JP2015180170A - permanent magnet motor - Google Patents

permanent magnet motor Download PDF

Info

Publication number
JP2015180170A
JP2015180170A JP2014078181A JP2014078181A JP2015180170A JP 2015180170 A JP2015180170 A JP 2015180170A JP 2014078181 A JP2014078181 A JP 2014078181A JP 2014078181 A JP2014078181 A JP 2014078181A JP 2015180170 A JP2015180170 A JP 2015180170A
Authority
JP
Japan
Prior art keywords
magnet
rotor
force
stator
rotational force
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2014078181A
Other languages
Japanese (ja)
Inventor
敬一 福島
Keiichi Fukushima
敬一 福島
哲宜 松本
Tetsunobu Matsumoto
哲宜 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FUKUSHIMA SEKKEI KK
Original Assignee
FUKUSHIMA SEKKEI KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FUKUSHIMA SEKKEI KK filed Critical FUKUSHIMA SEKKEI KK
Priority to JP2014078181A priority Critical patent/JP2015180170A/en
Publication of JP2015180170A publication Critical patent/JP2015180170A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a permanent magnet motor for efficiently generating power.SOLUTION: In a permanent magnet motor, two or more rotator magnets magnetized in a rotation direction are disposed at an outer periphery of a rotator for an equal interval. At a stator inner surface side of a cylindrical shape divided in an outer diameter side of the rotator, a plurality of stator magnets is disposed against one rotator magnet in a V shape so as to pinch the rotator magnet from both side, and the rotator continuously rotates by the attractive force and repulsive force of each of the adjacent magnets.

Description

本発明は、動力を効率的に発生する永久磁石モータに関するものである。  The present invention relates to a permanent magnet motor that efficiently generates power.

従来、モータは回転子か固定子へ荷電し磁力を発生させ、それらの斥力と吸引力の連続的な作用でモータの運転はなされており、従って電力消費は不可欠であった。  Conventionally, the motor is charged to the rotor or the stator to generate a magnetic force, and the motor is operated by the continuous action of the repulsive force and the attractive force, so that power consumption is indispensable.

本発明は、上述した従来技術に鑑みてなされ、効率的に動力を発生する永久磁石モータを提供することを目的とする。  The present invention has been made in view of the above-described conventional technology, and an object thereof is to provide a permanent magnet motor that efficiently generates power.

上述した目的を達成するために、請求項1の発明は、回転自在に設けた非磁性体である円板状の回転子の外周部に回転方向に磁化した2個以上の永久磁石である回転子磁石を等間隔で配し、回転子の外径側に配した非磁性体である筒形状の固定子内面側に永久磁石である固定子磁石を回転子中心より放射状方向に磁化した固定子磁石を複数個配し、前記回転子磁石1個に対し、前記固定子磁石をV形にて両面から回転子磁石を挟みこむよう構成したことを特徴とする永久磁石モータ。  In order to achieve the above-mentioned object, the invention of claim 1 is a rotation comprising two or more permanent magnets magnetized in the rotation direction on the outer periphery of a disk-shaped rotor which is a nonmagnetic material provided rotatably. Stator magnets are arranged at equal intervals and magnetized in the radial direction from the rotor center on the inner surface side of the cylindrical stator, which is a non-magnetic material arranged on the outer diameter side of the rotor. A permanent magnet motor characterized in that a plurality of magnets are arranged and the rotor magnet is sandwiched from both sides in a V shape with respect to one rotor magnet.

前記固定子を回転子中心線に沿って2分割し、回転子中心線からそれぞれ左右に離れるよう構成した請求項1記載の永久磁石モータ。  2. The permanent magnet motor according to claim 1, wherein the stator is divided into two along the rotor center line so as to be separated from the rotor center line left and right.

本発明を実施するための形態−1を示す永久磁石モータの全体を一部破断した平面図である。  It is the top view which fractured | ruptured the whole permanent magnet motor which shows the form-1 for implementing this invention. 図1におけるA−A線断面図である。  It is the sectional view on the AA line in FIG. 図2において固定子をそれぞれ左右へ移動した停止状態を示す正面図である。  It is a front view which shows the stop state which moved the stator to the left and right in FIG. 本発明を実施するための形態−1に係る回転子磁石と固定子磁石の関係を示す説明図である。  It is explanatory drawing which shows the relationship between the rotor magnet and stator magnet which concern on form-1 for implementing this invention. 図4のB−B線にて一部破断した正面図である。  It is the front view which fractured | ruptured partially in the BB line of FIG. 本発明を実施するための形態−1に係る回転子磁石と固定子磁石の関係を示す正面図である。  It is a front view which shows the relationship between the rotor magnet and stator magnet which concern on form-1 for implementing this invention. 図6における回転子が20°左回転した状態を示す正面図である。  It is a front view which shows the state which the rotor in FIG. 6 rotated 20 degrees left. 本発明を実施するための形態−2に係る回転子磁石と固定子磁石の関係を示す説明図である。  It is explanatory drawing which shows the relationship between the rotor magnet and stator magnet which concern on form-2 for implementing this invention. 図8のC−C線にて一部破断した正面図である。  It is the front view partially fractured | ruptured by CC line of FIG. 本発明を実施するための形態−2に係る回転子磁石と固定子磁石の関係を示す正面図である。  It is a front view which shows the relationship between the rotor magnet which concerns on form-2 for implementing this invention, and a stator magnet. 図10における回転子が20°左回転した状態を示す正面図である。  It is a front view which shows the state which the rotor in FIG. 10 rotated 20 degrees left. 本発明を実施するための形態−3に係る回転子磁石と固定子磁石の関係を示す説明図である。  It is explanatory drawing which shows the relationship between the rotor magnet and stator magnet which concern on the form-3 for implementing this invention. 図12のD−D線にて一部破断した正面図である。  It is the front view partly fractured | ruptured by the DD line | wire of FIG. 本発明を実施するための形態−3に係る回転子磁石と固定子磁石の関係を示す正面図である。  It is a front view which shows the relationship between the rotor magnet and stator magnet which concern on the form-3 for implementing this invention. 図14における回転子が20°左回転した状態を示す正面図である。  It is a front view which shows the state which the rotor in FIG. 14 rotated 20 degrees left.

〔実施の形態−1〕
以下、本発明の一実施形態に係る永久磁石モータ100について適宜図面を参照しながら説明する。
Embodiment 1
Hereinafter, a permanent magnet motor 100 according to an embodiment of the present invention will be described with reference to the drawings as appropriate.

図1、図2に示すように、本実施形態に係る永久磁石モータ100はシャフト21に固着された非磁性体である円板状の回転子1の外周部に回転方向に磁化した複数個の永久磁石である回転子磁石11を等間隔に配して構成される。本実施例では回転子磁石11は4個の場合を示す。  As shown in FIGS. 1 and 2, the permanent magnet motor 100 according to the present embodiment includes a plurality of magnets magnetized in the rotational direction on the outer periphery of a disc-like rotor 1 that is a nonmagnetic material fixed to a shaft 21. The rotor magnets 11 which are permanent magnets are arranged at equal intervals. In this embodiment, there are four rotor magnets 11.

前記シャフト21はフレーム10の前後面に配した軸受22にて回転自在に支持している。  The shaft 21 is rotatably supported by bearings 22 disposed on the front and rear surfaces of the frame 10.

図2に示すように、回転子中心線に沿って2分割した半筒状の非磁性体である固定子3a、3bは図1に示すように、回転子磁石11をV形にて両面から挟むような形で固定子3a、3bの内周に回転子1の中心より放射状方向に磁化した複数の永久磁石である固定子磁石31を放射状に固着して構成される。本実施例では図2に示すように9個×2面の場合を示し、回転子磁石11の取付角θ1=90°、固定子磁石31の取付角θ2=40°であり、回転子磁石長さaは固定子磁石取付ピッチPより小さいが、同等あるいは大きくしても構成できる。  As shown in FIG. 2, the stator 3a, 3b, which is a semi-cylindrical non-magnetic member divided into two along the rotor center line, has a V-shaped rotor magnet 11 from both sides as shown in FIG. A stator magnet 31, which is a plurality of permanent magnets magnetized radially from the center of the rotor 1, is radially fixed to the inner periphery of the stators 3a and 3b so as to be sandwiched between them. In this embodiment, as shown in FIG. 2, the case of 9 × 2 surfaces is shown, the mounting angle θ1 of the rotor magnet 11 is 90 °, the mounting angle θ2 of the stator magnet 31 is 40 °, and the rotor magnet length The length a is smaller than the stator magnet mounting pitch P, but it can be configured to be equal or larger.

前記回転子磁石11及び固定子磁石31は希土類永久磁石のうち等方性の磁力を有するネオジム(Nd)が磁力が強く好適に使用されるがフェライト、サマコバ磁石でも可能である。  As the rotor magnet 11 and the stator magnet 31, neodymium (Nd) having an isotropic magnetic force among rare earth permanent magnets is preferably used because of its strong magnetic force, but it can also be a ferrite or samaba magnet.

又、本実施例では回転子磁石11は角型磁石としているが磁化方向が同じならば円柱型磁石でも可能である。同様に、固定子磁石31を円柱型磁石としているが、磁化方向が同じならば角型磁石でも構成できる。  In this embodiment, the rotor magnet 11 is a square magnet. However, if the magnetization direction is the same, a cylindrical magnet can be used. Similarly, although the stator magnet 31 is a cylindrical magnet, a square magnet can be used as long as the magnetization directions are the same.

図3は回転子1の停止時を示す。回転子磁石11と固定子磁石31を離すことにより磁力を減少させることにより回転を減じ停止する。左右の固定子3a、3bをそれぞれ外側へ横移動する手段は図示はしないが、ネジ軸回転又は電動シリンダ等にて横移動機構を構成すれば良い。  FIG. 3 shows when the rotor 1 is stopped. The rotation is reduced and stopped by decreasing the magnetic force by separating the rotor magnet 11 and the stator magnet 31. Although means for laterally moving the left and right stators 3a and 3b to the outside is not shown, the lateral movement mechanism may be constituted by screw shaft rotation or an electric cylinder.

次に回転を再開するには図2の状態になるように、横移動機構を用いて、左右の固定子3a、3bをそれぞれ回転子1中心側へ寄せることで回転子1は回転を始める。  Next, in order to resume the rotation, the rotor 1 starts to rotate by moving the left and right stators 3a and 3b toward the center of the rotor 1 by using the lateral movement mechanism as shown in FIG.

図4は回転子磁石11と固定子磁石31の関係を示すものであり、回転子磁石11の1個に対して固定子磁石31を2個、V形に回転子磁石11を両面から挟み込むような形としている。又、固定子磁石31は前面1個、あるいは後面1個でも構成できる。  FIG. 4 shows the relationship between the rotor magnet 11 and the stator magnet 31. Two stator magnets 31 are inserted into one rotor magnet 11 and the rotor magnet 11 is sandwiched from both sides in a V shape. It has a shape. Further, the stator magnet 31 can be constituted by one front surface or one rear surface.

固定子磁石31は回転子磁石11と基準磁石間距離LoにてスキマSを有し、取付角θ3/2にて固定子3a、3bに固着しており、本実施例ではθ3=約50°、θ3/2=約25°である。  The stator magnet 31 has a clearance S at a distance Lo between the rotor magnet 11 and the reference magnet, and is fixed to the stators 3a and 3b at a mounting angle θ3 / 2. In this embodiment, θ3 = about 50 °. , Θ3 / 2 = about 25 °.

図5に示すように、実験によると回転子1に固着された回転子磁石11と固定子磁石31間の磁力は、入側のPa点にて吸引力が発生しθa左回転する。Pb点にて最大斥力となりθb左回転したPc点まで斥力が発生する。このことにより、固定子磁石31の磁力は角度θcの範囲はS極が優位となり回転子磁石11のS極と同極であり、斥力により回転子1は左回転する。本実施例ではθa=約13°、θb=約5°、θc=約18°である。  As shown in FIG. 5, according to the experiment, the magnetic force between the rotor magnet 11 and the stator magnet 31 fixed to the rotor 1 generates an attractive force at the Pa point on the entry side and rotates counterclockwise by θa. The repulsive force is generated up to the point Pc which is the maximum repulsive force at the point Pb and rotated leftward by θb. As a result, the magnetic force of the stator magnet 31 is dominant in the S pole in the range of the angle θc, and is the same as the S pole of the rotor magnet 11, and the rotor 1 rotates counterclockwise due to the repulsive force. In this embodiment, θa = about 13 °, θb = about 5 °, and θc = about 18 °.

又、前記角度θc以外では固定子磁石31はN極優位であり、磁力は回転子磁石11と固定子磁石31間で同極による斥力又は異極による吸引力が発生し、右回転力(逆転力)となる。  In addition to the angle θc, the stator magnet 31 has an N-pole predominance, and the magnetic force generates a repulsive force by the same polarity or an attractive force by a different polarity between the rotor magnet 11 and the stator magnet 31, and a right rotational force (reverse rotation). Power).

ここで、回転子磁石11のN極とS極を逆にすれば、回転方向は右回転となり逆転する。  Here, if the N pole and the S pole of the rotor magnet 11 are reversed, the rotation direction is clockwise and reverse.

図6は回転子磁石11と固定子磁石31の関係を示す正面図であり、説明の都合上、回転子磁石11a〜11d、固定子磁石31a〜31iとした。実験によると同極・異極による右回転力(逆転力)が1.0〜1.3のとき左回転力(回転力)は4.5程度である。このことから回転子1は左回転用として提供される。( )内数値は推定した回転力比であり、図4に示すように、回転子磁石11と固定子磁石31のスキマSにより変化する。  FIG. 6 is a front view showing the relationship between the rotor magnet 11 and the stator magnet 31. For convenience of explanation, the rotor magnets 11a to 11d and the stator magnets 31a to 31i are used. According to the experiment, the left rotational force (rotational force) is about 4.5 when the right rotational force (reverse force) by the same polarity / different pole is 1.0 to 1.3. For this reason, the rotor 1 is provided for left rotation. The numerical value in parentheses is the estimated rotational force ratio, and varies depending on the clearance S between the rotor magnet 11 and the stator magnet 31, as shown in FIG.

ここで、左回転力(回転力)は、回転子磁石11aと固定子磁石31b間で吸引力による回転力(3.0)であり、回転子磁石11dと固定子磁石31i間で斥力による回転力(45)が発生する。又、右回転力(逆転力)は回転子磁石11aと固定子磁石31c間で異極による逆転力(−0.3)、回転子磁石11bと固定子磁石31d間で同極による逆転力(−1.0)、回転子磁石11bと固定子磁石31e間で異極による逆転力(−1.0)、回転子磁石11cと固定子磁石31f間で同極による逆転力(−0.3)、回転子磁石11cと固定子磁石31g間で異極による逆転力(−1.3)となる。合計すると回転力は7.5、逆転力は−3.9であり、正味回転力=7.5−3.9=3.6となり回転子1は左回転する。  Here, the left rotational force (rotational force) is a rotational force (3.0) due to attraction between the rotor magnet 11a and the stator magnet 31b, and rotation due to repulsive force between the rotor magnet 11d and the stator magnet 31i. Force (45) is generated. Further, the right rotational force (reverse force) is a reverse force (−0.3) due to a different polarity between the rotor magnet 11a and the stator magnet 31c, and a reverse force due to the same polarity between the rotor magnet 11b and the stator magnet 31d ( −1.0), reverse force due to different polarity between the rotor magnet 11b and the stator magnet 31e (−1.0), and reverse force due to the same polarity between the rotor magnet 11c and the stator magnet 31f (−0.3). ), A reversal force (−1.3) is generated between the rotor magnet 11c and the stator magnet 31g due to a different polarity. In total, the rotational force is 7.5 and the reverse rotation force is -3.9, and the net rotational force = 7.5-3.9 = 3.6, and the rotor 1 rotates counterclockwise.

図7は図6における回転子1が20°左回転した状態を示す正面図である。ここで、左回転力(回転力)は回転子磁石11bと固定子磁石31d間で斥力による回転力(4.5)であり、回転子磁石11cと固定子磁石31f間で吸引力による回転力(3.0)が発生する。又、右回転力(逆転力)は回転子磁石11aと固定子磁石31a間で同極による逆転力(−0.3)、回転子磁石11aと固定子磁石31b間で異極による逆転力(−1.3)、回転子磁石11cと固定子磁石31g間で異極による逆転力(−0.3)、回転子磁石11dと固定子磁石31h間で同極による逆転力(−1.0)、回転子磁石11dと固定子磁石31i間で異極による逆転力(−1.0)となる。合計すると回転力は7.5、逆転力は−3.9となり、正味回転力=7.5−3.9=3.6となり回転子1は左回転を続ける。  FIG. 7 is a front view showing a state in which the rotor 1 in FIG. Here, the left rotational force (rotational force) is a rotational force (4.5) due to repulsive force between the rotor magnet 11b and the stator magnet 31d, and a rotational force due to attractive force between the rotor magnet 11c and the stator magnet 31f. (3.0) occurs. Further, the right rotational force (reverse force) is the reverse force (−0.3) due to the same polarity between the rotor magnet 11a and the stator magnet 31a, and the reverse force due to a different polarity between the rotor magnet 11a and the stator magnet 31b ( -1.3), reversal force due to different polarity between rotor magnet 11c and stator magnet 31g (-0.3), reversal force due to same polarity between rotor magnet 11d and stator magnet 31h (-1.0). ), A reversal force (−1.0) is generated between the rotor magnet 11d and the stator magnet 31i due to a different polarity. In total, the rotational force becomes 7.5, the reverse rotation force becomes -3.9, and the net rotational force = 7.5-3.9 = 3.6, so that the rotor 1 continues to rotate counterclockwise.

〔実施形態−2〕
前記の実施の形態−1に比べ、図8に示すように固定子磁石31を広角に固定子3a、3bに固着しており、θ3=約100°、θ3/2=約50°である。
Embodiment 2
Compared to the first embodiment, the stator magnet 31 is fixed to the stators 3a and 3b at a wide angle as shown in FIG. 8, and θ3 = about 100 ° and θ3 / 2 = about 50 °.

図9に示すように、実験によると回転子1に固着された回転子磁石11と固定子磁石31間の磁力は、入側のPa点にて吸引力が発生しθa左回転する。Pb点にて最大斥力となりθb左回転したPc点まで斥力が発生する。このことにより固定子磁石31の磁力は角度θcの範囲はS極が優位となり回転子磁石11のS極と同極であり、斥力により回転子1は左回転する。本実施例ではθa=約22°、θb=約0°、θc=約22°である。  As shown in FIG. 9, according to the experiment, the magnetic force between the rotor magnet 11 and the stator magnet 31 fixed to the rotor 1 generates an attractive force at the Pa point on the entry side, and rotates counterclockwise by θa. The repulsive force is generated up to the point Pc which is the maximum repulsive force at the point Pb and rotated leftward by θb. As a result, the magnetic force of the stator magnet 31 is in the same range as the S pole of the rotor magnet 11 in the range of the angle θc, and the rotor 1 rotates counterclockwise by the repulsive force. In this embodiment, θa = about 22 °, θb = about 0 °, and θc = about 22 °.

又、前記角度θc以外では固定子磁石31はN極優位であり、磁力は回転子磁石11と固定子磁石31間で同極による斥力、異極による吸引力が発生し、右回転力(逆転力)となる。  In addition, the stator magnet 31 has N-pole dominance except for the angle θc, and the magnetic force generates repulsive force due to the same polarity and attracting force due to the different polarity between the rotor magnet 11 and the stator magnet 31, resulting in a right rotational force (reverse rotation). Power).

図10は回転子磁石11と固定子磁石31の関係を示す正面図であり、説明の都合上、回転子磁石11a、11b、固定子磁石31a〜31iとした。実験によると、同極・異極による右回転(逆転力)が1.0のとき左回転力(回転力)は1.5程度である。このことから回転子1は左回転用として提供される。( )内数値は回転力比であり、図8に示すように、回転子磁石11と固定子磁石31のスキマSにより変化する。  FIG. 10 is a front view showing the relationship between the rotor magnet 11 and the stator magnet 31. For convenience of explanation, the rotor magnets 11a and 11b and the stator magnets 31a to 31i are used. According to experiments, when the right rotation (reverse force) by the same polarity / different pole is 1.0, the left rotation force (rotation force) is about 1.5. For this reason, the rotor 1 is provided for left rotation. The numerical value in parentheses is the rotational force ratio, and varies depending on the clearance S between the rotor magnet 11 and the stator magnet 31, as shown in FIG.

ここで、左回転力(回転力)は回転子磁石11aと固定子磁石31i間で回転力(1.5)であり、回転子磁石11bと固定子磁石31d間で吸引力による回転力(1.0)が発生する。又、右回転力(逆転力)は回転子磁石11bと固定子磁石31e間で異極による逆転力(−1.0)となる。合計すると回転力は2.5、逆転力は−1.0であり、正味回転力は1.5となり回転子1は左回転する。  Here, the left rotational force (rotational force) is a rotational force (1.5) between the rotor magnet 11a and the stator magnet 31i, and a rotational force (1) between the rotor magnet 11b and the stator magnet 31d by an attractive force. .0) occurs. Further, the right rotational force (reverse rotation force) becomes a reverse rotation force (−1.0) due to a different polarity between the rotor magnet 11b and the stator magnet 31e. In total, the rotational force is 2.5, the reverse rotation force is -1.0, the net rotational force is 1.5, and the rotor 1 rotates counterclockwise.

図11は図10における回転子1が20°左回転した状態を示す正面図である。ここで、左回転力(回転力)は回転子磁石11aと固定子磁石31h間で吸引力による回転力(1.0)であり、回転子磁石11と固定子磁石31d間で斥力による回転力(1.5)が発生する。又、右回転力(逆転力)は回転子磁石11aと固定子磁石31i間で異極による逆転力(−1.0)となり合計すると回転力は2.5、逆転力は−1.0であり正味回転力は1.5となり回転子1は左回転する。  FIG. 11 is a front view showing a state in which the rotor 1 in FIG. Here, the left rotational force (rotational force) is a rotational force (1.0) due to an attractive force between the rotor magnet 11a and the stator magnet 31h, and a rotational force due to a repulsive force between the rotor magnet 11 and the stator magnet 31d. (1.5) occurs. Further, the right rotational force (reverse force) is the reverse force (−1.0) due to the different polarity between the rotor magnet 11a and the stator magnet 31i, and the total is 2.5 and the reverse force is −1.0. There is a net rotational force of 1.5, and the rotor 1 rotates counterclockwise.

〔実施形態−3〕
前記の実施形態−1、−2に比べ図12に示すように固定子磁石31を回転子磁石11とスキマSにて平行に固定子3a、3bに固着したものである。又、固定子磁石31は前面だけでなく後面にも追設して両面形でも構成できる。
Embodiment 3
Compared to Embodiments 1 and -2, the stator magnet 31 is fixed to the stators 3a and 3b in parallel by the rotor magnet 11 and the clearance S as shown in FIG. Moreover, the stator magnet 31 can be additionally provided not only on the front surface but also on the rear surface so as to be configured as a double-sided type.

図13に示すように、実験によると回転子1に固着された回転子磁石11と固定子磁石31間の磁力は、入側のPa点にて異極による吸引力が発生しθa左回転する。Pb点にて最大斥力となりθb左回転したPc点まで斥力が発生する。このことにより固定子磁石31の磁力は角度θcの範囲はS極が優位となり回転子磁石11のS極と同極であり、斥力により回転子1は左回転する。本実施例ではθa=約20°、θb=約3°、θc=約23°である。  As shown in FIG. 13, according to an experiment, the magnetic force between the rotor magnet 11 fixed to the rotor 1 and the stator magnet 31 generates an attractive force due to a different polarity at the Pa point on the entry side, and rotates counterclockwise by θa. . The repulsive force is generated up to the point Pc which is the maximum repulsive force at the point Pb and rotated leftward by θb. As a result, the magnetic force of the stator magnet 31 is in the same range as the S pole of the rotor magnet 11 in the range of the angle θc, and the rotor 1 rotates counterclockwise by the repulsive force. In this embodiment, θa = about 20 °, θb = about 3 °, and θc = about 23 °.

又、前記角度θc以外では固定子磁石31はN極優位であり、磁力は回転子磁石11と固定子磁石31間で同極による斥力又は異極による吸引力が発生し、右回転力(逆転力)となる。  In addition to the angle θc, the stator magnet 31 has an N-pole predominance, and the magnetic force generates a repulsive force by the same polarity or an attractive force by a different polarity between the rotor magnet 11 and the stator magnet 31, and a right rotational force (reverse rotation). Power).

図14は回転子磁石11と固定子磁石31の関係を示す正面図であり、説明の都合上、回転子磁石11a〜11d、固定子磁石31a〜31iとした。実験によると、同極・異極による右回転力(逆転力)が1.0〜1.3のとき左回転力(回転力)は3.6程度である。このことから回転子1は左回転用として提供される。( )内数値は推定した回転力比であり、図12に示すように、回転子磁石11と固定子磁石31のスキマSにより変化する。  FIG. 14 is a front view showing the relationship between the rotor magnet 11 and the stator magnet 31. For convenience of explanation, the rotor magnets 11a to 11d and the stator magnets 31a to 31i are used. According to the experiment, the left rotational force (rotational force) is about 3.6 when the right rotational force (reverse force) by the same polarity / different pole is 1.0 to 1.3. For this reason, the rotor 1 is provided for left rotation. The numerical value in parentheses is the estimated rotational force ratio, and varies depending on the clearance S between the rotor magnet 11 and the stator magnet 31, as shown in FIG.

ここで左回転力(回転力)は回転子磁石11aと固定子磁石31b間で吸引力による回転力(2.0)であり、回転子磁石11dと固定子磁石31i間で斥力による回転力(3.6)が発生する。又、右回転力(逆転力)は回転子磁石11aと固定子磁石31c間で異極による逆転力(−0.3)、回転子磁石11bと固定子磁石31d間で同極による逆転力(−1.0)、回転子磁石11bと固定子磁石31e間で異極による逆転力(−1.0)、回転子磁石11cと固定子磁石31f間で同極による逆転力(−0.3)、回転子磁石11cと固定子磁石31g間で異極による逆転力(−1.3)となる。合計すると回転力は5.6、逆転力は−3.9であり、正味回転力=5.6−3.9=1.7となり回転子1は左回転する。  Here, the left rotational force (rotational force) is a rotational force (2.0) due to an attractive force between the rotor magnet 11a and the stator magnet 31b, and a rotational force due to a repulsive force between the rotor magnet 11d and the stator magnet 31i ( 3.6) occurs. Further, the right rotational force (reverse force) is a reverse force (−0.3) due to a different polarity between the rotor magnet 11a and the stator magnet 31c, and a reverse force due to the same polarity between the rotor magnet 11b and the stator magnet 31d ( −1.0), reverse force due to different polarity between the rotor magnet 11b and the stator magnet 31e (−1.0), and reverse force due to the same polarity between the rotor magnet 11c and the stator magnet 31f (−0.3). ), A reversal force (−1.3) is generated between the rotor magnet 11c and the stator magnet 31g due to a different polarity. In total, the rotational force is 5.6, the reverse rotation force is -3.9, and the net rotational force = 5.6-3.9 = 1.7, and the rotor 1 rotates counterclockwise.

図15は図14における回転子1が20°左回転した状態を示す正面図である。ここで、左回転力(回転力)は回転子磁石11bと固定子磁石31d間で斥力による回転力(3.6)であり、回転子磁石11cと固定子磁石31f間で吸引力による回転力(2.0)が発生する。又、右回転力(逆転力)は回転子磁石11aと固定子磁石31a間で同極による逆転力(−0.3)、回転子磁石11aと固定子磁石31b間で異極による逆転力(−1.3)、回転子磁石11cと固定子磁石31g間で異極による逆転力(−0.3)、回転子磁石11dと固定子磁石31h間で同極による逆転力(−1.0)、回転子磁石11dと固定子磁石31i間で異極による逆転力(−1.0)となる。合計すると回転力は5.6、逆転力は−3.9となり、正味回転力=5.6−3.9=1.7となり回転子1は左回転を続ける。  FIG. 15 is a front view showing a state where the rotor 1 in FIG. Here, the left rotational force (rotational force) is a rotational force (3.6) due to repulsive force between the rotor magnet 11b and the stator magnet 31d, and a rotational force due to attractive force between the rotor magnet 11c and the stator magnet 31f. (2.0) occurs. Further, the right rotational force (reverse force) is the reverse force (−0.3) due to the same polarity between the rotor magnet 11a and the stator magnet 31a, and the reverse force due to a different polarity between the rotor magnet 11a and the stator magnet 31b ( -1.3), reversal force due to different polarity between rotor magnet 11c and stator magnet 31g (-0.3), reversal force due to same polarity between rotor magnet 11d and stator magnet 31h (-1.0). ), A reversal force (−1.0) is generated between the rotor magnet 11d and the stator magnet 31i due to a different polarity. In total, the rotational force is 5.6, the reverse rotation force is -3.9, and the net rotational force = 5.6-3.9 = 1.7, and the rotor 1 continues to rotate counterclockwise.

次に、このように構成した永久磁石モータ100の動作について説明する。  Next, the operation of the permanent magnet motor 100 configured as described above will be described.

回転中の回転子1を停止する時は、左右の固定子3a、3bをそれぞれ横移動手段により回転子1の外側へ横移動する。又、回転を再開するには横移動手段により左右の固定子3a、3bをそれぞれ回転子1中心側へ寄せることで回転を始めるものである。  When stopping the rotating rotor 1, the left and right stators 3a and 3b are laterally moved to the outside of the rotor 1 by lateral movement means. In order to resume the rotation, the left and right stators 3a and 3b are moved toward the center of the rotor 1 by the lateral movement means, and the rotation is started.

図示はしないが、回転停止後は別置でブレーキ装置設置可能であり、本実施例では回転子は単列形であるが複数形も可能であり、又、垂直型でも構成できる。  Although not shown, the brake device can be installed separately after the rotation is stopped. In this embodiment, the rotor is a single-row type, but a plurality of types are also possible, and a vertical type can also be configured.

その他、本発明は前記実施例等に限られるものではなく、本発明の要旨を変更しない範囲で適宜変更しても構わない。In addition, the present invention is not limited to the embodiment 0 and the like, and may be changed as appropriate without departing from the scope of the present invention.

以上のように構成した本発明によれば、小型発電機の他、機械類動力源に応用できる。何れも磁力駆動による永久磁石モータを提供することができる。  According to the present invention configured as described above, it can be applied to a mechanical power source in addition to a small generator. Any of them can provide a permanent magnet motor driven by magnetic force.

100 永久磁石モータ
101 発電機
1 回転子
3a、3b 固定子
10 フレーム
11、11a、11b、11c、11d 回転子磁石
21 シャフト
22 軸受
31、31a、31b、31c、31d、31e、31f、31g、31h、31i 固定子磁石
CP カップリング
a 回転子磁石長さ
θ1 取付角
θ2 取付角
θ3 取付角
P 固定子磁石取付ピッチ
Lo 基準磁石間距離
S スキマ
DESCRIPTION OF SYMBOLS 100 Permanent magnet motor 101 Generator 1 Rotor 3a, 3b Stator 10 Frame 11, 11a, 11b, 11c, 11d Rotor magnet 21 Shaft 22 Bearing 31, 31a, 31b, 31c, 31d, 31e, 31f, 31g, 31h , 31i Stator magnet CP Coupling a Rotor magnet length θ1 Mounting angle θ2 Mounting angle θ3 Mounting angle P Stator magnet mounting pitch Lo Reference magnet distance S Clearance

Claims (2)

回転自在に設けた非磁性体である円板状の回転子の外周部に回転方向に磁化した2個以上の永久磁石である回転子磁石を等間隔で配し、回転子の外径側に配した非磁性体である筒形状の固定子内面側に永久磁石である固定子磁石を回転子中心より放射状方向に磁化した固定子磁石を複数個配し、前記回転子磁石1個に対し、前記固定子磁石をV形にて両面から回転子磁石を挟みこむよう構成したことを特徴とする永久磁石モータ。Two or more rotor magnets, which are magnetized in the rotation direction, are arranged at equal intervals on the outer periphery of a disc-shaped rotor, which is a non-magnetic material provided in a freely rotatable manner, on the outer diameter side of the rotor. A plurality of stator magnets that are magnetized in a radial direction from the center of the rotor are arranged on the inner surface side of the cylindrical stator that is a non-magnetic material, and for one rotor magnet, A permanent magnet motor characterized in that the stator magnet is V-shaped so that the rotor magnet is sandwiched from both sides. 前記固定子を回転子中心線に沿って2分割し、回転子中心線からそれぞれ左右に離れるよう構成した請求項1記載の永久磁石モータ。2. The permanent magnet motor according to claim 1, wherein the stator is divided into two along the rotor center line so as to be separated from the rotor center line left and right.
JP2014078181A 2014-03-18 2014-03-18 permanent magnet motor Pending JP2015180170A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014078181A JP2015180170A (en) 2014-03-18 2014-03-18 permanent magnet motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014078181A JP2015180170A (en) 2014-03-18 2014-03-18 permanent magnet motor

Publications (1)

Publication Number Publication Date
JP2015180170A true JP2015180170A (en) 2015-10-08

Family

ID=54263842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014078181A Pending JP2015180170A (en) 2014-03-18 2014-03-18 permanent magnet motor

Country Status (1)

Country Link
JP (1) JP2015180170A (en)

Similar Documents

Publication Publication Date Title
US20070145846A1 (en) Magnetic rotary device
US8400037B2 (en) Device for providing rotational torque and method of use
WO2009028266A1 (en) Axial gap type motor
JP6692054B2 (en) Coaxial electromagnetic device
US20180269758A1 (en) Permanent magnet applying motor
JP2014121265A5 (en)
EA202191804A1 (en) ROTARY ELECTRIC MOTOR
RU2013139388A (en) MAGNETIC REDUCED SYNCHRONOUS MOTOR
JP2015180170A (en) permanent magnet motor
RU2013138975A (en) MAGNET REDUCER
JP6616538B1 (en) Rotating device and power generation system
KR20080093482A (en) Motor with ring magnet for reducing noise
JP2016025835A (en) Permanent magnet rotating device
WO2015097485A3 (en) Shaftless generator
JP5792756B2 (en) Rotating device and power machine device
JP2015012795A (en) Generator
JP2016220508A (en) Permanent magnet motor
JP2019193366A (en) Magnetic rotation device
JP2015006122A (en) Permanent magnet rotation device
JP2015061506A (en) Magnetic force drive rotating device
JP2014230476A (en) Magnetic motor
WO2004010567A3 (en) Magnetic motor with diamagnetic and non-magnetic mask
US20130147297A1 (en) Magnetic Motor Propulsion System
JP2014132170A5 (en)
TWI542117B (en) Rotor magnetic component structure and fan motor device