傾斜型抄紙機や傾斜短網抄紙機の抄網へのスラリー供給を多段にしたもので多層抄紙しても良い。本発明においては、湿式抄紙した後や多層にした後に、必要に応じてカレンダー処理、熱カレンダー処理、熱処理などを施しても良い。   The nonwoven fabric in the present invention may be a single layer or multiple layers. Multi-layer means that two or more layers having the same constituent material, blending ratio, basis weight, etc. are laminated, and two or more layers having different conditions such as constituent material, blending ratio, basis weight, etc. are laminated. Refers to things. To make a multilayer nonwoven fabric, a combination paper machine consisting of a circular paper machine, a long paper machine, a short paper machine, a slanted paper machine, or a slanted short paper machine and the same or different types of paper machines. A method of making a multilayer paper using, a method of laminating non-woven fabrics and bonding them by hot pressing, and a method of placing hot-melt materials between the non-woven fabrics and bonding them by hot pressing. In the case of wet papermaking, multi-layer papermaking may be used in which slurries are supplied to the papermaking net of a slanted paper machine or a slanted short paper machine. In the present invention, after wet papermaking or multi-layering, calendering, thermal calendering, heat treatment and the like may be performed as necessary.

図1〜3、5〜8は、本発明の実施例で作製した不織布の断面の電子顕微鏡写真の一例である。ポリオレフィン樹脂の超極細糸からなる橋架けが形成されており、不織布断面において、長さ50μm×断面厚み×深さ5μmあたりに十数本〜数十本確認できる。また、不織布断面において、ポリオレフィン樹脂の占有率は低く、繊維間の空隙が残っていることがわかる。図4は、本発明の実施例で作製した不織布の表面の電子顕微鏡写真の一例である。ポリオレフィン樹脂の超極細糸からなる橋架けが形成されている。本発明においては、図4のような不織布表面の橋架けは必須ではない。   1 to 3 and 5 to 8 are examples of electron micrographs of cross sections of the nonwoven fabrics produced in the examples of the present invention. A bridge made of superfine fibers of polyolefin resin is formed, and in the cross section of the nonwoven fabric, 10 to several tens of fibers can be confirmed per length of 50 μm × section thickness × depth of 5 μm. Moreover, in the nonwoven fabric cross section, it can be seen that the occupation ratio of the polyolefin resin is low, and voids between the fibers remain. FIG. 4 is an example of an electron micrograph of the surface of the nonwoven fabric produced in the example of the present invention. A bridge made of superfine fibers of polyolefin resin is formed. In the present invention, it is not essential to bridge the nonwoven fabric surface as shown in FIG.

図9は、本発明外の不織布の断面の電子顕微鏡写真の一例である。通常の湿式抄紙法で作製されており、ポリオレフィン樹脂を含有しないため、ポリオレフィン樹脂の超極細糸からなる橋架けが存在しない。図10、12は、本発明外の不織布の断面の電子顕微鏡写真の一例である。ポリオレフィン樹脂粒子を塗工し、ポリオレフィン樹脂の融点未満の温度で乾燥させた後、ポリオレフィン樹脂の融点未満の温度で熱圧処理したもので、ポリオレフィン樹脂の超極細糸からなる橋架けが存在しないことがわかる。図11、13は、本発明外の不織布の表面の電子顕微鏡写真の一例である。図11は、図10の不織布の表面で、図13は、図12の不織布の表面である。どちらも粒子形状のポリオレフィン樹脂が、繊維間の隙間に残存しており、且つ、ポリオレフィン樹脂が繊維を被覆して、繊維間隙の大部分を閉塞していることがわかる。   FIG. 9 is an example of an electron micrograph of a cross section of a non-woven fabric outside the present invention. Since it is produced by a normal wet papermaking method and does not contain a polyolefin resin, there is no bridge made of superfine fibers of polyolefin resin. 10 and 12 are examples of electron micrographs of a cross section of a nonwoven fabric outside the present invention. The polyolefin resin particles are applied, dried at a temperature below the melting point of the polyolefin resin, and then hot-pressed at a temperature below the melting point of the polyolefin resin, and there is no bridge made of super fine fibers of the polyolefin resin. I understand. 11 and 13 are examples of electron micrographs of the surface of the nonwoven fabric outside the present invention. 11 is the surface of the nonwoven fabric of FIG. 10, and FIG. 13 is the surface of the nonwoven fabric of FIG. In both cases, it can be seen that the polyolefin resin in the form of particles remains in the gaps between the fibers, and the polyolefin resin covers the fibers and closes most of the fiber gaps.

本発明の不織布の厚みは、5〜500μmが好ましく、10〜100μmがより好ましい。500μmを超えると、厚みむらが大きくなる場合がある。5μm未満であると、強度が不十分になる場合がある。本発明の不織布の密度は、0.250〜0.800g/cmが好ましく、0.300〜0.750g/cmがより好ましく、0.400〜0.700g/cmがさらに好ましい。 5-500 micrometers is preferable and, as for the thickness of the nonwoven fabric of this invention, 10-100 micrometers is more preferable. If it exceeds 500 μm, the thickness unevenness may increase. If it is less than 5 μm, the strength may be insufficient. Density of the nonwoven fabric of the present invention is preferably 0.250~0.800g / cm 3, more preferably 0.300~0.750g / cm 3, more preferably 0.400~0.700g / cm 3.

本発明の不織布の引張強度は、400N/m以上が好ましく、500N/m以上がより好ましく、600N/m以上がさらに好ましい。破断伸度は、3%以上が好ましく、4%以上がより好ましく、5%以上がさらに好ましい。引張強度が400N/m未満だと、取り扱い時に切断しやすい場合がある。破断伸度が3%未満だと、取り扱い時に切断しやすい場合がある。   The tensile strength of the nonwoven fabric of the present invention is preferably 400 N / m or more, more preferably 500 N / m or more, and still more preferably 600 N / m or more. The breaking elongation is preferably 3% or more, more preferably 4% or more, and further preferably 5% or more. If the tensile strength is less than 400 N / m, it may be easily cut during handling. If the elongation at break is less than 3%, it may be easy to cut during handling.

以下、本発明を実施例によりさらに詳細に説明するが、本発明は本実施例に限定されるものではない。表1に、本発明の実施例で用いたポリオレフィン樹脂を示した。表1中のP1〜P3はエチレン・αオレフィンコポリマー粒子、P4、P6は低密度ポリエチレン粒子、P5は高密度ポリエチレン粒子である。P1〜P4の水分散液は、湿式抄紙する直前にミキサーで攪拌して、ポリオレフィン樹脂を均一に分散させて使用した。   EXAMPLES Hereinafter, although an Example demonstrates this invention further in detail, this invention is not limited to a present Example. Table 1 shows the polyolefin resins used in the examples of the present invention. In Table 1, P1 to P3 are ethylene / α-olefin copolymer particles, P4 and P6 are low density polyethylene particles, and P5 is high density polyethylene particles. The aqueous dispersions of P1 to P4 were used by stirring with a mixer immediately before wet papermaking to uniformly disperse the polyolefin resin.

表2に、本発明の実施例及び比較例で用いたフィブリル化繊維及び非フィブリル化繊維を示した。表2中の「PET」はポリエチレンテレフタレート、「EVOH」はエチレン−ビニルアルコール共重合体、「PP」はポリプロピレン、「PE」は高密度ポリエチレンを意味する。「変性PET」は、ポリエステル誘導体を意味し、ポリエチレンテレフタレートよりも低融点である。表2のN15〜N19における「断面形状」において、左側は分割前の断面形状であり、右側は分割後の断面形状である。表3に本発明の実施例で作製した不織布の原料スラリーの配合率を示した。表3の「M1」は、無機フィラーとして、平均粒子径0.6μmの酸化マグネシウムを意味する。表4に本発明の実施例及び比較例で作製した不織布の原料スラリーの配合率を示した。表3及び表4の「原料」で使用されている記号は、表1及び表2の記号に該当する。表3及び表4のポリオレフィン樹脂の配合率は固形分の量を意味する。表5の熱処理温度と熱処理線圧の「−」は、それぞれ加熱、加圧しなかったことを意味する。   Table 2 shows the fibrillated fibers and non-fibrillated fibers used in Examples and Comparative Examples of the present invention. In Table 2, “PET” means polyethylene terephthalate, “EVOH” means ethylene-vinyl alcohol copolymer, “PP” means polypropylene, and “PE” means high density polyethylene. “Modified PET” means a polyester derivative and has a lower melting point than polyethylene terephthalate. In “Cross-sectional shape” in N15 to N19 in Table 2, the left side is the cross-sectional shape before division, and the right side is the cross-sectional shape after division. Table 3 shows the blending ratio of the raw material slurry of the nonwoven fabric produced in the examples of the present invention. “M1” in Table 3 means magnesium oxide having an average particle diameter of 0.6 μm as an inorganic filler. Table 4 shows the blending ratio of the raw material slurry of the nonwoven fabric produced in the examples and comparative examples of the present invention. The symbols used in the “raw materials” in Tables 3 and 4 correspond to the symbols in Tables 1 and 2. The blending ratio of the polyolefin resin in Table 3 and Table 4 means the amount of solid content. “−” In the heat treatment temperature and the heat treatment linear pressure in Table 5 means that heating and pressurization were not performed, respectively.

(実施例1)
スラリー1の配合率になるように、P1、N1、N2、N3、N5を計量した。N1、N2、N3、N5を一緒にパルパーで水に分散させた後、P1の水分散液を混合攪拌して、ポリオレフィン樹脂粒子と非フィブリル化繊維との凝集体を形成させ、スラリー1を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。スラリー1を傾斜型抄紙機に送液し、湿式抄紙し、ヤンキードライヤー温度を120℃にして乾燥させた。次いで、110℃、線圧400N/cmで熱圧処理し、実施例1の不織布を作製した。
Example 1
P1, N1, N2, N3, and N5 were weighed so that the blending ratio of slurry 1 was obtained. After N1, N2, N3, and N5 are dispersed in water with a pulper, the aqueous dispersion of P1 is mixed and stirred to form an aggregate of polyolefin resin particles and non-fibrillated fibers, thereby preparing slurry 1 did. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. Slurry 1 was fed to an inclined paper machine, wet-made, and dried at a Yankee dryer temperature of 120 ° C. Subsequently, the nonwoven fabric of Example 1 was produced by heat-pressure treatment at 110 ° C. and a linear pressure of 400 N / cm.

(実施例2)
スラリー2の配合率になるように、P1、N3、N15を計量した。N3とN15を一緒にパルパーで水に分散させた後、P1の水分散液を混合攪拌して、ポリオレフィン樹脂粒子と非フィブリル化繊維との凝集体を形成させ、スラリー2を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。N15の分割型複合繊維は、ほぼ分割していることを確認した。スラリー2を傾斜型抄紙機に送液し、湿式抄紙し、ヤンキードライヤー温度を130℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例2の不織布を作製した。
(Example 2)
P1, N3, and N15 were weighed so that the blending ratio of slurry 2 was obtained. After N3 and N15 were dispersed together in water with a pulper, the aqueous dispersion of P1 was mixed and stirred to form aggregates of polyolefin resin particles and non-fibrillated fibers, whereby slurry 2 was prepared. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. It was confirmed that the split composite fiber of N15 was almost split. The slurry 2 was fed to a slanted paper machine, wet-made, and dried at a Yankee dryer temperature of 130 ° C., followed by hot-pressure treatment according to the heat treatment temperature and heat treatment linear pressure conditions shown in Table 5. 2 nonwoven fabrics were produced.

(実施例3〜7)
スラリー2を用いて実施例2と同様にして湿式抄紙及び乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例3〜7の不織布を作製した。
(Examples 3 to 7)
After making wet papermaking and drying using the slurry 2 in the same manner as in Example 2, heat treatment was performed according to the heat treatment temperature and heat treatment linear pressure conditions shown in Table 5 to produce nonwoven fabrics of Examples 3 to 7.

(実施例8)
スラリー2を傾斜型抄紙機に送液し、湿式抄紙し、エアードライヤー温度を70℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例8の不織布を作製した。
(Example 8)
The slurry 2 was fed to an inclined paper machine, wet-made, and dried at an air dryer temperature of 70 ° C., and then subjected to hot-pressure treatment according to the conditions of heat treatment temperature and heat treatment linear pressure shown in Table 5. 8 nonwoven fabrics were produced.

(実施例9)
スラリー3の配合率になるように、P2、N8、N12を計量した。N8とN12を一緒にパルパーで水に分散させた後、P2の水分散液を混合攪拌して、ポリオレフィン樹脂粒子と非フィブリル化繊維との凝集体を形成させ、スラリー3を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。スラリー3を円網型抄紙機に送液し、湿式抄紙し、ヤンキードライヤー温度を120℃にして乾燥させた。次いで、表5に示した熱処理温度及び熱処理線圧に従って熱圧処理し、実施例9の不織布を作製した。
Example 9
P2, N8, and N12 were weighed so that the blending ratio of slurry 3 was obtained. N8 and N12 were dispersed together in water with a pulper, and then the P2 aqueous dispersion was mixed and stirred to form aggregates of polyolefin resin particles and non-fibrillated fibers, whereby slurry 3 was prepared. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. Slurry 3 was fed to a circular net type paper machine, wet-made, and dried at a Yankee dryer temperature of 120 ° C. Next, heat treatment was performed according to the heat treatment temperature and the heat treatment linear pressure shown in Table 5, and the nonwoven fabric of Example 9 was produced.

(実施例10)
スラリー4の配合率になるように、P2、N3、N16を計量した。N3とN16を一緒にパルパーで水に分散させた後、P2の水分散液を混合攪拌して、ポリオレフィン樹脂粒子と非フィブリル化繊維との凝集体を形成させ、スラリー4を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。N16の分割型複合繊維は、ほぼ分割していることを確認した。スラリー4を用いて実施例2と同様にして湿式抄紙及び乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例10の不織布を作製した。
(Example 10)
P2, N3, and N16 were weighed so that the blending ratio of slurry 4 was obtained. N3 and N16 were dispersed together in water with a pulper, and then the P2 aqueous dispersion was mixed and stirred to form aggregates of polyolefin resin particles and non-fibrillated fibers, whereby slurry 4 was prepared. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. It was confirmed that the split composite fiber of N16 was almost split. After wet papermaking and drying using the slurry 4 in the same manner as in Example 2, heat treatment was performed according to the heat treatment temperature and heat treatment linear pressure conditions shown in Table 5 to produce the nonwoven fabric of Example 10.

(実施例11、12)
スラリー5、6をスラリー3と同様にして調製した。スラリー5、6を用いて実施例9と同様にして湿式抄紙及び乾燥させた後、表5に示した熱圧処理温度と熱圧処理線圧の条件に従って熱圧処理し、実施例11、12の不織布を作製した。
(Examples 11 and 12)
Slurries 5 and 6 were prepared in the same manner as slurry 3. After wet papermaking and drying in the same manner as in Example 9 using Slurries 5 and 6, heat-pressure treatment was performed according to the conditions of the hot-pressure treatment temperature and the hot-pressure treatment linear pressure shown in Table 5, and Examples 11 and 12 were used. A non-woven fabric was prepared.

(実施例13〜15)
スラリー7の配合率になるように、P3とN3を計量した。N3をパルパーで水に分散させた後、P3の水分散液を混合攪拌して、ポリオレフィン樹脂粒子と非フィブリル化繊維との凝集体を形成させ、スラリー7を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。スラリー7を用いて実施例9と同様にして湿式抄紙及び乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例13〜15の不織布を作製した。
(Examples 13 to 15)
P3 and N3 were weighed so that the blending ratio of slurry 7 was obtained. After N3 was dispersed in water with a pulper, the aqueous dispersion of P3 was mixed and stirred to form an aggregate of polyolefin resin particles and non-fibrillated fibers, whereby slurry 7 was prepared. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. Wet papermaking and drying were carried out using slurry 7 in the same manner as in Example 9, and then heat-pressed according to the conditions of heat treatment temperature and heat treatment linear pressure shown in Table 5 to produce nonwoven fabrics of Examples 13-15.

(実施例16〜18)
スラリー8の配合率になるように、P4、N8、N16を計量した。N8とN16を一緒にパルパーで水に分散させた後、P4の水分散液を混合攪拌して、ポリオレフィン樹脂粒子と非フィブリル化繊維との凝集体を形成させ、スラリー8を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。N16の分割型複合繊維は、ほぼ分割していることを確認した。スラリー8を用いて実施例2と同様にして湿式抄紙及び乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例16〜18の不織布を作製した。
(Examples 16 to 18)
P4, N8, and N16 were weighed so that the blending ratio of slurry 8 was obtained. After N8 and N16 were dispersed together in water using a pulper, the P4 aqueous dispersion was mixed and stirred to form aggregates of polyolefin resin particles and non-fibrillated fibers, whereby slurry 8 was prepared. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. It was confirmed that the split composite fiber of N16 was almost split. After wet papermaking and drying using slurry 8 in the same manner as in Example 2, thermal pressing was performed according to the heat treatment temperature and heat treatment linear pressure conditions shown in Table 5 to produce nonwoven fabrics of Examples 16-18.

(実施例19)
スラリー9の配合率になるように、P1、F1、N3、N15を計量した。F1をパルパーで水に分散させた後、P1の水分散液を混合攪拌して、ポリオレフィン樹脂粒子とフィブリル化繊維との凝集体を形成させたスラリーを調製した。これに、パルパーで水に分散させたN3とN15を混合攪拌し、スラリー9を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。N15の分割型複合繊維は、ほぼ分割していることを確認した。スラリー9を、傾斜型抄紙機と円網抄紙機のコンビネーション抄紙機へ送液して湿式抄紙し、ヤンキードライヤー温度を120℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例19の不織布を作製した。
(Example 19)
P1, F1, N3, and N15 were weighed so that the blending ratio of the slurry 9 was obtained. After F1 was dispersed in water with a pulper, the P1 aqueous dispersion was mixed and stirred to prepare a slurry in which an aggregate of polyolefin resin particles and fibrillated fibers was formed. To this, N3 and N15 dispersed in water with a pulper were mixed and stirred to prepare slurry 9. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. It was confirmed that the split composite fiber of N15 was almost split. Slurry 9 is fed to a combination paper machine of inclined type paper machine and circular paper machine, wet papermaking, dried at a Yankee dryer temperature of 120 ° C., and then subjected to the heat treatment temperature and heat treatment linear pressure shown in Table 5. The nonwoven fabric of Example 19 was produced by heat-pressure treatment according to the above conditions.

(実施例20、22、24〜26、29、31〜33)
スラリー10、12、14、15、17、19〜21をスラリー9と同様にして調製した。何れのスラリーにおいても、分割型複合繊維は、ほぼ分割していることを確認した。スラリー10、12、14、15、17、19〜21を用いて、実施例19と同様にして湿式抄紙及び乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例20、22、24〜26、29、31〜33の不織布を作製した。
(Examples 20, 22, 24-26, 29, 31-33)
Slurries 10, 12, 14, 15, 17, 19-21 were prepared in the same manner as slurry 9. In any of the slurries, it was confirmed that the split type composite fibers were almost split. Using slurry 10, 12, 14, 15, 17, 19-21, wet papermaking and drying were carried out in the same manner as in Example 19, followed by heat pressure treatment according to the conditions of heat treatment temperature and heat treatment linear pressure shown in Table 5. And the nonwoven fabric of Examples 20, 22, 24-26, 29, 31-33 was produced.

(実施例21)
スラリー11の配合率になるように、P1、F8、N7を計量した。F8をパルパーで水に分散させた後、P1の水分散液を混合攪拌して、ポリオレフィン樹脂粒子とフィブリル化繊維との凝集体を形成させたスラリーを調製した。これに、パルパーで水に分散させたN7を混合攪拌し、スラリー11を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。スラリー11を傾斜型抄紙機と円網抄紙機のコンビネーション抄紙機に送液して湿式抄紙し、ヤンキードライヤー温度を110℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例21の不織布を作製した。
(Example 21)
P1, F8, and N7 were weighed so that the blending ratio of the slurry 11 was obtained. After dispersing F8 in water with a pulper, the aqueous dispersion of P1 was mixed and stirred to prepare a slurry in which an aggregate of polyolefin resin particles and fibrillated fibers was formed. To this, N7 dispersed in water with a pulper was mixed and stirred to prepare slurry 11. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. The slurry 11 is fed to a combination paper machine of an inclined paper machine and a circular paper machine, wet-made, and dried at a Yankee dryer temperature of 110 ° C. Then, the heat treatment temperature and heat treatment linear pressure shown in Table 5 are set. The nonwoven fabric of Example 21 was produced by heat and pressure treatment according to the conditions.

(実施例23、27、28、30)
スラリー13、16、18をスラリー11と同様にして調製した。スラリー13、16、18を用いて、実施例21と同様にして湿式抄紙及び乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例23、27、28、30の不織布を作製した。
(Examples 23, 27, 28, 30)
Slurries 13, 16, and 18 were prepared in the same manner as slurry 11. The slurry 13, 16, 18 was used for wet papermaking and drying in the same manner as in Example 21, followed by heat pressure treatment according to the heat treatment temperature and heat treatment linear pressure conditions shown in Table 5, and Examples 23, 27, 28 and 30 nonwoven fabrics were produced.

(実施例34)
スラリー22の配合率になるように、P1、F3、N3、N15を計量した。F3をパルパーで水に分散させた後、P1の水分散液を混合攪拌し、ポリオレフィン樹脂とフィブリル化繊維との凝集体を形成させたスラリーを調製した。これに、パルパーで水に分散させたN3とN15を混合攪拌し、スラリー22を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。N15の分割型複合繊維は、ほぼ分割していることを確認した。スラリー22を傾斜型抄紙機と円網抄紙機のコンビネーション抄紙機に送液して、湿式抄紙し、ヤンキードライヤー温度を120℃にして乾燥させた後、線圧400N/cmでカレンダー処理し、実施例34の不織布を作製した。
(Example 34)
P1, F3, N3, and N15 were weighed so that the blending ratio of the slurry 22 was obtained. After dispersing F3 in water with a pulper, the aqueous dispersion of P1 was mixed and stirred to prepare a slurry in which an aggregate of polyolefin resin and fibrillated fibers was formed. To this, N3 and N15 dispersed in water with a pulper were mixed and stirred to prepare slurry 22. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. It was confirmed that the split composite fiber of N15 was almost split. Slurry 22 is fed to a combination paper machine of an inclined paper machine and a circular paper machine, wet paper is made, dried at a Yankee dryer temperature of 120 ° C., and calendered at a linear pressure of 400 N / cm. The nonwoven fabric of Example 34 was produced.

(実施例35)
実施例34と同様にして湿式抄紙及び乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例35の不織布を作製した。
(Example 35)
After wet papermaking and drying in the same manner as in Example 34, heat treatment was performed in accordance with the heat treatment temperature and heat treatment linear pressure conditions shown in Table 5 to produce the nonwoven fabric of Example 35.

(実施例36)
スラリー23の配合率になるように、P3、F3を計量した。F3をパルパーで水に分散させた後、P3の水分散液を混合攪拌し、ポリオレフィン樹脂とフィブリル化繊維との凝集体を形成させたスラリー23を調製した。スラリー23を円網抄紙機と傾斜型抄紙機のコンビネーション抄紙機に送液し、湿式抄紙し、ヤンキードライヤー温度を120℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例36の不織布を作製した。
(Example 36)
P3 and F3 were weighed so that the mixing ratio of the slurry 23 was obtained. After F3 was dispersed in water with a pulper, the aqueous dispersion of P3 was mixed and stirred to prepare slurry 23 in which an aggregate of polyolefin resin and fibrillated fibers was formed. The slurry 23 is fed to a combination paper machine of a circular paper machine and a slanted paper machine, wet-made, and dried at a Yankee dryer temperature of 120 ° C. Then, the heat treatment temperature and heat treatment linear pressure shown in Table 5 are set. The nonwoven fabric of Example 36 was produced by heat and pressure treatment according to the conditions.

(実施例37)
スラリー24の配合率になるように、P4、F9を計量した。F9をパルパーで水に分散させた後、P4の水分散液を混合攪拌し、ポリオレフィン樹脂とフィブリル化繊維との凝集体を形成させたスラリー24を調製した。スラリー24を円網抄紙機と傾斜型抄紙機のコンビネーション抄紙機に送液し、湿式抄紙し、エアードライヤー温度を90℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例37の不織布を作製した。
(Example 37)
P4 and F9 were weighed so that the mixing ratio of the slurry 24 was obtained. After F9 was dispersed in water with a pulper, the P4 aqueous dispersion was mixed and stirred to prepare slurry 24 in which an aggregate of polyolefin resin and fibrillated fibers was formed. The slurry 24 is fed to a combination paper machine of a circular paper machine and a slanted paper machine, wet-made, and dried at an air dryer temperature of 90 ° C. Then, the heat treatment temperature and heat treatment linear pressure shown in Table 5 are set. The nonwoven fabric of Example 37 was produced by heat and pressure treatment according to the conditions.

(実施例38)
スラリー25の配合率になるように、P1、F2、N3、M1を計量した。F2をパルパーで水に分散させた後、P1の水分散液とM1を混合攪拌し、ポリオレフィン樹脂、無機フィラー、フィブリル化繊維との凝集体を形成させたスラリーを調製した。これに、パルパーで水に分散させたN3を混合攪拌し、スラリー25を調製した。スラリー25を用いて実施例19と同様にして湿式抄紙及び乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例38の不織布を作製した。
(Example 38)
P1, F2, N3, and M1 were weighed so that the blending ratio of the slurry 25 was obtained. After F2 was dispersed in water with a pulper, the aqueous dispersion of P1 and M1 were mixed and stirred to prepare a slurry in which an aggregate of polyolefin resin, inorganic filler, and fibrillated fiber was formed. To this, N3 dispersed in water with a pulper was mixed and stirred to prepare slurry 25. The wet papermaking and drying were performed in the same manner as in Example 19 using the slurry 25, and then subjected to hot pressing according to the conditions of the heat treatment temperature and the heat treatment linear pressure shown in Table 5 to produce the nonwoven fabric of Example 38.

(実施例39)
スラリー26の配合率になるように、N3、N4、N13を計量した。N3、N4、N13を一緒にパルパーで水に分散させてスラリー26を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。スラリー26を円網抄紙機へ送液して湿式抄紙し、ヤンキードライヤー温度を130℃にして乾燥させた。次いで、200℃、線圧500N/cmで熱圧処理して、厚み15μm、密度0.666g/cmの不織布を作製した。P1の固形分濃度を8質量%にした水分散液を厚み15μmの不織布にロッドコーターで片面塗工し、エアードライヤー温度を70℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例39の不織布を作製した。ポリオレフィン樹脂の塗工量は、塗工前の不織布の質量に対して3.2質量%であった。
(Example 39)
N3, N4, and N13 were weighed so that the blending ratio of the slurry 26 was obtained. N3, N4, and N13 were dispersed together in water with a pulper to prepare slurry 26. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. Slurry 26 was fed to a circular paper machine and wet-made, and dried at a Yankee dryer temperature of 130 ° C. Subsequently, it was subjected to hot-pressure treatment at 200 ° C. and a linear pressure of 500 N / cm to produce a nonwoven fabric having a thickness of 15 μm and a density of 0.666 g / cm 3 . An aqueous dispersion with a P1 solid content concentration of 8% by mass was coated on a single-sided nonwoven fabric with a thickness of 15 μm with a rod coater, dried at an air dryer temperature of 70 ° C., and then subjected to the heat treatment temperatures and heat treatments shown in Table 5. The nonwoven fabric of Example 39 was produced by heat-pressure treatment according to the linear pressure conditions. The coating amount of the polyolefin resin was 3.2% by mass with respect to the mass of the nonwoven fabric before coating.

(実施例40)
スラリー26を用いて実施例39と同様にして、厚み30μm、密度0.693g/cmの不織布を作製した。P1の固形分濃度を8質量%にした水分散液を厚み30μmの不織布にロッドコーターで片面塗工し、エアードライヤー温度を120℃にして乾燥させ、実施例40の不織布を作製した。ポリオレフィン樹脂の塗工量は、塗工前の不織布の質量に対して12.6質量%であった。
(Example 40)
A nonwoven fabric having a thickness of 30 μm and a density of 0.693 g / cm 3 was produced in the same manner as in Example 39 using the slurry 26. A non-woven fabric of Example 40 was prepared by coating one side of a 30 μm-thick non-woven fabric with a P1 solid content concentration of 8 mass% using a rod coater and drying at an air dryer temperature of 120 ° C. The coating amount of the polyolefin resin was 12.6% by mass relative to the mass of the nonwoven fabric before coating.

(実施例41)
実施例40と同様にして、厚み30μm、密度0.693g/cmの不織布にP1の水分散液をロッドコーターで片面塗工し、エアードライヤー温度を120℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例41の不織布を作製した。ポリオレフィン樹脂の塗工量は、塗工前の不織布の質量に対して12.0質量%であった。
(Example 41)
In the same manner as in Example 40, a P1 aqueous dispersion was coated on one side of a nonwoven fabric having a thickness of 30 μm and a density of 0.693 g / cm 3 with a rod coater and dried at an air dryer temperature of 120 ° C. A non-woven fabric of Example 41 was produced by heat-pressure treatment according to the conditions of the heat treatment temperature and the heat treatment linear pressure shown in FIG. The coating amount of the polyolefin resin was 12.0% by mass relative to the mass of the nonwoven fabric before coating.

(実施例42)
実施例40で作製した厚み30μm、密度0.693g/cmの不織布に、P1の水分散液をロッドコーターで片面塗工し、エアードライヤー温度を120℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例42の不織布を作製した。ポリオレフィン樹脂の塗工量は、塗工前の不織布の質量に対して11.1質量%であった。
(Example 42)
The nonwoven fabric having a thickness of 30 μm and a density of 0.693 g / cm 3 produced in Example 40 was coated on one side with an aqueous dispersion of P1 with a rod coater and dried at an air dryer temperature of 120 ° C. The nonwoven fabric of Example 42 was produced by heat-pressure treatment according to the conditions of the indicated heat treatment temperature and heat treatment linear pressure. The coating amount of the polyolefin resin was 11.1% by mass relative to the mass of the nonwoven fabric before coating.

(実施例43)
実施例40で作製した厚み30μm、密度0.693g/cmの不織布に、P1の水分散液をロッドコーターで片面塗工し、エアードライヤー温度を120℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、実施例43の不織布を作製した。ポリオレフィン樹脂の塗工量は、塗工前の不織布の質量に対して8.9質量%であった。
(Example 43)
The nonwoven fabric having a thickness of 30 μm and a density of 0.693 g / cm 3 produced in Example 40 was coated on one side with an aqueous dispersion of P1 with a rod coater and dried at an air dryer temperature of 120 ° C. A non-woven fabric of Example 43 was produced by heat-pressure treatment according to the conditions of the indicated heat treatment temperature and linear heat treatment pressure. The coating amount of the polyolefin resin was 8.9% by mass relative to the mass of the nonwoven fabric before coating.

(比較例1、2)
スラリー26を円網抄紙機に送液して湿式抄紙し、ヤンキードライヤー温度を130℃にして乾燥させた後、200℃、線圧500N/cmで熱圧処理して、比較例1、2の不織布を作製した。比較例1、2の不織布は、厚みが異なる。
(Comparative Examples 1 and 2)
The slurry 26 was fed to a circular paper machine and wet-made, and after drying at a Yankee dryer temperature of 130 ° C., heat treatment was performed at 200 ° C. and a linear pressure of 500 N / cm. A nonwoven fabric was prepared. The nonwoven fabrics of Comparative Examples 1 and 2 have different thicknesses.

(比較例3)
スラリー27をスラリー26と同様にして調製した。スラリー27を用いて、比較例1と同様にして湿式抄紙及びカレンダー処理して、比較例3の不織布を作製した。
(Comparative Example 3)
Slurry 27 was prepared in the same manner as slurry 26. Using the slurry 27, wet papermaking and calendering were performed in the same manner as in Comparative Example 1 to prepare a nonwoven fabric of Comparative Example 3.

(比較例4)
スラリー28の配合率になるように、F3、N4、N6、N13を計量した。N4、N6、N13を一緒にパルパーで水に分散させた後、F3を混合して攪拌し、スラリー28を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。スラリー28を円網抄紙機に送液して湿式抄紙し、ヤンキードライヤー温度130℃で乾燥させ、湿式不織布を作製した。次いで、200℃に加熱した直径1.2mのドラムロールに湿式不織布の表裏面を速度20m/minで接触させて熱処理し、比較例4の不織布を作製した。
(Comparative Example 4)
F3, N4, N6, and N13 were weighed so that the blending ratio of the slurry 28 was obtained. N4, N6, and N13 were dispersed together in water with a pulper, and then F3 was mixed and stirred to prepare slurry 28. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. The slurry 28 was fed to a circular paper machine and wet-made, and dried at a Yankee dryer temperature of 130 ° C. to prepare a wet nonwoven fabric. Subsequently, the wet roll nonwoven fabric was heated at 200 ° C. by contacting the front and back surfaces of the wet nonwoven fabric at a speed of 20 m / min and heat-treated, thereby producing a nonwoven fabric of Comparative Example 4.

(比較例5)
スラリー29の配合率になるように、F2、F9、N3を計量した。F2とF9を一緒にパルパーで水に分散させた後、N3を混合攪拌してスラリー29を調製した。スラリー29を傾斜型抄紙機に送液して湿式抄紙し、ヤンキードライヤー温度130℃で乾燥させて、比較例5の不織布を作製した。
(Comparative Example 5)
F2, F9, and N3 were weighed so that the blending ratio of the slurry 29 was obtained. F2 and F9 were dispersed together in water with a pulper, and then N3 was mixed and stirred to prepare slurry 29. Slurry 29 was fed to an inclined paper machine, wet-made, and dried at a Yankee dryer temperature of 130 ° C. to produce a nonwoven fabric of Comparative Example 5.

(比較例6)
スラリー30の配合率になるように、P5とF2を計量した。F2をパルパーで水に分散させた後、P5を混合攪拌し、ポリオレフィン樹脂粒子とフィブリル化繊維との凝集体を形成させたスラリー30を調製した。スラリー30を円網抄紙機−傾斜短網抄紙機−円網抄紙機のコンビネーション抄紙機に送液して湿式抄紙し、ヤンキードライヤー温度110℃で乾燥させた。次いで、線圧44N/cmで通して厚み調整し、比較例6の不織布を作製した。電子顕微鏡観察した結果、ポリオレフィン樹脂とフィブリル化繊維は、熱融着していないことを確認した。
(Comparative Example 6)
P5 and F2 were weighed so that the mixing ratio of the slurry 30 was obtained. After F2 was dispersed in water with a pulper, P5 was mixed and stirred to prepare slurry 30 in which aggregates of polyolefin resin particles and fibrillated fibers were formed. The slurry 30 was transferred to a combination paper machine of a circular net paper machine-an inclined short net paper machine-a circular net paper machine, wet-made, and dried at a Yankee dryer temperature of 110 ° C. Next, the thickness was adjusted by passing through with a linear pressure of 44 N / cm, and a nonwoven fabric of Comparative Example 6 was produced. As a result of observation with an electron microscope, it was confirmed that the polyolefin resin and the fibrillated fiber were not thermally fused.

(比較例7)
スラリー31の配合率になるように、N8とN10を計量した。N8とN10を一緒にパルパーで水に分散させてスラリー31を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。スラリー31を円網抄紙機に送液して湿式抄紙し、ヤンキードライヤー温度110℃で乾燥させて、厚み40μm、密度0.375g/cmの不織布を作製した。該不織布に、P4の水分散液をロッドコーターで片面塗工した後、その上に、さらに厚み40μm、密度0.375g/cmの不織布を積層し、80℃で乾燥させて3層構造を有する比較例7の不織布を作製した。ポリオレフィン樹脂の塗工量は、塗工前の1枚の不織布の質量に対して14.2質量%であった。
(Comparative Example 7)
N8 and N10 were weighed so that the mixing ratio of the slurry 31 was obtained. A slurry 31 was prepared by dispersing N8 and N10 together in a water with a pulper. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. The slurry 31 was fed to a circular paper machine and wet-made, and dried at a Yankee dryer temperature of 110 ° C. to produce a nonwoven fabric having a thickness of 40 μm and a density of 0.375 g / cm 3 . After the P4 aqueous dispersion was coated on the nonwoven fabric with a rod coater, a nonwoven fabric having a thickness of 40 μm and a density of 0.375 g / cm 3 was further laminated thereon and dried at 80 ° C. to form a three-layer structure. A nonwoven fabric of Comparative Example 7 was prepared. The coating amount of the polyolefin resin was 14.2% by mass relative to the mass of one nonwoven fabric before coating.

(比較例8)
スラリー32の配合率になるように、N12、N19を計量した。N12とN19を一緒にパルパーで水に分散させたスラリー32を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。N19の分割型複合繊維は、ほぼ分割していることを確認した。スラリー32を円網抄紙機と短網抄紙機のコンビネーション抄紙機に送液して湿式抄紙し、シリンダードライヤー温度を135℃にして乾燥させて不織布を作製した。次いで、不織布を体積比率でフッ素:酸素:窒素=1:73:26の混合ガス中に1分間曝した。その後、60℃の湯で洗浄し、エアードライヤー温度を70℃にして乾燥させた。この不織布に水分を噴霧して100質量%含浸させ、130℃に加熱した一対の金属ロールに線圧500N/cm、速度3.3m/minで通してエチレン−ビニルアルコール共重合体をゲル皮膜化し、比較例8の不織布を作製した。電子顕微鏡で観察した結果、不織布の表面及び内部に、エチレン−ビニルアルコール樹脂のゲル皮膜が形成されていることを確認した。
(Comparative Example 8)
N12 and N19 were weighed so that the mixing ratio of the slurry 32 was obtained. A slurry 32 was prepared by dispersing N12 and N19 together in a water with a pulper. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. It was confirmed that the split type composite fiber of N19 was almost split. The slurry 32 was fed to a combination paper machine of a circular paper machine and a short paper machine, wet papermaking, and dried at a cylinder dryer temperature of 135 ° C. to produce a nonwoven fabric. Next, the nonwoven fabric was exposed to a mixed gas of fluorine: oxygen: nitrogen = 1: 73: 26 for 1 minute in a volume ratio. Thereafter, it was washed with hot water at 60 ° C. and dried at an air dryer temperature of 70 ° C. The nonwoven fabric is sprayed with 100% by mass of moisture and passed through a pair of metal rolls heated to 130 ° C. at a linear pressure of 500 N / cm at a speed of 3.3 m / min to form an ethylene-vinyl alcohol copolymer into a gel film. A nonwoven fabric of Comparative Example 8 was produced. As a result of observation with an electron microscope, it was confirmed that a gel film of ethylene-vinyl alcohol resin was formed on the surface and inside of the nonwoven fabric.

(比較例9)
スラリー33の配合率になるように、N9とN14を計量した。N9とN14をパルパーで水に分散させてスラリー33を調製した。非フィブリル化繊維の分散には、分散助剤と消泡剤を使用した。スラリー33を傾斜型抄紙機に送液して湿式抄紙し、ヤンキードライヤー温度130℃で乾燥させた。次いで、130℃に加熱した金属ロール間に線圧400N/cmで通して熱処理し、厚み30μm、密度0.500g/cmの不織布を作製した。これに、P6の固形分濃度を5質量%にした水分散液を含浸し、ゴムロール間に通して余剰液を除去し、エアードライヤー温度を90℃にして乾燥させた。その後、130℃に加熱した金属ロール間に線圧400N/cmで通して熱圧処理し、比較例9の不織布を作製した。ポリオレフィン樹脂の付着量は8.7質量%であった。
(Comparative Example 9)
N9 and N14 were weighed so that the mixing ratio of the slurry 33 was obtained. N9 and N14 were dispersed in water with a pulper to prepare slurry 33. A dispersion aid and an antifoaming agent were used for dispersing the non-fibrillated fiber. The slurry 33 was fed to an inclined paper machine, wet-made, and dried at a Yankee dryer temperature of 130 ° C. Subsequently, it was heat-treated by passing it between metal rolls heated to 130 ° C. at a linear pressure of 400 N / cm, to produce a nonwoven fabric having a thickness of 30 μm and a density of 0.500 g / cm 3 . This was impregnated with an aqueous dispersion in which the solid content concentration of P6 was 5% by mass, passed through a rubber roll to remove excess liquid, and dried at an air dryer temperature of 90 ° C. Then, the nonwoven fabric of the comparative example 9 was produced by passing through the metal roll heated at 130 degreeC with the linear pressure of 400 N / cm, and heat-pressing. The adhesion amount of the polyolefin resin was 8.7% by mass.

(比較例10)
実施例39で作製した厚み15μm、密度0.666g/cmの不織布に、実施例39で用いたP1の水分散液をロッドコーターで片面塗工し、エアードライヤー温度を80℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、比較例10の不織布を作製した。ポリオレフィン樹脂の塗工量は、塗工前の不織布の質量に対して4.3質量%であった。
(Comparative Example 10)
The non-woven fabric with a thickness of 15 μm and a density of 0.666 g / cm 3 produced in Example 39 was coated on one side with an aqueous dispersion of P1 used in Example 39 with a rod coater and dried at an air dryer temperature of 80 ° C. After that, heat treatment was performed according to the heat treatment temperature and heat treatment linear pressure conditions shown in Table 5 to produce a nonwoven fabric of Comparative Example 10. The coating amount of the polyolefin resin was 4.3% by mass with respect to the mass of the nonwoven fabric before coating.

(比較例11)
実施例39で作製した厚み15μm、密度0.666g/cmの不織布に、P4の固形分濃度を8質量%にした水分散液をロッドコーターで片面塗工し、エアードライヤー温度を80℃にして乾燥させた後、表5に示した熱処理温度と熱処理線圧の条件に従って熱圧処理し、比較例11の不織布を作製した。ポリオレフィン樹脂の塗工量は、塗工前の不織布の質量に対して6.9質量%であった。
(Comparative Example 11)
A non-woven fabric having a thickness of 15 μm and a density of 0.666 g / cm 3 produced in Example 39 was coated on one side with a rod coater with an aqueous dispersion having a solid content concentration of P4 of 8% by mass, and the air dryer temperature was set to 80 ° C. After drying, the hot-pressure treatment was performed in accordance with the heat treatment temperature and heat treatment linear pressure conditions shown in Table 5 to produce a nonwoven fabric of Comparative Example 11. The coating amount of the polyolefin resin was 6.9% by mass relative to the mass of the nonwoven fabric before coating.

[評価]
実施例及び比較例の不織布について、下記の評価を行い、結果を表5に示した。
[Evaluation]
The following evaluation was performed about the nonwoven fabric of the Example and the comparative example, and the result was shown in Table 5.

<厚み>
JIS P8118に準拠して厚みを測定し、その平均値を示した。
<Thickness>
The thickness was measured according to JIS P8118 and the average value was shown.

<密度>
JIS P8124に準拠して不織布の坪量を測定し、坪量を厚みで除して100倍した値と密度とした。
<Density>
The basis weight of the nonwoven fabric was measured according to JIS P8124, and the basis weight was divided by the thickness to obtain a value and density obtained by multiplying by 100.

<熱圧処理>
不織布の作製において、不織布を熱圧処理したときの不織布の状態を観察した。収縮が起こらない、又は若干の収縮があるが、不織布の切断が起こらず順調に熱処理できた場合を「○」、切断はしなかったが、収縮が大きく、不織布の厚み斑や、ロールに一部張り付きが生じた場合を「△」、著しく収縮し、不織布が切断した場合、又は、ロールに張り付いて層間剥離し、均一な熱圧処理ができなかった場合を「×」とした。「−」は、熱圧処理しなかったことを意味する。
<Hot pressure treatment>
In producing the nonwoven fabric, the state of the nonwoven fabric was observed when the nonwoven fabric was hot-pressed. No shrinkage or slight shrinkage, but ◯ when the nonwoven fabric was not cut smoothly and heat treatment was successful. The case where the partial sticking occurred was “Δ”, the case where the nonwoven fabric was severely shrunk and the nonwoven fabric was cut, or the case where it stuck to the roll and delaminated and could not be subjected to uniform hot-pressure treatment was indicated as “X”. “-” Means that no hot-pressure treatment was performed.

<橋架け>
不織布の断面を電子顕微鏡で観察し、ポリオレフィン樹脂の超極細糸からなる橋架けが存在する場合を「あり」、存在しない場合を「なし」とした。超極細糸とは、最も細い部分の太さが1μm以下の糸状のポリオレフィン樹脂を意味する。
<Bridge>
The cross section of the nonwoven fabric was observed with an electron microscope, and “Yes” was given when there was a bridge made of polyolefin resin superfine yarn, and “None” was given when there was no bridge. The super extra fine thread means a filamentous polyolefin resin having a thickness of 1 μm or less at the thinnest part.

<平均橋架け本数>
不織布の断面を電子顕微鏡で観察し、連続する長さ200μm×断面厚み×深さ5μmあたりの橋架け本数Nを計測した。Nを4で除して、長さ50μm×断面厚み×深さ5μmあたりの平均橋架け本数を算出した。
<Average number of bridges>
The cross section of the nonwoven fabric was observed with an electron microscope, and the number N of bridges per continuous length of 200 μm × cross section thickness × depth of 5 μm was measured. By dividing N by 4, the average number of bridges per 50 μm length × cross-sectional thickness × depth of 5 μm was calculated.

<毛羽>
不織布の表面を指で擦ったときの毛羽立ち具合を調べた。ほとんど毛羽立たず、繊維の脱落がない場合を「○」、毛羽立ちはあるが、繊維の脱落がわずかな場合を「△」、毛羽立ちがひどく、繊維の脱落が多い場合を「×」とした。
<Fuzzy>
The fluffiness when the surface of the nonwoven fabric was rubbed with a finger was examined. The case where there was almost no fluffing and no fibers were dropped was indicated as “◯”, the case where fluffing was present but slight fiber dropping was indicated as “Δ”, and the case where fluffing was severe and the fibers were largely dropped was indicated as “X”.

<引張強度>
不織布を50mm巾、250mm長に切り、短冊状の試験片を用意した。250mm長は、不織布の流れ方向とした。試験片の上下を卓上型材料試験機(商品名:STA−1150、(株)オリエンテック製)のチャックに100mm間隔で固定し、100mm/分の一定速度で試験片が破断するまで引き上げていったときの最大荷重とした。1つの不織布につき、5本以上の試験片を測定し、その平均値を20倍して1m巾あたりの値にした。
<Tensile strength>
The nonwoven fabric was cut into a width of 50 mm and a length of 250 mm to prepare a strip-shaped test piece. The 250 mm length was taken as the flow direction of the nonwoven fabric. The upper and lower sides of the test piece are fixed to a chuck of a tabletop material testing machine (trade name: STA-1150, manufactured by Orientec Co., Ltd.) at intervals of 100 mm and pulled up at a constant speed of 100 mm / min until the test piece breaks. The maximum load at that time. Five or more test pieces were measured for each nonwoven fabric, and the average value was multiplied by 20 to obtain a value per 1 m width.

<破断伸度>
<引張強度>の試験方法に従って試験し、試験片が破断したときの伸度を示した。1つの不織布につき、5本以上の試験片を測定し、その平均値とした。
<Elongation at break>
Tested according to the <Tensile Strength> test method, the elongation was shown when the test piece broke. Five or more test pieces were measured for each nonwoven fabric, and the average value was obtained.

<被覆面積>
不織布の表裏面の各500μm四方の領域を電子顕微鏡で観察し、ポリオレフィン樹脂の被覆面積を調べた。被覆とは、複数の繊維を跨いでポリオレフィン樹脂が皮膜状に覆っている状態を意味する。ポリオレフィン樹脂が繊維上にのみ存在していて繊維間隙を閉塞していない領域は被覆とは見なさない。被覆面積の多い方の面の被覆面積が60%以上の場合を「大」、30%以上、60%未満の場合を「中」、30%未満の場合を「小」とした。本発明においては、被覆面積が小さいほど好ましい。
<Coating area>
Each area of 500 μm square on the front and back surfaces of the nonwoven fabric was observed with an electron microscope, and the coated area of the polyolefin resin was examined. Covering means a state in which a polyolefin resin covers a plurality of fibers in a film form. A region where the polyolefin resin is present only on the fiber and does not block the fiber gap is not considered as a coating. The case where the covering area of the surface having the larger covering area is 60% or more is “large”, the case where it is 30% or more and less than 60% is “medium”, and the case where it is less than 30% is “small”. In the present invention, the smaller the coating area, the better.

実施例1〜43の不織布は、1)ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥させる方法、
2)1)の方法で製造された不織布をさらに室温〜融点+80℃の温度で熱圧処理する方法、
3)ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点未満の温度で乾燥させた後、ポリオレフィン樹脂の融点〜融点+80℃の温度で熱圧処理する方法、
4)ポリオレフィン樹脂を含有しない不織布にポリオレフィン樹脂を含浸又は塗工した後、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥させる方法、
5)4)の方法で製造された不織布をさらに室温〜ポリオレフィン樹脂の融点+80℃の温度で熱圧処理する方法、
6)ポリオレフィン樹脂を含有しない不織布にポリオレフィン樹脂を含浸又は塗工した後、ポリオレフィン樹脂の融点未満の温度で乾燥させた後、ポリオレフィン樹脂の融点〜融点+80℃の温度で熱圧処理する方法
の何れかで製造されてなるため、断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有していた。
The nonwoven fabrics of Examples 1 to 43 are: 1) wet paper making of a slurry containing an aggregate of polyolefin resin particles and fibers, and drying at a temperature of the melting point of the polyolefin resin to the melting point + 80 ° C.,
2) A method in which the non-woven fabric produced by the method 1) is further subjected to hot-pressure treatment at a temperature of room temperature to melting point + 80 ° C.,
3) A method of wet-making a slurry containing an aggregate of polyolefin resin particles and fibers, drying at a temperature lower than the melting point of the polyolefin resin, and then hot-pressing at a temperature between the melting point of the polyolefin resin and the melting point + 80 ° C.,
4) A method of impregnating or applying a polyolefin resin to a non-woven fabric not containing a polyolefin resin and then drying at a temperature of the melting point of the polyolefin resin to the melting point + 80 ° C.,
5) A method in which the non-woven fabric produced by the method 4) is further subjected to hot-pressure treatment at a temperature ranging from room temperature to the melting point of the polyolefin resin + 80 ° C.,
6) Any of the methods of impregnating or applying a polyolefin resin to a nonwoven fabric not containing a polyolefin resin, drying at a temperature lower than the melting point of the polyolefin resin, and then performing a hot-pressure treatment at a temperature between the melting point of the polyolefin resin and the melting point + 80 ° C. Therefore, a bridge made of a superfine fiber of polyolefin resin was provided between the fibers in the vertical direction when viewed from the cross section.

実施例1、3〜7、9〜33、35、36の不織布は、ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥後、ポリオレフィン樹脂の融点〜融点+80℃の温度で熱圧処理されてなるため、平均橋架け本数が多く、毛羽が発生しにくかった。実施例8の不織布は、ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点未満の温度で乾燥させた後、ポリオレフィン樹脂の融点〜融点+80℃の温度で熱圧処理されてなるため、平均橋架け本数が多く、毛羽が発生しにくかった。実施例2、16の不織布は、ポリオレフィン樹脂の融点未満の温度で熱圧処理されてなるため、実施例1、3〜15、17〜33、35〜37の不織布と比較して、毛羽の発生が多かった。実施例39〜43の不織布は、ポリオレフィン樹脂を塗工して作製されてなるため、平均橋架け本数が多く、毛羽が発生しにくかった。   The nonwoven fabrics of Examples 1, 3 to 7, 9 to 33, 35, and 36 are wet-paper-made slurry containing aggregates of polyolefin resin particles and fibers, and dried at a temperature of the melting point of the polyolefin resin to the melting point + 80 ° C. Since the polyolefin resin was hot-pressed at a temperature ranging from the melting point to the melting point + 80 ° C., the average number of bridges was large and fluff was difficult to occur. The nonwoven fabric of Example 8 was prepared by wet papermaking a slurry containing an aggregate of polyolefin resin particles and fibers, dried at a temperature below the melting point of the polyolefin resin, and then heated at a temperature between the melting point of the polyolefin resin and the melting point + 80 ° C. Because of the pressure treatment, the average number of bridges was large, and fluff was difficult to occur. Since the nonwoven fabrics of Examples 2 and 16 are hot-pressed at a temperature lower than the melting point of the polyolefin resin, generation of fluff is produced as compared with the nonwoven fabrics of Examples 1, 3 to 15, 17 to 33, and 35 to 37. There were many. Since the nonwoven fabrics of Examples 39 to 43 were produced by applying a polyolefin resin, the average number of bridges was large and fluff was difficult to occur.

実施例1〜38の不織布は、ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙する方法で作製されてなるため、不織布表面の大部分(60%以上)をポリオレフィン樹脂が被覆するということがなかった。実施例40〜43の不織布は、ポリオレフィン樹脂を含有しない不織布に、ポリオレフィン樹脂を塗工する方法で作製されてなるため、不織布表面の大部分(60%以上)がポリオレフィン樹脂で被覆されていた。   Since the nonwoven fabrics of Examples 1 to 38 are prepared by a wet papermaking method using a slurry containing an aggregate of polyolefin resin particles and fibers, the polyolefin resin covers most of the nonwoven fabric surface (60% or more). It never happened. Since the nonwoven fabric of Examples 40-43 is produced by the method of apply | coating polyolefin resin to the nonwoven fabric which does not contain polyolefin resin, most nonwoven fabric surfaces (60% or more) were coat | covered with polyolefin resin.

実施例7の不織布は、非フィブリル化繊維とポリオレフィン樹脂を含有し、ポリオレフィン樹脂からなる超極細糸からなる橋架けを有するが、熱圧処理温度がポリオレフィン樹脂の融点+80℃を超えていたため、ロールに張り付き、熱圧処理の生産安定性に少し問題があった。   The nonwoven fabric of Example 7 contains a non-fibrillated fiber and a polyolefin resin, and has a bridge made of super fine yarn made of polyolefin resin. However, since the hot-pressure treatment temperature exceeded the melting point of the polyolefin resin + 80 ° C., the roll There was a slight problem with the production stability of the hot-pressure treatment.

実施例34の不織布は、熱圧処理されていないため、平均橋架け本数が少なく、毛羽の発生が多かった。実施例34と35の不織布を比較すると、熱圧処理した実施例35の不織布の方が、引張強度と破断伸度が大きかった。   Since the nonwoven fabric of Example 34 was not heat-pressed, the average number of bridges was small and fluff was frequently generated. When the non-woven fabrics of Examples 34 and 35 were compared, the non-woven fabric of Example 35 that had been hot-pressed had higher tensile strength and elongation at break.

実施例39と比較例1の不織布を比較すると、ポリオレフィン樹脂の超極細糸からなる橋架けを有する実施例39の不織布の方が、引張強度が強く、破断伸度が大きかった。同様に、実施例40〜43の不織布と比較例2の不織布を比較すると、ポリオレフィン樹脂の超極細糸からなる橋架けを有する実施例40〜43の不織布の方が、引張強度が強く、破断伸度が大きかった。   When the nonwoven fabric of Example 39 and Comparative Example 1 were compared, the nonwoven fabric of Example 39 having a bridge made of a superfine fiber of polyolefin resin had a higher tensile strength and a higher elongation at break. Similarly, when the nonwoven fabrics of Examples 40 to 43 and the nonwoven fabric of Comparative Example 2 are compared, the nonwoven fabrics of Examples 40 to 43 having a bridge made of polyolefin resin superfine yarn have higher tensile strength and elongation at break. The degree was great.

一方、比較例1、2の不織布は、非フィブリル化繊維のみで構成されており、ポリオレフィン樹脂の超極細糸からなる橋架けを有さないため、毛羽の発生が多かった。   On the other hand, the nonwoven fabrics of Comparative Examples 1 and 2 were composed only of non-fibrillated fibers and did not have bridges made of polyolefin resin superfine yarns, and therefore fluff was frequently generated.

比較例3の不織布は、非フィブリル化繊維のみで構成されており、ポリオレフィン樹脂の超極細糸からなる橋架けを有さないため、毛羽の発生が多く、破断伸度が小さかった。   The nonwoven fabric of Comparative Example 3 was composed only of non-fibrillated fibers and did not have bridges made of polyolefin resin superfine yarns, so that there were many fluffs and low elongation at break.

比較例4、5の不織布は、非フィブリル化繊維とフィブリル化繊維で構成されており、ポリオレフィン樹脂の超極細糸からなる橋架けを有さないため、毛羽の発生が多かった。比較例5の不織布は、引張強度が弱く、破断伸度が小さかった。   The nonwoven fabrics of Comparative Examples 4 and 5 were composed of non-fibrillated fibers and fibrillated fibers, and did not have bridges made of polyolefin resin superfine yarns, and therefore fluff was frequently generated. The nonwoven fabric of Comparative Example 5 had low tensile strength and small elongation at break.

比較例6の不織布は、フィブリル化繊維とポリオレフィン樹脂で構成されているが、両者は熱融着しておらず、ポリオレフィン樹脂の超極細糸からなる橋架けを有さないため、引張強度が弱く、破断伸度が小さかった。また、毛羽が発生しにくかったが、不織布表面の被覆面積が大きかった。   The nonwoven fabric of Comparative Example 6 is composed of fibrillated fibers and polyolefin resin, but both are not heat-sealed and do not have a bridge made of polyolefin resin superfine yarn, so the tensile strength is weak. The elongation at break was small. Moreover, although fluff was hard to generate | occur | produce, the coating area of the nonwoven fabric surface was large.

比較例7の不織布は、非フィブリル化繊維とポリオレフィン樹脂で構成されているが、ポリオレフィン樹脂の融点未満の温度で乾燥させただけであるため、ポリオレフィン樹脂の超極細糸からなる橋架けを有しておらず、毛羽の発生が多く、引張強度が弱く、破断伸度が小さかった。また、不織布表面には、ポリオレフィン樹脂の被覆はなかったが、ポリオレフィン樹脂からなる中間層はほぼ全面を粒子形状のまま被覆していた。   The nonwoven fabric of Comparative Example 7 is composed of non-fibrillated fibers and polyolefin resin, but has only been dried at a temperature lower than the melting point of the polyolefin resin, and thus has a bridge made of polyolefin resin superfine yarn. In addition, the occurrence of fluff was large, the tensile strength was weak, and the elongation at break was small. Further, the surface of the nonwoven fabric was not coated with polyolefin resin, but the intermediate layer made of polyolefin resin was coated almost entirely in the form of particles.

比較例8の不織布は、非フィブリル化繊維で構成されてなり、エチレン−ビニルアルコール共重合体がゲル皮膜を形成しているため、毛羽は発生しにくく、引張強度は強かったが、ポリオレフィン樹脂の超極細糸からなる橋架けは形成されなかった。また、ゲル皮膜を形成させるための熱処理において、ロールに張り付くなどして、熱処理を安定して行うことができなかった。また、不織布表面のゲル皮膜の被覆面積が大きかった。   The nonwoven fabric of Comparative Example 8 was composed of non-fibrillated fibers, and the ethylene-vinyl alcohol copolymer formed a gel film, so that fluff was hardly generated and the tensile strength was strong. A bridge made of ultra-fine yarn was not formed. Further, in the heat treatment for forming the gel film, the heat treatment could not be stably performed by sticking to a roll. Moreover, the coating area of the gel film on the nonwoven fabric surface was large.

比較例9の不織布は、非フィブリル化繊維とポリオレフィン樹脂で構成されてなり、超極細糸からなる橋架けは有していないが、毛羽は発生しにくかった。これは、不織布表面がポリオレフィン樹脂で被覆されているためであり、その被覆面積は60%以上であり、繊維間隙を閉塞してしまっていた。   The nonwoven fabric of Comparative Example 9 was composed of non-fibrillated fibers and polyolefin resin, and did not have a bridge made of superfine yarn, but fluff was difficult to occur. This is because the surface of the non-woven fabric is coated with a polyolefin resin, and the covering area is 60% or more, which closes the fiber gap.

比較例10、11の不織布は、非フィブリル化繊維とポリオレフィン樹脂を含有するが、ポリオレフィン樹脂を塗工後にポリオレフィン樹脂の融点未満の温度で乾燥させ、さらにポリオレフィン樹脂の融点未満の温度で熱圧処理されてなるため、ポリオレフィン樹脂が完全には溶融せず粒子のまま残存し、超極細糸からなる橋架けが形成されなかった。この残存している粒子によって、毛羽は発生しにくかった。しかし、不織布表面の被覆面積が大きく、粒子で繊維間が閉塞されていた。   The nonwoven fabrics of Comparative Examples 10 and 11 contain non-fibrillated fibers and a polyolefin resin. After coating the polyolefin resin, the nonwoven fabric is dried at a temperature lower than the melting point of the polyolefin resin, and further subjected to hot-pressure treatment at a temperature lower than the melting point of the polyolefin resin. As a result, the polyolefin resin was not completely melted and remained as particles, and a bridge made of super fine yarn was not formed. Fluff was hardly generated by the remaining particles. However, the coated area of the nonwoven fabric surface was large, and the fibers were clogged with particles.

本発明の不織布は、液体用フィルター、血液濾過フィルター、エアフィルター、ワイパー、薬液保持基材、生物組織培養基材などに好適である。   The nonwoven fabric of the present invention is suitable for liquid filters, blood filtration filters, air filters, wipers, drug solution holding substrates, biological tissue culture substrates, and the like.

Claims (12)

断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有することを特徴とする不織布。   A non-woven fabric characterized by having a bridge made of polyolefin resin superfine yarn between fibers in the vertical direction when viewed from a cross section. 不織布断面において、長さ50μm×断面厚み×深さ5μmあたりの平均橋架け本数が5本以上である請求項1記載の不織布。   2. The nonwoven fabric according to claim 1, wherein in the nonwoven fabric section, the average number of bridges per length of 50 μm × cross-sectional thickness × depth of 5 μm is 5 or more. 繊維として、非フィブリル化繊維を含有する請求項1または2記載の不織布。   The nonwoven fabric of Claim 1 or 2 containing a non-fibrillated fiber as a fiber. 繊維として、フィブリル化繊維を含有する請求項1または2記載の不織布。   The nonwoven fabric of Claim 1 or 2 containing a fibrillated fiber as a fiber. フィブリル化繊維が、フィブリル化パラ系全芳香族ポリアミド繊維、フィブリル化全芳香族ポリエステル繊維の何れかである請求項4記載の不織布。   The nonwoven fabric according to claim 4, wherein the fibrillated fiber is one of a fibrillated para-type wholly aromatic polyamide fiber and a fibrillated wholly aromatic polyester fiber. ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥することを特徴とする不織布の製造方法。   A method for producing a nonwoven fabric, comprising wet-making paper containing a slurry containing an aggregate of polyolefin resin particles and fibers and drying at a temperature of a melting point of the polyolefin resin to a melting point + 80 ° C. ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥後、室温〜融点+80℃の温度で熱圧処理することを特徴とする、断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有する不織布の製造方法。   Wet paper making a slurry containing an aggregate of polyolefin resin particles and fibers, drying at a temperature of the melting point of the polyolefin resin ~ melting point + 80 ℃, and then hot pressing at a temperature of room temperature to melting point + 80 ℃, A method for producing a non-woven fabric having a bridge made of superfine fibers of polyolefin resin between fibers in the vertical direction when viewed from a cross section. ポリオレフィン樹脂粒子と繊維との凝集体を含有するスラリーを湿式抄紙し、ポリオレフィン樹脂の融点未満の温度で乾燥させた後、ポリオレフィン樹脂の融点〜融点+80℃の温度で熱圧処理することを特徴とする、断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有する不織布の製造方法。   The slurry containing the agglomerates of polyolefin resin particles and fibers is wet-papered, dried at a temperature lower than the melting point of the polyolefin resin, and then hot-pressed at a temperature between the melting point of the polyolefin resin and the melting point + 80 ° C. The manufacturing method of the nonwoven fabric which has the bridge | crosslinking which consists of a superfine fiber of polyolefin resin in an up-down direction seeing from a cross section between fibers. ポリオレフィン樹脂を含有しない不織布にポリオレフィン樹脂を含浸又は塗工した後、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥させることを特徴とする、断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有する不織布の製造方法。   After impregnating or applying a polyolefin resin to a non-woven fabric containing no polyolefin resin, the polyolefin resin is dried at a temperature ranging from the melting point of the polyolefin resin to the melting point + 80 ° C. A method for producing a non-woven fabric having a bridge formed of fibers between fibers. ポリオレフィン樹脂を含有しない不織布にポリオレフィン樹脂を含浸又は塗工した後、ポリオレフィン樹脂の融点〜融点+80℃の温度で乾燥させ、さらに室温〜ポリオレフィン樹脂の融点+80℃の温度で熱圧処理することを特徴とする、断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有する不織布の製造方法。   After impregnating or coating a polyolefin resin on a non-woven fabric containing no polyolefin resin, it is dried at a temperature between the melting point of the polyolefin resin and the melting point + 80 ° C., and further subjected to hot-pressure treatment at a temperature between room temperature and the melting point of the polyolefin resin + 80 ° C. The manufacturing method of the nonwoven fabric which has the bridge | crosslinking which consists of a superfine fiber of polyolefin resin in an up-down direction seeing from a cross section between fibers. ポリオレフィン樹脂を含有しない不織布にポリオレフィン樹脂を含浸又は塗工した後、ポリオレフィン樹脂の融点未満の温度で乾燥させた後、ポリオレフィン樹脂の融点〜融点+80℃の温度で熱圧処理することを特徴とする、断面から見て上下方向に、ポリオレフィン樹脂の超極細糸からなる橋架けを繊維間に有する不織布の製造方法。   After impregnating or coating a polyolefin resin on a non-woven fabric containing no polyolefin resin, drying at a temperature lower than the melting point of the polyolefin resin, and then hot pressing at a temperature between the melting point of the polyolefin resin and the melting point + 80 ° C. The manufacturing method of the nonwoven fabric which has the bridge | crosslinking which consists of a superfine fiber of polyolefin resin in an up-down direction seeing from a cross section between fibers. 熱圧処理における温度が、ポリオレフィン樹脂の融点〜融点+80℃である請求項7又は10記載の不織布の製造方法。   The method for producing a nonwoven fabric according to claim 7 or 10, wherein the temperature in the hot-press treatment is the melting point of the polyolefin resin to the melting point + 80 ° C.
JP2011052223A 2011-03-09 2011-03-09 Nonwoven fabric and method for manufacturing nonwoven fabric Withdrawn JP2012188774A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011052223A JP2012188774A (en) 2011-03-09 2011-03-09 Nonwoven fabric and method for manufacturing nonwoven fabric

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011052223A JP2012188774A (en) 2011-03-09 2011-03-09 Nonwoven fabric and method for manufacturing nonwoven fabric

Publications (1)

Publication Number Publication Date
JP2012188774A true JP2012188774A (en) 2012-10-04

Family

ID=47082238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011052223A Withdrawn JP2012188774A (en) 2011-03-09 2011-03-09 Nonwoven fabric and method for manufacturing nonwoven fabric

Country Status (1)

Country Link
JP (1) JP2012188774A (en)

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189102A1 (en) * 2014-06-10 2015-12-17 Neenah Gessner Gmbh Impregnated filter materials and filter elements produced therefrom
CN105935556A (en) * 2015-03-05 2016-09-14 三菱制纸株式会社 Semipermeable membrane support body and preparing method therefor
WO2018047742A1 (en) * 2016-09-08 2018-03-15 三菱製紙株式会社 Substrate for lithium ion battery separators, and lithium ion battery separator
CN110114911A (en) * 2016-12-27 2019-08-09 三菱制纸株式会社 Lithium ion battery separator and lithium ion battery
WO2019208160A1 (en) * 2018-04-24 2019-10-31 クラレクラフレックス株式会社 Nonwoven fabric and method for producing same
JP2020076174A (en) * 2018-11-08 2020-05-21 三菱製紙株式会社 Wet type nonwoven fabric containing polyphenylene sulfide fiber
WO2021020147A1 (en) * 2019-08-01 2021-02-04 株式会社バルカー Press-adrhered body and production method therefor
WO2021039980A1 (en) * 2019-08-30 2021-03-04 株式会社ダイセル Fiber article
WO2021039979A1 (en) * 2019-08-30 2021-03-04 株式会社ダイセル Method for producing fiber articles
WO2021039981A1 (en) * 2019-08-30 2021-03-04 ダイキン工業株式会社 Air filter filtration material and air filter product
JP2022142793A (en) * 2018-08-15 2022-09-30 日軽メタル株式会社 Resin impregnated aluminum nonwoven fabric, method for manufacturing resin impregnated aluminum nonwoven fabric, laminate, and method for manufacturing laminate
WO2023095301A1 (en) * 2021-11-26 2023-06-01 株式会社ダイセル Method for producing dry nonwoven fabric
TWI820405B (en) * 2020-08-28 2023-11-01 日商大賽璐股份有限公司 Methods of manufacturing fiber articles

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015189102A1 (en) * 2014-06-10 2015-12-17 Neenah Gessner Gmbh Impregnated filter materials and filter elements produced therefrom
CN105935556B (en) * 2015-03-05 2020-12-01 三菱制纸株式会社 Semipermeable membrane support and preparation method thereof
CN105935556A (en) * 2015-03-05 2016-09-14 三菱制纸株式会社 Semipermeable membrane support body and preparing method therefor
JP2017104840A (en) * 2015-03-05 2017-06-15 三菱製紙株式会社 Semipermeable membrane support body and method for manufacturing the same
WO2018047742A1 (en) * 2016-09-08 2018-03-15 三菱製紙株式会社 Substrate for lithium ion battery separators, and lithium ion battery separator
CN109661737A (en) * 2016-09-08 2019-04-19 三菱制纸株式会社 Lithium ion battery separator substrate and lithium ion battery separator
CN109661737B (en) * 2016-09-08 2022-12-20 三菱制纸株式会社 Base material for lithium ion battery separator and lithium ion battery separator
JPWO2018047742A1 (en) * 2016-09-08 2019-10-10 三菱製紙株式会社 Lithium ion battery separator substrate and lithium ion battery separator
US11637349B2 (en) 2016-09-08 2023-04-25 Mitsubishi Paper Mills Limited Substrate for lithium ion battery separators and lithium ion battery separator
EP3512000A4 (en) * 2016-09-08 2020-04-29 Mitsubishi Paper Mills Limited Substrate for lithium ion battery separators, and lithium ion battery separator
CN110114911A (en) * 2016-12-27 2019-08-09 三菱制纸株式会社 Lithium ion battery separator and lithium ion battery
EP3565028A4 (en) * 2016-12-27 2020-11-04 Mitsubishi Paper Mills Limited Lithium ion battery separator and lithium ion battery
US11335972B2 (en) 2016-12-27 2022-05-17 Mitsubishi Paper Mills Limited Lithium ion battery separator and lithium ion battery
WO2019208160A1 (en) * 2018-04-24 2019-10-31 クラレクラフレックス株式会社 Nonwoven fabric and method for producing same
JPWO2019208160A1 (en) * 2018-04-24 2021-05-20 クラレクラフレックス株式会社 Nonwoven fabric and its manufacturing method
JP7084473B2 (en) 2018-04-24 2022-06-14 クラレクラフレックス株式会社 Nonwoven fabric and its manufacturing method
JP7291271B2 (en) 2018-08-15 2023-06-14 日軽メタル株式会社 Resin-impregnated aluminum nonwoven fabric, method for producing resin-impregnated aluminum nonwoven fabric, laminate, and method for producing laminate
JP2022142793A (en) * 2018-08-15 2022-09-30 日軽メタル株式会社 Resin impregnated aluminum nonwoven fabric, method for manufacturing resin impregnated aluminum nonwoven fabric, laminate, and method for manufacturing laminate
JP2020076174A (en) * 2018-11-08 2020-05-21 三菱製紙株式会社 Wet type nonwoven fabric containing polyphenylene sulfide fiber
WO2021020147A1 (en) * 2019-08-01 2021-02-04 株式会社バルカー Press-adrhered body and production method therefor
WO2021039979A1 (en) * 2019-08-30 2021-03-04 株式会社ダイセル Method for producing fiber articles
US20220176284A1 (en) * 2019-08-30 2022-06-09 Daikin Industries, Ltd. Air filter medium and air filter product
CN114340760A (en) * 2019-08-30 2022-04-12 大金工业株式会社 Air filter medium and air filter product
CN114051544A (en) * 2019-08-30 2022-02-15 株式会社大赛璐 Fibrous article
JPWO2021039981A1 (en) * 2019-08-30 2021-03-04
WO2021039981A1 (en) * 2019-08-30 2021-03-04 ダイキン工業株式会社 Air filter filtration material and air filter product
WO2021039980A1 (en) * 2019-08-30 2021-03-04 株式会社ダイセル Fiber article
CN114340760B (en) * 2019-08-30 2024-06-11 大金工业株式会社 Air filter medium and air filter product
TWI820405B (en) * 2020-08-28 2023-11-01 日商大賽璐股份有限公司 Methods of manufacturing fiber articles
WO2023095301A1 (en) * 2021-11-26 2023-06-01 株式会社ダイセル Method for producing dry nonwoven fabric

Similar Documents

Publication Publication Date Title
JP2012188774A (en) Nonwoven fabric and method for manufacturing nonwoven fabric
JP5651120B2 (en) Lithium secondary battery substrate and lithium secondary battery separator
JP6542343B2 (en) Non-woven fabric substrate for lithium ion secondary battery separator and lithium ion secondary battery separator
KR101757491B1 (en) Semipermeable membrane supporting body, spiral-wound semipermeable membrane element, and method for producing semipermeable membrane supporting body
US6468651B2 (en) Nonwoven fabric containing fine fiber, and a filter material
CN105935556B (en) Semipermeable membrane support and preparation method thereof
KR100743750B1 (en) Nonwoven polyester fabric with high resistance to water pressure
JP6018498B2 (en) Lithium ion secondary battery separator base material, method for producing lithium ion secondary battery separator base material, and lithium ion secondary battery separator
TWI598226B (en) Aromatic polyamine resin film laminated body and its manufacturing method
JP7371056B2 (en) semipermeable membrane support
JP2013220382A (en) Semipermeable membrane support
JP2012106177A (en) Semipermeable membrane support
JP2024026107A (en) Wet type non-woven filtration medium having high bursting strength, and method for generating the same
TW200937467A (en) Foliated material, process for the production of the same, and electrical and electronic parts made with the same
JP3741886B2 (en) Ultrafine fiber generation possible fiber, ultrafine fiber generated from this, and fiber sheet using this ultrafine fiber
JP2012190622A (en) Separator for electrochemical element, and electrochemical element including the same
JP2012250223A (en) Semipermeable membrane support
JP2013148601A (en) Cleaning sheet base material for electrophotographic device
TWI291371B (en) Semipermeable membrane support and method of making the same
JP2015050043A (en) Lithium ion secondary battery separator
JP2015086477A (en) Nonwoven fabric made of wet method and method for producing the same
JP2019063727A (en) Semipermeable membrane support
JP6545638B2 (en) Heat resistant wet non-woven
JP2019060044A (en) Manufacturing method of wet type unwoven fabric
JP6088166B2 (en) Base material for lithium ion secondary battery separator and lithium ion secondary battery separator

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513