JP2013179724A - Rotation accelerating device - Google Patents

Rotation accelerating device Download PDF

Info

Publication number
JP2013179724A
JP2013179724A JP2012040843A JP2012040843A JP2013179724A JP 2013179724 A JP2013179724 A JP 2013179724A JP 2012040843 A JP2012040843 A JP 2012040843A JP 2012040843 A JP2012040843 A JP 2012040843A JP 2013179724 A JP2013179724 A JP 2013179724A
Authority
JP
Japan
Prior art keywords
solenoid
disk
permanent magnet
rotating
force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012040843A
Other languages
Japanese (ja)
Inventor
Kunifumi Sukehara
國文 祐原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2012040843A priority Critical patent/JP2013179724A/en
Publication of JP2013179724A publication Critical patent/JP2013179724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Permanent Magnet Type Synchronous Machine (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a rotation accelerating device that has a permanent magnet and a solenoid or electromagnet arranged, and electrically controls repulsive/attractive force of the magnet to have extremely small energy loss.SOLUTION: A rotation accelerating device causes disks 11, 11-1 to generate torque around their center axes by making S poles and N poles of a plurality of permanent magnets and a solenoid or electromagnet attract or repulse each other with magnetic fields generated in the plurality of permanent magnets and the solenoid or electromagnet supplied with a current. The attractive force and repulsive force that the permanent magnets have is utilized, and the permanent magnets which change applied inertial force into kinetic energy and the solenoid or electromagnet are arranged, and a sequence of an electronic integrated circuit for alternating and controlling the attractive force and repulsive force is used.

Description

本発明は、永久磁石と回転体の慣性力を用いる回転加速装置に関するものである。   The present invention relates to a rotation acceleration device that uses the inertial force of a permanent magnet and a rotating body.

永久磁石と銅線コイルなどを組合せ、コイルに電流を流すことにより、フレミングの右手の法則で知られるローレンツ力を発生させて、その力を回転力に変えて動力を得る電磁モーターの技術は従来より広く知られるところである。   Conventionally, the electromagnetic motor technology that generates power by generating a Lorentz force, known by Fleming's right-hand rule, by combining a permanent magnet and a copper wire coil and passing a current through the coil, and converting the force into a rotational force More widely known.

従来の電磁モーターは、コイルに電流を流し電磁石とし、対置する永久磁石との間に発生するローレンツ力を回転力に利用する装置である。ローレンツ力は永久磁石とコイル電磁石を相対的に引き付けまたは反発しようとする力であり、一方を固定し、他方を回転軸に取り付けておけば、回転軸に取り付けられた方は回転するため、これを動力として取り出す構造のものが一般的である。しかし、ローレンツ力を発生させるときには、コイルの電磁石と永久磁石との間の磁界で生ずる抵抗(コギングトルク)のために力の損失があり、電流のエネルギーが音や熱などのエネルギーに消費され、また、ヒステリシス損も生じて、回転運動のためのエネルギーとしてすべてが使われないことはよく知られた事実である。このことにより、例えば、発電機で発電し、その電気でモーターを回し、その力で発電する、というようなクローズドされた動力システムを作ることができなかった。     A conventional electromagnetic motor is a device that uses a Lorentz force generated between a permanent magnet facing a coil as an electromagnet by passing an electric current through a coil. The Lorentz force is a force that attracts or repels the permanent magnet and the coil electromagnet relatively. If one is fixed and the other is attached to the rotating shaft, the one attached to the rotating shaft rotates. The structure of taking out as power is common. However, when generating the Lorentz force, there is a loss of force due to the resistance (cogging torque) generated by the magnetic field between the electromagnet and the permanent magnet of the coil, and the current energy is consumed by energy such as sound and heat, It is a well-known fact that hysteresis loss also occurs and not all is used as energy for rotational movement. For this reason, it has been impossible to create a closed power system in which, for example, power is generated by a generator, a motor is rotated by the electricity, and power is generated by the power.

閉鎖した系の中で、作り出したエネルギーを動力として使い循環させる、いわゆる永久機関はエネルギー保存の法則に従えば成立しないことは明らかである。一方、身近に有って無尽蔵に思える太陽のエネルギーを使ったソーラー発電は現実に実用化されていて、機材の消耗を考えなければ極めて長期間エネルギーを供給できる。しかし、このエネルギーも「永久的」ではあるが、太陽の寿命といわれる100億年後には消滅する有限のエネルギーである。また、水力発電も、水の気化と液化サイクルを位置エネルギーと運動エネルギーに変え発電する「半永久的」発電システムといえ、このことから言えば、「永久機関は存在しないが半永久機関は存在する」ということができる。   It is clear that a so-called permanent engine that circulates using the generated energy as power in a closed system does not hold according to the law of conservation of energy. On the other hand, solar power generation using solar energy that seems familiar and inexhaustible has actually been put into practical use, and can supply energy for an extremely long period of time without considering the consumption of equipment. However, although this energy is also “permanent”, it is a finite energy that will disappear after 10 billion years, which is said to be the life of the sun. Hydroelectric power generation is also a “semi-permanent” power generation system that generates electricity by changing the vaporization and liquefaction cycle of water into potential energy and kinetic energy. From this, it can be said that “a permanent engine does not exist but a semi-permanent engine exists” It can be said.

そもそも、地球上に存在し我々が半永久的に使える自然力は、引力と磁力であり、そして太陽エネルギーである。磁力(磁気力)は地球の持つ磁場により鉄などの磁性体の電子スピンが磁性を帯び蓄えられた力であり、これを応用した半永久的機関は100年以上にわたって考えられてきた。例えば2000年に公表された北吉氏のモデルは、永久磁石を取り付けた固定円盤に対置した回転円盤を補助モーターで回転させ発電を行い、発電した電力の一部を補助モーターの動力源に充てるというシステムである。しかし、この方法では、磁場の切替スイッチコントロールを機械的に行っており、1秒間に数十回が限度であって、スイッチの対応速度と機械的ムーブメントの磨耗等の寿命を考えると十分に長期間その装置が駆動することには、構造上の問題も含め技術的に疑問があると考えられる。   In the first place, natural forces that exist on Earth and can be used semipermanently are attraction and magnetic force, and solar energy. The magnetic force (magnetic force) is a force in which the electron spin of a magnetic material such as iron is magnetized and stored by the magnetic field of the earth, and a semi-permanent engine using this has been considered for over 100 years. For example, in the model of Mr. Kitayoshi published in 2000, a rotating disk facing a fixed disk with a permanent magnet is rotated by an auxiliary motor to generate electricity, and a part of the generated power is used for the power source of the auxiliary motor. System. However, in this method, the magnetic field changeover switch is controlled mechanically, which is limited to several tens of times per second, which is sufficiently long considering the switch response speed and the life of the mechanical movement. It may be technically questionable, including structural problems, that the device will drive for a period of time.

特願2008−265972号公報Japanese Patent Application No. 2008-265972 特願2008−151211号公報Japanese Patent Application No. 2008-152111

本発明が解決しようとする課題は、電力損失の大きい永久磁石とコイル電磁石で生じるローレンツ力を用いる電磁モーターではなく、永久磁石の組み合わせと機械的コントロールと補助モーターで回転力を得る磁力モーターではなく、永久磁石の持つ引力と斥力を制御し、慣性力を応用してその力を運動エネルギーに変えるために、本発明の理論に基づいて、永久磁石と、電流を流したときに両端にN極とS極の磁場をつくる銅線巻ソレノイドコイル(以下、「ソレノイド」という)を配置し、引力と斥力を切り替えてコントロールする電子集積回路のシーケンスを使用して、極めて小電力で動く回転加速装置を提供することにある。   The problem to be solved by the present invention is not an electromagnetic motor using Lorentz force generated by a permanent magnet and a coil electromagnet with a large power loss, but a magnetic motor that obtains rotational force by a combination of permanent magnets and mechanical control and an auxiliary motor. In order to control the attractive force and repulsive force of the permanent magnet and apply the inertial force to convert the force into kinetic energy, based on the theory of the present invention, the permanent magnet and N poles at both ends when current is passed Rotation acceleration device that moves with extremely low power using a sequence of electronic integrated circuits that arranges and controls copper-wound solenoid coils (hereinafter referred to as “solenoids”) that create a magnetic field of the S and S poles. Is to provide.

本発明の回転加速装置は、円盤状や円筒状の回転立体(以下、「円盤」という)の円周部分に並べた複数の永久磁石と、電流を通じたソレノイドに生ずる磁場によって、永久磁石のN極とS極、及びソレノイドのS極とN極を互いに引き付け、または反発させることにより円盤を回転させ、円盤の中心軸に回転モーメント力を生じさせるものである。    The rotational acceleration device of the present invention includes a plurality of permanent magnets arranged in a circumferential portion of a disk-shaped or cylindrical rotating solid (hereinafter referred to as “disk”) and a magnetic field generated in a solenoid through which electric current is applied. The disk is rotated by attracting or repelling the pole and the S pole, and the S and N poles of the solenoid, thereby generating a rotational moment force on the central axis of the disk.

中心軸を持つ円盤の周縁部分に、偶数個の、寸法と重量と磁力の強さが同じ永久磁石を、それぞれの、N極とS極を直線で結ぶ磁界の方向の中心線が、円盤の中心軸と平行で中心から等距離の位置に均等な間隔を置いて配置する。ある1個の永久磁石の磁界の方向の中心線が、円盤の中心軸に平行で、仮にN極とS極が東から西方向に配置された場合は、その両隣の永久磁石は、N極とS極が西から東方向に向かうように永久磁石の極の向きを逆にして、中心から等距離の周縁部分に交互に固定して配置する。このように配置されたすべての永久磁石は円盤と一体の中心軸と共に回転することができる。既述の円盤を単数又は複数セットに整え、各円盤に共通する中心軸は両端部を軸受けで支持され、ベアリング等によって滑らかに回転することができ、中心軸を支持する軸受けは架台に固定されている。ソレノイドも、コイルに電流を通じたときに生じるN極とS極を結ぶ磁界の方向の中心線が、中心軸と平行で、それぞれ中心から等距離の位置を保ち、ソレノイド同士は定められた間隔を置いて、架台に固定した支持台に、永久磁石群から微小な間隙を開けて配置し固定する。支持台には貫通穴を設け中心軸の回転を妨げないようにし、ソレノイドには電流を通じることができるように電源より配線されている。   An even number of permanent magnets having the same size, weight, and magnetic force at the periphery of the disk having the central axis, and the center lines in the direction of the magnetic field connecting the north and south poles in a straight line are Arrange at equal intervals parallel to the central axis and equidistant from the center. If the center line in the direction of the magnetic field of a single permanent magnet is parallel to the central axis of the disk and the N and S poles are arranged in the east to west direction, the permanent magnets on both sides are N poles. And the direction of the pole of the permanent magnet is reversed so that the south pole is directed from the west to the east, and is alternately fixed to the peripheral edge portion at an equal distance from the center. All permanent magnets arranged in this way can rotate with a central axis integral with the disk. The above-mentioned disks are arranged in one or more sets, and the center axis common to each disk is supported at both ends by bearings, and can be smoothly rotated by bearings, etc., and the bearings that support the center axes are fixed to the gantry ing. Solenoids also have a center line in the direction of the magnetic field connecting the N and S poles that is generated when a current is passed through the coil, parallel to the center axis, and at equal distances from the center. Then, place and fix a small gap from the permanent magnet group on the support base fixed to the gantry. The support base is provided with a through hole so that the rotation of the central axis is not hindered, and the solenoid is wired from the power supply so that current can be passed.

図4に示すように、隣接する2個の永久磁石のそれぞれの、N極とS極を結ぶ磁界の方向の中心線が、円盤の中心軸を挟んで作る中心角をアルファとすると、円盤に配置する永久磁石の全個数Mとの関係は次の通りである。   As shown in FIG. 4, when the center angle of the direction of the magnetic field connecting the north pole and the south pole of each of the two adjacent permanent magnets is alpha with the center angle formed across the center axis of the disk, The relationship with the total number M of permanent magnets to be arranged is as follows.

また、図5に示すように、複数個のソレノイドの少なくとも一対が円盤の中心軸上の一点Pとなす角ベータとアルファは次の関係にある。(nは自然数)     Further, as shown in FIG. 5, angles beta and alpha formed by at least one pair of a plurality of solenoids and a point P on the central axis of the disk have the following relationship. (N is a natural number)

円盤上の特定点における電気スイッチの開閉パターンと円盤の回転数を感知する機械的あるいは光学的センサーのデータが、ソレノイドに電流を流す制御部に送られ、スイッチ回路が電子的にコントロールされる。   Data on the opening / closing pattern of the electrical switch at a specific point on the disk and the data of a mechanical or optical sensor that senses the number of rotations of the disk are sent to a controller that supplies current to the solenoid, and the switch circuit is electronically controlled.

本発明の装置によれば、永久磁石のN極とS極、及び、ソレノイドのN極とS極を互いに引き付け、または反発させるためにソレノイドに流す電流は微弱ですむため、吸引力と反発力によって生ずる回転力で得られる回転モーメントは例えば接続する発電機の動力に伝えることができ、発電機から得られる電力の一部を本発明の磁力動力装置の駆動のために使用し、その他の大部分を他の用途の電力として供給することができるため、燃料を必要とせず長期間動かせる発電装置として産業に寄与することができる。   According to the apparatus of the present invention, since the currents flowing through the solenoid to attract or repel the N and S poles of the permanent magnet and the N and S poles of the solenoid are mutually weak, the attractive force and the repulsive force The rotational moment obtained by the rotational force generated by the generator can be transmitted to the power of the connected generator, for example, and a part of the electric power obtained from the generator is used for driving the magnetic power unit of the present invention. Since the portion can be supplied as electric power for other uses, it can contribute to the industry as a power generation device that can be operated for a long time without requiring fuel.

本発明の斜視図である。It is a perspective view of the present invention. 本発明を分解し内部を示した図である。It is the figure which decomposed | disassembled this invention and showed the inside. 図1のB矢視側面図である。It is a B arrow side view of FIG. 円盤A及び円盤Bにおける永久磁石の配置図である。FIG. 3 is a layout diagram of permanent magnets in a disk A and a disk B. ソレノイド支持台におけるソレノイドの配置図である。It is a layout view of solenoids in the solenoid support base. 円盤A及び円盤Bにおける永久磁石の極性を示す図である。It is a figure which shows the polarity of the permanent magnet in the disk A and the disk B. FIG. 図6のE方向から見た説明図である。It is explanatory drawing seen from the E direction of FIG. 図7の変化図である。FIG. 8 is a variation diagram of FIG. 7. 実施例1の説明図である。2 is an explanatory diagram of Embodiment 1. FIG. ソレノイドの電流波形図である。It is a current waveform diagram of a solenoid. 図10の変化図であるIt is a change figure of FIG. 実施例3の説明図である。10 is an explanatory diagram of Example 3. FIG. 実施例5の説明図である。FIG. 10 is an explanatory diagram of Example 5.

第1図、第2図、第3図及び第4図において、本発明の第1の実施の形態における構成要素として、中心軸(14)に固定された円盤A(11)及び円盤B(11−1)がある。円盤の材料は例えばアルミダイキャストのような非磁性体であることが望ましい。円盤A(11)の周縁部分に、偶数個の、寸法と重量と磁力の強さが同じ永久磁石を、それぞれの、N極とS極を直線で結ぶ磁界の方向の中心線が、円盤の中心軸と平行で等距離の位置に、永久磁石同士均等な間隔を置いて配置する。永久磁石1(12)は、磁界の方向の中心線が、円盤の中心軸に平行であって中心から等距離に配置し、永久磁石1の両隣の永久磁石2は、永久磁石1と極の向きを逆にし、それぞれ両端を円盤の幅より僅かに外に出して交互に周縁部分に嵌合されている。すべての永久磁石は円盤及び中心軸と共に回転することができる。円盤B(11−1)は円盤A(11)と同じ仕様である。円盤Aと、円盤Aと配置を同じ位置に置く円盤Bを、中心軸(14)で連結する。中心軸は両端部を軸受け(16)及び軸受け(17)で支持されていて滑らかに回転することができ、両軸受けは架台(15)に固定されている。ソレノイド1(21)、ソレノイド2(22)、ソレノイド3(23)及びソレノイド4(24)も、コイルに電流を通じたときに生じるN極とS極を直線で結ぶ磁界の中心線が、中心軸と平行で中心軸から等距離の位置に、段落番号(0012)で述べる本発明の理論で計算された間隔を置いて配置する。各ソレノイドは、永久磁石群から微小な間隙を開けて支持台1(10)に固定して配置し、電流を通じることができるように電源部(18)より配線されている。支持台1には回転を妨げないように貫通穴(45)に中心軸(14)を貫通させて、架台(15)に固定されている。また、センサー付制御部(19)は、電源とソレノイドを結ぶ回路に組み込まれ、円盤B(11−1)の特定点(パターン範囲)の情報と円盤の回転数を感知してソレノイド1、2、3及び4に送る電流の入力パターンを制御する。   In FIG. 1, FIG. 2, FIG. 3 and FIG. 4, as a component in the first embodiment of the present invention, a disk A (11) and a disk B (11 fixed to the central axis (14) -1). The material of the disk is preferably a non-magnetic material such as aluminum die cast. An even number of permanent magnets having the same size, weight, and magnetic force at the peripheral portion of the disk A (11), and the center line in the direction of the magnetic field connecting the north and south poles in a straight line are Permanent magnets are arranged at equal intervals in parallel with the central axis. The permanent magnet 1 (12) is arranged such that the center line in the direction of the magnetic field is parallel to the central axis of the disk and is equidistant from the center, and the permanent magnets 2 on both sides of the permanent magnet 1 are The directions are reversed, and both ends are slightly outside the width of the disk and are alternately fitted to the peripheral portions. All permanent magnets can rotate with the disk and central axis. The disk B (11-1) has the same specifications as the disk A (11). A disk A and a disk B whose arrangement is the same as that of the disk A are connected by a central axis (14). Both ends of the central shaft are supported by bearings (16) and bearings (17) and can rotate smoothly. Both bearings are fixed to the gantry (15). Solenoid 1 (21), Solenoid 2 (22), Solenoid 3 (23) and Solenoid 4 (24) also have a central axis of the magnetic field connecting the N pole and S pole generated by passing a current through the coil in a straight line. And at a distance equidistant from the central axis at intervals spaced by the theory of the present invention described in paragraph (0012). Each solenoid is arranged by being fixed to the support base 1 (10) with a minute gap from the permanent magnet group, and is wired from the power supply unit (18) so that current can be passed. The support base 1 is fixed to the gantry (15) by passing the central axis (14) through the through hole (45) so as not to prevent rotation. Further, the sensor-equipped control unit (19) is incorporated in a circuit connecting the power source and the solenoid, detects information on a specific point (pattern range) of the disk B (11-1) and the rotation speed of the disk, and detects the solenoids 1 and 2. 3 and 4 to control the input pattern of the current.

図4及び図5により説明すると、(数1)で計算するように、隣接する2個の永久磁石のそれぞれの中心と円盤の中心からなる中心角アルファを30度とし、円盤に配置する永久磁石の個数12個とする。また、円盤の中心を原点とし、時計の3時の位置を0度として左回りに360度の間にソレノイドを配置するとき、0度の位置にソレノイド1(21)を置くとき、ソレノイド1とソレノイド2(22)が円盤の中心となす角ベータは、(数2)によって75度となる。     4 and FIG. 5, as calculated in (Equation 1), the permanent magnet is arranged on the disk with the central angle alpha consisting of the center of each of the two adjacent permanent magnets and the center of the disk being 30 degrees. The number is 12. When the solenoid is placed between 360 degrees counterclockwise with the center of the disk at the origin and the 3 o'clock position of the clock at 0 degrees, when the solenoid 1 (21) is placed at the 0 degree position, The angle beta formed by the solenoid 2 (22) and the center of the disk is 75 degrees according to (Equation 2).

図4の、隣接した永久磁石同士の間隔は、1個の磁石の幅より小さいが重ならず、かつ等間隔に円盤の周縁部に12個を配置する。各ソレノイドと、円盤上の永久磁石との間隙は、円盤が回転したときにソレノイドと永久磁石が再接近したときに、等距離で、近接するが互いに接触せず、かつ、磁力を十分影響し合える距離とする。磁力を十分影響し合える距離とは永久磁石の強さにもよるが、例えば3000ガウスの場合には5mm程度としてもよい。また、ソレノイドの代わりに電磁石を使用することもできる。   The interval between adjacent permanent magnets in FIG. 4 is smaller than the width of one magnet, but does not overlap, and twelve are arranged on the periphery of the disk at equal intervals. The gap between each solenoid and the permanent magnet on the disk is the same distance when the disk and the permanent magnet approach again when the disk rotates. The distance that can be met. The distance that can sufficiently influence the magnetic force depends on the strength of the permanent magnet, but may be about 5 mm in the case of 3000 Gauss, for example. An electromagnet can be used instead of the solenoid.

円盤の回転を始めるために、円盤A(11)上の永久磁石1(12)と永久磁石2(13)の配置が、まず図6の状態になるように円盤A(11)を置く。すなわち、円盤の中心を原点とし、時計の3時の位置を0度として左回りに360度の間に亘る配置において、0度から30度の範囲に永久磁石1(12)が位置し、330度から360度に永久磁石2(13)が位置するように円盤A(11)を置く。図6は図3における円盤A(11)及び円盤B(11−1)の図面に向かって左側の面を示す。なお、円盤の中心から30度間隔で放射線上に描かれた線は各永久磁石の間隙を示す説明用の線である。図3における円盤A(11)及び円盤B(11−1)の右側面では、円盤に嵌合した永久磁石の両端の極性は前述左側面の逆になるため、N極がS極に、S極がN極になる。円盤Bと永久磁石群は円盤Aと永久磁石の配置が平行移動した位置と重なる。図7は図1中矢印B方向から見た矢視拡大図である。それぞれの円盤の隣接する一対の永久磁石1(12)と永久磁石2(13)の中間の範囲に、ソレノイド1(21)の中心線の位置があるとき、ソレノイド1(21)に電流を流し、円盤A(11)側をソレノイド1のN極、円盤B(11−1)側をソレノイド1のS極にすると、円盤A(11)の永久磁石1(12)には斥力f1が働き、永久磁石2(13)には引力f2が働く。このf1とf2の余弦成分の合力F1は円盤A(11)を回転させる力となる。同様に、円盤B(11−1)の永久磁石1(12)には斥力f3が働き、永久磁石2(13)には引力f4が働く。このf3とf4の余弦成分の合力F2は円盤B(11−1)を回転させる力となる。円盤A(11)と円盤B(11−1)は中心軸で連結されているので、両円盤及び中心軸はF1プラスF2のベクトルで同時に回転する。   In order to start the rotation of the disk, the disk A (11) is first placed so that the permanent magnet 1 (12) and the permanent magnet 2 (13) on the disk A (11) are in the state shown in FIG. That is, the permanent magnet 1 (12) is located in the range of 0 degrees to 30 degrees in the arrangement spanning 360 degrees counterclockwise with the center of the disk as the origin and the 3 o'clock position of the clock as 0 degrees. The disk A (11) is placed so that the permanent magnet 2 (13) is positioned from 360 degrees to 360 degrees. 6 shows the left side of the disk A (11) and the disk B (11-1) in FIG. The lines drawn on the radiation at intervals of 30 degrees from the center of the disk are explanatory lines indicating the gaps between the permanent magnets. In the right side surface of the disk A (11) and the disk B (11-1) in FIG. 3, the polarities at both ends of the permanent magnet fitted to the disk are opposite to those on the left side surface. The pole becomes the N pole. The disk B and the permanent magnet group overlap with the position where the arrangement of the disk A and the permanent magnet is translated. FIG. 7 is an enlarged view as seen from the direction of arrow B in FIG. When the position of the center line of the solenoid 1 (21) is in the middle of the pair of permanent magnets 1 (12) and 2 (13) adjacent to each other, current is passed through the solenoid 1 (21). When the disk A (11) side is the N pole of the solenoid 1 and the disk B (11-1) side is the S pole of the solenoid 1, the repulsive force f1 acts on the permanent magnet 1 (12) of the disk A (11), An attractive force f2 acts on the permanent magnet 2 (13). The resultant force F1 of the cosine components of f1 and f2 is a force for rotating the disk A (11). Similarly, repulsive force f3 acts on permanent magnet 1 (12) of disk B (11-1), and attractive force f4 acts on permanent magnet 2 (13). The resultant force F2 of the cosine components of f3 and f4 is a force for rotating the disk B (11-1). Since the disk A (11) and the disk B (11-1) are connected by the center axis, both the disks and the center axis rotate simultaneously with the vector of F1 plus F2.

円盤が回転し、図8に示すように、ソレノイド1(21)の磁場の中心線が永久磁石2(13)の磁場の中心線と重なり、ソレノイド1(21)のN極と円盤A(11)のS極、ソレノイド1(21)のS極と円盤B(11−1)のN極が相対するとき、仮にソレノイド1に電流が流れていると引力のベクトルは最大になり、円盤を回転させる方向の成分は最小になる。また、ソレノイド1(21)の中心線が永久磁石1(12)の中心線と重なり、ソレノイド1(21)のN極と円盤A(11)のN極、ソレノイド1(21)のS極と円盤B(11−1)のS極が相対したときは斥力のベクトルは最大になり、やはり円盤を回転させる方向の成分は最小になって、円盤の回転を妨げる抵抗となる。したがって、円盤の回転に抵抗を生じるこの状態を避けるためには、ソレノイド1の円盤面の極が永久磁石1(12)または永久磁石2(13)が正対している場合はソレノイド1への電流を遮断して極性を作らず、磁界を生じさせないようにして、円盤の回転の抵抗となる力は生じさせなければよい。つまり、図7のようにソレノイドの極に面する円盤側の磁石の極が円盤の回転する方向においてソレノイドの極の前方にはソレノイドの永久磁石面の極と同じ極があり、後方には異なる極がある場合のみ円盤に回転する力が働く。(以下、この力を「回転力」という) 一方、図8のようにソレノイドの極に円盤側の磁石の極が正対するときは円盤の回転を妨げる、又は関与しない力が働く。(以下、この力を「制動力」という)   As shown in FIG. 8, the center line of the magnetic field of the solenoid 1 (21) overlaps the center line of the magnetic field of the permanent magnet 2 (13), and the N pole of the solenoid 1 (21) and the disk A (11 ), The S pole of solenoid 1 (21) and the N pole of disc B (11-1) are opposed to each other, and if current flows through solenoid 1, the vector of attraction becomes maximum and the disc rotates. The direction component is minimized. Further, the center line of the solenoid 1 (21) overlaps with the center line of the permanent magnet 1 (12), the N pole of the solenoid 1 (21), the N pole of the disk A (11), and the S pole of the solenoid 1 (21). When the south pole of the disk B (11-1) is opposed, the repulsive force vector is maximized, and the component in the direction in which the disk is rotated is minimized, which becomes a resistance that hinders the rotation of the disk. Therefore, in order to avoid this state in which resistance is generated in the rotation of the disk, when the pole of the disk surface of the solenoid 1 faces the permanent magnet 1 (12) or the permanent magnet 2 (13), the current to the solenoid 1 It is not necessary to generate a force that resists the rotation of the disk by blocking the magnetic field so as not to create a polarity and not to generate a magnetic field. That is, as shown in FIG. 7, the pole of the magnet on the disk side facing the pole of the solenoid has the same pole as the pole of the permanent magnet surface of the solenoid in front of the pole of the solenoid in the direction of rotation of the disk, and is different in the rear. Only when there is a pole, a rotating force acts on the disk. (Hereinafter, this force is referred to as “rotational force”) On the other hand, when the pole of the magnet on the disk side faces the pole of the solenoid as shown in FIG. (Hereafter, this force is called "braking force")

実施例1において、15度毎に回転したときにできる永久磁石の配置パターンは図9に示す四種のパターンのみである。すなわち、円盤A(11)において、図9中のNo.1図の円弧Z1Z2間にできる永久磁石2(13)1個と永久磁石1(12)1個分のSSNNのパターン、No.2図の円弧Z1Z2間にできる永久磁石1(12)半個と永久磁石2(13)1個及び永久磁石1(12)半個分のNSSNのパターン、No.3図の円弧Z1Z2間にできる永久磁石1(12)1個と永久磁石2(13)1個分のNNSSのパターン、及びNo.4図の円弧Z1Z2間にできる永久磁石2(13)半個と永久磁石1(12)1個及び永久磁石2(13)半個分のSNNSのパターンである。(以下、「回転負荷パターン」という) ただし、本実施例である、隣接同士の永久磁石の極の中心線が中心軸を挟んでなす角アルファが30度の場合、例えば、SSNNのパターンは中心角60度の範囲にあることになるが、センサーがパターン認識して四種を区別できさえすればパターン認識の範囲は中心角60度を下回っても構わず、また、アルファが他の角度で設定された場合でも角度を計算して回転負荷パターンを設定できる。   In the first embodiment, the arrangement patterns of the permanent magnets that are formed when rotated every 15 degrees are only the four types of patterns shown in FIG. That is, in the disk A (11), No. 1 in FIG. SSNN pattern for one permanent magnet 2 (13) and one permanent magnet 1 (12) formed between arcs Z1Z2 in FIG. The NSSN pattern corresponding to half permanent magnet 1 (12), one permanent magnet 2 (13) and half permanent magnet 1 (12) formed between arcs Z1Z2 in FIG. NNSS pattern for one permanent magnet 1 (12) and one permanent magnet 2 (13) formed between arcs Z1Z2 in FIG. This is a SNNS pattern of half permanent magnet 2 (13), one permanent magnet 1 (12) and half permanent magnet 2 (13) formed between arcs Z1Z2 in FIG. (Hereinafter referred to as “rotational load pattern”) However, when the angle alpha formed by the center line of the poles of adjacent permanent magnets sandwiching the central axis is 30 degrees in this embodiment, for example, the SSNN pattern is the center Although the angle is in the range of 60 degrees, as long as the sensor can recognize the pattern and distinguish the four types, the pattern recognition range may be less than the central angle of 60 degrees. Even when set, the rotation load pattern can be set by calculating the angle.

図9中のNo.1図乃至No.4図において、各円盤の中心を原点とし、左回りに0度から360度に亘り15度刻みで目盛りを付けて説明すると、No.1図のパターンでは0度の位置にあるソレノイド1(21)に対し、30度方向に同じ極(N)があり、マイナス30度方向に異なる極(S)が位置するのでこれは段落番号(0021)でいう左回りの回転力となる。また、No.2図のパターンでは75度の位置にあるソレノイド2(22)に対し、回転方向に同じ極(N)があり、逆回転方向に異なる極(S)が位置するのでこれも回転力となる。同様に、No.3図のパターンで180度の位置にあるソレノイド3(23)と円盤上の磁石の位置関係と、No.4図のパターンで255度の位置にあるソレノイド4(24)と円盤上の磁石の位置関係でも回転力を生じることがわかる。   No. in FIG. 1 to No. In FIG. 4, the center of each disk is set as the origin, and the scale is set in increments of 15 degrees from 0 degrees to 360 degrees counterclockwise. In the pattern of FIG. 1, the same pole (N) is located in the 30 degree direction and the different pole (S) is located in the minus 30 degree direction with respect to the solenoid 1 (21) located at the 0 degree position. [0021] The counterclockwise rotational force in 0021). No. In the pattern of FIG. 2, since the same pole (N) is located in the rotational direction and the different pole (S) is located in the reverse rotational direction with respect to the solenoid 2 (22) located at 75 degrees, this is also a rotational force. Similarly, no. The positional relationship between the solenoid 3 (23) at 180 ° and the magnet on the disk in the pattern of FIG. It can be seen that the rotational force is also generated by the positional relationship between the solenoid 4 (24) at a position of 255 degrees and the magnet on the disk in the pattern of FIG.

従って、永久磁石がソレノイドを通過するときに、ソレノイドの極と永久磁石の極が正対し制動力になるタイミングで、ソレノイドに流す電流を遮断して極性を作らせず、磁界を生じさせないようにし、同時に、段落番号(0022)で述べた、いずれかのパターンのときに回転力が生じるソレノイドにのみ電流を送れば円盤に働く回転力が途切れることはない。このパターンを感知し、ソレノイドへ流す電流のオン・オフをコントロールするために、図9中、No.1図乃至No.4図に示すように、円盤A(11)または円盤B(11−1)上の0度プラスマイナス30度の位置はパターン範囲(19−1)であり、センサー付制御部(19)がパターンを認識する。パターン範囲の位置はソレノイドの配置と相対的に変わらなければ任意の場所にでも設定できる。   Therefore, when the permanent magnet passes through the solenoid, at the timing when the pole of the solenoid and the pole of the permanent magnet face each other and become a braking force, the current flowing through the solenoid is cut off so that no polarity is created and no magnetic field is generated. At the same time, if the current is sent only to the solenoid that generates the rotational force in any of the patterns described in paragraph (0022), the rotational force acting on the disk will not be interrupted. In order to detect this pattern and control the on / off of the current flowing to the solenoid, in FIG. 1 to No. As shown in FIG. 4, the position of 0 degree plus or minus 30 degrees on the disk A (11) or the disk B (11-1) is the pattern range (19-1), and the control unit with sensor (19) is the pattern. Recognize The position of the pattern range can be set at any position as long as it does not change relative to the solenoid arrangement.

図9中のNo.1図乃至No.4図において、円盤の中心を原点とし、時計の3時の位置を0度とし左回りにから360度回転した場合の各ソレノイドへの電気入力の例を図10に示す。各ソレノイドには間欠的に負荷が与えられる。例えば、RP点(回転角約220度付近)ではソレノイド2がオンになり、他のソレノイドはオフである。これは円盤が何回回転しても同様の関係である。   No. in FIG. 1 to No. In FIG. 4, an example of electrical input to each solenoid when the center of the disk is the origin, the 3 o'clock position of the watch is 0 degrees and the counterclockwise rotation is 360 degrees is shown in FIG. Each solenoid is intermittently loaded. For example, at the RP point (rotation angle around 220 degrees), the solenoid 2 is on and the other solenoids are off. This is the same relationship no matter how many times the disk rotates.

円盤の回転が低速の間は、ソレノイド1、ソレノイド2、ソレノイド3、ソレノイド4の順に回転負荷パターンに従って電流のオン・オフが繰り返されるが、円盤の回転が高速になると円盤自体の慣性力で回転が維持されるため、制御部で電気信号入力シーケンスの設定を行うことにより、ソレノイドへの入力を図11に示すようにスキップさせ、回転負荷パターンに対応してパルスを送り磁場を作ることもできる。スキップの効果は、円盤の回転が充分高速になった場合で、磁場の影響が却ってブレーキになるときに、円盤自体の慣性力で回転させることが良い場合に発揮される。また、パルス数を減らすことにより、入力電力の低減に著しい効果をもたらす。   While the disk is rotating at low speed, the current is repeatedly turned on and off according to the rotational load pattern in the order of solenoid 1, solenoid 2, solenoid 3, and solenoid 4, but when the disk rotates at high speed, it rotates with the inertial force of the disk itself. Therefore, by setting the electric signal input sequence in the control unit, the input to the solenoid can be skipped as shown in FIG. 11, and a pulse can be sent corresponding to the rotational load pattern to create a magnetic field. . The effect of skip is exhibited when the rotation of the disk is sufficiently high, and when the effect of the magnetic field is reversed and the brake is applied, the disk itself can be rotated by the inertial force. Also, reducing the number of pulses has a significant effect on reducing the input power.

円盤Aと円盤Bの2基の円盤でソレノイドを挟み込む構造の利点は、ソレノイドの両端に生じる極性による磁界の作用が円盤Aと円盤Bに配置する永久磁石に同時に及ぶことになり、両方の磁界が両円盤の回転のために効率よく働くことにある。   The advantage of the structure in which the solenoid is sandwiched between the two disks A and B is that the action of the magnetic field due to the polarity generated at both ends of the solenoid reaches the permanent magnets arranged on the disks A and B at the same time. Is to work efficiently for the rotation of both disks.

センサー付制御部(19)は円盤の回転負荷パターンと回転速度を感知し、電流の切替スイッチをコントロールするので、回転数に同調して回転を加速することができる。また、回転系を減速又は停止させるためにはソレノイドへの電流を減じれば良い。   The sensor-equipped control unit (19) senses the rotational load pattern and rotational speed of the disk and controls the current selector switch, so that the rotation can be accelerated in synchronization with the rotational speed. In order to decelerate or stop the rotating system, the current to the solenoid may be reduced.

図12に示すように、実施例1の円盤とソレノイドのセットに、ソレノイド付支持台(10−1)と円盤C(11−2)を増設する実施例である。また、さらに、ソレノイド、円盤、ソレノイド、円盤というように同軸延長線上に次々に増設して繋げることもできる。     As shown in FIG. 12, a support base with a solenoid (10-1) and a disk C (11-2) are added to the disk and solenoid set of the first embodiment. Furthermore, it is possible to connect and connect one after another on a coaxial extension line such as a solenoid, a disk, a solenoid, and a disk.

図12に示すように、本発明に発電機(25)を接続し、電力を得る実施例である。実施例2において、本発明の回転軸(14)に発電機を直接的又は間接的に接続して実施する。円盤の半径が大きければ慣性力も大きく働き、回転モーメントも大きくなるので、その回転モーメント(トルク)の範囲内で回すことのできる発電機を接続すればよい。本発明では、ソレノイドに入力する電力は、磁場の極性を転換させるためのものであり、必要最小限に留めることができる。また、段落番号(0026)で述べたスキップ効果により、電力を大幅に節減できる。本発明の装置に負荷する電力より大きい出力の発電機を使えば、発電機は外部電源入力を必要とせず発電することができる。ただし、本実施例は、永久磁石の磁力の自然低下や機械的回転部の磨耗等により、いずれは終息する装置であって、「永久機関」の提案でないことはいうまでもない。   As shown in FIG. 12, it is an Example which connects a generator (25) to this invention and obtains electric power. In Example 2, it implements by connecting a generator directly or indirectly to the rotating shaft (14) of the present invention. If the radius of the disk is large, the inertial force increases and the rotational moment also increases. Therefore, a generator that can be rotated within the range of the rotational moment (torque) may be connected. In the present invention, the electric power input to the solenoid is for changing the polarity of the magnetic field and can be kept to the minimum necessary. In addition, power can be greatly reduced by the skip effect described in paragraph (0026). If a generator with an output larger than the power loaded on the device of the present invention is used, the generator can generate power without the need for an external power input. However, it is needless to say that this embodiment is a device that ends due to a natural decrease in the magnetic force of the permanent magnet, wear of the mechanical rotating portion, or the like, and is not a proposal of a “permanent engine”.

本発明に発電機(25)を接続する実施例に加え、起動用バッテリー及び電流入出力コントローラを接続する。本実施例では、発電機を一時的に起動用モーターとして使用する。起動用バッテリーから送られた電流は電流入出力コントローラで、制御され、発電機に送られる。発電機は一時的にモーターとなり、接続された本発明の回転加速装置を起動させる。回転加速装置が起動すると装置は慣性力で回転し始めるので、すぐに電流入出力コントローラにより発電機(一時的にはモーター)への負荷を止めれば、発電機は回転加速装置の動力により発電機本来の役割に戻り発電する。   In addition to the embodiment of connecting the generator (25) to the present invention, a starting battery and a current input / output controller are connected. In this embodiment, the generator is temporarily used as a starting motor. The current sent from the starting battery is controlled by the current input / output controller and sent to the generator. The generator temporarily becomes a motor and activates the connected rotation accelerator of the present invention. When the rotation accelerator is started, the device starts rotating with inertial force. If the load on the generator (temporarily motor) is stopped immediately by the current input / output controller, the generator is driven by the power of the rotation accelerator. Return to its original role and generate electricity.

実施例1の段落番号(0022)において述べた永久磁石の配置パターンをマーカーに構成し、センサーを4箇所に設置した実施例を図13に示す。円盤上に、本実施例では計12個のマーカーを配置する。各マーカーは四種に分類され段落番号(0022)でいう四種のパターンとは対応している。すなわち、図13中、P1図では、マーカー41をセンサー31が感知すればソレノイド21に電流が流れ、P2図では、マーカー42をセンサー32が感知すればソレノイド22に電流が流れ、P3図では、マーカー43をセンサー33が感知すればソレノイド23に電流が流れ、P4図では、マーカー44をセンサー34が感知すればソレノイド24に電流が流れる。これにより永久磁石の配置パターンが各センサーを経由して各ソレノイドに回転力に必要な電流が流れ円盤は回転する。   FIG. 13 shows an example in which the permanent magnet arrangement pattern described in paragraph (0022) of Example 1 is configured as a marker, and sensors are installed at four locations. In this embodiment, a total of 12 markers are arranged on the disk. Each marker is classified into four types and corresponds to the four types of patterns referred to by paragraph number (0022). That is, in FIG. 13, in P1, the current flows through the solenoid 21 when the sensor 31 senses the marker 41. In FIG. 2, when the sensor 32 senses the marker 42, the current flows through the solenoid 22, and in FIG. If the sensor 33 senses the marker 43, a current flows through the solenoid 23. In FIG. 4, a current flows through the solenoid 24 when the sensor 34 senses the marker 44. As a result, the arrangement pattern of the permanent magnets passes through the sensors, currents necessary for the rotational force flow to the solenoids, and the disk rotates.

本発明の効果としては、外部の電気や機械力あるいは人力などを使わずにモーターを回転させ動力を得ることができ、その動力で発電機を動かして発電することができる。本発明は永久機関ではなく、永久磁石の長期間の寿命を利用した半永久機関ということができるので、災害時の非常用、小型船舶などの海上での電力供給、電力供給が困難な山間部や離島での電力供給など、本発明を応用して諸々の駆動装置や発電装置を構成することができる。   As an effect of the present invention, power can be obtained by rotating a motor without using external electricity, mechanical power, human power, or the like, and power can be generated by moving a generator with the power. Since the present invention is not a permanent engine, but a semi-permanent engine that uses the long-term life of a permanent magnet, it can be used for emergency use during disasters, power supply at sea such as small ships, Various drive devices and power generation devices can be configured by applying the present invention, such as power supply on a remote island.

10 支持台1
10−1 支持台2
11 円盤A
11−1 円盤B
11−2 円盤C
12 永久磁石1
13 永久磁石2
14 回転軸
15 架台
16 軸受け
17 軸受け
18 電源部
19 センサー付制御部
19−1 パターン範囲
21 ソレノイド1
22 ソレノイド2
23 ソレノイド3
24 ソレノイド4
25 発電機
31 センサー1
32 センサー2
33 センサー3
34 センサー4
41 マーカー1
42 マーカー2
43 マーカー3
44 マーカー4
45 貫通穴
10 Support stand 1
10-1 Support stand 2
11 Disc A
11-1 Disc B
11-2 Disc C
12 Permanent magnet 1
13 Permanent magnet 2
DESCRIPTION OF SYMBOLS 14 Rotating shaft 15 Mount 16 Bearing 17 Bearing 18 Power supply part 19 Control part with sensor 19-1 Pattern range 21 Solenoid 1
22 Solenoid 2
23 Solenoid 3
24 Solenoid 4
25 Generator 31 Sensor 1
32 Sensor 2
33 Sensor 3
34 Sensor 4
41 Marker 1
42 Marker 2
43 Marker 3
44 Marker 4
45 Through hole

Claims (5)

断面が円である円盤状や円筒状の回転立体であって、中心軸を持ち、回転立体の中心軸に対し直角の平面Aと交差した外周上に、それぞれ永久磁石の磁力極性の中心線が回転体の中心軸と平行であって、中心から等距離に置かれた複数個の永久磁石を隣接する永久磁石同士の極性を交互に反転させて等間隔に配置した回転立体と、電流を流すことにより磁性を持たせることができる複数のソレノイド又は電磁石とで構成され、永久磁石の斥力と引力をコントロールすることによって回転立体を回転させ動力を得る目的の装置において、複数のソレノイド又は電磁石の内少なくとも一対のソレノイド又は電磁石の各々の極性の中心線が回転立体の中心軸を挟んで作る角度が、(数2)で示すところの、回転立体の外周上にあって隣接する一対の永久磁石のそれぞれの極性の中心線が回転立体の中心軸を挟んで作る角度アルファに対し、自然数nに0.5を加えた数値を乗じた角度ベータになる配置のソレノイド又は電磁石を有する回転加速装置。
A disk-shaped or cylindrical rotating solid having a circular cross section, having a central axis, and a center line of magnetic polarity of the permanent magnet on each outer periphery intersecting a plane A perpendicular to the central axis of the rotating solid. A rotating solid in which a plurality of permanent magnets which are parallel to the central axis of the rotating body and are equidistant from the center are arranged at equal intervals by alternately inverting the polarities of adjacent permanent magnets, and a current flows In a device intended to obtain power by rotating a rotating solid by controlling the repulsive force and attractive force of a permanent magnet, the plurality of solenoids or electromagnets A pair of adjacent solenoids or electromagnets whose polar center lines are formed by sandwiching the central axis of the rotating solid on the outer periphery of the rotating solid as indicated by (Equation 2) Rotational acceleration having solenoids or electromagnets arranged to have an angle beta obtained by multiplying a natural number n plus 0.5 to an angle alpha formed by the center line of each polarity of the permanent magnet sandwiching the central axis of the rotating solid apparatus.
請求項1の回転加速装置であって、単一又は複数のソレノイド又は電磁石に対し、永久磁石の一の磁力極性の中心線がソレノイド又は電磁石の極性の中心線と重なる近傍で、ソレノイド又は電磁石に流す電流を遮断し、ソレノイド又は電磁石に磁力極性が発生しないように電子制御した回転加速装置。   The rotation acceleration device according to claim 1, wherein a single magnetic polarity center line of a permanent magnet is adjacent to a solenoid or electromagnet polarity center line with respect to a single or a plurality of solenoids or electromagnets. A rotational acceleration device that is electronically controlled so that the current flowing is cut off and no magnetic polarity is generated in the solenoid or electromagnet. 請求項1の回転加速装置であって、回転立体上の永久磁石の配置パターンを感知し、そのデータによってソレノイド又は電磁石を制御するセンサー付制御部を配置した回転加速装置。   The rotation acceleration device according to claim 1, wherein a sensor-equipped control unit that detects an arrangement pattern of permanent magnets on a rotating solid and controls a solenoid or an electromagnet according to the data is arranged. 請求項3の回転加速装置であって、回転立体の回転数を計測し制御するセンサー付制御部を有し、単一又は複数のソレノイド又は電磁石に対し、回転立体の回転数に対応して、電流の負荷と遮断を行う機能と、及び電流のプラスマイナスを切り替える機能を持つ回転加速装置。   The rotational acceleration device according to claim 3, comprising a sensor-equipped control unit that measures and controls the rotational speed of a rotating solid, and corresponding to the rotational speed of the rotating solid with respect to a single or a plurality of solenoids or electromagnets, A rotation accelerator with a function to load and cut off current and a function to switch between plus and minus of current. 請求項3に記載の回転加速装置であって、回転立体とソレノイドを同一の中心軸上に交互に複数基連結させた回転加速装置。   The rotation acceleration device according to claim 3, wherein a plurality of rotating solids and solenoids are alternately connected on the same central axis.
JP2012040843A 2012-02-28 2012-02-28 Rotation accelerating device Pending JP2013179724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012040843A JP2013179724A (en) 2012-02-28 2012-02-28 Rotation accelerating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012040843A JP2013179724A (en) 2012-02-28 2012-02-28 Rotation accelerating device

Publications (1)

Publication Number Publication Date
JP2013179724A true JP2013179724A (en) 2013-09-09

Family

ID=49270867

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012040843A Pending JP2013179724A (en) 2012-02-28 2012-02-28 Rotation accelerating device

Country Status (1)

Country Link
JP (1) JP2013179724A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501633A (en) * 2012-11-30 2015-01-15 ジョン チャニョンJUNG, Chanyong Power assist device
EP3021470A1 (en) * 2014-11-17 2016-05-18 Suk, Se Myung Magnetic rotation accelerator and power generation system including the same
KR20160114855A (en) * 2015-03-25 2016-10-06 함정대 High efficiency preserving motor
KR20160114854A (en) * 2015-03-25 2016-10-06 함정대 High efficiency motor
WO2017119804A3 (en) * 2016-01-07 2017-08-24 박태현 Apparatus for increasing rotational speed of electric motor

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015501633A (en) * 2012-11-30 2015-01-15 ジョン チャニョンJUNG, Chanyong Power assist device
EP3021470A1 (en) * 2014-11-17 2016-05-18 Suk, Se Myung Magnetic rotation accelerator and power generation system including the same
US9413216B2 (en) 2014-11-17 2016-08-09 Se Myung Suk Magnetic rotation accelerator and power generation system including the same
US9729041B2 (en) 2014-11-17 2017-08-08 Se Myung Suk Magnetic rotation accelerator and power generation system including the same
KR20160114855A (en) * 2015-03-25 2016-10-06 함정대 High efficiency preserving motor
KR20160114854A (en) * 2015-03-25 2016-10-06 함정대 High efficiency motor
KR101718705B1 (en) * 2015-03-25 2017-03-22 함정대 High efficiency motor
KR101718706B1 (en) * 2015-03-25 2017-04-04 함정대 High efficiency preserving motor
WO2017119804A3 (en) * 2016-01-07 2017-08-24 박태현 Apparatus for increasing rotational speed of electric motor

Similar Documents

Publication Publication Date Title
US20070222309A1 (en) High efficiency magnet motor
JP2013179724A (en) Rotation accelerating device
JP2009509482A (en) Magnetic motor
EP3331141A1 (en) Three degree-of-freedom electromagnetic machine control system and method
JP2019525722A (en) Coaxial electromagnetic device
JP2013174318A (en) Magnetic spring device
JPWO2019123772A1 (en) Actuator
US11050308B2 (en) Electromagnetic machine including a spherical stator having winding-assistance protruberances formed thereon
JP5091425B2 (en) Magnetic power generator
US9917496B2 (en) Latching sector motor actuator and for a failsafe sector motor actuator having an available operating range not limited to 90°
WO2015076400A1 (en) Magnetic rotary device and magnetically-assisted motor utilizing same
US10186914B2 (en) Input amplitude modulation control for a multi-degree of freedom electromagnetic machine
JP5763198B2 (en) Magnetic drive blower or generator
JP2020508635A (en) Permanent magnet offset system and method
JP2014003775A (en) Magnetic force power unit
RU2380815C1 (en) Contactless dc motor
TWI652883B (en) Magnetic power generator
CN101938231A (en) Magnetoelectric generation and conversion engine
TWM564862U (en) Magnetic-assisted power generator
WO2010068988A1 (en) Asymmetric electric pulse motor (aepm) and digital control system
JP2008312427A5 (en)
WO2022210823A1 (en) Multi-degree-of-freedom motor
KR20040006844A (en) Magnetic motor
JP2004343999A (en) Generator with rotation plate
KR20230154635A (en) Power generating device