JP2012186997A - Highly efficient motor rotating directly with magnetic force perpendicular to magnetic force plane - Google Patents

Highly efficient motor rotating directly with magnetic force perpendicular to magnetic force plane Download PDF

Info

Publication number
JP2012186997A
JP2012186997A JP2012104924A JP2012104924A JP2012186997A JP 2012186997 A JP2012186997 A JP 2012186997A JP 2012104924 A JP2012104924 A JP 2012104924A JP 2012104924 A JP2012104924 A JP 2012104924A JP 2012186997 A JP2012186997 A JP 2012186997A
Authority
JP
Japan
Prior art keywords
shaft
magnet
magnetic force
permanent magnet
cylindrical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012104924A
Other languages
Japanese (ja)
Inventor
Mitsuru Suzuki
充 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012104924A priority Critical patent/JP2012186997A/en
Publication of JP2012186997A publication Critical patent/JP2012186997A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To obtain a motor in which repulsion energy and attraction energy acting perpendicularly to the magnetic force plane is converted to rotation of a shaft directly and efficiently.SOLUTION: Cylindrical permanent magnets 2, 3 are installed on a shaft 1 in parallel therewith with the N and S poles arranged, respectively, on the right and left. Magnetic fields of the same polarity are applied, respectively, to the magnetic poles of the cylindrical permanent magnets 2, 3 by a cylindrical electromagnet 4 installed in parallel therewith thus generating repulsion energy for rotating the shaft 1. Rotation of the shaft is taken out by using the attraction energy and repulsion energy acting perpendicularly to the magnetic force plane.

Description

モーター・ブラシレスモーター    Motor / Brushless motor

磁力面に対して垂直に働く、同極による反発力、異極による吸着力を、効率良く、直接に、軸の回転運動に変えるには、どのように行えばよいか。    How can we change the repulsive force due to the same polarity and the attracting force due to the different polarity, which work perpendicularly to the magnetic surface, efficiently and directly into the rotational movement of the shaft?

課題を明確にする為の3つの実験を行います。    Three experiments will be conducted to clarify the issues.

実験1、磁力面に対して垂直に働く磁力を把握する為の実験です。常に身近に磁石を置き、反発面を握り、吸着面を剥がす。    Experiment 1, an experiment to grasp the magnetic force acting perpendicular to the magnetic surface. Always place a magnet close to you, grasp the rebound surface, and peel off the attracting surface.

実験1の実験結果。このエネルギーは使えるです。    Experimental result of Experiment 1. This energy can be used.

実験2、磁力面に対して垂直に働く磁力を効率良く取り出す実験です。実験2実行図として図面1に示します。机上で、A,B2つの正方形磁石の反発面を合わせ、A磁石を放すと、A磁石は、B磁石の前方へ勢い良く飛び出します。A磁石を真直ぐに、遠くへ飛ばす事が出来れば、磁力面に対して垂直に働く磁力を効率良く取り出していると云えます。実験2により、以下の3つの結果が出ます。    Experiment 2, an experiment to efficiently extract the magnetic force that works perpendicular to the magnetic surface. The execution diagram of Experiment 2 is shown in Drawing 1. On the desk, align the repulsive surfaces of the two A and B square magnets, release the A magnet, and the A magnet will jump out to the front of the B magnet. If you can fly the A magnet straight and far away, you can effectively extract the magnetic force that works perpendicular to the magnetic surface. Experiment 2 gives the following three results.

実験2の結果1。A磁石とB磁石は、密着していなければいけない。
理由、A磁石とB磁石が少しでも離れると、磁力は極端に弱くなり、A磁石は遠くへ飛びません。これでは、磁力面に対して垂直に働く磁力を効率良く取り出しているとは云えません。僕、個人の実験結果ですが、磁石と磁石の間が2ミリ離れると、磁力は真価を失います。意味がありません。
Result 1 of Experiment 2 The A magnet and B magnet must be in close contact.
The reason is that if the A magnet and the B magnet are separated even a little, the magnetic force becomes extremely weak and the A magnet does not fly far. With this, it cannot be said that the magnetic force acting perpendicular to the magnetic surface is efficiently extracted. As a result of my personal experiment, the magnetic force loses its true value when the distance between the magnets is 2 mm. There is no meaning.

実験2の結果2。A磁石とB磁石は、正対していなければいけない。
理由、A磁石又はB磁石が少しでも傾いていると、A磁石は真直ぐに飛びません。湾曲して飛び、距離が出ません。又、A磁石、B磁石双方側面上下部、裏面の異極との反応を否定できません。
これでは、磁力面に対して垂直に働く磁力を効率良く取り出しているとは云えません。
Result 2 of experiment 2. A magnet and B magnet must face each other.
The reason is that if the A magnet or B magnet is tilted even a little, the A magnet will not fly straight. Curved and flying, no distance. In addition, the reaction between the A magnet and B magnet on both sides of the upper and lower sides and the back side cannot be denied.
With this, it cannot be said that the magnetic force acting perpendicular to the magnetic surface is efficiently extracted.

実験2の結果3。A磁石とB磁石は、同型同極でなければいかない。
理由、磁石には、N極、S極の間、磁力面の中央部に磁力の弱い部分が在り、先ず、この部分の面積が合致し、次に、その周辺の磁力の強い部分面積が合致して初めて、磁力面に対して垂直に働く磁力を効率良く取り出す事が出来ます。
Result 3 of experiment 2. The A magnet and B magnet must be of the same type and polarity.
The reason is that the magnet has a weak magnetic part at the center of the magnetic surface between the N and S poles. The area of this part first matches, and then the area of the surrounding strong magnetic part matches. Only then can the magnetic force acting perpendicular to the magnetic surface be extracted efficiently.

実験3。磁力面に対して垂直に働く磁力を直接に軸の回転運動に変える実験です。
直接とは、クランク等を使わず、又、磁石、軸等に移動や振動を与えないで、軸の回転運動へ変えるという意味で表現しています。実験3実行図として図面2に示します。
Experiment 3. In this experiment, the magnetic force acting perpendicular to the magnetic surface is changed directly into the rotational movement of the shaft.
The term “directly” is used in the sense that it does not use a crank, etc., and does not move or vibrate the magnet, shaft, etc., and changes to a rotational motion of the shaft. The execution diagram of Experiment 3 is shown in Drawing 2.

ターンテーブルの上に、A磁石をテープで貼り付け、B磁石を水平に接近させると、ターンテーブルは動きます。    When the A magnet is pasted on the turntable with tape and the B magnet is approached horizontally, the turntable moves.

実験3の結果1。
磁力面に対して垂直に働く反発力・吸着力持って、軸の回転運動を取り出す事は可能である事を証明しています。
Result 1 of Experiment 3
It has been proved that it is possible to take out the rotational motion of the shaft with repulsive force and attracting force acting perpendicular to the magnetic surface.

実験3の結果2。
図面2、実験3実行図イ.に示す様に、円周を対角線状に挟む形でA磁石、B磁石を設置します。
この様に設置しないと、回転してきたA磁石と固定してあるB磁石が接触してしまうからです。
A磁石とB磁石の間隔が開いてしまいます。これは、実験2結果1に反します。これでは、磁力を効率良く使用しているとは云えません。このようなモーターは創っても意味がありません。
Result 2 of experiment 3.
Drawing 2, execution diagram of experiment 3 As shown in Fig. 2, A magnet and B magnet are installed with the circumference sandwiched diagonally.
Otherwise, the rotating A magnet and the fixed B magnet will be in contact.
The gap between A magnet and B magnet will be increased. This is contrary to Experiment 2 Result 1. This is not to say that the magnetic force is used efficiently. There is no point in creating such a motor.

実験3の結果3。
図面2、実験3実行図ロ.に示す様に、円周をA磁石、B磁石の間に平行に挟む様に設置してみると、A磁石は、円周に沿ってB磁石より移動しますが、A磁石はB磁石に対して傾いてしまいます。
これでは、両磁石の側面、裏面の異極との反応を否定出来ません。これは、実験2結果2に反します。このようなモーターは創る気がしません。
Result 3 of experiment 3
Drawing 2, execution diagram of experiment 3 b. As shown in Fig. 3, when the circumference is installed so as to be sandwiched in parallel between the A magnet and the B magnet, the A magnet moves from the B magnet along the circumference. It will lean against.
This cannot deny the reaction with the opposite polarity on the side and back of both magnets. This is contrary to Experiment 2 Result 2. I don't feel like creating such a motor.

上の実験結果に寄り、課題に対して3つの条件が付加されます。これを総合課題として示します。    Based on the above experimental results, three conditions are added to the task. This is shown as a comprehensive issue.

総合課題
磁力面に対して垂直に働く、同極による反発力、異極による吸着力を、効率良く、直接に軸の回転運動に変えるには、どのように行えばよいか。付加される3つの条件。
General issue How can we change the repulsive force due to the same polarity and the attracting force due to the different polarity perpendicular to the magnetic surface into an efficient and direct rotation of the shaft? Three additional conditions.

付加条件1.A磁石とB磁石は、密着していなければいけない。    Additional conditions The A magnet and B magnet must be in close contact.

付加条件2.A磁石とB磁石は、正対していなければいけない。    Additional conditions 2. A magnet and B magnet must face each other.

付加条件3.A磁石とB磁石は、同型同極でなければいけない。    Additional condition 3. A magnet and B magnet must be of the same type and polarity.

円筒形永久磁石を、軸に対して平行に、軸上に設置し、円筒形永久磁石の磁極、N極とS極を左右に分け、円筒形電磁石を、この円筒形永久磁石へ平行に設置し、円筒形永久磁石のN極、S極それぞれの磁極へ対し、円筒形電磁石を持って同極の磁場を当て、発生する反発のエネルギーを使って、軸の回転運動を起動し、円筒形電磁石と円筒形永久磁石の間に発生する磁力面に対して垂直な吸着エネルギーと反発エネルギーを使って軸の回転運動を形成するモーターを創る。    A cylindrical permanent magnet is installed on the axis parallel to the axis, the magnetic pole, N pole and S pole of the cylindrical permanent magnet are divided into left and right, and the cylindrical electromagnet is installed in parallel to this cylindrical permanent magnet. The cylindrical permanent magnet is applied to the magnetic poles of the N and S poles by applying a magnetic field of the same polarity with the cylindrical electromagnet, and the repulsive energy generated is used to activate the rotational motion of the shaft. We create a motor that forms rotational motion of a shaft using adsorption energy and repulsion energy perpendicular to the magnetic surface generated between an electromagnet and a cylindrical permanent magnet.

永久磁石と電磁石を円筒形にする事により、磁力面に対して垂直な磁力を、無限大に接近させる事が出来、永久磁石と電磁石を平行に設置する事により、磁力の傾きを得る事も無い。更に、N極、S極を左右に分ける事により、異極による回転運動への干渉を取り除く事が出来た。    By making the permanent magnet and the electromagnet cylindrical, the magnetic force perpendicular to the magnetic surface can be approached to infinity, and by installing the permanent magnet and the electromagnet in parallel, the inclination of the magnetic force can be obtained. No. Furthermore, by separating the N pole and S pole on the left and right, interference with the rotational motion due to the different poles could be removed.

磁力面に対して垂直に働く反発のエネルギー、吸着のエネルギーを直接に、効率良く、軸の回転運動へ変える事が出来た。    The repulsive energy acting perpendicular to the magnetic surface and the energy of adsorption could be directly and efficiently changed to the rotational motion of the shaft.

現在、この国に於いて市販されている円筒形永久磁石は、その円形の面を机上に接する様に置き、これを縦と認識した場合、この上方下方にN極又は、S極が配置されています。
この円筒形永久磁石を、机面に対して水平に設置した軸に対し、平行に、この軸上へ設置して、円筒形永久磁石のN極、S極を左右に分け、この円筒形永久磁石に対して、円筒形電磁石を平行に接近させて設置し、円筒形永久磁石のN極、S極、それぞれの極に対し、円筒形電磁石を持って同極の磁場を当て、発生する反発のエネルギーにより、軸の回転運動を起動し、同極の円筒形永久磁石と軸を挟む形で対象側に設置してある異極の円筒形永久磁石に発生する吸着エネルギーを使って、軸の回転運動を形成します。
Currently, the cylindrical permanent magnets marketed in this country are placed so that the circular surface is in contact with the desk, and when this is recognized as vertical, the north or south pole is placed above and below this. It is.
This cylindrical permanent magnet is installed on this axis parallel to the axis installed horizontally with respect to the desk surface, and the N and S poles of the cylindrical permanent magnet are divided into left and right sides. A repulsion that occurs when a cylindrical electromagnet is placed close to a magnet in parallel, and a magnetic field of the same polarity is applied to each of the N and S poles of a cylindrical permanent magnet with a cylindrical electromagnet. The rotation of the shaft is activated by the energy of the shaft, and the adsorption energy generated in the cylindrical permanent magnet of different polarity installed on the target side with the shaft sandwiched between the cylindrical permanent magnet of the same polarity is used to Form a rotational movement.

電源は、単1電池を2本直列で使用しました。    The power supply used two single batteries in series.

軸は、直径5ミリ、長さ100ミリの真鍮。    The shaft is brass with a diameter of 5 mm and a length of 100 mm.

主柱は、20ミリ×20ミリ×100ミリの透明アクリルを削りだして作りました。    The main pillar was made from 20mm x 20mm x 100mm clear acrylic.

円筒形永久磁石は、直径8ミリ、長さ8ミリのネオジム磁石を4個。2個組にして、軸を挟む形で左右対称に磁力配置を逆にして、軸上に設置しました。    Cylindrical permanent magnets are four neodymium magnets 8mm in diameter and 8mm in length. Two sets were installed on the shaft with the magnetic force arrangement reversed symmetrically with the shaft in between.

円筒形電磁石は、直径5ミリ×45ミリのボルトナットにエナメル線0.55を巻き厚10ミリで巻きます。これは、永久磁石と電磁石中心の鉄部を接近させ過ぎると、永久磁石と鉄の吸着エネルギーが優先され、電磁石へ電気信号を送っても反応しなくなってしまうからです。永久磁石と電磁石中央の鉄部の吸着力が軸の回転運動のブレーキに成らず、僅かな吸着エネルギーとバランスにより、固定してある電磁石に軸上の永久磁石を固定できる、この空間距離が約10ミリでしたので、この10ミリの空間距離をエネメル線の巻き厚で埋めました。この様にする事により、円筒形電磁石を軸上の円筒形永久磁石へ無限大に接近させる事が出来、磁力を効率良く使用する事が出来ます。然し、無限大に接近させる事が出来ると云っても、やはり、限界が在ります。それは、接触してしまってはいけないからです。電磁石と永久磁石が接触しない限りであれば、無限大に接近させる事が出来るのです。    A cylindrical electromagnet is made by winding an enamel wire 0.55 around a bolt nut with a diameter of 5mm x 45mm and a thickness of 10mm. This is because if the permanent magnet and the iron part at the center of the electromagnet are brought too close together, the adsorption energy of the permanent magnet and iron is prioritized and no response occurs even if an electric signal is sent to the electromagnet. The permanent magnet and the iron part at the center of the electromagnet do not act as a brake for the rotational movement of the shaft, and the permanent magnet on the shaft can be fixed to the fixed electromagnet by a slight adsorption energy and balance. Because it was 10 mm, I filled this 10 mm distance with the winding thickness of the enamel wire. By doing so, it is possible to make the cylindrical electromagnet approach infinitely to the cylindrical permanent magnet on the shaft, and the magnetic force can be used efficiently. However, even if you can approach infinity, there is still a limit. That is because you must not touch. As long as the electromagnet and the permanent magnet are not in contact, they can approach infinity.

ドラム部は、直径20ミリ×20ミリのアクリル円柱に、中心より円周に対して約165度で銅箔を貼り、円筒形電磁石、円筒形永久磁石、軸の中心を結ぶ水平線より約45度の角度を取り、フィラメントを当てます。    The drum part is an acrylic cylinder with a diameter of 20mm x 20mm, and a copper foil is pasted at about 165 degrees with respect to the circumference from the center. The cylindrical electromagnet, cylindrical permanent magnet, and about 45 degrees from the horizontal line connecting the shaft centers. Take the angle and apply the filament.

フィラメントによる回転運動の信号は、スィツチON,固定円筒形電磁石が軸上A円筒形永久磁石を弾き挙げる。軸上B円筒形永久磁石が固定円筒形電磁石へ引き寄せられる。通過直前、スィツチOFF。慣性により、軸上A円筒形永久磁石が固定電磁石を通過。通過直後、スィツチONこの順に成ります。    As for the signal of the rotational motion by the filament, the switch ON, the fixed cylindrical electromagnet repels the axial A cylindrical permanent magnet. The on-axis B cylindrical permanent magnet is attracted to the fixed cylindrical electromagnet. Just before passing, the switch is OFF. Due to inertia, the on-axis A cylindrical permanent magnet passes through the fixed electromagnet. Immediately after passing, the switch turns on in this order.

回転速度の制御は、固定円筒形電磁石を軸上円筒形永久磁石へ近づけると早く回転し、遠ざけると遅く回転します。この方法により行うことが出来ます。    The rotational speed is controlled by rotating the fixed cylindrical electromagnet closer to the on-axis cylindrical permanent magnet and rotating slower when moving away from it. You can do this.

産業上の利用の可能性Industrial applicability

M−003 YSで、車を走らせます。    With M-003 YS, run the car.

図1は、実験2実行図です。磁力面に対して垂直に働く反発力、吸着力を効率良く取り出すための実験です。固定してあるB磁石に対して、A磁石を真直ぐにより遠くへ飛ばす事が出来れば、磁力面に対して垂直な磁力を効率よく取り出していると云えます。    Figure 1 shows the execution diagram of Experiment 2. This is an experiment to efficiently extract the repulsive force and attracting force that work perpendicular to the magnetic surface. If you can fly the A magnet straight away from the fixed B magnet, you can effectively extract the magnetic force perpendicular to the magnetic surface.

図2は、ターンテーブルえを使った実験3実行図です。磁力面に対して垂直に働く磁力を直接に軸の回転運動へ変える実験です。直接とは、クランク等を使わず、又、軸、磁石に移動や振動等を与えないでと云う意味で表現しています。この実験で解る事は、磁力面に対して垂直な磁力で軸の回転運動を取り出す事は可能である事です。然し、図2イ.は、磁石の間隔が空いてしまうため磁力の使用効率が低く、ロ.は、磁力面が傾き、又、異極の影響を排除出来ません。    Figure 2 is an execution diagram of Experiment 3 using a turntable. In this experiment, the magnetic force acting perpendicular to the magnetic surface is changed directly into the rotational motion of the shaft. The term “directly” is used in the sense that it does not use a crank, etc., and does not give movement or vibration to the shaft or magnet. This experiment shows that it is possible to extract the rotational motion of the shaft with a magnetic force perpendicular to the magnetic surface. However, FIG. Since the gap between magnets is large, the use efficiency of magnetic force is low. The magnetic surface is inclined and the influence of different polarity cannot be excluded.

図3は、水平に正対している2つの円を升に落として観ると、升の対角線上45度上方下方に於いても円が正対する事が判ります。この事を図に示したものです。    Figure 3 shows that the two circles that are horizontally facing each other fall into the heel, and that the circles are facing even 45 degrees above and below the heel diagonal. This is illustrated in the figure.

図4は、図3を固定電磁石、軸上永久磁石、円周へ置き変えたものです。正対している固定円筒形電磁石と軸上円筒形永久磁石は、軸、円筒形永久磁石、固定円筒形電磁石を結ぶ水平線上45度上方下方の円周上でも正対する事が判ります。これだけの角度が有れば、軸の回転運動を取り出す事が出来ます。益して、磁力は線ではなくエリアなのですから。正対する固定円筒形電磁石と軸上円筒形永久磁石の間に発生した反発エネルギーは、軸の可動により、反発エネルギーの少ない方へ円筒形永久磁石を移動させます。永久磁石の磁力が一定であるのに対し、電磁石の磁力は、云わば、細かい振動ですので、この反動と慣性により、軸上円筒形永久磁石は45度圏内へ侵入し、軸の回転運動へ変化します。    Fig. 4 replaces Fig. 3 with fixed electromagnets, axial permanent magnets, and circumference. It can be seen that the fixed cylindrical electromagnet and the axial cylindrical permanent magnet facing each other are facing directly on the circumference 45 degrees above and below the horizontal line connecting the shaft, cylindrical permanent magnet, and fixed cylindrical electromagnet. If there is such an angle, the rotational movement of the shaft can be taken out. Because the magnetic force is not a line but an area. The repulsive energy generated between the fixed cylindrical electromagnet and the axial cylindrical permanent magnet facing each other moves the cylindrical permanent magnet to the side where the repulsive energy is small by moving the shaft. While the magnetic force of the permanent magnet is constant, the magnetic force of the electromagnet is, so to speak, fine vibrations. By this reaction and inertia, the on-axis cylindrical permanent magnet enters the 45-degree range and moves to the rotational movement of the shaft. Change.

図5は、M−003 YSの駆動部、円筒形電磁石、円筒形永久磁石起動側、軸、円筒形永久磁石の在り様と磁力配置をイメージ図として示します。    Fig. 5 shows the M-003 YS drive unit, cylindrical electromagnet, cylindrical permanent magnet starting side, shaft, cylindrical permanent magnets, and the arrangement of magnetic force as an image diagram.

図6は、M−003 YSの全体、固定円筒形電磁石、円筒形永久磁石、軸、ドラム部、フィラメント、配線、台、電池、スイッチの在り様をイメージ図として示します。    Fig. 6 shows the M-003 YS overall, fixed cylindrical electromagnet, cylindrical permanent magnet, shaft, drum part, filament, wiring, stand, battery, and switch as an image diagram.

図7は、固定円筒形電磁石、軸上円筒形永久磁石、フィラメント、ドラム部、軸を正面で示し、ドラム部、フィラメントを拡大して表しています。銅箔の円周に対する角度は約165度、円筒形電磁石、円筒形永久磁石、軸の中心を結ぶ水平線から銅箔の始まる点の角度は約45度である事を示します。    Fig. 7 shows the fixed cylindrical electromagnet, the on-axis cylindrical permanent magnet, the filament, the drum section, and the shaft on the front, and the drum section and filament are enlarged. The angle to the circumference of the copper foil is about 165 degrees, and the angle of the starting point of the copper foil from the horizontal line connecting the center of the cylindrical electromagnet, cylindrical permanent magnet and shaft is about 45 degrees.

図8は、M−003 YSから、ドラム部、フィラメントを取り外し、回転速度制御装置を取り付け、ブラシレス化したM−003 YSの在り様をイメージ図として示します。    Fig. 8 shows the image of M-003 YS, which has been removed from the M-003 YS by removing the drum and filament, attaching a rotation speed control device, and making it brushless.

Claims (1)

円筒形永久磁石を、軸に対して平行に、軸上に設置して、円筒形永久磁石のN極、S極を左右に分け、この円筒形永久磁石に対して平行に設置した円筒形電磁石を持って、円筒形永久磁石のN極、S極それぞれの極に対して、同極の磁場を当て、発生する反発のエネルギーを持って、軸の回転運動を起動し、磁力面に対して垂直な吸着エネルギー、反発エネルギーで軸の回転運動を形成するモーター。A cylindrical permanent magnet is installed on the shaft in parallel with the shaft, and the N and S poles of the cylindrical permanent magnet are divided into left and right, and the cylindrical electromagnet is installed in parallel with the cylindrical permanent magnet. , Apply the same magnetic field to each of the north and south poles of the cylindrical permanent magnet, start the rotational motion of the shaft with the repulsive energy generated, and A motor that forms a rotational movement of the shaft with vertical adsorption energy and repulsion energy.
JP2012104924A 2012-04-11 2012-04-11 Highly efficient motor rotating directly with magnetic force perpendicular to magnetic force plane Pending JP2012186997A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012104924A JP2012186997A (en) 2012-04-11 2012-04-11 Highly efficient motor rotating directly with magnetic force perpendicular to magnetic force plane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012104924A JP2012186997A (en) 2012-04-11 2012-04-11 Highly efficient motor rotating directly with magnetic force perpendicular to magnetic force plane

Publications (1)

Publication Number Publication Date
JP2012186997A true JP2012186997A (en) 2012-09-27

Family

ID=47016536

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012104924A Pending JP2012186997A (en) 2012-04-11 2012-04-11 Highly efficient motor rotating directly with magnetic force perpendicular to magnetic force plane

Country Status (1)

Country Link
JP (1) JP2012186997A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506023A (en) * 2001-10-01 2005-02-24 ウェイブクレスト ラボラトリーズ リミテッド ライアビリティ カンパニー Rotating electric motor with axially aligned stator and / or rotor poles
JP2008278675A (en) * 2007-05-01 2008-11-13 Nissan Motor Co Ltd Dynamo-electric machine

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005506023A (en) * 2001-10-01 2005-02-24 ウェイブクレスト ラボラトリーズ リミテッド ライアビリティ カンパニー Rotating electric motor with axially aligned stator and / or rotor poles
JP2008278675A (en) * 2007-05-01 2008-11-13 Nissan Motor Co Ltd Dynamo-electric machine

Similar Documents

Publication Publication Date Title
AU2021201642B2 (en) Methods and apparatus for generating magnetic fields
RU2008133157A (en) MAGNETIC ENGINE
JP2012186997A (en) Highly efficient motor rotating directly with magnetic force perpendicular to magnetic force plane
JP2013179724A (en) Rotation accelerating device
JP2009290977A (en) Method for converting magnetic field of stationary permanent magnet into magnetic field of magnetic flux vibration, and taking out mechanical energy and electric energy
CN202976604U (en) Angular momentum conservation demonstration instrument based on magnetic suspension
JP2012244892A5 (en)
JP2013005708A (en) Electric power generator
JP2010216271A (en) Motion state maintaining device unit and motion condition maintaining device
CN202679214U (en) Novel stepping motor
CN210985765U (en) Novel permanent magnet rotor structure suitable for permanent magnet motor
JP2014230476A (en) Magnetic motor
JP2007124881A (en) Rotary drive
RU126538U1 (en) MAGNETIC ENGINE
US20130147297A1 (en) Magnetic Motor Propulsion System
JP2016171615A (en) Electric motor
RS55272B1 (en) Magnetic engine with rotating ferromagnetic membranes
JP2014226012A (en) Rotary drive support device
US20130106222A1 (en) Motor
JP2015180170A (en) permanent magnet motor
JP2015057034A (en) Magnetic force motor utilizing attraction and repulsive force by magnet
CN106329877A (en) Electromagnetic braking apparatus
SZEWCZYK et al. The use of shaping face of pole in rotor as a component of molding cogging torque in Permanent Magnet motor in self-breaking systems
JP2018007537A (en) Rotary power machine using repulsive force generated when same poles of permanent magnets are close to each other
CN103973166A (en) Acting force and counter-acting force acceleration magnetomotive device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140919

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150609

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20160119

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170228