JP2012186022A - Light source unit and lighting device - Google Patents

Light source unit and lighting device Download PDF

Info

Publication number
JP2012186022A
JP2012186022A JP2011048358A JP2011048358A JP2012186022A JP 2012186022 A JP2012186022 A JP 2012186022A JP 2011048358 A JP2011048358 A JP 2011048358A JP 2011048358 A JP2011048358 A JP 2011048358A JP 2012186022 A JP2012186022 A JP 2012186022A
Authority
JP
Japan
Prior art keywords
led
light
lens array
source unit
light source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011048358A
Other languages
Japanese (ja)
Other versions
JP5473966B2 (en
Inventor
Takuo Murai
卓生 村井
Shoichi Suwa
正一 諏訪
Koji Saito
公史 齋藤
Kazuhiro Iwase
和宏 岩▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Original Assignee
Mitsubishi Electric Corp
Mitsubishi Electric Lighting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp, Mitsubishi Electric Lighting Corp filed Critical Mitsubishi Electric Corp
Priority to JP2011048358A priority Critical patent/JP5473966B2/en
Publication of JP2012186022A publication Critical patent/JP2012186022A/en
Application granted granted Critical
Publication of JP5473966B2 publication Critical patent/JP5473966B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/10Refractors for light sources comprising photoluminescent material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2105/00Planar light sources
    • F21Y2105/10Planar light sources comprising a two-dimensional array of point-like light-generating elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Fastening Of Light Sources Or Lamp Holders (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an inexpensive and thin light source unit capable of flexibly coping with changes on the number of LEDs and raising designability and maintainability and restraining generation of luminance unevenness and uncomfortable glare.SOLUTION: The light source unit 10 includes a reflective fixing member 3, an LED mounting board 2 mounting a plurality of LEDs for emitting emitted light with designated light-distribution characteristics on a mounting surface and fixed on the reflective fixing member 3, a lens array 4 which can correspond to respective mounted LEDs and becomes a sheet-like body having lens function sections 5 in which each incident light is emitted at narrower light-distribution characteristics than the light-distribution characteristics of the corresponding LED, wherein each lens function section 5 is fixed on the reflective fixing member 3 by facing to the mounting surface of the LED mounting board 2 so as to be opposite to the corresponding LED, and a translucent light diffusion member 6 fixed to the reflective fixing member 3 on an opposite side of the LED mounting board 2 against the lens array 4 and transmitting light emitted from each lens function section 5 of the lens array 4.

Description

本発明は、発光ダイオード(LED;Light・Emitting・Diode)などの半導体発光素子を光源とした照明装置、またそれに組込み可能な光源ユニットに関する。   The present invention relates to an illumination device that uses a semiconductor light emitting element such as a light emitting diode (LED; Light Emitting Diode) as a light source, and a light source unit that can be incorporated therein.

照明装置の被照明範囲(照明面積)の調整や制限を目的として、反射板やレンズ系を用い、配光角やビーム角を制御する構造提案が数多くなされている。そのうち小型、長寿命といった特徴を持つLEDを光源に用いた先行技術例が、例えば特許文献1〜3に示されている。   For the purpose of adjusting or limiting the illumination range (illumination area) of an illumination device, many proposals have been made on structures that use a reflector and a lens system to control the light distribution angle and beam angle. Among them, prior art examples using LEDs having features such as small size and long life as light sources are disclosed in Patent Documents 1 to 3, for example.

特許文献1は、各LEDの周囲に設けた複数の反射凹部にレンズ体を選択装着することにより、例えば目的とする配光特性を容易に作り出す効果が得られるとしている。   Patent Document 1 describes that, for example, an effect of easily creating a desired light distribution characteristic can be obtained by selectively attaching a lens body to a plurality of reflective recesses provided around each LED.

特許文献2は、集光機能を有する複数のLEDと、LED対向側が平面となるように配置される凸レンズアレイを備えた照明装置を示す。この照明装置は、LEDからの光が相互に重ね合わされるように同一箇所へと導かれるため、所定の空間領域を極めて高輝度に照明できる効果を有するとしている。   Patent document 2 shows the illuminating device provided with the several lens which has a condensing function, and the convex lens array arrange | positioned so that LED opposing side may become a plane. Since this illumination device is guided to the same location so that the light from the LEDs is superimposed on each other, it has an effect of illuminating a predetermined spatial region with extremely high luminance.

特許文献3は、特許文献2同様、集光機能を有する複数LEDと凸レンズアレイを備えた照明装置である。この照明装置では、レンズ凸面がLEDに対向して配置された例が示されており、テールランプ及びストップランプとしての規定の配光特性を満足するとしている。   Patent Document 3 is an illumination device including a plurality of LEDs having a condensing function and a convex lens array, as in Patent Document 2. In this illuminating device, an example in which the lens convex surface is arranged to face the LED is shown, and it is assumed that the prescribed light distribution characteristics as a tail lamp and a stop lamp are satisfied.

特開2009−9826号公報JP 2009-9826 A 特許第4488183号(特開2005−285697号)Patent No. 4488183 (Japanese Patent Laid-Open No. 2005-285697) 特願平2−214052号公報Japanese Patent Application No. 2-214052

しかしながら、特許文献1においては、複数の凹部を有する反射体を備えているため、LEDの利用個数に限界があり、とくに大光束化の必要性が生じた場合に容易にLEDの個数調整(とくに増)に対応できない。また、LEDの配置位置も反射体凹部位置に限られ、LED個数に合わせ任意に調整できないといった課題があった。さらにこの反射凹部が装置のコストアップに繋がっていた。   However, since Patent Document 1 includes a reflector having a plurality of concave portions, there is a limit to the number of LEDs that can be used, and in particular, when the necessity of increasing the luminous flux arises, the number of LEDs can be easily adjusted (especially Increase). Further, the LED arrangement position is limited to the reflector recess position, and there is a problem that it cannot be arbitrarily adjusted according to the number of LEDs. Furthermore, this reflective concave portion has led to an increase in the cost of the apparatus.

一方、特許文献2は特許文献1の構成に比較すればLED個数調整への対応はしやすい。しかし、装置表面側に凸レンズアレイの凸部を向けることから、装置発光面を見込んだ場合に複数凸面の陰影が出やすく光むらに見えてしまうという課題があった。また、凸部間に粉塵がたまりやすく、細めに清掃が必要となるなど意匠性や保守性の面で課題があった。   On the other hand, compared with the configuration of Patent Document 1, Patent Document 2 can easily cope with adjustment of the number of LEDs. However, since the convex portion of the convex lens array is directed to the device surface side, there is a problem that when the device light-emitting surface is viewed, shadows of a plurality of convex surfaces are likely to appear and the light appears uneven. In addition, there is a problem in terms of design and maintainability such that dust easily collects between the convex portions and needs to be thinly cleaned.

また、特許文献2及び3は集光機能を有する砲弾型のような樹脂モールドLEDを用いているため、装置厚みが厚くなるとともに、そのようなLEDをさらに凸レンズアレイで集光するため、一般照明用途で用いる際には不快グレア(非常に眩しい)や、大きな輝度むら(あるいは照度むら)も発生しやすいという欠点があった。   In addition, since Patent Documents 2 and 3 use a resin mold LED such as a shell type having a condensing function, the thickness of the apparatus is increased, and such an LED is further condensed by a convex lens array. When used in applications, there is a drawback that unpleasant glare (very dazzling) and large luminance unevenness (or uneven illuminance) are likely to occur.

そこで、本発明は、LEDの個数変更を容易にでき、さらに用途に応じた光束調整が必要となる場合に、LEDの個数変更により柔軟に対応でき、さらに、意匠性や保守性に優れた薄型で安価な配光制御照明装置を得ることを目的としている。なお装置の配光については、光学部品(レンズアレイ)の着脱のみでビーム角でおよそ40〜60度程度の低グレアで輝度むらの少ない緩やかに狭められた配光と、それより広角の拡散性配光を切換えて実現することも目的としている。以下の実施の形態で説明するビーム角度は、装置中心方向の光度の1/2光度となる照射角(中心を跨ぐ両角)としている。   Therefore, the present invention makes it easy to change the number of LEDs, and when it is necessary to adjust the luminous flux according to the application, it can flexibly respond to the change in the number of LEDs, and is thin with excellent design and maintainability. It is an object to obtain a light distribution control lighting device that is inexpensive and inexpensive. As for the light distribution of the device, the light distribution is lightly narrowed with a low glare with a beam angle of about 40 to 60 degrees and with little unevenness of brightness by simply attaching and detaching optical components (lens array), and diffusivity at a wider angle than that. The purpose is to switch the light distribution. The beam angle described in the following embodiment is an irradiation angle (both angles straddling the center) that is ½ luminous intensity of the luminous intensity in the center direction of the apparatus.

この発明の光源ユニットは、
ベース部と、
実装面となる一方の面に発光光を所定の配光特性で出射する複数のLEDが実装され、前記ベース部に固定されるLED実装基板と、
前記複数のLEDの各LEDに対応すると共に、入射した光を対応する前記LEDの前記配光特性よりも狭配光となる狭配光特性で出射させるレンズ機能部を有するものであって、それぞれの前記レンズ機能部が、対応する前記LEDに対向するように前記LED実装基板の前記実装面に対向して前記ベース部に固定されるレンズアレイと、
前記レンズアレイに対して前記LED実装基板の反対側で前記ベース部に固定され、前記レンズアレイのそれぞれの前記レンズ機能部から出射する光を透過し拡散する透光性光拡散部材)と
を備えたことを特徴とする。
The light source unit of the present invention is
A base part;
A plurality of LEDs that emit emitted light with a predetermined light distribution characteristic are mounted on one surface serving as a mounting surface, and an LED mounting substrate that is fixed to the base portion;
It has a lens function part corresponding to each LED of the plurality of LEDs and emitting incident light with a narrow light distribution characteristic that is narrower than the light distribution characteristic of the corresponding LED, A lens array that is fixed to the base portion so as to face the mounting surface of the LED mounting substrate so that the lens function portion of the LED faces the corresponding LED,
A translucent light diffusing member that is fixed to the base portion on the opposite side of the LED mounting substrate with respect to the lens array, and transmits and diffuses light emitted from the lens function portions of the lens array. It is characterized by that.

本発明の光源ユニットによれば、レンズアレイで集光化し、さらにレンズアレイから出射した光を拡散性光透過部材を透過させるので、光ノイズが少なく色むらの少ない、狭まった配光特性を有する光源ユニットを提供できる。   According to the light source unit of the present invention, since the light is condensed by the lens array and the light emitted from the lens array is transmitted through the diffusible light transmitting member, the light distribution unit has a narrow light distribution characteristic with little optical noise and less color unevenness. A light source unit can be provided.

実施の形態1の光源ユニット10を用いた、照明装置100を示す図。FIG. 3 shows a lighting device 100 using the light source unit 10 of the first embodiment. 実施の形態1の光源ユニット10の正面図、断面図等を示す図。The figure which shows the front view, sectional drawing, etc. of the light source unit 10 of Embodiment 1. FIG. 実施の形態1の光源ユニット10の基本構成を示す図。FIG. 3 shows a basic configuration of a light source unit 10 according to the first embodiment. 実施の形態1の透光性光拡散部材6の湾曲を示す図。The figure which shows the curve of the translucent light-diffusion member 6 of Embodiment 1. FIG. 実施の形態1の光源ユニット10(レンズアレイ4あり)及び光源ユニット10を用いた照明装置の断面図。1 is a cross-sectional view of a light source unit 10 (with a lens array 4) and a lighting device using the light source unit 10 according to a first embodiment. 実施の形態1の光源ユニット10(レンズアレイ4あり)及び光源ユニット10を用いた照明装置の断面図。1 is a cross-sectional view of a light source unit 10 (with a lens array 4) and a lighting device using the light source unit 10 according to a first embodiment. 実施の形態1の光源ユニット10に対するシミュレーションモデルを示す図。FIG. 3 shows a simulation model for the light source unit 10 of the first embodiment. 実施の形態1の光源ユニット10に対するシミュレーションモデルを示す図。FIG. 3 shows a simulation model for the light source unit 10 of the first embodiment. 実施の形態1の光源ユニット10のシミュレーションに使用したLEDの配光特性を示す図。The figure which shows the light distribution characteristic of LED used for the simulation of the light source unit 10 of Embodiment 1. FIG. 実施の形態1の「LED基板2」のみ、及び「LED基板2+レンズアレイ4」の構成条件のシミュレーションモデルの断面図。Sectional drawing of the simulation model of only the "LED board | substrate 2" of Embodiment 1, and the structural condition of "LED board | substrate 2 + lens array 4." 実施の形態1の「LED基板2+レンズアレイ4+透光性光拡散部材6」、及び「LED基板2」+透光性光拡散部材6」の構成条件のシミュレーションモデルの断面図。Sectional drawing of the simulation model of the structural condition of "LED board | substrate 2 + lens array 4 + translucent light diffusion member 6" and "LED board 2" + translucent light diffusion member 6 of Embodiment 1. FIG. 図10、図11の構成の違いによるシミュレーション結果を示す図。The figure which shows the simulation result by the difference in the structure of FIG. 10, FIG. 実施の形態1の焦点距離F’が異なる構成条件のシミュレーションモデルの断面図。Sectional drawing of the simulation model of the structural conditions from which the focal distance F 'of Embodiment 1 differs. 図13の焦点距離F’の違いによるシミュレーション結果を示す図。The figure which shows the simulation result by the difference in the focal distance F 'of FIG. 実施の形態1のLED発光面とレンズ機能部5の山頂との距離dが異なる構成条件のシミュレーションモデルの断面図。Sectional drawing of the simulation model of the structural conditions from which distance d of the LED light emission surface of Embodiment 1 and the peak of the lens function part 5 differs. 図15の距離dが異なるシミュレーション結果。The simulation result from which the distance d of FIG. 15 differs. 実施の形態2のLED間引き状態を示す図。FIG. 5 shows an LED thinning-out state according to the second embodiment. 実施の形態2の間引き部分を示す図。FIG. 6 shows a thinned-out portion of the second embodiment. 図18の破線枠51の導電パターンを示す図。The figure which shows the conductive pattern of the broken line frame 51 of FIG. 実施の形態3の色変換部材18の取付位置を示す断面図。Sectional drawing which shows the attachment position of the color conversion member 18 of Embodiment 3. FIG. 実施の形態3の色変換部材18の取付位置を示す別の断面図。FIG. 10 is another cross-sectional view showing the mounting position of the color conversion member 18 according to the third embodiment. 実施の形態3の色変換部材18の取付位置を示すさらに別の断面図。FIG. 10 is still another cross-sectional view showing the mounting position of the color conversion member 18 according to the third embodiment. 実施の形態3の色変換部19による色変換(波長変換)の特性を示す図。FIG. 10 is a diagram illustrating characteristics of color conversion (wavelength conversion) by the color conversion unit 19 according to the third embodiment. 実施の形態4のレンズ機能部5を半径方向にずらす場合を示す図。The figure which shows the case where the lens function part 5 of Embodiment 4 is shifted to radial direction. 実施の形態4のレンズ機能部5を左右方向にずらす場合を示す図。The figure which shows the case where the lens function part 5 of Embodiment 4 is shifted to the left-right direction. 実施の形態4の略同心円上の実装されたLEDに対して、レンズアレイ4を同心円の円周方向に回転させて固定する場合を示す図。The figure which shows the case where the lens array 4 is rotated and fixed to the circumferential direction of a concentric circle with respect to LED mounted on the substantially concentric circle of Embodiment 4. FIG. 実施の形態4のLED(日亜化学工業製NS6W183)の発光角度方向と色温度とを示す図。The figure which shows the light emission angle direction and color temperature of LED (NS6W183 by Nichia Corporation) of Embodiment 4. FIG. 実施の形態4のレンズアレイ4のレンズアレイ固定部7を示す図。FIG. 6 shows a lens array fixing portion 7 of the lens array 4 of Embodiment 4. 実施の形態4の色ずれの他の縮小手段を示す図。FIG. 10 shows another reduction means for color misregistration according to the fourth embodiment.

実施の形態1.
まず、図1〜図16を参照して実施の形態1を説明する。
Embodiment 1 FIG.
First, the first embodiment will be described with reference to FIGS.

図1は、実施の形態1の光源ユニット10を用いた、照明装置100を示す。実施の形態1で説明する光源ユニット10は、LED基板2(LED実装基板)、反射性固定部材3(ベース部)、レンズアレイ4、透光性光拡散部材6から構成される。図1の照明装置100は、光源ユニット10と外側反射筐体8とを備えた構成である。図1の(a)は、照明装置100の分解斜視図である。図1の(b)は、LED基板2に反射性固定部材3を組合せた状態を、上面(LEDの実装面2a側)から見た図である。図1の(c)は、反射性固定部材3に対するレンズアレイ4の位置ずれを防ぐように、周囲に、破線で示す4つのレンズアレイ固定部7を設けた構成を示す。レンズアレイ固定部7によって、レンズアレイ4は、反射性固定部材3に嵌合される構成である。   FIG. 1 shows an illumination device 100 using the light source unit 10 of the first embodiment. The light source unit 10 described in the first embodiment includes an LED substrate 2 (LED mounting substrate), a reflective fixing member 3 (base portion), a lens array 4, and a translucent light diffusing member 6. The illuminating device 100 of FIG. 1 is a structure provided with the light source unit 10 and the outer reflective housing 8. FIG. 1A is an exploded perspective view of the lighting device 100. (B) of FIG. 1 is the figure which looked at the state which combined the reflective fixing member 3 with the LED board 2 from the upper surface (LED mounting surface 2a side). FIG. 1C shows a configuration in which four lens array fixing portions 7 indicated by broken lines are provided around the lens array 4 so as to prevent displacement of the lens array 4 with respect to the reflective fixing member 3. The lens array 4 is fitted to the reflective fixing member 3 by the lens array fixing portion 7.

図2は、光源ユニット10の構成を示す。図2の(a)は、光源ユニット10を上方(図1のX方向)から見込んだ図である。
図2の(b)は、図2の(a)のA−A断面を示す。図2の(c)は、光源ユニット10のレンズアレイ4の上面図(図1の図1のX方向矢視)である。
図2bの(b)では、以下で述べる実施の形態における光源ユニット10の大半の使用形態に合わせ、発光面を下向きとして描いている。なお、光源ユニット10の発光面、あるいは照明装置100の発光面というときの「発光面」は、透光性光拡散部材6の表面(光が出射する側)を意味する。なお機能的に光源ユニット10自体を照明装置と考えてもよいが、以下の実施の形態では、光源ユニット10という名称を用い説明を行う。すなわち、以下の実施の形態で「光源ユニット10」というときには、図1で示した、光源ユニット10(LED基板2、反射性固定部材3、レンズアレイ4、透光性光拡散部材6から構成)を意味する。また、以下の実施の形態で「照明装置100」という場合は、図1で示したように、光源ユニット10に、さらに外側反射筐体8を備えた装置をいう。
FIG. 2 shows the configuration of the light source unit 10. 2A is a view of the light source unit 10 viewed from above (X direction in FIG. 1).
FIG. 2B shows an AA cross section of FIG. FIG. 2C is a top view of the lens array 4 of the light source unit 10 (as viewed in the X direction in FIG. 1 in FIG. 1).
In FIG. 2B, the light emitting surface is drawn downward in accordance with most usage patterns of the light source unit 10 in the embodiment described below. Note that the “light emitting surface” when referred to as the light emitting surface of the light source unit 10 or the light emitting surface of the illumination device 100 means the surface of the translucent light diffusing member 6 (the side from which light is emitted). Although the light source unit 10 itself may be functionally considered as a lighting device, in the following embodiment, the description will be made using the name of the light source unit 10. That is, when referring to the “light source unit 10” in the following embodiment, the light source unit 10 (comprising the LED substrate 2, the reflective fixing member 3, the lens array 4, and the translucent light diffusing member 6) shown in FIG. Means. Further, in the following embodiment, the “illumination device 100” refers to a device in which the light source unit 10 is further provided with an outer reflective housing 8 as shown in FIG.

図1、図2に示すように、光源ユニット10は、LED1を複数実装したLED基板2と、その周囲上部(上部、あるいは上側方向とは、実装されたLEDの光の出射方向側であって、実装面2aの法線2L(図3、図4に示した)の方向をいう)にLED基板2を固定するように配置される反射性固定部材(ベース部)3、反射性固定部材3の内側でLEDアレイ発光面側(LED基板の実装面2a側)に対向配置されるレンズアレイ4、さらに、レンズアレイ4の発光面側に距離を置いて配置される透光性光拡散部材6を備えた構成である。   As shown in FIGS. 1 and 2, the light source unit 10 includes an LED substrate 2 on which a plurality of LEDs 1 are mounted, and an upper portion around the LED substrate 2 (the upper or upper direction is the light emission direction side of the mounted LED. The reflective fixing member (base portion) 3 and the reflective fixing member 3 are arranged so as to fix the LED substrate 2 to the normal line 2L (shown in FIGS. 3 and 4) of the mounting surface 2a. The lens array 4 disposed opposite to the LED array light emitting surface side (LED substrate mounting surface 2a side) inside, and further, the translucent light diffusing member 6 disposed at a distance from the light emitting surface side of the lens array 4. It is the structure provided with.

図3は、光源ユニット10の構成を簡略した図である。光源ユニット10の構成の狙いは、光71をレンズアレイ4のレンズ機能部5で一度狭配光化(出射光72)を行い、さらに透光性光拡散部材6を透過させることで、やや広配光(出射光73)に戻すことにある。これにより、レンズアレイ4の装着時に、とくに広角側に生じる光ノイズを打ち消し、さらに光源ユニット10の輝度むらやグレア抑制を行う特徴的機能を得ようとするものである。   FIG. 3 is a simplified diagram of the configuration of the light source unit 10. The aim of the configuration of the light source unit 10 is that the light 71 is once narrowed (emitted light 72) by the lens function unit 5 of the lens array 4 and further transmitted through the translucent light diffusing member 6, so that it is slightly wider. It is to return to the light distribution (emitted light 73). Thus, when the lens array 4 is mounted, an optical noise generated particularly on the wide-angle side is canceled out, and a characteristic function for suppressing luminance unevenness and glare of the light source unit 10 is obtained.

(光源ユニット10の基本構成)
図1〜図3に示すように、光源ユニット10は、反射性固定部材3、LED基板2、レンズアレイ4、透光性光拡散部材6を備えている。LED基板2は、実装面2a(図1)となる一方の面に発光光を所定の配光特性で出射する複数のLED(Light Emitting Diode)が実装されている。LED基板2は、反射性固定部材3に固定される。レンズアレイ4は、複数のLEDの各LEDに対応すると共に、入射した光を対応するLEDの配光特性よりも狭配光となる狭配光特性で出射させるレンズ機能部5を有する板状体である。図2(b)のように、レンズアレイ4は、各レンズ機能部5が、対応するLEDに対向するようにLED基板2の実装面2aに対向して反射性固定部材3に固定される。透光性光拡散部材6は、図2(b)のように、レンズアレイ4に対してLED基板2の反対側で反射性固定部材3に固定される。透光性光拡散部材6は、レンズアレイ4の各レンズ機能部5から出射する光を透過し拡散する機能を有する。
また、後述のように、レンズ機能部5のLED基板2側の焦点の焦点距離F’とした場合、焦点距離F’と、LEDの発光面1aとこのLEDに対応するレンズ機能部5の凸部4bの山頂4cとの距離dとについては、
F’<d
の条件で構成する。
(Basic configuration of the light source unit 10)
As shown in FIGS. 1 to 3, the light source unit 10 includes a reflective fixing member 3, an LED substrate 2, a lens array 4, and a translucent light diffusing member 6. The LED substrate 2 is mounted with a plurality of LEDs (Light Emitting Diodes) that emit emitted light with a predetermined light distribution characteristic on one surface serving as a mounting surface 2a (FIG. 1). The LED substrate 2 is fixed to the reflective fixing member 3. The lens array 4 corresponds to each LED of a plurality of LEDs and has a plate-like body having a lens function unit 5 that emits incident light with a narrow light distribution characteristic that is narrower than the light distribution characteristic of the corresponding LED. It is. As shown in FIG. 2B, the lens array 4 is fixed to the reflective fixing member 3 so as to face the mounting surface 2a of the LED substrate 2 so that each lens function unit 5 faces the corresponding LED. The translucent light diffusing member 6 is fixed to the reflective fixing member 3 on the opposite side of the LED substrate 2 with respect to the lens array 4 as shown in FIG. The translucent light diffusing member 6 has a function of transmitting and diffusing light emitted from each lens function unit 5 of the lens array 4.
As will be described later, when the focal length F ′ of the focal point on the LED substrate 2 side of the lens function unit 5 is set, the focal length F ′, the light emitting surface 1a of the LED, and the convexity of the lens function unit 5 corresponding to this LED About the distance d with the summit 4c of the part 4b,
F ′ <d
Consists of the following conditions.

(LED1)
LED1は、例えば市販の薄い表面実装型LEDである。LED1は、電極を備えたLEDパッケージ材料内に青色LEDチップを実装し、さらにその青色光に励起する蛍光体混合樹脂で表面封止した構成のもので白色光を放つようなものである。
(LED1)
The LED 1 is, for example, a commercially available thin surface-mounted LED. The LED 1 has a configuration in which a blue LED chip is mounted in an LED package material including electrodes, and the surface is sealed with a phosphor mixed resin that is excited by the blue light, and emits white light.

(LED基板2)
また、LED基板2はLEDの温度上昇による発光効率低下を抑える目的で、例えばアルミや銅などをベースとした金属基板、あるいはセラミック基板などで構成する。LED温度上昇幅がさほど大きくない場合には、LED基板2としては、コスト面を考慮しガラスエポキシ基板やガラスコンポジット基板等の材料を用いて構成してもよい。それら基板の表面は光源ユニット10内の光利用効率を高めるため、高反射性白色塗料等を用いて表面加工したものを利用するとよい。
(LED board 2)
Further, the LED substrate 2 is made of, for example, a metal substrate based on aluminum or copper, a ceramic substrate, or the like for the purpose of suppressing a decrease in light emission efficiency due to a temperature rise of the LED. If the LED temperature rise is not so large, the LED substrate 2 may be configured using a material such as a glass epoxy substrate or a glass composite substrate in consideration of cost. In order to improve the light utilization efficiency in the light source unit 10, the surface of these substrates may be a surface processed with a highly reflective white paint or the like.

(反射性固定部材3)
反射性固定部材3は、LED基板2を固定し、さらにレンズアレイ4や透光性光拡散部材6の位置決めの役割も有する。反射性固定部材3は、その部材内側斜面に光が入射するため、少なくともその表面が高反射性を有するように構成する。例えば樹脂材料で構成しその表面に高反射性塗料を塗布したり、高反射性光学シートを装着するなどして構成する。あるいは金属体で構成し表面めっきあるいは金属薄膜を蒸着させてもよい。また高反射ポリカーボネートのような樹脂材料で一体成形し表面を磨いて用いるなどしてもよい。
(Reflective fixing member 3)
The reflective fixing member 3 fixes the LED substrate 2 and further has a role of positioning the lens array 4 and the translucent light diffusing member 6. The reflective fixing member 3 is configured such that at least the surface thereof has high reflectivity because light is incident on the inner slope of the member. For example, it is made of a resin material, and a highly reflective paint is applied to the surface or a highly reflective optical sheet is attached. Or you may comprise with a metal body and vapor-deposit surface plating or a metal thin film. Alternatively, it may be integrally molded with a resin material such as highly reflective polycarbonate and the surface polished.

(レンズアレイ4)
次にレンズアレイ4であるが、LED1の発光光に対して集光効果を与えるレンズ機能部5を個々のLED1に対向配置するようにし、かつ、その複数レンズ機能部5をアレイとして備えた一つのレンズアレイ4の部材として構成としている。レンズアレイ4はガラス材料でもアクリルなどの透明樹脂材料でもよい。上記レンズ機能部5は集光機能を有するものであれば狭配光化機能の役割をなすが、目的により、例えばレンズアレイ4自体の薄型化に重点を置く場合にはフレネルレンズ形状、あるいは成形性やコスト面に重点を置く場合には凸レンズ形状を選択して用意することができる。
(Lens array 4)
Next, in the lens array 4, a lens function unit 5 that gives a condensing effect to the light emitted from the LEDs 1 is arranged to face the individual LEDs 1, and the plurality of lens function units 5 are provided as an array. The lens array 4 is configured as a member. The lens array 4 may be a glass material or a transparent resin material such as acrylic. If the lens function unit 5 has a light condensing function, it functions as a narrow light distribution function. However, depending on the purpose, for example, when emphasizing the thinning of the lens array 4 itself, a Fresnel lens shape or molding When emphasizing the performance and cost, a convex lens shape can be selected and prepared.

本実施の形態1では、安価な光源ユニットあるいは照明装置を得ることを目的としていることもあり、レンズ用金型製造費が比較的安価であるレンズ機能部5を凸レンズとした場合を中心に説明する。また光源ユニット10の光特性面での主たる目的は、レンズ機能部5により集光を行い、レンズアレイ4の装着時にビーム角でおよそ40〜60度程度の緩やかな配光を実現することにある。したがってレンズ機能部5には極端に大きな集光効果を与えることはせず、光源ユニット10の薄型化も考慮するため、レンズ機能部5の厚みを薄く抑えて狭配光化を行おうとするものである。   In the first embodiment, the objective is to obtain an inexpensive light source unit or lighting device, and the description will focus on the case where the lens function part 5 whose lens mold manufacturing cost is relatively inexpensive is a convex lens. To do. The main purpose of the light characteristic of the light source unit 10 is to collect light by the lens function unit 5 and realize a gentle light distribution with a beam angle of about 40 to 60 degrees when the lens array 4 is mounted. . Therefore, the lens function unit 5 is not given an extremely large light condensing effect and the light source unit 10 is also considered to be thin, so that the lens function unit 5 is made thin and the light distribution is narrowed. It is.

(レンズ機能部5の凸部4b)
次に本レンズアレイ4の配置の向きについて説明する。レンズ機能部5を湾曲凸形状にする際、レンズアレイ4を発光面側(透光性光拡散部材6側)に凸面を向け配置する場合と、装置内側(LED発光部側)に向け配置する場合が考えられる。前者の配置では後者の配置に比較して相対的にレンズ凸部4bによる光の陰影が外部から光むらとなって観察されやすい。このため、本実施の形態1では後者のレンズ配置とした。また、構成上、装置発光面側(透光性光拡散部材6側)を平坦面にできるため、装置発光面(透光性光拡散部材6の光の出射面)を外側から観察した場合に、レンズによる凹凸が目立ちにくく、意匠性に優れた構成であるといえる。また、表面が平坦であるため照明装置100の外部からの粉塵がたまりにくく、さらに照明装置100の清掃を行う場合には表面が平坦であるため清掃性がよいといった利点も有する。
(Convex part 4b of lens function part 5)
Next, the orientation of the lens array 4 will be described. When the lens function unit 5 is formed in a curved convex shape, the lens array 4 is arranged with the convex surface facing the light emitting surface (translucent light diffusing member 6 side) and the device inside (LED light emitting unit side). There are cases. In the former arrangement, the shadow of the light by the lens convex portion 4b is relatively uneven as compared with the latter arrangement, and the light is unevenly observed from the outside. For this reason, in the first embodiment, the latter lens arrangement is adopted. Moreover, since the device light emitting surface side (translucent light diffusing member 6 side) can be a flat surface, the device light emitting surface (light emitting surface of the light transmissive light diffusing member 6) is observed from the outside. Therefore, it can be said that the unevenness due to the lens is not conspicuous and is excellent in design. In addition, since the surface is flat, dust from the outside of the lighting device 100 is hard to collect, and when the lighting device 100 is cleaned, the surface is flat and thus has an advantage of good cleanability.

すなわちレンズ凸面を装置内側(LED基板2側)に配置することで、意匠性、保守性が高く集光効果を有する照明装置とすることができる。さらに後述するように平坦面を利用し、必要に応じ光制御部材(実施の形態3で述べる色変換部材)を装着しやすいといった利点も得られる。このように、例えば図3に示すように、レンズアレイ4のレンズ機能部5は、板状体であるレンズアレイ4のLED基板の実装面2aに対向する側の対向面4aから山状に山頂4cに向かって盛り上がり、対応するLEDの発光面1aに対向する。   That is, by disposing the lens convex surface on the inner side of the device (on the LED substrate 2 side), it is possible to provide an illumination device that has high designability and maintainability and has a light collecting effect. Further, as will be described later, there is an advantage that a flat surface is used and a light control member (color conversion member described in the third embodiment) can be easily attached as necessary. Thus, for example, as shown in FIG. 3, the lens function unit 5 of the lens array 4 has a mountain peak from the facing surface 4a on the side facing the mounting surface 2a of the LED substrate of the lens array 4 which is a plate-like body. It rises toward 4c and faces the light emitting surface 1a of the corresponding LED.

(LEDの配光特性)
この際、適用するLEDをそれ自体に集光効果を持つようなLED(例えば砲弾型)を用いると、レンズアレイ4による更なる集光効果が加わり、かなりの狭配光装置となる。さらに集光作用により各LED光軸方向の放射量が極めて高くなり、深いグレアや輝度むら(照度むら)を生み出す傾向にある。さらに集光効果を生み出すためのレンズモールド厚みが大きくなり(光源としては背の高いものになってしまい、光源ユニット10自体が厚いものになる欠点がある。したがって、本光源ユニット10のように、薄型でかつ柔らかい集光効果を目的とする光源ユニットでは発光面が略平坦状で、拡散配光特性を有するLEDが望ましい。
(Light distribution characteristics of LED)
At this time, if an LED (for example, a bullet type) having a light condensing effect is used as the LED to be applied, a further light condensing effect by the lens array 4 is added, resulting in a considerably narrow light distribution device. Furthermore, the amount of radiation in the direction of each LED optical axis becomes extremely high due to the light condensing action, and tends to produce deep glare and uneven brightness (illuminance unevenness). Further, the thickness of the lens mold for producing the light condensing effect is increased (the light source is tall and the light source unit 10 itself is thick. Therefore, like the light source unit 10, In a light source unit aiming at a thin and soft light condensing effect, an LED having a light emitting surface substantially flat and having a diffused light distribution characteristic is desirable.

(透光性光拡散部材6)
次に透光性光拡散部材6の機能を説明する。本実施の形態1のようにLED基板2上に本レンズアレイ4を配置した構成では、レンズが無い場合に対し、狭配光化を実現することができる。しかし、得られるビーム角がかなり目標値より小さくなる場合や、また配光面では後述するように広角方向にノイズ成分を生じる場合が多い。そのため光源ユニット10では、それらの対策としてレンズアレイ4の発光面側の上部にさらに拡散性を有する透光性光拡散部材6を配置する構成としている。透光性光拡散部材6は例えばプラスチック樹脂(アクリル、ポリカーボネート、PETなど)の表面をシボやサンドブラストの加工を行ったもの、あるいは樹脂内に拡散性フィラーを混合させたような材料で構成する。
(Translucent light diffusing member 6)
Next, the function of the translucent light diffusing member 6 will be described. In the configuration in which the present lens array 4 is arranged on the LED substrate 2 as in the first embodiment, a narrow light distribution can be realized as compared with the case where there is no lens. However, in many cases, the obtained beam angle is considerably smaller than the target value, and noise components are generated in the wide-angle direction on the light distribution surface as described later. For this reason, the light source unit 10 has a configuration in which a translucent light diffusing member 6 having further diffusibility is disposed on the light emitting surface side of the lens array 4 as a countermeasure. The translucent light diffusing member 6 is made of, for example, a plastic resin (acrylic, polycarbonate, PET, etc.) whose surface has been subjected to embossing or sandblasting, or a material in which a diffusible filler is mixed in the resin.

透光性光拡散部材6は広配光化の役割と、各LEDの光軸方向の光度を抑制し、装置発光面(透光性光拡散部材6の表面)の輝度むら抑制、あるいはグレア低減といった役割を担う。
透光性光拡散部材6は、全光線透過率とヘーズ値(曇り値)が高い材料が望ましい。実際に本装置の試作品では透明性や耐熱性、耐候性を考慮して表面シボ加工を施したアクリル樹脂を用いた。
The translucent light diffusing member 6 has a role of wide light distribution and suppresses the luminous intensity in the optical axis direction of each LED, thereby suppressing unevenness in luminance of the device light emitting surface (surface of the translucent light diffusing member 6) or reducing glare. To play a role.
The translucent light diffusing member 6 is preferably made of a material having a high total light transmittance and a high haze value (cloudiness value). In fact, the prototype of this equipment used acrylic resin that had been subjected to surface embossing in consideration of transparency, heat resistance, and weather resistance.

図4は、透光性光拡散部材6の断面形状を示す。光源ユニット10の透光性光拡散部材6は、上記の輝度むら抑制、グレア低減という目的では、例えば図4に示したように透光性光拡散部材6の中央部を湾曲状に膨らむ形状としてもよい。装置中心部での透光性光拡散部材6とレンズアレイ4からの距離を離すことで、装置外部からみた各々のLED光源と陰影(輝度むら)を抑制することができ、意匠性を高めつつグレア低減(眩しさ抑制)も行うことができる。実際、本光源ユニット10の試作では湾曲した効果も持たせており、約φ85mmのユニット発光面に図4の透光性光拡散部材6の中央部深さhを、
h≒5mm
とした表面シボ加工を施したアクリル部材を用い、輝度むらが大きく低減することを確認した。このように、透光性光拡散部材6は、LED基板2の実装面2aの法線2L(図4に示した)の方向であって、LED基板2からレンズアレイ4に向かう法線2L方向に向かって凸に湾曲する湾曲形状に形成されている。
FIG. 4 shows a cross-sectional shape of the translucent light diffusing member 6. The light transmissive light diffusing member 6 of the light source unit 10 has a shape in which the central portion of the light transmissive light diffusing member 6 swells in a curved shape, for example, as shown in FIG. 4 for the purpose of suppressing the luminance unevenness and reducing the glare. Also good. By separating the distance between the translucent light diffusing member 6 and the lens array 4 at the center of the apparatus, it is possible to suppress each LED light source and shadow (brightness unevenness) as seen from the outside of the apparatus, while improving the design. Glare reduction (dazzling suppression) can also be performed. Actually, the prototype of the light source unit 10 has a curved effect, and the depth h of the central portion of the translucent light diffusing member 6 in FIG.
h ≒ 5mm
It was confirmed that the luminance unevenness was greatly reduced by using the surface-treated acrylic member. Thus, the translucent light diffusing member 6 is in the direction of the normal 2L (shown in FIG. 4) of the mounting surface 2a of the LED substrate 2 and in the normal 2L direction from the LED substrate 2 toward the lens array 4. It is formed in a curved shape that curves convexly toward the surface.

(レンズアレイ4の着脱)
また、この透光性光拡散部材6を光源ユニット10に常備するような構成としておき、レンズアレイ4を着脱可能とする構成とする。この構成によって、後述するように、レンズアレイ4の非装着時には拡散性が高くビーム角が広い広配光照明を実現できる。一方、レンズアレイ4の装着時には、やや配光を狭めたビーム角が約40〜60度程度の狭配光照明を実現することができる。したがって照明用途に応じてレンズアレイ4の着脱のみにより配光角を切り換え照明することができ、光源ユニット10の用途範囲が一段と拡大する。
(Removal of lens array 4)
The translucent light diffusing member 6 is provided in the light source unit 10 so that the lens array 4 can be attached and detached. With this configuration, as will be described later, wide light distribution illumination with a high diffusibility and a wide beam angle can be realized when the lens array 4 is not attached. On the other hand, when the lens array 4 is mounted, it is possible to realize narrow light distribution illumination with a beam angle slightly narrowed in the light distribution of about 40 to 60 degrees. Therefore, the illumination can be switched by changing the light distribution angle only by attaching and detaching the lens array 4 according to the illumination application, and the application range of the light source unit 10 is further expanded.

図5、図6は、図1の光源ユニット10を用いた照明装置100の、各部材を組合せた際の断面図を示す。
図5、図6は、それぞれレンズアレイ4を装着した場合、非装着の場合を示している。レンズアレイ4は、反射性固定部材3に設けられたレンズアレイ設置段(図示していない)の位置に設置される。図1で述べたように、照明装置100は、光源ユニット10の発光面(透光性光拡散部材6)を囲むように、内側が拡散あるいは鏡面状の、高反射性の外側反射筐体8を備え持つ。
5 and 6 are cross-sectional views of the lighting device 100 using the light source unit 10 of FIG. 1 when the members are combined.
5 and 6 show cases where the lens array 4 is mounted and not mounted, respectively. The lens array 4 is installed at a position of a lens array installation stage (not shown) provided on the reflective fixing member 3. As described with reference to FIG. 1, the lighting device 100 has a highly reflective outer reflective housing 8 that is diffused or mirror-like inside so as to surround the light emitting surface (translucent light diffusing member 6) of the light source unit 10. Have.

照明装置100は、例えばダウンライトとして、外側反射筐体8の発光面側の縁が天井面位置になるように天井開口部に組み込まれて用いられる。照明装置100の配光特性は、光源ユニット10の構成による配光が支配的となって現れるが、外側反射筐体8は広角側に出た光りを効率的に照明に用いるように、また、遠めから照明装置100を見込んだ際に直接発光面を目立たなくするような役割も持ち合わせる。本実施の形態1では、上記理由で光源ユニット10を薄型化できるため、照明装置100を天井面へ埋め込む際、天井裏側へ突出する領域が低く、したがって天井裏の高さ方向のスペースが狭い場合にも十分装着可能な装置を得ることができる。またその他、光源ユニット10を用いた照明装置自体を薄型にできるため、例えば天井面直下付け装置として用いた場合でも、薄くできるので意匠性がよく、また、照明空間の演出効果の幅を高めることができる。   The illuminating device 100 is used as a downlight, for example, by being incorporated in a ceiling opening so that an edge on the light emitting surface side of the outer reflective housing 8 is a ceiling surface position. The light distribution characteristics of the lighting device 100 appear dominantly due to the light distribution by the configuration of the light source unit 10, but the outer reflective housing 8 is configured to efficiently use light emitted on the wide-angle side for illumination, It also has a role of making the light emitting surface inconspicuous directly when the illumination device 100 is viewed from a distance. In Embodiment 1, since the light source unit 10 can be thinned for the above reason, when the lighting device 100 is embedded in the ceiling surface, the region protruding to the ceiling back side is low, and therefore the space in the height direction of the ceiling back is narrow. In addition, it is possible to obtain a device that can be mounted sufficiently. In addition, since the lighting device itself using the light source unit 10 can be made thin, for example, even when used as a device directly attached to the ceiling surface, it can be made thin, so that the design is good, and the width of the effect effect of the lighting space is increased. Can do.

図7〜図15を参照して、光源ユニット10を対象とするシミュレーション結果を説明する。以下では光源ユニット10の構成による配光制御効果を確認するため、光源ユニット10をモデル化し、照明解析シミュレーションを実施した結果を説明する。
図7、図8はCADで作成した装置外観モデルを示した。
図7の(a)は、モデルの斜視図(レンズアレイ4、透光性光拡散部材6なし)を示す。
図7の(b)は、正面図(レンズアレイ4、透光性光拡散部材6なし)を示す。
図8の(a)は、モデル斜視図(レンズアレイあり)を示す。
図8の(b)は、LED1とレンズ機能部5との配置関係を示す図である。
A simulation result for the light source unit 10 will be described with reference to FIGS. Below, in order to confirm the light distribution control effect by the structure of the light source unit 10, the light source unit 10 is modeled and the result of having implemented the illumination analysis simulation is demonstrated.
7 and 8 show the appearance model of the apparatus created by CAD.
FIG. 7A shows a perspective view of the model (without the lens array 4 and the translucent light diffusing member 6).
FIG. 7B shows a front view (without the lens array 4 and the translucent light diffusing member 6).
FIG. 8A shows a model perspective view (with a lens array).
FIG. 8B is a diagram illustrating an arrangement relationship between the LED 1 and the lens function unit 5.

図6(a)に示すように、このモデルでは、LED1を12個、LED基板2の上に配置し、さらにその周囲を反射性固定部材3を配置したものである。図7、図8のLED部品単体は、図9(a)で示す外観のものを用いた。図7の(a)は、LED1の外観である。LED1自体特にレンズ機能を有するものではなく、LED封止樹脂部分が略平坦のものであり、発光面1aは、拡散性配光特性の発光光を出射する略平坦で、かつ、LED基板2のLED実装面2aに略平行である。LED1aのLED配光特性は、図9(b)に示したように、ほぼ完全拡散発光のものである(図9(a)には、LED上部にシミュレータ上の発光領域を示す線1zを示す)。   As shown in FIG. 6A, in this model, twelve LEDs 1 are disposed on the LED substrate 2, and the reflective fixing member 3 is disposed around the LED. The single LED component shown in FIGS. 7 and 8 had the appearance shown in FIG. FIG. 7A shows the appearance of the LED 1. The LED 1 itself does not have a lens function in particular, the LED sealing resin portion is substantially flat, the light emitting surface 1a is substantially flat for emitting emitted light having a diffusive light distribution characteristic, and the LED substrate 2 It is substantially parallel to the LED mounting surface 2a. As shown in FIG. 9B, the LED light distribution characteristic of the LED 1a is that of almost completely diffused light emission (FIG. 9A shows a line 1z indicating the light emitting area on the simulator above the LED. ).

(LED1)
ここでLED1は、図9の(a)、(b)に示したように、日亜化学工業製NS6W183の外寸仕様(5×5×1.35mm)とし、ほぼ、その配光特性に同じ拡散配光特を与えた。
(LED1)
Here, as shown in FIGS. 9 (a) and 9 (b), the LED 1 has NS6W183 made by Nichia Corporation (5 × 5 × 1.35 mm) and has almost the same light distribution characteristics. A diffuse light distribution characteristic was given.

(LED基板2)
またLED基板2は、およそ反射率85%の拡散性処理を施したもの、さらに反射性固定部材3は反射率約96%で内側側面が緩やかに湾曲した拡散性材料として与えた。反射性固定部材3の内径(LED基板露出部直径)は、約55mmとし、また外径(装置表面開口直径)は約82mmとした。LED基板2表面からレンズ機能部5の頂点までの距離は約10mmとしている。
(LED board 2)
The LED substrate 2 was subjected to a diffusive treatment with a reflectivity of approximately 85%, and the reflective fixing member 3 was provided as a diffusible material having a reflectivity of approximately 96% and a gently curved inner side surface. The inner diameter (LED substrate exposed portion diameter) of the reflective fixing member 3 was about 55 mm, and the outer diameter (device surface opening diameter) was about 82 mm. The distance from the surface of the LED substrate 2 to the apex of the lens function unit 5 is about 10 mm.

(レンズアレイ4)
レンズアレイ4は、アクリル材料とし、凸面を各LED1の発光面側に対向させるように配置した。レンズアレイ4のレンズ機能部5の直径は、LED発光部直径(図9(a)の表面で約4.5mm)よりも大きく、かつ、後述する図17の(a)に示す「LEDを最大数高密度実装」する際にも隣り合うレンズ凸部4bで重なりが生じないように、φ8mmとした。
図3のように、それぞれのレンズ機能部5の凸部4bは、対向面4aから盛り上がりはじめる根元部分4dにおける対向面4aに平行な面での断面が、略円形の円形断面をなす(図1(c)に円形断面4eに相当する部分を示した)。図2(a),図3のように、複数のLEDの各発光面1aは、実装面2aの法線2L(図3に示した)の方向からレンズアレイ4とLED基板2とを重ねて見ると(図2(a))、対応するレンズ機能部5の根元部分4dの円形断面4eの内部に含まれる。
図7、図8に示したLEDは、図9(b)のように、LED自体が拡散配光性を有す(レンズ機能を有する砲弾型形状でもよいが本装置では表面輝度むらが出やすい)。このため、レンズアレイ4のレンズ機能部5は、LED発光部直径よりやや大きめの直径とすることで、レンズ機能部5の配置密度をある程度高めつつ、LED発光光に対するレンズ効果を十分持たせることができる。
(Lens array 4)
The lens array 4 is made of an acrylic material, and is arranged so that the convex surface faces the light emitting surface side of each LED 1. The diameter of the lens function part 5 of the lens array 4 is larger than the diameter of the LED light emitting part (about 4.5 mm on the surface of FIG. 9A), and the “LED maximum” shown in FIG. In order to prevent the adjacent lens convex portions 4b from overlapping even when “several high-density mounting” is performed, the diameter is set to 8 mm.
As shown in FIG. 3, the convex portion 4b of each lens function unit 5 has a substantially circular circular cross section in a plane parallel to the opposing surface 4a in the root portion 4d starting to rise from the opposing surface 4a (FIG. 1). (C) shows a portion corresponding to the circular cross section 4e). As shown in FIGS. 2 (a) and 3, each light emitting surface 1a of the plurality of LEDs is formed by overlapping the lens array 4 and the LED substrate 2 from the direction of the normal 2L (shown in FIG. 3) of the mounting surface 2a. When viewed (FIG. 2A), it is included in the circular cross section 4e of the root portion 4d of the corresponding lens function section 5.
The LED shown in FIGS. 7 and 8 has a diffused light distribution property as shown in FIG. 9B (cannonball shape having a lens function may be used, but surface brightness unevenness is likely to occur in this apparatus. ). For this reason, the lens function unit 5 of the lens array 4 has a slightly larger diameter than the LED light-emitting unit diameter, thereby increasing the arrangement density of the lens function units 5 to some extent and sufficiently providing a lens effect on the LED light-emitting light. Can do.

(透光性光拡散部材6)
また、透光性光拡散部材6として、およそ、きもと社製拡散部材ライトアップLSE100の有する散乱特性を与えた(全光線、ヘーズはそれぞれ弊社内測定で両者約90%以上の特性)。
(Translucent light diffusing member 6)
Further, as the translucent light diffusing member 6, the scattering characteristics of the diffusing member light-up LSE100 manufactured by Kimoto Co., Ltd. were given (total light and haze are characteristics of about 90% or more in each of our measurements).

ここで、各LED1に対向するように湾曲凸形状のレンズ機能部5を持たせたレンズアレイ4を、反射性固定部材3の深さ内に配置し、レンズ機能部5の直径を固定(8mm)しレンズ後方焦点距離をパラメータとして基礎試算を行った。ここでレンズアレイ4の平面部分の厚みは1mmとした。結果的に装置薄型化と配光の広がりを意識し基礎計算を行い、一例ではあるが薄型化の面から、
焦点距離F’=10mm
とし、目的の配光領域となるようにLED表面とレンズ凸面との間隔dを調整した。
結果的に目的の配光領域を実現する条件として、
d≧F’
ではなく、
d<F’
の条件で配光特性が良好となることがわかった。
例えば、図12はd=3mmの条件とし、d<F’を採用しており、構成としては以下の様である。
レンズアレイ4のそれぞれのレンズ機能部5は、LED基板2側の対向面4aの法線4Lの方向に焦点を有する。LED基板2に実装された各LED1は、対応するレンズ機能部5の凸部4bの山頂4cと、発光面1aとの対向面4aの法線4L方向の距離dが、対応するレンズ機能部5のLED基板2側の焦点の焦点距離F’よりも短くした。
Here, a lens array 4 having a curved convex lens function portion 5 so as to face each LED 1 is disposed within the depth of the reflective fixing member 3, and the diameter of the lens function portion 5 is fixed (8 mm). ) The basic trial calculation was performed using the rear focal length of the lens as a parameter. Here, the thickness of the planar portion of the lens array 4 was 1 mm. As a result, we made basic calculations with consideration of the thinning of the device and the spread of light distribution.
Focal length F '= 10mm
Then, the distance d between the LED surface and the convex surface of the lens was adjusted so as to be a target light distribution region.
As a result, as a condition to achieve the desired light distribution area,
d ≧ F ′
not,
d <F '
It was found that the light distribution characteristics were good under the conditions.
For example, FIG. 12 assumes that d = 3 mm, d <F ′ is adopted, and the configuration is as follows.
Each lens function unit 5 of the lens array 4 has a focal point in the direction of the normal 4L of the facing surface 4a on the LED substrate 2 side. Each LED 1 mounted on the LED substrate 2 has a distance d in the direction of the normal 4L between the peak 4c of the convex portion 4b of the corresponding lens function unit 5 and the surface 4a facing the light emitting surface 1a. The focal length F ′ of the focal point on the LED substrate 2 side is shorter.

図10〜図12は、そのような設定(d=3mm)の光源ユニット10内の光制御部材(レンズアレイ4、透光性拡散部材6)の有無による配光特性変化の図を示したものである。なお、反射性固定部材3は装着している。図10の(a)は、「LED基板2+反射性固定部材3」(タイプA)を示す。図10の(b)は、「LED基板2+レンズアレイ4+反射性固定部材3」(タイプB)の場合を示す。図11の(a)は、「LED基板2+レンズアレイ4+透光性光拡散部材6+反射性固定部材3」(タイプC)の場合を示す。図11の(b)は、「LED基板2+透光性光拡散部材6+反射性固定部材3」(タイプD)の場合を示す。
それぞれの光学部材の構成の段階での試算を行い、上記A〜Dの4つタイプの装置構成による配光制御効果を確認した。
図12は、上記A〜Dの4タイプの確認結果を示す。
図12の横軸は光源ユニット10の中心軸を基準とし、ある角度方向の相対光度を示したものである。縦軸は相対光度である。
10 to 12 are diagrams showing changes in light distribution characteristics depending on the presence / absence of a light control member (lens array 4, translucent diffusion member 6) in the light source unit 10 having such a setting (d = 3 mm). It is. The reflective fixing member 3 is attached. FIG. 10A shows “LED substrate 2 + reflective fixing member 3” (type A). FIG. 10B shows the case of “LED substrate 2 + lens array 4 + reflective fixing member 3” (type B). FIG. 11A shows the case of “LED substrate 2 + lens array 4 + translucent light diffusing member 6 + reflecting fixing member 3” (type C). FIG. 11B shows a case of “LED substrate 2 + translucent light diffusing member 6 + reflective fixing member 3” (type D).
A trial calculation was performed at the stage of the configuration of each optical member, and the light distribution control effect by the four types of apparatus configurations A to D was confirmed.
FIG. 12 shows the four types of confirmation results A to D described above.
The horizontal axis in FIG. 12 indicates the relative luminous intensity in a certain angular direction with the central axis of the light source unit 10 as a reference. The vertical axis is relative luminous intensity.

その結果、“LED基板2のみ”(タイプA)はほぼ拡散状に発光しており、その上にレンズアレイ4を配置した“LED+レンズ”(タイプB)の場合には、その集光効果により±20度の間で発光成分が鋭くなっていることがわかる。この時点でグラフからは両角30〜60付近の広角方向で小さく飛び出る光ノイズが発生している。さらにその上に表面拡散板を配置した”LED+レンズ+拡散板”(タイプC)の構成では光ノイズが大幅低減し、中央方向の光度を抑えビーム角で約55degとなり本装置の狙いとする配光特性が得られた。   As a result, “LED substrate 2 only” (type A) emits light almost in a diffuse manner, and in the case of “LED + lens” (type B) in which the lens array 4 is disposed on the LED array 2 (type B), the light collecting effect It can be seen that the emission component is sharp between ± 20 degrees. At this time, light noise that pops out small in the wide-angle direction near both corners 30 to 60 is generated from the graph. Furthermore, in the configuration of “LED + lens + diffusion plate” (type C) on which a surface diffusion plate is arranged, optical noise is greatly reduced, the luminous intensity in the central direction is suppressed, and the beam angle is about 55 deg. Optical properties were obtained.

したがって光源ユニット10の構成のように一度レンズアレイ4で集光化し、さらに透光性光拡散部材6を設ける構成では、光ノイズが少ないやや狭まった配光特性を有する光源ユニット10や、それを用いた照明装置を得ることができる。なお、図12で、“LED基板2のみ”の場合の光束に対して、“LED+レンズ”(タイプB)の構成、“LED+レンズ+拡散板”(タイプC)の構成での光束比はそれぞれ96%、81%であり、光利用効率面でも部材装着をした場合に良好な状態であることがわかった。   Therefore, in the configuration in which the lens array 4 is once condensed and the light transmissive light diffusing member 6 is provided as in the configuration of the light source unit 10, the light source unit 10 having a light distribution characteristic with little light noise and slightly narrowed, The used illumination device can be obtained. In FIG. 12, the luminous flux ratio in the configuration of “LED + lens” (type B) and the configuration of “LED + lens + diffuser plate” (type C) with respect to the luminous flux in the case of “LED substrate 2 only”, respectively. It was found to be 96% and 81%, which is a good state when a member is mounted in terms of light utilization efficiency.

(タイプD)
また、レンズアレイ4を配置せずに、LED基板2上に透光性光拡散部材6を配置した「LED+拡散板」(タイプC)の構成での結果は、光ノイズが無い状態でとくに集光効果を持たない拡散性の強い照明光となっている。したがって、LED基板2、レンズアレイ4、透光性光拡散部材6からなる構成(タイプC)の光源ユニット10において、レンズアレイ4を用途に応じ着脱可能とすることにより、広配光の照明と、やや狭配光の照明とを切り替えて実現することが可能である。すなわち、光源ユニット10を組み立てと分解との交互の繰り返しが可能に構成する。そして、レンズアレイ4は、組み立てと分解とに応じて、取付・取り外しを可能にする。よって、多用途向けとして本光源ユニット10を用いることができる。また、この構成での“LEDのみ”の場合に比較した光束比は約86%であり、光利用効率面ではやはり良好な状態で用いることができる。
(Type D)
In addition, the result of the configuration of “LED + diffusion plate” (type C) in which the translucent light diffusing member 6 is arranged on the LED substrate 2 without arranging the lens array 4 is particularly concentrated in the absence of optical noise. The illumination light is highly diffusive and has no light effect. Therefore, in the light source unit 10 having the configuration (type C) composed of the LED substrate 2, the lens array 4, and the translucent light diffusing member 6, the lens array 4 can be attached and detached depending on the application, thereby providing wide light distribution illumination. It can be realized by switching the illumination with a slightly narrow light distribution. That is, the light source unit 10 is configured to be capable of alternately repeating assembly and disassembly. The lens array 4 can be attached and detached according to assembly and disassembly. Therefore, this light source unit 10 can be used for multipurpose use. Further, the luminous flux ratio compared with the case of “LED only” in this configuration is about 86%, and it can be used in a good state in terms of light utilization efficiency.

レンズ機能部5の形状条件による配光制御効果、及び、レンズアレイ配置位置が配光に与える影響についても試算を行った。
図13、図14は、レンズ機能部5の形状に係わる後方焦点距離(図3参照)を変えた場合の配光試算を示す図である。ここではレンズ機能部5の焦点距離を3水準設定し、レンズアレイ4の配置位置を変えずに試算を実施した。試算ではレンズ部直径を8mm固定として、各レンズ形状(曲率)に反映させるように焦点距離をF’=20mm、10mm、7mmとしている。
図13の(a)は、焦点距離F’=20mm(タイプE)を示す。
図13の(b)は、焦点距離F’=10mm(タイプF)を示す。
図13の(c)は、焦点距離F’=7mm(タイプG)を示す。
The light distribution control effect by the shape condition of the lens function unit 5 and the influence of the lens array arrangement position on the light distribution were also estimated.
FIGS. 13 and 14 are diagrams showing light distribution trial calculation when the rear focal length (see FIG. 3) related to the shape of the lens function unit 5 is changed. Here, the focal length of the lens function unit 5 was set at three levels, and the trial calculation was performed without changing the arrangement position of the lens array 4. In the trial calculation, the lens portion diameter is fixed to 8 mm, and the focal length is set to F ′ = 20 mm, 10 mm, and 7 mm so as to be reflected in each lens shape (curvature).
FIG. 13A shows a focal length F ′ = 20 mm (type E).
FIG. 13B shows a focal length F ′ = 10 mm (type F).
FIG. 13C shows a focal length F ′ = 7 mm (type G).

図14は、焦点距離を変えたときのシミュレーション結果を示す。
その結果、図14のように、焦点距離が長くても小さくても集光効果が得られにくく、焦点距離F’=10mm(タイプF)で中央部に光が照射させる傾向を確認した。表面拡散板を装着する場合には中央部の集光効果が高いほど、光ノイズを取り除きながら柔らかい狭配光化を実現できるため、焦点距離F’=10mm(タイプF)程度が良好であることがわかった。
FIG. 14 shows a simulation result when the focal length is changed.
As a result, as shown in FIG. 14, it was difficult to obtain a light collecting effect regardless of whether the focal length was long or small, and it was confirmed that the central portion is irradiated with light at a focal length F ′ = 10 mm (type F). When a surface diffusing plate is attached, the higher the light collection effect at the center, the softer the narrower light distribution can be achieved while removing the optical noise, so the focal length F ′ = 10 mm (type F) is better. I understood.

一方、そのような後方焦点距離F’=10mmの条件で、レンズアレイ4の位置による効果を把握するため、図15、図16のように、レンズアレイ4の位置を3水準設定し試算を行った。レンズ頂点とLED発光表面間距離をdとして、d=0.64mm、3mm、5.64mmとした。
図15の(a),(b)はそれぞれ、5.64mm(タイプH),d=0.64mm(タイプI)の場合を示した。
図16はシミュレーション結果を示す。その結果、焦点距離が短すぎると装置として狭配光が得られにくく(タイプI)、一方距離が長すぎると狭配光効果は有するものの、広角ノイズ成分と中心配光成分との間の山谷の差が大きくなり、その上に拡散板を配置したとしてもノイズ成分が目立ちやすい傾向となる(タイプH)。
On the other hand, in order to grasp the effect of the position of the lens array 4 under the condition of such a rear focal length F ′ = 10 mm, the position of the lens array 4 is set at three levels as shown in FIGS. It was. The distance between the lens apex and the LED light emitting surface is d, and d = 0.64 mm, 3 mm, and 5.64 mm.
FIGS. 15A and 15B show the cases of 5.64 mm (type H) and d = 0.64 mm (type I), respectively.
FIG. 16 shows the simulation results. As a result, if the focal length is too short, it is difficult to obtain a narrow light distribution as a device (Type I), while if the distance is too long, the narrow light distribution effect is obtained, but the valley between the wide-angle noise component and the medium worry light component. Even if a diffusion plate is disposed on the difference, the noise component tends to be noticeable (type H).

したがってビーム角40〜55度程度で、光ノイズの発生しにくい厚さ10mm程度の薄型の照明ユニット、あるいはそれを備えた装置を得るためには、本試算結果より一条件例として、レンズアレイ4のLEDに対向する湾曲凸レンズの後方焦点距離をおよそF’=10mmとし、レンズ頂点とLED発光表面間距離をdとして、本レンズアレイ4をおよそd=3mm(タイプJ)の位置に配置することがよいことがわかった。また、同じくレンズ直径をφ8mmとして他条件でも解析を進めた結果、上記からレンズ背面とLED表面との間の距離dに対して焦点距離をF’=9〜15mm程度、d≒2〜4mm程度にしても上述したような配光制御効果が得られることがわかった。   Therefore, in order to obtain a thin illumination unit having a beam angle of about 40 to 55 degrees and a thickness of about 10 mm, which is less likely to generate optical noise, or a device including the same, the lens array 4 is used as a condition example from the results of this trial calculation. The lens array 4 is arranged at a position of about d = 3 mm (type J), where the rear focal length of the curved convex lens facing the LED is about F ′ = 10 mm, and the distance between the lens apex and the LED light emitting surface is d. I found it good. Similarly, as a result of analysis under other conditions with the lens diameter of φ8 mm, the focal length is about F ′ = 9 to 15 mm and d≈2 to 4 mm with respect to the distance d between the lens back surface and the LED surface. However, it has been found that the light distribution control effect as described above can be obtained.

上記の試算結果をもって実際に試作評価を行ったところ、本試算結果とほぼ同様の傾向を持つ光特性を示し、実際の装置としても目的の機能を有することを確認できた。なおシミュレーションや試作ではLED実装数な装置サイズなども幾つか試行しており、ほぼ同様の特性を示した。   When the prototype evaluation was actually performed based on the above trial calculation results, it showed optical characteristics having almost the same tendency as the trial calculation results, and it was confirmed that the actual apparatus had the target function. In simulations and prototypes, several device sizes, such as the number of LEDs mounted, were tried, and showed almost the same characteristics.

実施の形態1の光源ユニット10によれば、LED個数調整による装置光束変更に容易に対応でき、レンズ凸部による光の陰影が生じにくく、レンズ表面に粉塵が溜まりにくい意匠性、保守性にも優れた狭配光化照明装置を得ることができる。さらに、個々のLEDを囲む反射体を必要とせず安価で、かつ、薄型の器具を提供できる。   According to the light source unit 10 of the first embodiment, it is possible to easily cope with a change in the luminous flux of the apparatus by adjusting the number of LEDs, and it is difficult to cause light shading due to the lens convex portion, and it is also easy to design and maintain the dust on the lens surface. An excellent narrow light distribution illumination device can be obtained. Furthermore, it is possible to provide an inexpensive and thin device without requiring a reflector surrounding each LED.

実施の形態2.
図17〜図19を参照して実施の形態2を説明する。実施の形態2は、実装するLEDの間引きに関する。光源ユニット10の構成では、最大実装可能LEDの各々の配置に合わせ、レンズ機能部5の個数や位置を定めたレンズアレイ4とするように構成した。ここで「最大実装可能LED」とは、光源ユニット10の設計上、例えば、最も明るいユニットとする場合の、LED基板2へのLED1の実装の個数である。このような構成により、LED1の実装数限界を想定した上での個数調整が可能になる。したがって、光源ユニット10を用いた照明装置を利用する照明空間に合わせ、照明装置の構成や周囲部品を変更することなく、LED実装数を変えることで、光束調整を簡単に行える特徴がある。また、この際レンズ機能部5は個々のLEDに対して作用するため、LEDの数が変更になっても、間引かれたLEDに対応するレンズ機能部5以外は依然として実装されているLEDに対応している。よって、個々のLED単位でみれば、いくつかのLEDを間引いたとしても、実装数に関係ない配光特性を与えることができる。
Embodiment 2. FIG.
The second embodiment will be described with reference to FIGS. The second embodiment relates to thinning of LEDs to be mounted. In the configuration of the light source unit 10, the lens array 4 is configured such that the number and position of the lens function units 5 are determined in accordance with the arrangement of the maximum mountable LEDs. Here, the “maximum mountable LED” is the number of LEDs 1 mounted on the LED substrate 2 when the light source unit 10 is designed to be the brightest unit, for example. With such a configuration, it is possible to adjust the number of LEDs 1 assuming the mounting number limit. Therefore, there is a feature that light flux adjustment can be easily performed by changing the number of LED mounting without changing the configuration of the lighting device and surrounding components in accordance with the lighting space using the lighting device using the light source unit 10. At this time, since the lens function unit 5 acts on each LED, even if the number of LEDs is changed, the lens function unit 5 other than the lens function unit 5 corresponding to the thinned LED is still mounted on the LED. It corresponds. Therefore, if it sees in the unit of each LED, even if it thins out some LED, the light distribution characteristic unrelated to the number of mounting can be given.

図17は、LEDの実装状態を示す図である。図17の(a)は、上記シミュレーションで用いたモデル同様に、反射性固定部材3の内径約55mm、また外径約82mmの条件で、上述したLED1を最大実装数19個のとした例である。図17の(b)、(c)は、LED数の調整を場合を示す。図17の(b)、(c)は、19個のLEDを、それぞれ4個、10個、間引いた状態を示す。装置配光や外観を考慮し、LEDを中央部のみに配置((c)の9個)し、あるいは中央よりも周辺に多く実装配置((b)の14個)するようなことが容易に実現できる。
ただし、実際にはLED数の調整を行った場合でも、LEDへ問題なく電力供給する必要がある。
図18、図19は、それに対応するための例を示す。
FIG. 17 is a diagram illustrating a mounted state of the LED. FIG. 17A shows an example in which the maximum number of mounted LEDs 1 is 19 under the conditions that the reflective fixing member 3 has an inner diameter of about 55 mm and an outer diameter of about 82 mm, as in the model used in the above simulation. is there. FIGS. 17B and 17C show cases where the number of LEDs is adjusted. FIGS. 17B and 17C show a state in which 19 LEDs are thinned out by 4, 10, respectively. Considering device light distribution and appearance, it is easy to arrange LEDs only in the center (9 in (c)), or mount them more in the periphery than the center (14 in (b)). realizable.
However, even when the number of LEDs is actually adjusted, it is necessary to supply power to the LEDs without any problem.
FIG. 18 and FIG. 19 show examples for dealing with this.

LED基板2は電源供給部(図示していない)を備えている。それぞれのLED1は、LED基板2上の電源供給線15(導電パタン)上に直並列実装される。しかし、例えば、図18のLED間引き実装状態(破線枠51で示した)にある場合にも、全LEDに電力供給できるようにする必要がある。
図19は、図18の破線枠51内における、LED基板2の配線上の対策例を示している。図18において、電源供給線15には、LEDが実装されるLED実装部52と、チップ抵抗17(抵抗器)が実装される抵抗実装部53とが形成されている。このようにすることで、LED実装用パッド16に並列に、チップ抵抗用パッド21を備えるように構成した。LED1を実装しない部分は、装置全LEDへの電気供給を絶たないようにLEDと同程度の負荷(LEDへの供給電流が変わらないもの)を実装する。このようにすることでLEDの数によらず安定した電気供給を行うことができ、所望のLED配置で必要な光束を得ることができる。よって通常、図17の(a)のような個数を標準としておき、ニーズにあわせて図17の(b)や(c)のように、LED配置(配光)や実装個数(光束)を簡単に調整することができる。
The LED board 2 includes a power supply unit (not shown). Each LED 1 is mounted in series and parallel on a power supply line 15 (conductive pattern) on the LED substrate 2. However, for example, it is necessary to be able to supply power to all LEDs even in the LED thinning-out mounted state (shown by the broken line frame 51) in FIG.
FIG. 19 shows a countermeasure example on the wiring of the LED board 2 in the broken line frame 51 of FIG. In FIG. 18, the power supply line 15 is formed with an LED mounting portion 52 on which an LED is mounted and a resistance mounting portion 53 on which a chip resistor 17 (resistor) is mounted. By doing in this way, it comprised so that the pad 21 for chip resistance might be provided in parallel with the pad 16 for LED mounting. In the portion where the LED 1 is not mounted, a load equivalent to that of the LED (a current supplied to the LED does not change) is mounted so that the power supply to all the LEDs of the apparatus is not interrupted. By doing in this way, stable electric supply can be performed regardless of the number of LEDs, and a necessary light beam can be obtained with a desired LED arrangement. Therefore, usually, the number as shown in Fig. 17 (a) is set as a standard, and the LED arrangement (light distribution) and the number of mounted components (light flux) can be simplified as shown in Figs. 17 (b) and (c). Can be adjusted.

実施の形態3.
図20〜図23を参照して実施の形態3を説明する。
図20は、色変換部材18が、LED基板2とレンズアレイ4との間に配置される場合を示す。
図21は、色変換部材18が、レンズアレイ4と透光性光拡散部材6との間に配置される場合を示す。
図22は、図21に対して、色変換部材18の全部の領域が色変換機能を有する色変換部19である場合を示す。
図23は、色変換部19による色変換(波長変換)の特性を示す図である。
実施の形態3は、光源ユニット10に、色変換部材(波長変換部材)を用いる場合を説明する。
Embodiment 3 FIG.
The third embodiment will be described with reference to FIGS.
FIG. 20 shows a case where the color conversion member 18 is disposed between the LED substrate 2 and the lens array 4.
FIG. 21 shows a case where the color conversion member 18 is disposed between the lens array 4 and the translucent light diffusing member 6.
FIG. 22 shows a case where the entire area of the color conversion member 18 is the color conversion unit 19 having a color conversion function, as compared with FIG.
FIG. 23 is a diagram illustrating characteristics of color conversion (wavelength conversion) by the color conversion unit 19.
In the third embodiment, a case where a color conversion member (wavelength conversion member) is used for the light source unit 10 will be described.

光源ユニット10は、これまで述べたとおりレンズアレイ4により配光調整を行うことが可能であるが、色変換部材18の装着により、相関色温度や色度を変えることも可能である。
図20〜図23には、色変換部材18を光源ユニット10内部に位置変えて配置した例を示した。
図20(a)〜(c)は、LED発光面側の近傍に色変換部材18を配置した例である。すなわち色変換部材18は、LED基板2とレンズアレイ4との間に配置した。色変換部材18のうち色変換(波長変換)の機能を有する領域(色変換部19)は、例えば無機蛍光体などの長寿命の色変換材料を用いた構成としている。そのような材料は、例えば図23に示したように、昼白色LED(5000K)の主に短波長側光を吸収し、長波長側へ波長変換する機能を有するため、結果照明色を白色光(4000K)に色変換するような効果を有する。
The light source unit 10 can adjust the light distribution by the lens array 4 as described above, but the correlated color temperature and chromaticity can be changed by mounting the color conversion member 18.
20 to 23 show examples in which the color conversion member 18 is arranged in a different position inside the light source unit 10.
20A to 20C are examples in which the color conversion member 18 is disposed in the vicinity of the LED light emitting surface side. That is, the color conversion member 18 is disposed between the LED substrate 2 and the lens array 4. A region (color conversion unit 19) having a function of color conversion (wavelength conversion) in the color conversion member 18 is configured using a long-life color conversion material such as an inorganic phosphor. For example, as shown in FIG. 23, such a material has a function of mainly absorbing the short wavelength side light of the daytime white LED (5000K) and converting the wavelength to the long wavelength side. It has an effect of color conversion to (4000K).

本材料は、例えば色変換部材18の主材を薄手のポリカーボシートやPET、アクリル樹脂などとし、蛍光体をバインドした透光性材料を色変換部として印刷、塗布、貼り付けるなどして構成する。あるいは上記主材に開口部を開けその部分を埋める(嵌め込む)ように配置させる。図21では、埋め込み加工の例で示している。   This material is constituted by, for example, using a thin polycarbonate sheet, PET, acrylic resin or the like as a main material of the color conversion member 18 and printing, applying, or pasting a translucent material bound with a phosphor as a color conversion portion. . Or it arrange | positions so that the opening part may be opened in the said main material and the part may be filled up (it fits). FIG. 21 shows an example of embedding processing.

図20の構成では、LED発光面にだけ色変換部材18が配置され効率的に色温度変換を行うことができ、通常そのような色変換部を通った光は拡散性の強い光となるため、LED自体が拡散配光であればその色変換光も同様に拡散光となる。そのため色変換部材18を可能な限り薄手なものとすれば、効率的な色変換機能を果たすことになる。結果その色変換光がレンズアレイ4をとおり配光調整されることになる。   In the configuration of FIG. 20, the color conversion member 18 is disposed only on the LED light emitting surface, and color temperature conversion can be performed efficiently. Usually, light passing through such a color conversion portion becomes highly diffusible light. If the LED itself is diffusely distributed, the color-converted light is similarly diffused. Therefore, if the color conversion member 18 is as thin as possible, an efficient color conversion function can be achieved. As a result, the color conversion light passes through the lens array 4 and the light distribution is adjusted.

上記のような構成の色変換部材18は、例えば図21のように、光がレンズアレイ4を透過した後となるレンズアレイ平坦部、あるいは図22のように透光性光拡散部材6に接するような位置に設置してもよい。この場合は色変換部材18が光を拡散させる性質があるため、透光性光拡散部材6を外して使用することも可能である。また、図22のように、全体に色変換機能を持つ色変換部材18としても色変換材料が無い場合と同様にやや狭配光化する集光効果を有し、光源ユニット10で目的とするレベルのビーム角絞りを保った色変換部材18として使用することができる。   For example, as shown in FIG. 21, the color conversion member 18 configured as described above is in contact with the flat portion of the lens array after light has passed through the lens array 4 or the translucent light diffusion member 6 as shown in FIG. You may install in such a position. In this case, since the color conversion member 18 has a property of diffusing light, the translucent light diffusion member 6 can be removed and used. Further, as shown in FIG. 22, the color conversion member 18 having a color conversion function as a whole has a light condensing effect that slightly narrows the light distribution as in the case where there is no color conversion material. It can be used as a color conversion member 18 that maintains a beam angle stop of a level.

以上のように光源ユニット10は、LED基板2とレンズアレイ4との間と、レンズアレイ4と透光性光拡散部材6との間とのいずれかに、レンズアレイ4に対向して配置され、入射した光の波長を変換して出射する波長変換機能部を有する波長変換部材を備えた。   As described above, the light source unit 10 is disposed between the LED substrate 2 and the lens array 4 and between the lens array 4 and the translucent light diffusing member 6 so as to face the lens array 4. A wavelength conversion member having a wavelength conversion function part that converts the wavelength of incident light and emits it is provided.

なお、光源ユニット10の透光性光拡散部材6の表面または表面近傍等に、以上説明した色変換を行う色変換部材18の他、プリズムシートやルーバなどの配光制御部材などの光学特性変換部材を設けることもでき、様々な照明シーンに対応させた照明演出効果を持たせることができる。   In addition to the color conversion member 18 that performs the color conversion described above on the surface of the light transmissive light diffusing member 6 of the light source unit 10 or the vicinity of the surface, the optical characteristic conversion of a light distribution control member such as a prism sheet or a louver. A member can also be provided, and an illumination effect effect corresponding to various illumination scenes can be provided.

実施の形態4.
図24〜図29を参照して実施の形態4を説明する。実施の形態4は、対応するLEDとレンズ機能部5どうしにおいて、LEDの光軸方向で、LEDの光軸(以下、LED光軸という)とレンズの光軸(以下、レンズ光軸という)とを、あえて、ずらす構成である。図24は、レンズ機能部5を半径方向にずらす場合を示している。
図25は、レンズ機能部5を左右方向にずらす場合を示している。
図26は、略同心円上の実装されたLEDに対して、レンズアレイ4を同心円の円周方向に回転させて固定する場合を示している。
図27は、LED(日亜化学工業製NS6W183)の当方にて測定した発光角度方向に対する色温度を示している。
Embodiment 4 FIG.
The fourth embodiment will be described with reference to FIGS. In the fourth embodiment, the LED optical axis (hereinafter referred to as the LED optical axis) and the lens optical axis (hereinafter referred to as the lens optical axis) in the direction of the optical axis of the LED between the corresponding LED and the lens function unit 5 are described. It is the structure which dares and shifts. FIG. 24 shows a case where the lens function unit 5 is shifted in the radial direction.
FIG. 25 shows a case where the lens function unit 5 is shifted in the left-right direction.
FIG. 26 shows a case where the lens array 4 is fixed by rotating the lens array 4 in the circumferential direction of the concentric circle with respect to the LEDs mounted substantially on the concentric circle.
FIG. 27 shows the color temperature with respect to the emission angle direction measured by us of LED (NS6W183 manufactured by Nichia Corporation).

本構成は、とくに図27のような構造の、例えば実施の形態1で示した製品型番(日亜化学工業製NS6W183)のLEDを用いる際に有効である。LEDの構成は様々なものがある。そして、LEDのパッケージ形状、LEDベアチップ配置、蛍光体適用方法(ベアチップ上にコーティング、封止樹脂混合などがあり後者では均一拡散する方法や沈降させるような方法がある)により、LEDの発光角度(LEDを見込む角度)により発光スペクトル、色度、色温度などの色合いが大きく異なる場合がある。   This configuration is particularly effective when an LED having a product model number (NS6W183 manufactured by Nichia Corporation) having the structure shown in FIG. There are various LED configurations. Then, the LED light emission angle (the LED bare chip arrangement, the phosphor application method (coating, sealing resin mixing, etc. on the bare chip, and the latter includes a method of uniformly diffusing and sinking)) The hue of the emission spectrum, chromaticity, color temperature, etc. may vary greatly depending on the angle at which the LED is viewed.

図27に示したLEDでは、LEDパッケージ筐体32に6つの青色LEDベアチップ30が集中実装され、さらにそれに励起発光する蛍光体(主発光色は黄色味)が封止樹脂中でやや沈降気味に混入された構造となっている。実際にその型番の昼白色LEDの発光角度に対する色温度を測定したところ、およそ光軸を0度として、−80〜+80度方向の色温度がおよそ昼白色領域にある。しかしながら、図27に示したように、中心軸方向(0度方向)では青色チップ直上のため青味が強い約5300Kと確認された。また、約70度方向では青色LEDチップに励起した黄色味の光成分が強く4800Kという数値であった。すなわち発光角度による色味に少なからず違いが確認された。   In the LED shown in FIG. 27, six blue LED bare chips 30 are intensively mounted on the LED package housing 32, and the phosphor that emits and emits light (the main emission color is yellowish) is slightly settled in the sealing resin. It has a mixed structure. When the color temperature with respect to the emission angle of the daytime white LED of the model number was actually measured, the color temperature in the −80 to +80 degree direction is approximately in the daylight white region with the optical axis at about 0 degree. However, as shown in FIG. 27, in the central axis direction (0 degree direction), it was confirmed to be about 5300 K having a strong bluish color because it is directly above the blue chip. In addition, in the direction of about 70 degrees, the yellow light component excited by the blue LED chip was strong and the value was 4800K. That is, a difference in the color depending on the emission angle was confirmed.

従って、そのようなLEDを光源ユニット10に適用した場合、レンズアレイ4のレンズ効果により集光させる際、LED光色や演色性などの種類によっては被照面の中心領域と周辺領域で色味が異なり色むらとして確認される場合がある。とくに光源ユニット10をダウンライトなどの照明装置として用いる場合には、例えば照明装置が白色系の壁面付近に設置された場合、照明光が壁面に投光された際に、この色むら(青っぽい光と黄色っぽい光との色コントラスト)が現れることがある、このような色むらは、設置空間の雰囲気にマッチしないなどの違和感を与える場合がある。   Therefore, when such an LED is applied to the light source unit 10, when the light is condensed by the lens effect of the lens array 4, depending on the type of LED light color, color rendering, etc., the color tone may vary between the central region and the peripheral region of the illuminated surface. It may be confirmed as uneven color. In particular, when the light source unit 10 is used as an illuminating device such as a downlight, for example, when the illuminating device is installed in the vicinity of a white wall surface, when the illuminating light is projected onto the wall surface, this color unevenness (bluish light) In some cases, such color unevenness may give a sense of incongruity such as not matching the atmosphere of the installation space.

そこで、そのような色むらを少なくする手段として、LED基板2上のLED1のうち、少なくとも外側周囲(外郭)に実装されたLED1のLED光軸1cと、相対するレンズアレイ4のレンズ機能部5の中心軸(レンズ光軸5c)とを、装置上面(図1のX方向)から見込んだ際に、LED発光領域がレンズ機能部5の領域からはみ出さない程度に意図的にずらすように構成する。このずらした軸間の距離はわずかLEDベアチップの寸法程度、あるいはそれよりやや大きい程度の距離であるが、青色成分の発光が強いLED光軸1c直上の光をわずかに軸周辺に屈折させることができる。そのため、少なくとも上記のように照明装置100の光が壁面に投光される場合にも、投光領域の中心領域と縁となる領域での光の混色度合いを高めることができる。このため、色温度の変化(色コントラスト)を小さくすることができる。   Therefore, as means for reducing such color unevenness, among the LEDs 1 on the LED substrate 2, at least the LED optical axis 1c of the LED 1 mounted on the outer periphery (outside) and the lens function unit 5 of the lens array 4 facing each other. The center axis of the lens (lens optical axis 5c) is intentionally shifted so that the LED light emitting area does not protrude from the area of the lens function unit 5 when viewed from the upper surface of the apparatus (X direction in FIG. 1). To do. The distance between the shifted axes is a distance that is slightly the size of the LED bare chip or slightly larger than that, but the light immediately above the LED optical axis 1c that emits a strong blue component may be slightly refracted around the axis. it can. Therefore, at least when the light of the illumination device 100 is projected onto the wall surface as described above, it is possible to increase the degree of color mixing in the region that is the edge of the center region of the projection region. For this reason, a change in color temperature (color contrast) can be reduced.

この際、全てのLEDを対象に、LED光軸1cと、レンズ機能部5のレンズ光軸5cとをずらすように構成してもよいが、基板中央側から発する光についてはレンズ効果による色むらがあったとしても、その外側(外郭)から発光する光と混光(混色)し、色むら自体が目立たなくなる傾向にある。すなわち、図24(b)の領域55の内部に実装されるようなLEDにおいては、色むらは目立にくい。したがって、少なくともLED基板の外側LEDのLED光軸1cと、そのLEDに対応するレンズ機能部5のレンズ光軸5cとをずらすことで、とくに目立って現れやすい壁面の色むらを少なくすることができる。   At this time, for all LEDs, the LED optical axis 1c and the lens optical axis 5c of the lens function unit 5 may be shifted from each other. However, the light emitted from the center side of the substrate is uneven in color due to the lens effect. Even if there is, there is a tendency that the color unevenness itself becomes inconspicuous because it mixes with the light emitted from the outside (outside) (color mixture). That is, in the LED that is mounted inside the region 55 in FIG. Therefore, by shifting at least the LED optical axis 1c of the outer LED of the LED substrate and the lens optical axis 5c of the lens function unit 5 corresponding to the LED, it is possible to reduce the color unevenness of the wall surface that is particularly conspicuous. .

上記のように図24〜図26にはその構成例を示しており、レンズ機能部5の配置位置を丸の点線で示している。図24は、LEDに対応して対向配置するレンズ機能部5のうち、外側に配置するLEDに対し、レンズ機能部5のレンズ光軸5cを放射状にずらした構成例である。
図25は、LED配列の列単位でレンズ機能部5のレンズ光軸5cを左右にずらした構成例である。これらのように、レンズ機能部5の配置位置を規則的にずらしてもよいが、一方で、個々のレンズ機能部5のレンズ光軸5cが、それぞれ対向(対応)するLED光軸1cに対し、ランダムに位置ずれするように構成してもよい。
As described above, FIGS. 24 to 26 show configuration examples, and the arrangement position of the lens function unit 5 is indicated by a round dotted line. FIG. 24 shows a configuration example in which the lens optical axis 5c of the lens function unit 5 is radially shifted with respect to the LEDs disposed on the outer side among the lens function units 5 disposed to face each other corresponding to the LED.
FIG. 25 is a configuration example in which the lens optical axis 5c of the lens function unit 5 is shifted left and right in units of columns of the LED array. As described above, the arrangement positions of the lens function units 5 may be regularly shifted. On the other hand, the lens optical axes 5c of the individual lens function units 5 are respectively opposed (corresponding) to the LED optical axes 1c facing each other. Alternatively, the position may be shifted randomly.

図24(b)、図25(b)に示すように、LED基板2は、実装される複数のLEDのうちのさらに複数のLEDが、周状につらなった周状配置1bで実装面2aに実装される。また、LED基板2は、周状配置1bの外側の領域の実装面2aにはLEDは実装されず、周状配置1bの内側領域の実装面2aには周状配置1bをなすLEDとは別の少なくとも一つのLEDが実装しても良い。そして、少なくとも周状配置1bをなす複数のLEDの各LEDは、実装面2aの法線2L方向からレンズアレイ4とLED基板2とを重ねて見ると、発光面1aが、対応するレンズ機能部5の根元部分4dの円形断面4e(図24、図25の複数の破線の丸)の内部において、円形断面4eの円周の近傍に偏って位置する。   As shown in FIGS. 24B and 25B, the LED substrate 2 has a mounting surface 2a in a circumferential arrangement 1b in which a plurality of LEDs among the plurality of mounted LEDs are arranged in a circumferential shape. To be implemented. In addition, the LED substrate 2 is not mounted on the mounting surface 2a in the outer region of the circumferential arrangement 1b, and is different from the LED having the circumferential arrangement 1b on the mounting surface 2a in the inner region of the circumferential arrangement 1b. At least one LED may be mounted. When each of the plurality of LEDs having at least the circumferential arrangement 1b is viewed from the direction of the normal 2L of the mounting surface 2a so that the lens array 4 and the LED substrate 2 are overlapped, the light emitting surface 1a has a corresponding lens function unit. 5 is located in the vicinity of the circumference of the circular cross-section 4e inside the circular cross-section 4e of the root portion 4d (a plurality of broken-line circles in FIGS. 24 and 25).

さらに、図26は、図17の(a)のLEDに対向配置するレンズ機能部5を有するレンズアレイ4を、レンズアレイ4の中心の周りに回転方向54へ若干回転させて反射性固定部材3に固定する構成である。このようにレンズアレイ4を回転させることでも、外側周辺(外郭)LEDと、それに対向するレンズ機能部5の光軸をずらすことができるため、目的とする被照面投影時の中心部とその周辺での色ずれの差を小さくすることができる。なお効果を試作により確認したところ、この際レンズ集光効果は若干弱くなる傾向にあるが、色ずれを縮小させる効果を持ちながら本装置の目的としているビーム角40〜60deg程度の配光を維持できることもわかった。すなわち、実装されるLED側からみると次のようである。図26に示すように、LED基板2は、実装される複数のLEDのうちの少なくともの複数のLEDが実装面2aにおいて略同心円上に実装されている。そして、実装面2aにおいて略同心円上に実装されたそれぞれのLEDは、実装面2aの法線方向からレンズアレイとLED基板2とを重ねて見ると(図26)、発光面1aが、対応するレンズ機能部5の根元部分4dの円形断面4eの内部において、同心円の一方の円周方向に偏って位置する。   Further, in FIG. 26, the lens array 4 having the lens function unit 5 disposed to face the LED of FIG. 17A is slightly rotated in the rotation direction 54 around the center of the lens array 4 to reflect the fixing member 3. It is the structure fixed to. By rotating the lens array 4 in this way, the optical axis of the outer peripheral (outer) LED and the lens function unit 5 opposed to the LED can be shifted, so that the central portion and its periphery at the time of projection of the target illuminated surface can be obtained. The difference in color misregistration can be reduced. When the effect was confirmed by trial manufacture, the lens condensing effect tends to be slightly weakened at this time, but the light distribution of the target beam angle of about 40 to 60 degrees is maintained while having the effect of reducing the color misregistration. I also found that I can do it. That is, it is as follows when it sees from the LED side mounted. As shown in FIG. 26, in the LED substrate 2, at least a plurality of LEDs among the plurality of LEDs to be mounted are mounted substantially concentrically on the mounting surface 2a. Each LED mounted substantially concentrically on the mounting surface 2a corresponds to the light emitting surface 1a when the lens array and the LED substrate 2 are viewed from the normal direction of the mounting surface 2a (FIG. 26). Inside the circular cross section 4e of the root portion 4d of the lens function unit 5, the lens function unit 5 is located in a biased direction in one circumferential direction of the concentric circles.

図28は、レンズアレイ4のレンズアレイ固定部7が第1固定部7−1と、第2固定部7−2とを有する例を示す。反射性固定部材3への取付時に第1固定部7−1を用いる場合と、第2固定部7−2を用いる場合とで、回転方向54へのレンズアレイ4の回転を変えることができるので色ずれ調整を2段階で行うことが可能となる。   FIG. 28 shows an example in which the lens array fixing part 7 of the lens array 4 includes a first fixing part 7-1 and a second fixing part 7-2. Since the rotation of the lens array 4 in the rotation direction 54 can be changed between the case where the first fixing portion 7-1 is used and the case where the second fixing portion 7-2 is used when being attached to the reflective fixing member 3. Color misregistration adjustment can be performed in two stages.

(レンズ機能部5の微細凹凸)
図29は、上記色ずれの他の縮小手段として他の構成を示している。レンズアレイ4のレンズ機能部5の凸部表面のうち、頂点(山頂)を含む一部表面領域の形状を微細な凹凸状にした。このことにより、LED光軸1cに沿ってレンズ機能部5に入射する青みの強い光を、レンズ機能部5を通した際、若干拡散気味に光を広げ、微細凹凸形状以外の領域のレンズ表面を透過する黄色味の強い光と混色させやすくする効果を有する。なお。本微細凹凸加工領域の広さや、凹凸の高さの値は、光源ユニット10の発光特性を確認しながら定めることができる。そのため本構成の光源ユニット10でも色ずれを縮小させる効果を持ちながら、光源ユニット10の目的としているビーム角40〜60deg程度の配光を実現することが可能である。
(Fine unevenness of lens function part 5)
FIG. 29 shows another configuration as another reduction means for the color misregistration. Of the convex surface of the lens function part 5 of the lens array 4, the shape of a partial surface region including the apex (mountain peak) was made into a fine uneven shape. As a result, when the bluish light incident on the lens function unit 5 along the LED optical axis 1c passes through the lens function unit 5, the light is slightly diffused and the lens surface in a region other than the fine uneven shape It has the effect of facilitating color mixing with strong yellowish light that passes through. Note that. The width of the fine unevenness processing region and the height of the unevenness can be determined while confirming the light emission characteristics of the light source unit 10. For this reason, the light source unit 10 having this configuration can achieve light distribution with a beam angle of about 40 to 60 deg, which is the purpose of the light source unit 10, while having the effect of reducing color misregistration.

1 LED、1a 発光面、1b 周状配置、1c LED光軸、2 LED基板、2a 実装面、2L 法線、3 反射性固定部材(ベース部)、4 レンズアレイ、4a 対向面、4b 凸部、4c 山頂、4d 根元部分、4e 円形断面、4L 法線、5 レンズ機能部、6 透光性光拡散部材、7 レンズアレイ固定部、8 外側反射筐体、10 光源ユニット、15 電源供給線(配線パターン)、16 LED実装用パッド、17 チップ抵抗、18 色変換部材、19 色変換部、21 チップ抵抗用パッド、30 LEDベアチップ、31 蛍光体入り封止樹脂、32 パッケージ筐体、33 LED電極、40 微細凹凸部、100 照明装置。
1 LED, 1a light emitting surface, 1b circumferential arrangement, 1c LED optical axis, 2 LED substrate, 2a mounting surface, 2L normal line, 3 reflective fixing member (base portion), 4 lens array, 4a facing surface, 4b convex portion 4c Summit, 4d Root part, 4e Circular cross section, 4L normal line, 5 Lens function part, 6 Translucent light diffusing member, 7 Lens array fixing part, 8 Outer reflection housing, 10 Light source unit, 15 Power supply line ( Wiring pattern), 16 LED mounting pad, 17 chip resistance, 18 color conversion member, 19 color conversion part, 21 chip resistance pad, 30 LED bare chip, 31 phosphor-containing sealing resin, 32 package housing, 33 LED electrode , 40 fine irregularities, 100 illumination device.

Claims (13)

ベース部と、
実装面となる一方の面に発光光を所定の配光特性で出射する複数のLEDが実装され、前記ベース部に固定されるLED実装基板と、
前記複数のLEDの各LEDに対応すると共に、入射した光を対応する前記LEDの前記配光特性よりも狭配光となる狭配光特性で出射させるレンズ機能部を有するものであって、それぞれの前記レンズ機能部が、対応する前記LEDに対向するように前記LED実装基板の前記実装面に対向して前記ベース部に固定されるレンズアレイと、
前記レンズアレイに対して前記LED実装基板の反対側で前記ベース部に固定され、前記レンズアレイのそれぞれの前記レンズ機能部から出射する光を透過し拡散する透光性光拡散部材と
を備えたことを特徴とする光源ユニット。
A base part;
A plurality of LEDs that emit emitted light with a predetermined light distribution characteristic are mounted on one surface serving as a mounting surface, and an LED mounting substrate that is fixed to the base portion;
It has a lens function part corresponding to each LED of the plurality of LEDs and emitting incident light with a narrow light distribution characteristic that is narrower than the light distribution characteristic of the corresponding LED, A lens array that is fixed to the base portion so as to face the mounting surface of the LED mounting substrate so that the lens function portion of the LED faces the corresponding LED,
A translucent light diffusing member that is fixed to the base portion on the opposite side of the LED mounting substrate with respect to the lens array, and transmits and diffuses light emitted from the lens function portions of the lens array. A light source unit characterized by that.
前記LED実装基板は、
前記複数のLEDとして、拡散性配光特性の発光光を出射する略平坦で、かつ、前記実装面に略平行な発光面を有する複数のLEDが実装されることを特徴とする請求項1記載の光源ユニット。
The LED mounting substrate is
2. The plurality of LEDs each having a substantially flat light emitting surface that emits light having a diffusive light distribution characteristic and having a light emitting surface substantially parallel to the mounting surface is mounted as the plurality of LEDs. Light source unit.
前記レンズアレイのそれぞれの前記レンズ機能部は、
前記レンズアレイの前記LED実装基板の前記実装面に対向する側に湾曲する凸部が形成されたことを特徴とする請求項2記載の光源ユニット。
Each lens function part of the lens array is
The light source unit according to claim 2, wherein a convex portion that is curved is formed on a side of the lens array that faces the mounting surface of the LED mounting substrate.
それぞれの前記レンズ機能部の前記凸部は、
前記対向面から盛り上がりはじめる根元部分における前記対向面に平行な面での断面が、略円形の円形断面をなし、
前記複数のLEDの各発光面は、
前記実装面の法線方向から前記レンズアレイと前記LED実装基板とを重ねて見ると、対応する前記レンズ機能部の前記根元部分の前記円形断面の内部に含まれることを特徴とする請求項3記載の光源ユニット。
The convex part of each lens function part is
The cross section of the surface parallel to the facing surface in the root portion that starts to rise from the facing surface forms a substantially circular circular section,
Each light emitting surface of the plurality of LEDs is
4. When the lens array and the LED mounting substrate are viewed in a superimposed manner from the normal direction of the mounting surface, the lens array is included in the circular cross section of the root portion of the corresponding lens function unit. The light source unit described.
前記レンズアレイのそれぞれの前記レンズ機能部は、
前記LED実装基板側の前記対向面の法線方向に焦点を有し、
前記LED実装基板に実装されたそれぞれの前記LEDは、
対応する前記レンズ機能部の前記凸部の前記山頂と、前記発光面との前記対向面の前記法線方向の距離が、対応する前記レンズ機能部の前記焦点の焦点距離よりも短いことを特徴とする請求項3または4のいずれかに記載の光源ユニット。
Each lens function part of the lens array is
It has a focal point in the normal direction of the facing surface on the LED mounting substrate side,
Each of the LEDs mounted on the LED mounting substrate is
The distance in the normal direction of the facing surface between the peak of the convex portion of the corresponding lens function unit and the light emitting surface is shorter than the focal length of the focus of the corresponding lens function unit. The light source unit according to claim 3 or 4.
前記LED実装基板の導電パターンは、
前記LEDが実装される前記LEDごとのLED実装部と、抵抗器が実装可能な抵抗実装部とを並列して設けたことを特徴とする請求項1〜5のいずれかに記載の光源ユニット。
The conductive pattern of the LED mounting substrate is
The light source unit according to claim 1, wherein an LED mounting portion for each LED on which the LED is mounted and a resistance mounting portion on which a resistor can be mounted are provided in parallel.
前記レンズアレイは、
組み立てと分解とに応じて、取付と取り外しとが可能であることを特徴とする請求項1〜6のいずれかに記載の光源ユニット。
The lens array is
The light source unit according to claim 1, wherein the light source unit can be attached and detached in accordance with assembly and disassembly.
前記透光性光拡散部材は、
前記LED実装基板の前記実装面の法線方向であって、前記LED実装基板から前記レンズアレイに向かう前記法線方向に向かって凸に湾曲する湾曲形状に形成されたことを特徴とする請求項1〜7のいずれかに記載の光源ユニット。
The translucent light diffusing member is
2. The LED mounting board according to claim 1, wherein the LED mounting board is formed in a curved direction that is curved in a convex direction toward the normal direction from the LED mounting board toward the lens array. The light source unit according to any one of 1 to 7.
前記複数のLEDのうち少なくとも前記LED実装基板の端部から最短距離に配置されたLEDに対応する前記レンズ機能部は、
前記実装面の法線方向から前記レンズアレイと前記LED実装基板とを重ねて見ると、前記LEDの発光面が、対応する前記レンズ機能部の前記根元部分の前記円形断面の内部において、前記円形断面の円周の近傍に偏って位置することを特徴とする請求項4または5のいずれかに記載の光源ユニット。
The lens function unit corresponding to the LED disposed at the shortest distance from the end of the LED mounting substrate among the plurality of LEDs,
When the lens array and the LED mounting substrate are overlapped when viewed from the normal direction of the mounting surface, the light emitting surface of the LED is inside the circular cross section of the root portion of the corresponding lens function unit. The light source unit according to claim 4, wherein the light source unit is biased to be located near a circumference of a cross section.
前記LED実装基板は、
実装される前記複数のLEDのうちの少なくともの複数のLEDが前記実装面において略同心円上に実装され、
前記実装面において前記略同心円上に実装されたそれぞれの前記LEDは、
前記実装面の法線方向から前記レンズアレイと前記LED実装基板とを重ねて見ると、前記発光面が、対応する前記レンズ機能部の前記根元部分の前記円形断面の内部において、前記同心円の一方の円周方向に偏って位置することを特徴とする請求項4または5のいずれかに記載の光源ユニット。
The LED mounting substrate is
At least a plurality of LEDs among the plurality of LEDs to be mounted are mounted substantially concentrically on the mounting surface,
Each of the LEDs mounted on the mounting surface on the substantially concentric circles,
When the lens array and the LED mounting substrate are overlapped when viewed from the normal direction of the mounting surface, the light emitting surface is one of the concentric circles inside the circular cross section of the root portion of the corresponding lens function unit. The light source unit according to claim 4, wherein the light source unit is biased in the circumferential direction.
前記レンズアレイは、
前記レンズ機能部の前記凸部の前記山頂を含む山頂領域に、光を拡散する微細な凹凸が形成されたことを特徴とする請求項3〜10のいずれかに記載の照明装置。
The lens array is
The illumination device according to any one of claims 3 to 10, wherein fine unevenness for diffusing light is formed in a peak region including the peak of the convex portion of the lens function unit.
前記光源ユニットは、さらに、
前記LED実装基板と前記レンズアレイとの間と、前記レンズアレイと前記透光性光拡散部材との間とのいずれかに,前記レンズアレイに対向して配置され、入射した光の波長を変換して出射する波長変換機能部を有する波長変換部材を備えたことを特徴とする請求項1〜11のいずれかに記載のいずれかに記載の光源ユニット。
The light source unit further includes:
It is disposed between the LED mounting substrate and the lens array or between the lens array and the translucent light diffusing member so as to face the lens array and converts the wavelength of incident light. The light source unit according to claim 1, further comprising a wavelength conversion member having a wavelength conversion function unit that emits light.
請求項1〜12のいずれかに記載の光源ユニットを備えた照明装置。   The illuminating device provided with the light source unit in any one of Claims 1-12.
JP2011048358A 2011-03-04 2011-03-04 Light source unit and lighting device Active JP5473966B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011048358A JP5473966B2 (en) 2011-03-04 2011-03-04 Light source unit and lighting device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011048358A JP5473966B2 (en) 2011-03-04 2011-03-04 Light source unit and lighting device

Publications (2)

Publication Number Publication Date
JP2012186022A true JP2012186022A (en) 2012-09-27
JP5473966B2 JP5473966B2 (en) 2014-04-16

Family

ID=47015929

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011048358A Active JP5473966B2 (en) 2011-03-04 2011-03-04 Light source unit and lighting device

Country Status (1)

Country Link
JP (1) JP5473966B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203604A (en) * 2013-04-03 2014-10-27 日立アプライアンス株式会社 Lighting device
JP2016541104A (en) * 2013-12-16 2016-12-28 フィリップス ライティング ホールディング ビー ヴィ Flexible and unimpeded beam shaping
JP2018063901A (en) * 2016-10-14 2018-04-19 株式会社小糸製作所 Vehicular headlight
JP2019212647A (en) * 2015-08-31 2019-12-12 シチズン電子株式会社 Light emitting device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105156925A (en) * 2015-09-08 2015-12-16 凌云光技术集团有限责任公司 Device for improving uniformity of light source

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272411A (en) * 2002-03-15 2003-09-26 Matsushita Electric Works Ltd Luminaire
JP2004014365A (en) * 2002-06-07 2004-01-15 Nichia Chem Ind Ltd Plane luminescent light source, downright backlight, and signal light using it
JP2004029370A (en) * 2002-06-26 2004-01-29 Advanced Display Inc Surface light source device and liquid crystal display device using the same
WO2010041182A1 (en) * 2008-10-09 2010-04-15 Koninklijke Philips Electronics N.V. Beam direction controlling device and light-output device
JP2010165683A (en) * 2010-02-24 2010-07-29 Sharp Corp Lens body, light source unit, and illuminating device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003272411A (en) * 2002-03-15 2003-09-26 Matsushita Electric Works Ltd Luminaire
JP2004014365A (en) * 2002-06-07 2004-01-15 Nichia Chem Ind Ltd Plane luminescent light source, downright backlight, and signal light using it
JP2004029370A (en) * 2002-06-26 2004-01-29 Advanced Display Inc Surface light source device and liquid crystal display device using the same
WO2010041182A1 (en) * 2008-10-09 2010-04-15 Koninklijke Philips Electronics N.V. Beam direction controlling device and light-output device
JP2010165683A (en) * 2010-02-24 2010-07-29 Sharp Corp Lens body, light source unit, and illuminating device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014203604A (en) * 2013-04-03 2014-10-27 日立アプライアンス株式会社 Lighting device
JP2016541104A (en) * 2013-12-16 2016-12-28 フィリップス ライティング ホールディング ビー ヴィ Flexible and unimpeded beam shaping
JP2019212647A (en) * 2015-08-31 2019-12-12 シチズン電子株式会社 Light emitting device
JP2018063901A (en) * 2016-10-14 2018-04-19 株式会社小糸製作所 Vehicular headlight

Also Published As

Publication number Publication date
JP5473966B2 (en) 2014-04-16

Similar Documents

Publication Publication Date Title
EP2844915B1 (en) Reflector and lamp comprised thereof
JP6204194B2 (en) Troffer optical assembly
RU2459142C1 (en) Street lamp based on light diodes
TWI412689B (en) Lamp
TWI568966B (en) Troffer-style fixture
US8251546B2 (en) LED lamp with a plurality of reflectors
JP2011108661A (en) Luminaire with reflecting mirror
WO2013190979A1 (en) Lighting device
CA2862702C (en) Optical system and lighting device comprised thereof
JP5473966B2 (en) Light source unit and lighting device
JP2012160666A (en) Light source module and lighting device
JP2008053660A (en) Light emitting module
JP2009087644A (en) Lighting unit
JP6250137B2 (en) Light source device and illumination device
JP5472193B2 (en) Light source unit and lighting device
JP2010251213A (en) Light-emitting module and lighting device
JP2013045530A (en) Light emitting device and lighting fixture
JP2010146806A (en) Lighting apparatus
JP2005196983A (en) Luminaire using light emitting diode
JP6560575B2 (en) lighting equipment
JP2010114033A (en) Led bulb for illuminating to which heat dissipation effect is characterized by high structure which can be irradiated in wide range
KR101049831B1 (en) Led lighting apparatus
KR101694746B1 (en) Illumination lens for light emitting diode
JP5689370B2 (en) lighting equipment
JP2011222149A (en) Lighting system

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130424

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140204

R150 Certificate of patent or registration of utility model

Ref document number: 5473966

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250