JP2012184309A - Temperature rise method for hot re-laid oven wall of coke oven - Google Patents

Temperature rise method for hot re-laid oven wall of coke oven Download PDF

Info

Publication number
JP2012184309A
JP2012184309A JP2011047733A JP2011047733A JP2012184309A JP 2012184309 A JP2012184309 A JP 2012184309A JP 2011047733 A JP2011047733 A JP 2011047733A JP 2011047733 A JP2011047733 A JP 2011047733A JP 2012184309 A JP2012184309 A JP 2012184309A
Authority
JP
Japan
Prior art keywords
flue
hot
temperature
flues
furnace wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011047733A
Other languages
Japanese (ja)
Other versions
JP5703852B2 (en
Inventor
Makoto Uchida
誠 内田
Yoshiteru Kitayama
義晃 北山
Takafumi Sachi
孝文 佐地
Hideki Ueda
秀樹 上田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP2011047733A priority Critical patent/JP5703852B2/en
Publication of JP2012184309A publication Critical patent/JP2012184309A/en
Application granted granted Critical
Publication of JP5703852B2 publication Critical patent/JP5703852B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Furnace Housings, Linings, Walls, And Ceilings (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a temperature rise method for a hot re-laid oven wall of a coke oven by which temperature of an oven wall re-laid by partial hot repair of a coke oven can be easily and uniformly risen without using a large number of man-hour and a special heating means, and as a result, joint loss and crack generation in the bricks of the repaired part is prevented.SOLUTION: After hot re-laying of bricks of flues 21a, 21b in a chamber coke oven has been performed and until the temperature rise of the re-laid bricks is completed, the temperature rise of the re-laid bricks is performed by: making apertures 35 in a part of lower portions of the oven wall bricks of the flues 21a, 21b subjected to the brick re-laying and closing flue ports 22, 23 which are fuel gas or air supply openings of the flues 21a, 21b; introducing hot air 41 from a back non-re-laid part, which is caused to flow into a carbonization chamber 10a adjacent to the flues 21a, 21b, into the flues 21a, 21b through the apertures 35; and discharging the hot air 41 rising within the flues 21a, 21b, from flue inspection holes 30 disposed just above the flues 21a, 21b.

Description

本発明は、室炉式コークス炉の炭化室炉壁を熱間で部分的に積替補修したときの積替炉壁の昇温方法に関する。   The present invention relates to a method for raising a temperature of a transshipment furnace wall when a carbonization chamber furnace wall of a chamber-type coke oven is partially transshipped and repaired hot.

図7は、コークス炉の炉体構造を示す炉団方向の縦断面図であり、図8は、コークス炉の窯口近傍の構造を示す水平断面図である。
図7及び図8に示すように、室炉式コークス炉は、石炭を受け入れ加熱乾留するための炭化室10と、燃料ガスを燃焼させて炭化室10に装入された石炭に乾留するための熱量を与える燃焼室20が交互に配置され、その下部に蓄熱用煉瓦を充填した蓄熱室40が各燃焼室20と接続されている。
FIG. 7 is a longitudinal sectional view in the direction of the furnace group showing the furnace body structure of the coke oven, and FIG. 8 is a horizontal sectional view showing the structure in the vicinity of the kiln entrance of the coke oven.
As shown in FIGS. 7 and 8, the chamber-type coke oven is configured to receive carbon and heat-dry carbonize, and to carbonize the coal charged in the carbonization chamber 10 by burning fuel gas. Combustion chambers 20 that give heat are alternately arranged, and heat storage chambers 40 filled with heat storage bricks are connected to the respective combustion chambers 20.

各燃焼室20は、炉長方向に仕切壁煉瓦26で複数のフリュー21に区画されて構成されており、その両側の炉壁煉瓦25が炭化室10に面して石炭に直接接触している。
図8に示すように、燃料として貧ガスと富ガスのいずれかを任意に選択使用できる複式炉の単段バーナー構造においては、各フリュー21の底部に燃料貧ガス用ポート22、燃焼空気用ポート23、及び燃料富ガス用ノズル24を備えており、燃料として富ガスのみを使用する単式炉では燃焼空気用ポート23と燃料富ガス用ノズル24を備えている。多段バーナー構造のコークス炉においては、燃焼室底部の燃焼空気用ポートに加えて仕切壁中段部にも燃焼空気用ポートを備えている。
Each combustion chamber 20 is configured to be partitioned into a plurality of flues 21 by partition wall bricks 26 in the furnace length direction, and the furnace wall bricks 25 on both sides thereof face the carbonization chamber 10 and are in direct contact with coal. .
As shown in FIG. 8, in a single-stage burner structure of a dual furnace in which either poor gas or rich gas can be arbitrarily selected and used as fuel, a fuel poor gas port 22 and a combustion air port are provided at the bottom of each flue 21. 23 and a fuel-rich gas nozzle 24, and a single furnace that uses only a rich gas as fuel has a combustion air port 23 and a fuel-rich gas nozzle 24. In a coke oven having a multistage burner structure, in addition to a combustion air port at the bottom of the combustion chamber, a combustion air port is also provided in the middle stage of the partition wall.

コークス炉の炉壁は、装炭や窯出しによる急激な温度変化を受けるとともに、コークスの押出しによって摩耗や側圧を受けるなど、過酷な条件に曝されている。このため、長年の使用のなかで炉壁を構成する煉瓦は目地切れ、クラック、溶損等の損傷を受けるので、煉瓦積替による補修を行う必要が生じることがある。特に窯口に近い炉壁煉瓦25は窯出しのたびに直接大気に曝され、大きな温度変化を受けるため、中央部に比較して損傷の程度が大きくなる傾向にある。   The furnace wall of the coke oven is subjected to severe conditions such as a sudden temperature change caused by charcoal or kiln removal, and wear and side pressure due to coke extrusion. For this reason, the bricks that make up the furnace wall during many years of use suffer damage such as joint breaks, cracks, and erosion, so it may be necessary to repair the bricks by transshipment. In particular, the furnace wall brick 25 close to the kiln is directly exposed to the atmosphere every time the kiln is started and undergoes a large temperature change, so that the degree of damage tends to be greater than that in the central part.

老朽化が進んだコークス炉において、このような損傷を受けた窯口に近い炉壁に対して隣接した炉室の操業を停止することなく煉瓦を部分的に積替えする補修法、いわゆる熱間積替補修が実施されるようになっている。   In an aging coke oven, a repair method that partially replaces bricks without stopping the operation of the adjacent furnace chamber on the furnace wall near the damaged kiln entrance, so-called hot product Replacement repairs are being implemented.

熱間積替補修では、補修対象部以外の燃焼室20の燃焼を継続したままで、補修対象のフリュー21への燃料ガスと燃焼用空気の供給を停止して温度を下げながら、補修対象のフリュー21よりも奥側に断熱隔壁を取り付けて炭化室の奥側の高熱から隔離するとともに、補修対象のフリュー21に隣接する炉壁に断熱材を施工してそこからの放射熱を遮断することによって補修作業が可能な環境を確保して、補修対象フリュー21の煉瓦を解体した後、再び煉瓦積みを行って復旧している。   In the hot transshipment repair, while the combustion of the combustion chamber 20 other than the repair target part is continued, the supply of the fuel gas and the combustion air to the fulu 21 to be repaired is stopped to lower the temperature while the repair target is being repaired. A heat insulating partition is attached to the back side of the flue 21 to isolate it from the high heat on the back side of the carbonization chamber, and a heat insulating material is installed on the furnace wall adjacent to the flue 21 to be repaired to cut off the radiant heat from there. After securing the environment in which repair work can be performed by dismantling the bricks of the repair-target flue 21, brickwork is restored and restored.

図9は、新たに積替えられた炉壁煉瓦を、通常の操業に復帰させる前に高温に昇温する際の昇温予定曲線の一例を示すグラフである。
新たに積替えられた炉壁煉瓦は、通常の操業に復帰させる前に高温(おおよそ1000℃超)に昇温を行わなければならない。その昇温においては、図9にグラフで示すような所定の昇温予定曲線に従って急激な温度変化を避けつつ徐々に、且つ均一に昇温することによって、煉瓦の異常膨張による目地切れや煉瓦のクラック、あるいは炉壁の湾曲を防止することが重要となる。
FIG. 9 is a graph showing an example of a temperature increase expected curve when the newly refilled furnace wall brick is heated to a high temperature before returning to normal operation.
The newly loaded furnace wall brick must be heated to a high temperature (approximately over 1000 ° C.) before returning to normal operation. In the temperature increase, the temperature is gradually and uniformly increased while avoiding a rapid temperature change in accordance with a predetermined temperature increase schedule curve as shown in the graph of FIG. It is important to prevent cracks or furnace wall curvature.

これまでにも、熱間積替補修を行った後の煉瓦の昇温方法として、隣接する燃焼室20の炉壁面に断熱材を装着したまま炭化室10にバーナーを挿入し、あるいはバーナーを使用せず隣接する燃焼室20からの放射熱により加熱する方法(特許文献1)、断熱された空間内に両隣の炭化室10で加熱した空気を導入して加熱する方法(特許文献2)、さらには、炭化室10の奥側に取付けた断熱隔壁に開閉自在の通気孔を設け、炭化室10の奥側から熱気を適宜流入させて加熱する方法(特許文献3)等が提案されている。   Up to now, as a method of raising the temperature of bricks after hot replacement, a burner is inserted into the carbonization chamber 10 with a heat insulating material attached to the furnace wall of the adjacent combustion chamber 20, or a burner is used. A method of heating by radiant heat from the adjacent combustion chamber 20 (Patent Document 1), a method of heating by introducing air heated in the adjacent carbonization chamber 10 into a thermally insulated space (Patent Document 2), and Has proposed a method (Patent Document 3) in which a heat-insulating partition wall provided on the back side of the carbonization chamber 10 is provided with a freely openable / closable air hole, and hot air is appropriately introduced from the back side of the carbonization chamber 10 to heat it.

特公昭49−23564号公報Japanese Patent Publication No. 49-23564 特開昭52−62303号公報JP-A 52-62303 特公昭61−31749号公報Japanese Patent Publication No. 61-31749

しかし、特許文献1により開示された方法では、積替炉壁の上下方向の温度差が生じ易いので、均一な昇温にはバーナー等のこまめな調整を要し、状態監視や調整操作が煩雑となる。また、特許文献2により開示された方法を実施するには、加熱に要する高熱空気を吸出するために補修炉室のほかに空状態の炉室を準備する必要があり、生産量の低下が避けられない。   However, in the method disclosed in Patent Document 1, since a temperature difference in the vertical direction of the transshipment furnace wall tends to occur, frequent adjustment such as a burner is required for uniform temperature rise, and state monitoring and adjustment operations are complicated. It becomes. Further, in order to carry out the method disclosed in Patent Document 2, it is necessary to prepare an empty furnace chamber in addition to the repair furnace chamber in order to suck out hot air required for heating, avoiding a decrease in production volume. I can't.

特許文献3により開示された方法は、最も多く採用されてきた方法の一つであり、図10にこの昇温方法の実施形態の一例を示す。
図10に示すように、この昇温方法では、積替したフリュー21a及び21bの燃料貧ガス用ポート22及び燃焼空気用ポート23を全て、アルミニウムなどの箔状物27で閉止して蓄熱室で予熱された空気が流入して急激に温度が上昇するのを防ぎながら、窯口を仮設の断熱蓋13で密閉した状態で、炭化室10の奥側に取り付けた断熱隔壁11aに設けた通気孔を適当な開度に開けて、炭化室10の奥側から熱気41を流入させて徐々に加熱する。
The method disclosed in Patent Document 3 is one of the methods that have been adopted most frequently, and FIG. 10 shows an example of an embodiment of this temperature raising method.
As shown in FIG. 10, in this temperature raising method, the fuel poor gas port 22 and the combustion air port 23 of the reloaded flues 21a and 21b are all closed with a foil 27 such as aluminum, and are stored in the heat storage chamber. A vent hole provided in a heat insulating partition wall 11a attached to the back side of the carbonization chamber 10 in a state where the kiln opening is sealed with a temporary heat insulating lid 13 while preventing preheated air from flowing in and suddenly rising in temperature. Is opened to an appropriate degree of opening, and hot air 41 is introduced from the back side of the carbonization chamber 10 to be gradually heated.

しかし、特許文献3により開示された昇温方法でも、積替炉壁を均一に昇温するためには、積替炉壁の温度分布を確認しながら複数の通気孔の開度をこまめに調整する必要があり、状態監視や調整操作が煩雑になることは避けられない。   However, even with the temperature raising method disclosed in Patent Document 3, in order to uniformly raise the temperature of the transshipment furnace wall, the openings of the plurality of vent holes are adjusted frequently while confirming the temperature distribution of the transshipment furnace wall. Therefore, it is inevitable that state monitoring and adjustment operations become complicated.

また、特許文献1〜3により開示された方法は、いずれも、積替炉壁に炭化室10側から熱を与えて昇温するものであるので、炉壁煉瓦の昇温が先行し、仕切壁煉瓦は炉壁煉瓦からの熱の伝導によって加熱されるので、炉壁煉瓦に比べて仕切壁煉瓦の昇温が遅れ、温度の不均等が生ずるという原理的な欠点がある。   Moreover, since all the methods disclosed in Patent Documents 1 to 3 raise the temperature by applying heat to the transshipment furnace wall from the carbonization chamber 10 side, the temperature rise of the furnace wall bricks precedes the partition wall. Since the wall brick is heated by the conduction of heat from the furnace wall brick, the temperature rise of the partition wall brick is delayed as compared with the furnace wall brick, and there is a principle drawback that temperature unevenness occurs.

さらに、複数の隣接した燃焼室20の熱間補修を連続して実施する場合、積替炉壁の昇温に支障をきたすことが避けられない。すなわち、煉瓦積替を終了し昇温を行っている段階で、昇温が終るのを待たずして、引き続き隣接した燃焼室20の熱間補修を開始するとき、熱間補修を開始する側の炉壁はすでに煉瓦解体あるいは新煉瓦積の状態にあり、炭化室10は奥側の断熱隔壁が取付けられて遮閉されているので、炭化室10の奥側からの熱気41も、対面した燃焼室炉壁からの放射熱も得ることができず、補修を開始する燃焼室20に面した積替炉壁は昇温することが不能になる。   Furthermore, when performing hot repair of a plurality of adjacent combustion chambers 20 continuously, it is inevitable that the temperature rise of the transshipment furnace wall will be hindered. That is, at the stage where the brick replacement is finished and the temperature is raised, without waiting for the temperature rise to end, when the hot repair of the adjacent combustion chamber 20 is subsequently started, the side where the hot repair is started The furnace wall is already in the state of brick dismantling or new brickwork, and the carbonization chamber 10 is closed with a heat insulating partition on the back side, so the hot air 41 from the back side of the carbonization chamber 10 also faces. Radiant heat from the combustion chamber furnace wall cannot be obtained, and the temperature of the transshipment furnace wall facing the combustion chamber 20 where repair is started cannot be increased.

そのため、この状態では加熱ができるのは積替炉壁の片側だけで、積替炉壁のもう一方の側は全く加熱できないという状況となる。この事態を回避するためには、積替炉壁の昇温が完了するまで待って隣接の燃焼室の補修に着手することが必要となるが、これは複数の燃焼室を連続して補修する場合、工事工程全体の大幅な増加を招いてしまう。   Therefore, in this state, heating can be performed only on one side of the transshipment furnace wall, and the other side of the transshipment furnace wall cannot be heated at all. In order to avoid this situation, it is necessary to wait until the temperature rise of the transshipment furnace wall is completed and start repairing the adjacent combustion chamber, which repairs multiple combustion chambers in succession. In this case, the overall construction process is greatly increased.

このような事態は、補修を1列ずつ連続して行う場合のみならず、複数列をまとめて連続して補修を行う場合にも、単列施工の場合と同様に、複数列の端の列では片方の炉壁の加熱ができないという問題を生じる。   Such a situation is not only in the case where repair is performed continuously one row at a time, but also in the case where repair is performed continuously in multiple rows, as in the case of single row construction, the rows at the end of the multiple rows Then, the problem that one furnace wall cannot be heated arises.

本発明は、このような従来の技術の課題を解消し、コークス炉の熱間積替炉壁の正確、且つ均一な煉瓦の昇温を実現するとともに、隣り合った燃焼室の連続的な熱間積替補修における昇温を可能にすることを目的とする。   The present invention eliminates the above-mentioned problems of the prior art, realizes an accurate and uniform temperature rise of the brick in the coking furnace, and continuously heats the adjacent combustion chambers. The purpose is to make it possible to raise the temperature during inter-transshipment repairs.

本発明者らは、上記課題を解決するために種々試験研究を重ねた結果、熱間積替後のフリュー21の炉壁煉瓦の下部の一部を開孔し、且つフリュー21のポートを600℃以上の温度で溶融消失する箔状物あるいは1000℃以上の耐熱性を有する断熱材料によって閉止すると同時に、炭化室10の奥側の熱を遮断するために設けられた断熱隔壁11aの一部を開放することによって,炭化室10内に流入させた炭化室10の奥側の熱気を炉壁煉瓦に設けた開孔からフリュー21内に吸引通気させ、フリュー21の直上にあるフリュー点検孔からフリュー21内を上昇してきた熱気を排出するとともに、フリュー点検孔上部に排気ダクトを接続し、排気ダクトにフリュー21内を通気する空気の流量を自在に調整するためのオリフィスなどの流量調整機能を付与することによって、正確且つ均一に積替炉壁煉瓦を昇温できることを知見し、さらに検討を重ねて本発明を完成した。   As a result of various studies and researches to solve the above-mentioned problems, the inventors of the present invention opened a part of the lower part of the furnace wall brick of the flue 21 after hot transshipment and set the port of the flue 21 to 600. A part of the heat insulating partition 11a provided to shut off the heat behind the carbonization chamber 10 at the same time is closed by a foil-like material that melts and disappears at a temperature of ℃ or higher or a heat insulating material having heat resistance of 1000 ℃ or higher. By opening, the hot air inside the carbonizing chamber 10 that has flowed into the carbonizing chamber 10 is sucked and ventilated into the flue 21 from the hole provided in the furnace wall brick, and the flue is detected from the flue inspection hole directly above the flue 21. An exhaust duct is connected to the upper part of the flue inspection hole, and an orifice for freely adjusting the flow rate of air flowing through the flue 21 to the exhaust duct. By imparting quantity adjustment function, and we found that can accurately and uniformly transhipment furnace wall brick heating and have completed the present invention by overlapping a further study.

本発明は、石炭を受け入れ加熱乾留するための炭化室と、炉長方向へ複数配置される仕切壁煉瓦および、炭化室に臨む炉壁煉瓦によって区画される複数のフリューを備え、燃料ガスを燃焼させて石炭に乾留するための熱量を与える燃焼室とが交互に配置されるとともに、燃焼室の下部にこの燃焼室に接続する蓄熱用煉瓦を充填されて配置される蓄熱室を備える室炉式コークス炉における一部のフリューの煉瓦積替を熱間で行った後に、積替した煉瓦の昇温が終了するまでの間、当該煉瓦の昇温を、
(a)煉瓦積替を行ったフリューの炉壁煉瓦の下部の一部に開孔を設け、且つ(b)このフリューの燃料ガスあるいは空気供給用の開口部であるフリューポートを閉止するともに、(c)このフリューに隣接する炭化室内に流入させた、奥側の非積替部からの熱気を前記の開孔からこのフリューの内部に導入し、このフリューの直上にあるフリュー点検孔からフリューの内部を上昇してきた熱気を排気すること
によって、行うことを特徴とするコークス炉の熱間積替炉壁の昇温方法である。
The present invention comprises a carbonization chamber for receiving and heat-distilling coal, a plurality of partition wall bricks arranged in the furnace length direction, and a plurality of flues defined by the furnace wall bricks facing the carbonization chamber, and burns fuel gas And a furnace type having a heat storage chamber arranged alternately with combustion chambers for giving heat for coal to dry distillation and being filled with heat storage bricks connected to the combustion chamber at the lower part of the combustion chamber After performing a brick transshipment of a part of the flue in the coke oven hot, until the temperature rise of the transposed brick is completed,
(A) An opening is provided in a part of the lower part of the furnace wall brick of the flue that has undergone brick replacement, and (b) the flue port that is an opening for supplying fuel gas or air of the flue is closed, (C) The hot air from the rear non-reloading portion that has flowed into the carbonization chamber adjacent to the flue is introduced into the flue through the opening, and the flue from the flue inspection hole immediately above the flue. This is a method of raising the temperature of a hot trans-transfer furnace wall of a coke oven, which is performed by exhausting hot air that has risen in the interior of the coke oven.

本発明では、煉瓦積替を行ったフリューの直上にある点検孔上部に排気ダクトを接続し、このフリューの内部を上昇する熱気の流量を調整することが好ましい。
これらの本発明では、燃料ガスあるいはエアー供給用の開口部を、600℃以上の温度で溶融消失する箔状物で、又は、1000℃以上の耐熱性を有する断熱材料で、閉止することが好ましい。
In the present invention, it is preferable to connect an exhaust duct to the upper part of the inspection hole directly above the flue that has undergone brick transshipment and adjust the flow rate of the hot air rising inside the flue.
In the present invention, it is preferable to close the opening for supplying fuel gas or air with a foil-like material that melts and disappears at a temperature of 600 ° C. or higher, or with a heat insulating material having heat resistance of 1000 ° C. or higher. .

本発明により、従来技術の問題点を解決し、コークス炉の部分的な熱間補修により積替えた炉壁を、多数の工数と特別な加熱手段を用いることなく、簡便かつ均一に昇温することができ、補修部の煉瓦の目地切れや亀裂の発生を防止することができる。   The present invention solves the problems of the prior art and raises the temperature of a furnace wall transposed by partial hot repair of a coke oven easily and uniformly without using many man-hours and special heating means. It is possible to prevent the occurrence of joint breaks and cracks in the bricks of the repair section.

また、本発明により、連続した複数の燃焼室を補修する場合には、積替を終えた煉瓦の昇温と、次の隣り合った炉壁の解体あるいは煉瓦積を時間的に重複して行うことができ、補修工事工程の短縮を図ることもできる。   Further, according to the present invention, when repairing a plurality of consecutive combustion chambers, the temperature rise of the brick after transshipment and the next adjacent furnace wall dismantling or brickwork are performed in a time-overlapping manner. It is also possible to shorten the repair work process.

図1は、コークス炉の1つの燃焼室の窯口近くの2つのフリューについて炭化室炉底レベルから炉頂まで熱間補修を行う場合の補修部分の断面図である。FIG. 1 is a cross-sectional view of a repaired part in the case where hot repair is performed from the bottom level of a carbonization chamber to the top of the furnace for two flues near the furnace port of one combustion chamber of the coke oven. 図2は、図1中のA−A断面図であり、1列の燃焼室の端の2つのフリューの熱間積替え終了後の昇温の方法を示す。FIG. 2 is a cross-sectional view taken along the line AA in FIG. 1 and shows a method of raising the temperature after the end of the hot transshipment of two flues at the end of one row of combustion chambers. 図3は、フリューポートの閉止を断熱材料で行った場合の例のフリューポート付近を部分的に示す垂直断面図である。FIG. 3 is a vertical cross-sectional view partially showing the vicinity of the full port in the example in which the full port is closed with a heat insulating material. 図4は、珪石煉瓦の熱膨張特性曲線の一例のグラフである。FIG. 4 is a graph of an example of the thermal expansion characteristic curve of the quartz brick. 図5は、燃焼室の端の2つのフリューを1列ずつ連続して熱間補修する場合の昇温の方法を示す水平断面図である。FIG. 5 is a horizontal cross-sectional view showing a method of raising the temperature in the case where two flues at the end of the combustion chamber are continuously repaired one by one in a row. 図6は、燃焼室の端の2つのフリューを2列ずつ連続して熱間補修する場合の昇温の方法を示す水平断面図である。FIG. 6 is a horizontal cross-sectional view showing a method of raising the temperature when two flues at the end of the combustion chamber are continuously repaired in two rows. 図7は、コークス炉の炉体構造を示す炉団方向の縦断面図である。FIG. 7 is a longitudinal sectional view in the direction of the furnace group showing the furnace structure of the coke oven. 図8は、コークス炉の窯口近傍の構造を示す水平断面図である。FIG. 8 is a horizontal cross-sectional view showing a structure in the vicinity of the furnace port of the coke oven. 図9は、新たに積替えられた炉壁煉瓦を、通常の操業に復帰させる前に高温に昇温する際の昇温予定曲線の一例を示すグラフである。FIG. 9 is a graph showing an example of a temperature increase expected curve when the newly refilled furnace wall brick is heated to a high temperature before returning to normal operation. 図10は、特許文献3により開示された昇温方法の実施形態の一例を示す説明図である。FIG. 10 is an explanatory diagram showing an example of an embodiment of the temperature raising method disclosed in Patent Document 3. As shown in FIG.

本発明は、従来から行われているように、積替炉壁煉瓦の昇温を、炭化室の奥側、または空状態にした両隣の炭化室からの熱気の導入、あるいは隣接する燃焼室からの放射熱の受容によって積替炉壁の炭化室側からの伝熱によって行うのではなくて、炭化室の奥側の断熱隔壁の一部を開放することによって炭化室内に流入させた熱気を、昇温の対象であるフリューの内部に吸引導入するとともにフリューの下部から上部に通気させて煉瓦の昇温を行う。   In the present invention, as has been conventionally performed, the temperature of the transshipment furnace wall brick is increased by introducing hot air from the inner side of the carbonization chamber or from the adjacent carbonization chamber that has been emptied, or from the adjacent combustion chamber. Rather than performing heat transfer from the carbonization chamber side of the transshipment furnace wall by receiving the radiant heat, the hot air that has flowed into the carbonization chamber by opening a part of the heat insulating partition on the back side of the carbonization chamber, The brick is heated by sucking it into the interior of the flue that is to be heated and venting the flue from the lower part to the upper part.

本発明では、煉瓦積替後のフリューの炉壁煉瓦の下部の一部を開孔し、且つ燃料ガスあるいは空気供給用の開口部であるフリューポートを600℃以上の温度で溶融消失する箔状物、あるいは1000℃以上の耐熱性を有する断熱材料で閉止するとともに、奥側の断熱隔壁の開放部から炭化室内に流入させた炭化室の奥側の熱気を炉壁煉瓦に設けた開孔からフリューの内部に吸引通気させ、このフリューの上部の点検孔を開放して排気ダクトを接続してフリューの内部に流入する熱気の量を適宜調整する。   In the present invention, a foil-like shape in which a part of the lower part of the furnace wall brick of the flue after brick replacement is opened and the flue port which is an opening for supplying fuel gas or air is melted and disappeared at a temperature of 600 ° C. or more. Or heat insulation material having heat resistance of 1000 ° C. or higher, and from the opening provided in the furnace wall brick, the hot air from the back side of the carbonization chamber that has flowed into the carbonization chamber from the open part of the heat insulation partition on the back side The inside of the flue is sucked and ventilated, the inspection hole at the top of the flue is opened, the exhaust duct is connected, and the amount of hot air flowing into the inside of the flue is appropriately adjusted.

なお、炉壁煉瓦の下部の一部に設けた開孔は、昇温が終了した段階で炉壁煉瓦をもって閉塞復旧すればよい。その際、フリューポート断熱材料で閉止した場合は、それを取り除いたあと開孔の閉塞復旧を行わなければならないが、溶融消失する箔状物で閉止すれば、昇温に伴って箔状物が自然に溶融消失するので、この箔状物を開孔の閉塞復旧の前にことさら取り除く必要がなくなるために好ましい。   In addition, the opening provided in a part of the lower part of the furnace wall brick may be closed and restored with the furnace wall brick when the temperature rise is completed. At that time, if it is closed with a flue port insulation material, it must be removed and then the opening of the hole must be restored.If it is closed with a foil that melts and disappears, the foil will Since it melts and disappears naturally, it is preferable that this foil-like material does not need to be further removed before the opening is restored.

断熱炉壁の開孔は、1つのフリューに対して少なくとも1か所設けるが、煉瓦積が終了した後に新たに設けてもよいが、煉瓦積を施工するときに設けることが望ましく、炉壁を構成する煉瓦のうち下部の開孔となすべき部位に相当する1段乃至3段分の煉瓦を抜いた状態で煉瓦積することにより開孔することが一般的であり、好ましい。   At least one hole in the heat insulation furnace wall is provided for one flue, but it may be newly provided after the brickwork is completed, but it is desirable to provide it when the brickwork is constructed. It is general and preferable to open the brick by stacking bricks in a state where one to three steps of bricks corresponding to the portion to be opened in the lower part of the bricks to be formed are removed.

炉壁の開孔は、熱気のフリュー内への導入という目的に適うと同時に、昇温終了後の開孔閉塞を容易に行うことができ、操業に復帰したときの炉壁のガス気密性を確保することができものであればよく、特定の形状には限定されない。例えば、矩形のみならず円形などでもよく、開孔の奥行き方向に水平でもよいし、さらに斜めであってもあるいは突起があってもよい。   The opening of the furnace wall is suitable for the purpose of introducing hot air into the flue, and at the same time, the opening of the furnace wall can be easily closed and the gas tightness of the furnace wall when returning to operation is achieved. What is necessary is just to be able to ensure, and it is not limited to a specific shape. For example, it may be not only a rectangle but also a circle, etc., may be horizontal in the depth direction of the opening, and may be further inclined or provided with a protrusion.

また、本発明は、窯口近くのツインをなす2つのフリューの熱間補修への適用に限らず、さらに奥側のツインをなす2フリューあるいは4フリュー以上のフリューを含めた熱間補修を行う場合においても、積替補修を行ったフリューのすべてについて、フリューポートを閉止するとともにフリューの片側の炉壁煉瓦の下部の一部に開孔を設けことによって、窯口近くのツインフリューの場合と同様に、適用することができる。   In addition, the present invention is not limited to the hot repair of two flues forming a twin near the kiln entrance, and further performs hot repair including two flues forming a deeper twin or four flues or more. Even in the case of twin flues near the kiln entrance, all the flues that had undergone transshipment repair were closed with the fuluport closed and an opening was formed in the lower part of the furnace wall brick on one side of the flues. Similarly, it can be applied.

本発明は、ツインフリュー式の燃焼様式を有するコークス炉においては、底部のみに燃料貧ガス用ポートと燃焼空気用ポートを有する単段バーナー構造の場合だけでなく、燃焼室中段に燃焼空気用ポートを有する多段バーナー構造においても、底部の貧ガスと燃焼空気用ポートのみならず、同時に中段の燃焼空気用ポートも、底部のポートと同様に箔状物で閉止することによって、単段バーナー構造の場合と全く同様に適用することが可能である。   The present invention is not limited to a single-stage burner structure having a fuel poor gas port and a combustion air port only at the bottom in a coke oven having a twin flue type combustion mode, but also a combustion air port in the middle stage of the combustion chamber. In the multi-stage burner structure having a single stage burner structure, not only the poor gas and the combustion air port at the bottom, but also the middle combustion air port at the same time is closed with a foil like the bottom port. It can be applied in exactly the same way.

さらに、本発明は、フリューの上部に連通したホリゾンタルカナルを有する燃焼方式のコークス炉においても、積替するフリューと積替しないフリューとを遮断するようにホリゾンタルカナルの中に耐火材料などで遮閉物を施し、積替しないフリューからの燃焼ガスの流入を阻止することによって、ツインフリュー式の燃焼様式の場合と同様に適用することが可能である。   Furthermore, the present invention is also applicable to a combustion-type coke oven having a horizontal canal communicating with the upper part of the flue, so that the horizontal canal is shielded with a refractory material or the like so as to shut off the flue to be refilled and the flue not to be reloaded. By applying an object and preventing the inflow of combustion gas from a non-reloading flue, it can be applied in the same manner as in the case of a twin flue type combustion mode.

次に、本発明を、実施例を参照しながらより具体的に説明する。   Next, the present invention will be described more specifically with reference to examples.

本発明の一実施例として、複式コークス炉において1列の燃焼室の窯口近くのツインをなす単段バーナー構造の2つのフリューのみを単独で熱間積替補修する場合について、図1、図2及び図3を参照しながら説明する。   As an embodiment of the present invention, in the case where only two flues of a single stage burner structure forming a twin near the kiln opening of a single row combustion chamber in a double coke oven are independently repaired by hot transshipment, FIG. 2 and FIG.

図1は、コークス炉の1つの燃焼室20aの窯口近くの2つのフリュー21a及び21bについて炭化室炉底レベルから炉頂まで熱間補修を行う場合の補修部分(図中、太線で網掛けを施した部分が積替補修対象部分を示す。以下の図においても同様)の断面図であり、図2は、図1中のA−A断面図であり、フリューポート22、23の閉止を箔状物27で行った場合の例を示し、図3は、フリューポート22、23の閉止を断熱材料29で行った場合の例のフリューポート22、23付近を部分的に示す説明図である。   FIG. 1 shows a repaired part in the case where hot repair is performed from the level of the bottom of the carbonization chamber to the top of the two flues 21a and 21b near the furnace port of one combustion chamber 20a of the coke oven (in the figure, shaded with thick lines) (The same applies to the following drawings.) FIG. 2 is a cross-sectional view taken along the line AA in FIG. FIG. 3 is an explanatory view partially showing the vicinity of the flue ports 22 and 23 in the example in the case where the flue ports 22 and 23 are closed by the heat insulating material 29. .

フリューポート22、23の閉止を箔状物で行う場合は、図1及び図2に示すように、煉瓦積替したフリュー21a及び21bの左右いずれか片側の炉壁煉瓦の下部の一部を開孔し、且つフリューポート22、23を600℃以上の溶融温度を有する箔状物27で閉止する。   When closing the flue ports 22 and 23 with a foil-like material, as shown in FIG. 1 and FIG. 2, a part of the lower part of the furnace wall brick on either one of the left and right sides of the flues 21a and 21b after brick replacement is opened. The flue ports 22 and 23 are closed with a foil 27 having a melting temperature of 600 ° C. or higher.

図4は、珪石煉瓦の熱膨張特性曲線の一例のグラフである。
炉壁と仕切壁を構成する珪石煉瓦は、図4の熱膨張特性曲線に示すように、おおよそ600℃以下の温度領域で急峻な熱膨張挙動を示すが、それより高い温度領域では熱膨張が緩慢かつ僅少であるという特徴を有する。このため、600℃以下の境域での昇温は急激な煉瓦膨張の発現を抑止すべく、熱気の流入量を精確に制御しながら緩慢かつ均一であることが有効であり、一方で600℃超の高い温度領域に到達して以降は、昇温速度が大きくなっても差しつかえない。
FIG. 4 is a graph of an example of the thermal expansion characteristic curve of the quartz brick.
As shown in the thermal expansion characteristic curve of FIG. 4, the silica bricks constituting the furnace wall and the partition wall show a steep thermal expansion behavior in a temperature range of approximately 600 ° C. or lower, but the thermal expansion is higher in the higher temperature range. It is characterized by being slow and scarce. For this reason, it is effective that the temperature rise in the boundary region of 600 ° C. or less is slow and uniform while accurately controlling the inflow amount of hot air in order to suppress rapid brick expansion, while it exceeds 600 ° C. After reaching the high temperature range, the rate of temperature increase may be increased.

したがって、フリューポート22、23を閉止するのに用いる箔状物27は、少なくとも600℃程度までは溶融せず、燃料貧ガス用ポート22、燃焼空気用ポート23からの通気を確実に遮閉できるとともに、それ以上の温度になれば溶融し、最終的にコークス炉の通常の操業温度である1000℃以上では溶融消失する特性を有する箔状物が適する。そのような箔状物を用いることによって、前述のように、昇温終了時の炉壁煉瓦の開孔の閉塞復旧に先だってそれを取り除く手間が不要であるという利点がある。   Therefore, the foil 27 used to close the flue ports 22 and 23 does not melt up to at least about 600 ° C. and can reliably block the ventilation from the fuel poor gas port 22 and the combustion air port 23. At the same time, a foil-like material that melts at a temperature higher than that and finally melts and disappears at a temperature higher than 1000 ° C., which is a normal operating temperature of a coke oven, is suitable. By using such a foil-like material, as described above, there is an advantage that it is not necessary to remove it prior to the restoration of the closed opening of the furnace wall brick at the end of the temperature rise.

そのような意味から、燃料貧ガス用ポート22、燃焼空気用ポート23を閉止するのに用いる箔状物27は、600℃以上の溶融温度を有するという温度条件を満たし、気体遮断性を有するとともに、その溶融物が煉瓦を侵食する性質がないという条件を満たす材料であれば、金属、非金属のいずれでも差しつかえないが、溶融温度が660℃である箔状アルミニウムはその性状が要求条件を満たしており、加えて加工の容易さや入手し易さの面からも本用途に適した材料の一つである。   From such a meaning, the foil 27 used for closing the fuel poor gas port 22 and the combustion air port 23 satisfies the temperature condition of having a melting temperature of 600 ° C. or higher, and has a gas barrier property. As long as the material satisfies the condition that the melt does not have the property of eroding bricks, either metal or non-metal can be used. However, the properties of foil-like aluminum having a melting temperature of 660 ° C. are required. In addition, it is one of the materials suitable for this application in terms of ease of processing and availability.

なお、箔状アルミニウムは、アルミニウム以外の成分を多量に含むと溶融した後の残渣によって煉瓦が侵食される懸念があるので、それを回避するため、アルミニウム以外の成分の含有率は5質量%未満であることが好ましい。   In addition, since there is a concern that bricks may be eroded by the residue after melting if foil-containing aluminum contains a large amount of components other than aluminum, the content of components other than aluminum is less than 5% by mass in order to avoid this It is preferable that

また、燃料貧ガス用ポート22、燃焼空気用ポート23を閉止する箔状物27は、煉瓦積みを行う時にポート用煉瓦28とその下の煉瓦の間にはさみ込んで固定するのが、昇温の途中での通気圧力による剥離や飛散を防止する観点から、有効である。   Further, the foil-like object 27 for closing the fuel poor gas port 22 and the combustion air port 23 is sandwiched and fixed between the port brick 28 and the brick below it when the brick is stacked. This is effective from the viewpoint of preventing peeling and scattering due to the aeration pressure in the middle.

一方、燃料貧ガス用ポート22、燃焼空気用ポート23の閉止に断熱材料を用いる場合は、図3に示すように、煉瓦積替したフリュー21a及び21bの左右いずれか片側の炉壁煉瓦の下部の一部を開孔し、且つ燃料貧ガス用ポート22、燃焼空気用ポート23を1000℃以上の耐熱性を有する断熱材料で閉止する。   On the other hand, when a heat insulating material is used for closing the fuel poor gas port 22 and the combustion air port 23, as shown in FIG. 3, the lower part of the furnace wall brick on either one of the left and right sides of the flues 21a and 21b that have been brick-replaced And a port 22 for fuel poor gas and a port 23 for combustion air are closed with a heat insulating material having heat resistance of 1000 ° C. or higher.

燃料貧ガス用ポート22、燃焼空気用ポート23を閉止するのに用いる断熱材料は、おおよそ1000℃まで溶損することのない耐熱性を有するもので、気体の自由な透過を遮断できる程度の緻密性をもつ材料であれば材質を特定しない。断熱材料の形態としては、燃料貧ガス用ポート22、燃焼空気用ポート23の閉止の気密性を確保するために断熱材料を燃料貧ガス用ポート22、燃焼空気用ポート23に形状を合せる必要があることを考慮すると、ケイ酸カルシウムなどを板状に成形した断熱ボード、あるいはブランケット状に加工されたセラミック繊維などが本用途に適した材料である。   The heat insulating material used to close the fuel poor gas port 22 and the combustion air port 23 has heat resistance that does not melt up to approximately 1000 ° C., and is dense enough to block free permeation of gas. The material is not specified if it is a material having. As the form of the heat insulating material, it is necessary to match the shape of the heat insulating material to the fuel poor gas port 22 and the combustion air port 23 in order to ensure the airtightness of the closing of the fuel poor gas port 22 and the combustion air port 23. In consideration of the fact, a heat insulating board formed of calcium silicate or the like into a plate shape, or a ceramic fiber processed into a blanket shape is a suitable material for this application.

フリュー点検孔30の上部には、ドラフト効果によって炉壁煉瓦の下部の一部開孔からの熱気の吸引導入を促進し、フリュー21a、21b内の熱気の通気を容易にするために、排気ダクト31を接続することが好ましい。さらに、排気ダクト31には熱気の流量を自在に調整するためのオリフィス32などの流量調整機構を適宜取り付けることが好ましい。   An exhaust duct is provided above the flue inspection hole 30 in order to facilitate the introduction of hot air through a partial opening in the lower part of the furnace wall brick and facilitate ventilation of the hot air in the flues 21a and 21b. It is preferable to connect 31. Further, it is preferable that a flow rate adjusting mechanism such as an orifice 32 for freely adjusting the flow rate of hot air is appropriately attached to the exhaust duct 31.

このとき、排気ダクト31は、図2に示すように、フリュー21a及び21bの点検孔に接続したダクトを大気排出する前に合流させる構成でもよいし、あるいは図示しないが、それぞれのフリュー21a、21bにそれぞれ単独のダクトを接続し、排気することでも構わない。   At this time, as shown in FIG. 2, the exhaust duct 31 may have a structure in which ducts connected to the inspection holes of the flues 21a and 21b are joined before being discharged to the atmosphere, or although not shown, the respective flues 21a and 21b. Each may be connected to a single duct and exhausted.

このような状態で炭化室10aの奥側に設置した断熱隔壁11の一部を開放して炭化室11の奥側の熱気41を炭化室10a内に流入させると、その熱気が炉壁煉瓦25に設けられた開孔35からフリュー21a、21b内に吸引導入され、ドラフトで底部から上部に向かって上昇し、フリュー21a、21bを構成する積替煉瓦を内部から加熱した後、上部の点検孔30に導かれる。   In this state, when a part of the heat insulating partition wall 11 installed on the back side of the carbonization chamber 10a is opened and the hot air 41 on the back side of the carbonization chamber 11 flows into the carbonization chamber 10a, the hot air is supplied to the furnace wall brick 25. Are introduced into the flues 21a and 21b through the openings 35, and are raised from the bottom to the top by a draft. After the translucent brick constituting the flues 21a and 21b is heated from the inside, the upper inspection holes 30.

熱気41をフリュー21a、21b内の下から上に通気させることによる加熱は、炭化室10a側に熱風を導入する方法や対面する炉壁からの放射熱によって加熱する方法よりも、上下方向の加熱の均一性を保つのに有利である。   The heating by letting hot air 41 flow from the bottom to the top of the flue 21a, 21b is more in the vertical direction than the method of introducing hot air to the carbonization chamber 10a side or the method of heating by radiant heat from the facing furnace wall. It is advantageous to maintain the uniformity of the.

さらに、フリュー21a、21b内部に熱気41を通気させることによる加熱は、炉壁煉瓦25と仕切壁煉瓦26を同時に加熱することができるので、フリュー21a、21bの内外部の昇温の不均一を抑制できるという点で従来の方法にない優位性を有する。   Furthermore, the heating by ventilating the hot air 41 inside the flues 21a and 21b can simultaneously heat the furnace wall brick 25 and the partition wall brick 26, so that the temperature rise inside and outside the flues 21a and 21b is not uniform. It has an advantage over conventional methods in that it can be suppressed.

また、フリュー点検孔30に接続された排気ダクト31に備えた流量調整用のオリフィス32の口径を変更することによって、フリュー21a、21bの中に入れた熱電対で測定したフリュー21a、21bの内部温度に応じて熱気41の流量を自在に調整し温度を制御できるようになり、フリュー21a、21bの内部温度を予め設定した温度パターンに沿って上昇させていくことを容易にする。これは、従来の方法において行われるような炭化室の奥側に取り付けられた断熱隔壁11a及び11bの一部開放部の開口面積を変更調整するという煩瑣な作業を繰り返すことなく、オリフィス32の交換のみで簡便に熱気41の流量の制御ができるということを意味しており、作業の手間を軽減するだけでなく温度制御の精度を向上させるうえでも有効である。   Further, by changing the diameter of the flow rate adjusting orifice 32 provided in the exhaust duct 31 connected to the flue inspection hole 30, the inside of the flue 21a, 21b measured by the thermocouple placed in the flue 21a, 21b. The flow rate of the hot air 41 can be freely adjusted according to the temperature to control the temperature, and it is easy to raise the internal temperatures of the flues 21a and 21b along a preset temperature pattern. This is because the orifice 32 can be replaced without repeating the cumbersome work of changing and adjusting the opening area of the partially opened portions of the heat insulating partition walls 11a and 11b attached to the back side of the carbonization chamber as in the conventional method. This means that the flow rate of the hot air 41 can be controlled simply and simply, and this is effective not only in reducing the labor of work but also in improving the accuracy of temperature control.

熱気41の流量調整方法としては、オリフィス32に限ることはなく、例えばバタフライ弁等の流量可変弁を取り付けることによっても必要な機能を満たすことができる。
また、昇温に際して、炭化室10bの奥側に取り付けられた断熱隔壁11は、一切開放はせず、断熱状態を保持したままとして炭化室10bの奥側からの熱気41の流入を遮蔽すると同時に、積替した炉壁煉瓦25は、ブランケット状のセラミック繊維またはボード状の断熱材12で全面を覆って炉壁煉瓦面からの放熱を防止し、かつ対面する炉壁からの放射熱を受けるのを妨げることが好ましい。
The method of adjusting the flow rate of the hot air 41 is not limited to the orifice 32, and for example, a necessary function can be satisfied by attaching a flow rate variable valve such as a butterfly valve.
In addition, when the temperature is raised, the heat insulating partition wall 11 attached to the back side of the carbonization chamber 10b is not opened at all, and the inflow of hot air 41 from the back side of the carbonization chamber 10b is shielded while keeping the heat insulation state. The refilled furnace wall brick 25 covers the entire surface with a blanket-like ceramic fiber or board-like heat insulating material 12 to prevent heat dissipation from the furnace wall brick surface, and receives radiant heat from the facing furnace wall. It is preferable to prevent.

昇温が終了した段階で、フリューポート21a、21bを閉止していた箔状物27は、自動的に溶融して消失しているので、意図してそれを取り除く必要もなく、炉壁煉瓦25の一部に設けられていた開孔35を炉壁煉瓦で閉塞復旧するとともに、フリュー点検孔30に接続していた排気ダクト31を撤去してフリュー点検孔30の蓋を閉止し、通常の燃焼切替による交互のガス流れに復帰させればよい。   The foil 27 that has closed the flue ports 21a and 21b at the stage where the temperature rise is finished is automatically melted and disappears, so that it is not necessary to remove it intentionally and the furnace wall brick 25 The opening 35 provided in a part of the exhaust pipe 31 is closed with a furnace wall brick, the exhaust duct 31 connected to the flue inspection hole 30 is removed, the lid of the flue inspection hole 30 is closed, and normal combustion is performed. What is necessary is just to return to the alternate gas flow by switching.

また、フリューポートの閉止を断熱材料29で行った場合は、昇温が終了した段階で炉壁煉瓦25の一部に設けられて開孔35から断熱材料29を外部に取り出し、その後で、開孔35を炉壁煉瓦で閉塞復旧するとともに、フリュー点検孔30に接続していた排気ダクト31を撤去してフリュー点検孔30の蓋を閉止し、通常のガス流れに復帰させればよい。   Further, in the case where the flue port is closed with the heat insulating material 29, the heat insulating material 29 is provided to a part of the furnace wall brick 25 at the stage where the temperature rise is finished, and the heat insulating material 29 is taken out from the opening 35, and then opened. The hole 35 may be restored by closing the furnace wall brick, the exhaust duct 31 connected to the flue inspection hole 30 may be removed, the lid of the flue inspection hole 30 may be closed, and the normal gas flow may be restored.

次に、燃焼室の窯口近くの2つのフリューの熱間補修を順次1列ずつ隣りの燃焼室へ連続的に施工する場合について、図5を参照しながら説明する。
図5は、燃焼室の端の2つのフリュー21a、21bを1列ずつ連続して熱間補修する場合の昇温の方法を示す水平断面図である。
Next, the case where the hot repair of two flues near the kiln entrance of the combustion chamber is successively applied to the adjacent combustion chamber one row at a time will be described with reference to FIG.
FIG. 5 is a horizontal sectional view showing a method of raising the temperature when two flues 21a and 21b at the end of the combustion chamber are successively repaired one by one.

連続的に施工する場合、燃焼室20aのフリュー21a及び21bの積替が終り、昇温を開始する時点では、次の補修対象である燃焼室20bは、既に旧煉瓦の解体あるいは新煉瓦積作業が始められているので、図10に示したような炭化室の奥側から熱気を導入するなどの従来の方法では、炭化室10bからの熱気の導入だけでなく対面する燃焼室の炉壁からの放射熱の受容も不能となり、積替えた燃焼室の右側から炉壁煉瓦25を昇温することができなくなる。   In the case of continuous construction, when the replacement of the flues 21a and 21b of the combustion chamber 20a is completed and the temperature rise is started, the combustion chamber 20b that is the next repair target has already been demolished or new brickwork. Therefore, in the conventional method such as introducing hot air from the back side of the carbonization chamber as shown in FIG. 10, not only the introduction of hot air from the carbonization chamber 10b but also the furnace wall of the facing combustion chamber. The radiant heat cannot be received, and the furnace wall brick 25 cannot be heated from the right side of the transposed combustion chamber.

そのため、燃焼室20aの右側と左側の昇温の大きなアンバランスが避けられず、もしもその状態で片側からのみ昇温した場合、不均等昇温に伴なって発生する炉壁の変形、煉瓦亀裂、目地切れなどの事態を招くことが強く懸念されるので、事実上昇温が不可能となる。   Therefore, a large imbalance between the right and left temperature rises of the combustion chamber 20a is unavoidable, and if the temperature rises only from one side in that state, the furnace wall deformation and brick cracks that occur due to uneven temperature rise Since there is a strong concern that it will cause a situation such as disconnection, it is virtually impossible to raise the temperature.

しかし、実施例1と同様に、本発明を適用することによって、図5に示すように、隣りの燃焼室20bがすでに煉瓦解体あるいは新煉瓦積の状態にあっても、積替えを終了した燃焼室20aのフリュー21a及び21bの積替炉壁を独自に均一に加熱することが可能となる。   However, in the same manner as in the first embodiment, by applying the present invention, as shown in FIG. 5, even when the adjacent combustion chamber 20b is already in the state of brick dismantling or new brick building, the combustion chamber in which the transshipment is completed is completed. It becomes possible to independently and uniformly heat the transshipment furnace walls of the flues 21a and 21b of 20a.

本発明の実施の例を、2列の燃焼室の窯口近くの2つの熱間補修を順次隣りあう燃焼室へ2列ずつ連続的に施工する場合について、図6を参照しながら説明する。
図6は、燃焼室の端の2つのフリュー21a、21bを2列ずつ連続して熱間補修する場合の昇温の方法を示す水平断面図である。
An embodiment of the present invention will be described with reference to FIG. 6 in the case where two hot repairs near the kiln entrances of two rows of combustion chambers are successively applied to adjacent combustion chambers in two rows.
FIG. 6 is a horizontal cross-sectional view showing a method of raising the temperature when two flues 21a and 21b at the end of the combustion chamber are successively repaired in two rows.

連続的に2列ずつ施工する場合、燃焼室20a及び20bのそれぞれのフリュー21a及び21bの積替えが終り、昇温を開始する時点では、次の補修対象である燃焼室20c及び20dは、すでに旧煉瓦の解体あるいは新煉瓦積作業が始められているので、燃焼室20aについては、炭化室の奥側から熱気を導入する従来の方法で昇温が可能であるものの、燃焼室20bについては実施例2と同様に、従来の方法で炭化室の奥側から熱気を導入することも対面する燃焼室炉壁からの放射熱の受容することもできず、積替えた燃焼室20bの右側からの昇温ができない。   When two rows are constructed continuously, when the transshipment of the respective flues 21a and 21b of the combustion chambers 20a and 20b is completed and the temperature rise is started, the combustion chambers 20c and 20d to be repaired are already old. Since brick dismantling or new brick building work has started, the combustion chamber 20a can be heated by a conventional method of introducing hot air from the back of the carbonization chamber, but the combustion chamber 20b is an embodiment. 2, neither the introduction of hot air from the back side of the carbonization chamber nor the reception of radiant heat from the facing combustion chamber furnace wall by the conventional method can be performed, and the temperature rise from the right side of the transposed combustion chamber 20 b I can't.

図6に示すように、燃焼室20bのフリュー21a及び21bに、本発明の昇温方法を適用することによって、隣りの燃焼室20cが煉瓦解体あるいは新煉瓦積の状態にあっても、積替えを終了した燃焼室20bのフリュー21a及び21bの積替炉壁を独自に昇温することが可能となる。   As shown in FIG. 6, by applying the temperature raising method of the present invention to the flues 21a and 21b of the combustion chamber 20b, transshipment can be performed even if the adjacent combustion chamber 20c is in the state of brick dismantling or new brick building. It is possible to independently raise the temperature of the transshipment furnace walls of the fulu 21a and 21b of the finished combustion chamber 20b.

図6では、積替を行った2列の燃焼室のうち燃焼室20bのみに本発明の方法を適用した例を示したが、燃焼室20a及び20bの双方に本発明の方法を適用することも可能である。   Although FIG. 6 shows an example in which the method of the present invention is applied only to the combustion chamber 20b among the two rows of combustion chambers subjected to transshipment, the method of the present invention is applied to both the combustion chambers 20a and 20b. Is also possible.

なお、単列あるいは2列単位の補修に限らず、3列あるいはそれより多数列の燃焼室の熱間補修を順次隣りあう燃焼室へ連続的に施工する場合についても、2列単位の補修の場合と同様に、本発明の方法を適用することができる。   It should be noted that not only single-row or double-row repairs but also hot repairs of three or more rows of combustion chambers are successively applied to the adjacent combustion chambers in succession. As in the case, the method of the invention can be applied.

10、10a〜10d 炭化室
11 断熱隔壁
11a 断熱隔壁(一部開放状態)
12 断熱材
13 窯口断熱蓋
20、20a〜20d 燃焼室
21、21a、21b フリュー
22 燃料貧ガス用ポート
23 燃焼空気用ポート
25 炉壁煉瓦
26 仕切壁煉瓦
27 箔状物
28 ポート用煉瓦
29 断熱材料
30 フリュー点検孔
31 排気ダクト
32 調整用オリフィス
35 炉壁煉瓦に設けた開孔
40 蓄熱室
41 熱気
10, 10a to 10d Carbonization chamber 11 Heat insulation partition 11a Heat insulation partition (partially open state)
12 Heat Insulating Material 13 Furnace Insulation Lid 20, 20a-20d Combustion Chamber 21, 21a, 21b Flue 22 Fuel Poor Gas Port 23 Combustion Air Port 25 Furnace Wall Brick 26 Partition Wall Brick 27 Foil 28 Port Brid 29 Heat Insulation Material 30 Flue inspection hole 31 Exhaust duct 32 Adjustment orifice 35 Opening hole 40 provided in furnace wall brick Thermal storage chamber 41 Hot air

Claims (4)

石炭を受け入れ加熱乾留するための炭化室と、炉長方向へ複数配置される仕切壁煉瓦および、前記炭化室に臨む炉壁煉瓦によって区画される複数のフリューを備え、燃料ガスを燃焼させて前記石炭に乾留するための熱量を与える燃焼室とが交互に配置されるとともに、前記燃焼室の下部に該燃焼室に接続する蓄熱用煉瓦を充填されて配置される蓄熱室を備える室炉式コークス炉における一部の前記フリューの煉瓦積替を熱間で行った後に、積替した煉瓦の昇温が終了するまでの間、当該煉瓦の昇温を、
煉瓦積替を行った前記フリューの炉壁煉瓦の下部の一部に開孔を設け、且つ当該フリューの燃料ガスあるいは空気供給用の開口部であるフリューポートを閉止するともに、前記フリューに隣接する炭化室内に流入させた、奥側の非積替部からの熱気を前記開孔から当該フリューの内部に導入し、当該フリューの直上にあるフリュー点検孔から前記フリューの内部を上昇してきた熱気を排気すること
によって行うことを特徴とするコークス炉の熱間積替炉壁の昇温方法。
A carbonization chamber for receiving and heat-distilling coal, a plurality of partition wall bricks arranged in the furnace length direction, and a plurality of flues partitioned by the furnace wall bricks facing the carbonization chamber, and burning fuel gas to Combustion chamber type coke provided with heat storage chambers arranged alternately with combustion chambers that give heat for coal to dry distillation and filled with heat storage bricks connected to the combustion chambers at the bottom of the combustion chambers After performing brick transshipment of a part of the flue in the furnace hot, until the temperature rise of the transposed brick is completed,
An opening is provided in a part of the lower part of the furnace wall brick of the flue that has undergone brick transshipment, and the flue port that is an opening for supplying fuel gas or air of the flue is closed and adjacent to the flue. Hot air that has flowed into the carbonization chamber from the non-reloading portion on the back side is introduced into the flue from the opening, and hot air that has risen inside the flue from the flue inspection hole that is directly above the flue. A method for raising the temperature of a hot trans-transfer furnace wall of a coke oven, characterized by being performed by exhausting.
前記煉瓦積替を行ったフリューの直上にある点検孔上部に排気ダクトを接続し、前記フリューの内部を上昇する熱気の流量を調整することを特徴とする請求項1に記載されたコークス炉の熱間積替炉壁の昇温方法。   2. The coke oven according to claim 1, wherein an exhaust duct is connected to an upper part of an inspection hole immediately above the flue that has undergone brick transshipment, and a flow rate of hot air rising inside the flue is adjusted. Method for raising the temperature of the hot transshipment furnace wall. 燃料ガスあるいはエアー供給用の開口部を600℃以上の温度で溶融消失する箔状物で閉止することを特徴とする請求項1又は請求項2に記載されたコークス炉の熱間積替炉壁の昇温方法。   The hot-reloading furnace wall of a coke oven according to claim 1 or 2, wherein the opening for supplying fuel gas or air is closed with a foil-like material that melts and disappears at a temperature of 600 ° C or higher. Temperature rising method. 燃料ガスあるいはエアー供給用の開口部を1000℃以上の耐熱性を有する断熱材料で閉止することを特徴とする請求項1又は請求項2に記載されたコークス炉の熱間積替炉壁の昇温方法。   The opening for supplying a fuel gas or air is closed with a heat insulating material having a heat resistance of 1000 ° C. or higher. Warm method.
JP2011047733A 2011-03-04 2011-03-04 Coke oven hot transfer furnace wall temperature rising method Active JP5703852B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011047733A JP5703852B2 (en) 2011-03-04 2011-03-04 Coke oven hot transfer furnace wall temperature rising method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011047733A JP5703852B2 (en) 2011-03-04 2011-03-04 Coke oven hot transfer furnace wall temperature rising method

Publications (2)

Publication Number Publication Date
JP2012184309A true JP2012184309A (en) 2012-09-27
JP5703852B2 JP5703852B2 (en) 2015-04-22

Family

ID=47014665

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011047733A Active JP5703852B2 (en) 2011-03-04 2011-03-04 Coke oven hot transfer furnace wall temperature rising method

Country Status (1)

Country Link
JP (1) JP5703852B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116948663A (en) * 2023-09-19 2023-10-27 上海电气集团国控环球工程有限公司 Vertical heat recovery coke oven

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798582A (en) * 1980-12-10 1982-06-18 Sumikin Coke Co Ltd Method for raising temperature of hot stacked and replaced wall of coke oven
JPH0978069A (en) * 1995-09-11 1997-03-25 Sumitomo Metal Ind Ltd Temperature elevation in hot repairing of coke furnace
JPH10121051A (en) * 1996-10-22 1998-05-12 Sumitomo Metal Ind Ltd Method for controlling elevating temperature of coke oven hot re-layable wall
JP2005154597A (en) * 2003-11-26 2005-06-16 Jfe Steel Kk Method for hot repair of coke oven

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5798582A (en) * 1980-12-10 1982-06-18 Sumikin Coke Co Ltd Method for raising temperature of hot stacked and replaced wall of coke oven
JPH0978069A (en) * 1995-09-11 1997-03-25 Sumitomo Metal Ind Ltd Temperature elevation in hot repairing of coke furnace
JPH10121051A (en) * 1996-10-22 1998-05-12 Sumitomo Metal Ind Ltd Method for controlling elevating temperature of coke oven hot re-layable wall
JP2005154597A (en) * 2003-11-26 2005-06-16 Jfe Steel Kk Method for hot repair of coke oven

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116948663A (en) * 2023-09-19 2023-10-27 上海电气集团国控环球工程有限公司 Vertical heat recovery coke oven
CN116948663B (en) * 2023-09-19 2023-11-24 上海电气集团国控环球工程有限公司 Vertical heat recovery coke oven

Also Published As

Publication number Publication date
JP5703852B2 (en) 2015-04-22

Similar Documents

Publication Publication Date Title
US6139692A (en) Method of controlling the operating temperature and pressure of a coke oven
CN107075379B (en) Coke ovens with improved exhaust gas delivery in the secondary heating chamber
JP6753338B2 (en) Hot brick transshipment repair method for coke oven
CN101460592A (en) Floor structure for horizontal chamber coke ovens
JP5206080B2 (en) Coke oven drying method for burning
JP5703852B2 (en) Coke oven hot transfer furnace wall temperature rising method
CN109337697A (en) A method of solving the blowby of coke oven brick gas passage
JP5206079B2 (en) Coke oven drying stopper
CN215049884U (en) Coke oven negative pressure oven drying equipment adopting positive pressure oven drying technology
JP3355014B2 (en) Coke oven hot repair method
JPS6154350B2 (en)
JP2614582B2 (en) Temperature control method of non-repaired part during hot repair of coke oven
JP5477232B2 (en) Coke oven
JP2019108510A (en) Method for repairing chamber oven type coke oven
JP4846512B2 (en) Carbon adhesion control method for coke oven carbonization chamber
JPS6152194B2 (en)
KR101424904B1 (en) Method for repairing coke oven
JPS6131749B2 (en)
JP6060795B2 (en) Furnace end insulation structure
JP2021031581A (en) Method for repairing coke oven
CN204779642U (en) Hot -air furnace
JP6544103B2 (en) Chamber type coke oven
JP2006070188A (en) Coke oven and method of inhibiting attachment of carbon to upper part of carbonization chamber in coke oven
JP2001026781A (en) Method for heat insulating inside of furnace in repairing coke oven brick
JP2010184983A (en) Method for raising temperature after restacking brick in carl still coke oven

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121011

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20121011

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130812

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20140411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141211

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150209

R151 Written notification of patent or utility model registration

Ref document number: 5703852

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350