JP2021031581A - Method for repairing coke oven - Google Patents
Method for repairing coke oven Download PDFInfo
- Publication number
- JP2021031581A JP2021031581A JP2019152928A JP2019152928A JP2021031581A JP 2021031581 A JP2021031581 A JP 2021031581A JP 2019152928 A JP2019152928 A JP 2019152928A JP 2019152928 A JP2019152928 A JP 2019152928A JP 2021031581 A JP2021031581 A JP 2021031581A
- Authority
- JP
- Japan
- Prior art keywords
- repair
- combustion chamber
- transshipment
- temperature
- transshipment repair
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000571 coke Substances 0.000 title claims abstract description 111
- 238000000034 method Methods 0.000 title claims abstract description 73
- 238000002485 combustion reaction Methods 0.000 claims abstract description 197
- 239000011449 brick Substances 0.000 claims abstract description 50
- 230000008439 repair process Effects 0.000 claims description 293
- 230000006866 deterioration Effects 0.000 claims description 24
- 239000000446 fuel Substances 0.000 claims description 6
- 238000003763 carbonization Methods 0.000 description 22
- 239000000567 combustion gas Substances 0.000 description 20
- 238000004519 manufacturing process Methods 0.000 description 17
- 238000009413 insulation Methods 0.000 description 9
- 239000002737 fuel gas Substances 0.000 description 8
- 239000000725 suspension Substances 0.000 description 7
- 230000000694 effects Effects 0.000 description 5
- 206010022000 influenza Diseases 0.000 description 5
- 238000010276 construction Methods 0.000 description 4
- 230000007423 decrease Effects 0.000 description 4
- 230000002411 adverse Effects 0.000 description 3
- 239000006227 byproduct Substances 0.000 description 3
- 230000006266 hibernation Effects 0.000 description 3
- 230000008901 benefit Effects 0.000 description 2
- 239000003245 coal Substances 0.000 description 2
- 238000005338 heat storage Methods 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 239000011810 insulating material Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 238000004088 simulation Methods 0.000 description 2
- 238000005507 spraying Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 1
- 239000012141 concentrate Substances 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Landscapes
- Furnace Housings, Linings, Walls, And Ceilings (AREA)
- Coke Industry (AREA)
Abstract
Description
本発明は、コークス炉を積替補修するに際して、保温休止状態として積替補修するコークス炉の補修方法に関するものである。 The present invention relates to a method for repairing a coke oven in which the coke oven is transshipped and repaired in a heat-retaining state of rest when the coke oven is transshipped and repaired.
室炉式コークス炉(以下、単に「コークス炉」とも称する。)は、煉瓦を使用した構造物であり、炉体の下部に蓄熱室があり、上部には燃焼室と炭化室とが交互に配列される構成である。コークス炉は長年の稼働により燃焼室煉瓦が損傷する。 A chamber-type coke oven (hereinafter, also simply referred to as "coke oven") is a structure using bricks, and has a heat storage chamber at the bottom of the furnace body, and combustion chambers and carbonization chambers alternate at the top. It is an arranged structure. Combustion chamber bricks are damaged by the coke oven after many years of operation.
煉瓦の表面部などの軽微な損傷であれば、溶射や吹き付けで修復できるが、損傷が顕著になると、煉瓦を積み替える補修が必要となる。煉瓦を積み替える補修には複数の方法があるが、本明細書では、特に断らない限り、窯口補修法を対象とする。 Minor damage to the surface of bricks can be repaired by spraying or spraying, but if the damage becomes significant, it will be necessary to repair the bricks by reloading them. There are multiple methods for repairing bricks, but this specification covers the kiln mouth repair method unless otherwise specified.
窯口補修法は、燃焼室煉瓦の中で損傷が大きい窯口部の煉瓦を積み替える方法である。補修は、補修対象となる煉瓦を有する燃焼室の両側の炭化室側から、補修対象の煉瓦を解体し、新しい煉瓦に積み替える。 The kiln mouth repair method is a method of transshipping the bricks of the kiln mouth, which is the most damaged among the bricks in the combustion chamber. In the repair, the bricks to be repaired are dismantled from the carbonization chambers on both sides of the combustion chamber having the bricks to be repaired, and the bricks to be repaired are replaced with new bricks.
窯口補修が行われる燃焼室に隣接する炭化室では、当該補修期間中にはコークス製造はできない。一方、窯口補修中であっても、コークス炉団全体では、コークス製造量や副生ガス等の副産物生成量をできるだけ確保することが求められる。従って、補修に影響を与えない範囲でコークス製造や副産物生成(以下、「コークス操業」と総称する。)を継続しながら補修を実施する。すなわち、補修される燃焼室を熱供給源として用いる炭化室以外の炭化室ではコークス製造を継続し、補修される燃焼室においても補修される窯口部のフリュー以外のフリューでは燃焼を継続した状況で実施される。 In the carbonization chamber adjacent to the combustion chamber where the kiln mouth is repaired, coke cannot be produced during the repair period. On the other hand, even during the repair of the kiln mouth, it is required to secure as much as possible the amount of coke produced and the amount of by-products such as by-products produced in the entire coke oven. Therefore, the repair will be carried out while continuing coke production and by-product production (hereinafter collectively referred to as "coke operation") within a range that does not affect the repair. That is, the situation where coke production was continued in the carbonization chamber other than the carbonization chamber using the repaired combustion chamber as a heat supply source, and combustion was continued in the flue other than the flue of the kiln mouth to be repaired even in the repaired combustion chamber. It will be carried out at.
このように燃焼室における燃焼を継続しながら実施する補修は、常温で煉瓦積みを実施する補修形態と区別するために、熱間補修とも称される。前記した窯口補修法は、熱間補修でもある。そこで、特に断らない限り、熱間での窯口補修法を単に熱間補修と称する。 Repairs carried out while continuing combustion in the combustion chamber in this way are also referred to as hot repairs in order to distinguish them from repair forms in which brickwork is carried out at room temperature. The above-mentioned kiln mouth repair method is also hot repair. Therefore, unless otherwise specified, the hot kiln mouth repair method is simply referred to as hot repair.
熱間補修に際しては、補修対象にされてない煉瓦に、温度低下によって亀裂等の損傷が発生しないように高温状態に保持することが重要であり、一方、補修部位では、作業環境を確保するために断熱された構造物等が使用されるが、非補修部位からの伝熱は小さい方が好ましい。 During hot repair, it is important to keep the bricks that are not the target of repair in a high temperature state so that damage such as cracks does not occur due to temperature drop, while at the repair site, in order to secure a working environment. A heat-insulated structure or the like is used, but it is preferable that the heat transfer from the non-repaired part is small.
熱間補修の際には、まず積替補修部位以外の燃焼室を燃焼させたまま、積替補修部と非積替補修部間とを断熱のための耐火性ライニングを備えた断熱隔壁によって、炭化室を仕切る。次に、補修部位側である外部から断熱カーテンまたは断熱ボックスを挿入して、補修部位の作業環境を適切な温度に保持する。そして損傷部分の煉瓦壁を解体して新しく煉瓦壁を構築する。その間、非積替補修部の煉瓦は損傷しない程度の高温に保持されている。 At the time of hot repair, first, while burning the combustion chamber other than the transshipment repair part, the space between the transshipment repair part and the non-transshipment repair part is provided with a heat insulating partition wall equipped with a fireproof lining for heat insulation. Partition the carbonization chamber. Next, a heat insulating curtain or a heat insulating box is inserted from the outside on the repaired part side to maintain the working environment of the repaired part at an appropriate temperature. Then, the damaged brick wall is dismantled and a new brick wall is constructed. During that time, the bricks of the non-transshipment repair section are kept at a high temperature that does not damage them.
前述したように従来の熱間補修方法では、補修対象である燃焼室からの加熱対象ではない炭化室などの、補修作業に影響を及ぼさない炭化室ではコークスが製造されているので、コークス炉団全体では、コークス製造作業と補修作業を同時並行して実施することになる。通常はコークス製造のための付帯設備運転等のコークス製造作業の工程が優先して実施される。例えば、補修作業を実施している燃焼室の前を、コークス製造のために移動機が運転される場合は、その間は当該燃焼室の補修作業を実施する事ができないので、補修作業は待ち時間を必要とする事が避けられない。 As described above, in the conventional hot repair method, coke is produced in a carbonization chamber that does not affect the repair work, such as a carbonization chamber that is not a heating target from the combustion chamber that is the repair target. As a whole, coke manufacturing work and repair work will be carried out in parallel. Normally, the process of coke manufacturing work such as operation of ancillary equipment for coke manufacturing is prioritized. For example, if a mobile machine is operated to produce coke in front of the combustion chamber where the repair work is being carried out, the repair work cannot be carried out during that time, so the repair work is waiting. It is inevitable that you need.
一方で、従来の熱間補修方法は、コークス炉の補修とコークス操業が並行しているので、補修を実施する期間中であってもコークス操業が確保できており、コークス製造が継続できるメリットがある。しかし、この場合に問題となるのは、窯口の積替補修を行なう燃焼室において、積替補修部はガス供給を停止するので当該部分は低温となるため、特に積替補修部に近い部分の非積替補修部の温度を安定に制御することが困難になることであった。 On the other hand, in the conventional hot repair method, the coke oven repair and the coke operation are performed in parallel, so that the coke operation can be secured even during the repair period, and there is an advantage that the coke production can be continued. is there. However, in this case, the problem is that in the combustion chamber where the transshipment repair of the kiln mouth is performed, the transshipment repair part stops the gas supply, so that the part becomes cold, so the part especially close to the transshipment repair part. It was difficult to control the temperature of the non-transshipment repair part in a stable manner.
かかる問題に対し、特許文献1では燃焼室の炉底部炉長方向に配置された燃料供給管に、炉長方向の両側から燃料ガスを導入して、燃料室の各フリューに燃料ガスを供給するコークス炉において積替補修を行なう場合の燃焼室の加熱方法を開示している。 In response to this problem, in Patent Document 1, fuel gas is introduced from both sides in the direction of the furnace length into the fuel supply pipes arranged in the direction of the furnace length at the bottom of the combustion chamber, and the fuel gas is supplied to each flue in the combustion chamber. It discloses a method of heating a combustion chamber when transshipment repair is performed in a coke oven.
特許文献1の方法では、積替補修部に燃料ガスが供給されないように、積替補修部と非積替補修部との境界部に遮蔽物を設置する。積替補修部側の燃料供給管には燃料ガスを供給せず、非積替補修部のフリューには積替補修部側とは反対側から燃料ガスを供給する。この状態では、積替補修部と境界を接する非積替補修部のフリューに供給される燃料ガスは少なくなるので、当該非積替補修部のフリューに、燃料供給管とは独立した燃料ガスバーナーを設置して燃料ガスを供給する。特許文献1の方法は、このようにして非積替補修部のフリュー全体の温度変化を小さくしている。 In the method of Patent Document 1, a shield is installed at the boundary between the transshipment repair section and the non-transshipment repair section so that the fuel gas is not supplied to the transshipment repair section. Fuel gas is not supplied to the fuel supply pipe on the transshipment repair section side, and fuel gas is supplied to the flue of the non-transshipment repair section from the side opposite to the transshipment repair section side. In this state, the amount of fuel gas supplied to the flue of the non-transshipment repair section that is in contact with the transshipment repair section is reduced, so the fuel gas burner independent of the fuel supply pipe is supplied to the flue of the non-transshipment repair section. Is installed to supply fuel gas. In this way, the method of Patent Document 1 reduces the temperature change of the entire flue of the non-transshipment repair portion.
ところで、補修対象の燃焼室が多い場合には、補修対象の燃焼室と非補修対象の燃焼室とが、位置的にも作業計画の観点からも錯綜する。また、コークス製造のための移動機運転に対して、待ち時間を必要とする補修部位が増加する事になるので、補修作業に要する時間が増加することになる。 By the way, when there are many combustion chambers to be repaired, the combustion chambers to be repaired and the combustion chambers to be non-repaired are complicated in terms of position and work plan. In addition, since the number of repaired parts requiring a waiting time increases with respect to the operation of the mobile machine for coke production, the time required for the repair work increases.
すなわち、従来の方法ではコークス製造と補修作業という、異なる作業を並行して実施する事に伴う非効率性が顕著となる。補修作業の効率が悪化することは、補修作業の長期化に伴うコストの悪化のみならず、補修作業が完了しない部位ではコークス製造ができないので、コークス製造に関してコークス炉の操業度が低下して、コークス生産量が低下するという悪影響を生じる。このような問題は特許文献1の技術では解決できない。 That is, in the conventional method, the inefficiency associated with performing different operations in parallel, such as coke production and repair work, becomes remarkable. Deterioration of the efficiency of the repair work not only worsens the cost due to the lengthening of the repair work, but also the coke production cannot be performed in the part where the repair work is not completed. It has the adverse effect of reducing coke production. Such a problem cannot be solved by the technique of Patent Document 1.
そこで、本発明は補修対象となる燃焼室の数が多い場合に、効率良く積替補修を行うことができるコークス炉の補修方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a method for repairing a coke oven that can efficiently perform transshipment repair when the number of combustion chambers to be repaired is large.
上記問題を解決するために、本発明者らは鋭意検討した結果、コークス炉を保温休止状態にして積替補修を行うことに思い至った。 As a result of diligent studies in order to solve the above problems, the present inventors have come up with the idea of putting the coke oven in a heat-retaining state and performing transshipment repair.
ここで、「保温休止」とは「ホットバンキング」あるいは単に「バンキング」とも称され、コークス操業を休止して、いつでも再操業できるようにコークス炉の炉体の温度を高温状態で維持(保温)することである。 Here, "heat retention suspension" is also referred to as "hot banking" or simply "banking", and the temperature of the coke oven body is maintained at a high temperature (heat retention) so that the coke operation can be suspended and restarted at any time. It is to be.
コークス炉の保温休止に関する技術は、例えば特許文献2、3に記載されている。特許文献2はコークス生産を減産し、コークス炉が安定に稼働できる稼働率以下にするために、コークス炉を保温休止状態にするコークス炉の保温休止方法に関する技術を開示している。具体的には、移行期(断熱材装着期間)はコークス充填状態で炉内を保温し、断熱材装着後はコークスを排出して、燃焼ガスにより空炉で炉内を保温する技術を開示している。特許文献3は全炭化室の石炭を火落ちさせてコークス製造を停止した状態で、ドライメーンを更新する技術を開示している。この方法は、コークス炉付帯設備の補修・更新のためにコークス操業を行わない事例であり、炭化室とドライメーンを縁切りして、炭化室側はコークス充填状態で数日間保温を実施するものである。 Techniques related to heat retention suspension of a coke oven are described in, for example, Patent Documents 2 and 3. Patent Document 2 discloses a technique relating to a heat insulation suspension method for a coke oven, which puts the coke oven in a heat insulation suspension state in order to reduce the production of coke and keep the operation rate below which the coke oven can operate stably. Specifically, we disclose a technology that keeps the inside of the furnace warm in the state of being filled with coke during the transition period (the period of installing the heat insulating material), discharges the coke after installing the heat insulating material, and keeps the inside of the furnace warm in the empty furnace with combustion gas. ing. Patent Document 3 discloses a technique for renewing the dry main in a state where coal in all carbonization chambers is burned down and coke production is stopped. This method is an example in which the coke operation is not performed to repair or renew the equipment attached to the coke oven. The carbonization chamber and the dry main are separated, and the carbonization chamber side is kept warm for several days with the coke filled. is there.
しかしながら、保温休止状態でコークス炉の積替補修を行う技術は、発明者らが調べた限り存在しない。
その理由は、一般的にコークス炉を保温休止状態にする際は、炭化室内への空気の侵入による温度低下を抑制するためにコークス炉全体を密閉化して保護するためである。特許文献3はドライメーンの更新を保温休止状態で行っているので、付帯設備の更新のため炭化室を密閉したまま工事を行えるが、燃焼室の積替補修を行う場合は密閉状態を維持することが困難であり温度維持が難しかった。
かかる事情から、保温休止状態でコークス炉の積替補修を行うことは考えられていなかった。
However, as far as the inventors have investigated, there is no technique for transshipping and repairing a coke oven in a heat insulating state.
The reason is that, generally, when the coke oven is put into a heat-retaining hibernation state, the entire coke oven is sealed and protected in order to suppress the temperature drop due to the intrusion of air into the carbonization chamber. In Patent Document 3, since the dry main is renewed in a heat-retaining hibernation state, the construction can be carried out with the carbonization chamber sealed for the renewal of ancillary equipment, but the sealed state is maintained when the combustion chamber is transshipped and repaired. It was difficult to maintain the temperature.
Due to such circumstances, it was not considered to carry out transshipment repair of the coke oven in the heat insulation suspension state.
しかしながら、本発明者らは補修対象となる燃焼室の数が多い場合に、コークス炉を保温休止状態にして積替補修を行い、補修期間を短縮することによって、上記の不利益よりも補修期間の短縮による利益が勝ると考えた。 However, when the number of combustion chambers to be repaired is large, the present inventors put the coke oven in a heat-retaining state and perform transshipment repair to shorten the repair period, so that the repair period is longer than the above disadvantage. I thought that the profit from shortening the cost would be superior.
具体的には次のように考えた。まず、コークス操業と積替補修とを並行して実施する従来の補修方法(補修方法1)の補修期間を(1)とする。また、コークス炉を保温休止状態にして積替補修を行う補修方法(補修方法2)の補修期間を(2A)とする。補修方法2では補修期間(2A)後は通常のコークス操業が可能になる。そこで、補修期間(2A)後において、補修方法1の補修期間(1)におけるコークス生産量と同じになるまでコークス操業を行う場合の期間を(2B)とする。
このような場合に、補修対象となる燃焼室の窯口の数が少ないと、(1)≒(2A)+(2B)若しくは(1)<(2A)+(2B)となり、保温休止状態で積替補修を行うことによる悪影響が生じる場合がある。一方で、補修対象となる燃焼室の数が多いと、(1)>>(2A)になり、その結果(1)>(2A)+(2B)となるため、保温休止状態で積替補修を行うことによるメリットが大きくなる。
このように、補修対象となる燃焼室の数が多い場合には、コークス炉を保温休止状態にして積替補修を行うことがよいと考えられた。
Specifically, I thought as follows. First, the repair period of the conventional repair method (repair method 1) in which coke operation and transshipment repair are carried out in parallel is defined as (1). Further, the repair period of the repair method (repair method 2) in which the coke oven is put into a heat retaining state and the transshipment repair is performed is defined as (2A). In the repair method 2, normal coke operation becomes possible after the repair period (2A). Therefore, after the repair period (2A), the period in which the coke operation is performed until the coke production amount becomes the same as the coke production amount in the repair period (1) of the repair method 1 is defined as (2B).
In such a case, if the number of kiln openings in the combustion chamber to be repaired is small, (1) ≒ (2A) + (2B) or (1) <(2A) + (2B), and the heat retention is suspended. The adverse effects of transshipment repair may occur. On the other hand, if the number of combustion chambers to be repaired is large, (1) >> (2A) will occur, and as a result, (1)> (2A) + (2B) will be obtained. The benefits of doing this will increase.
In this way, when the number of combustion chambers to be repaired is large, it was considered better to put the coke oven in a heat-retaining state and perform transshipment repair.
このように、一定期間を炉の補修作業に集中するためにコークス炉を保温休止状態にする補修方法は、補修部位が増加したコークス炉では補修期間を短縮できる可能性を有する方法であるが、発明者らはその実施に際し、さらなる問題があることを知見した。 In this way, the repair method that puts the coke oven in a heat-retaining hibernation state in order to concentrate on the repair work of the furnace for a certain period of time is a method that has the potential to shorten the repair period in a coke oven with an increased number of repair sites. The inventors have found that there are further problems in implementing it.
保温休止状態でコークス炉の補修を行うためには、非積替補修部の温度管理と積替補修部の煉瓦の補修作業を同時並行で実施しなくてはならない。積替補修部では作業環境確保の観点から低温が好ましく、非積替補修部では煉瓦損傷回避の観点から高温が好ましい状態であることは明確である。しかし、積替補修部と非積替補修部とは、その境界付近で近接しており、境界の両側において十分な精度で独立した温度制御を行う事は容易ではない。特に、積替補修部に近接する非積替補修部の煉瓦温度が低温となってしまうという問題が生じる。煉瓦の温度が低温になると亀裂や割れ等が生じる。 In order to repair the coke oven while the heat insulation is suspended, the temperature control of the non-transshipment repair section and the brick repair work of the transshipment repair section must be carried out at the same time. It is clear that the transshipment repair section prefers a low temperature from the viewpoint of ensuring a working environment, and the non-transshipment repair section prefers a high temperature from the viewpoint of avoiding brick damage. However, the transshipment repair unit and the non-transshipment repair unit are close to each other in the vicinity of the boundary, and it is not easy to perform independent temperature control with sufficient accuracy on both sides of the boundary. In particular, there arises a problem that the brick temperature of the non-transshipment repair section near the transshipment repair section becomes low. When the temperature of the brick becomes low, cracks and cracks occur.
従来の熱間補修方法では、コークス操業と熱間補修作業が並行するため、コークス操業において個々の炭化室では、石炭装入から乾留、排出の工程の中で、工程に沿った周期的な温度変化はあるが、炉団全体の温度は高温の状態で安定しており、非積替補修部の温度も高温で維持されていた。これについて、本発明者らは、補修対象ではない燃焼室からの伝熱(熱補償)により非積替補修部が加温され、煉瓦の温度が高温で維持されていることを知見した。 In the conventional hot repair method, the coke operation and the hot repair work are performed in parallel. Therefore, in the coke operation, in each carbonization chamber, the periodic temperature along the process from coal charging to carbonization and discharge is performed. Although there were changes, the temperature of the entire furnace group was stable at a high temperature, and the temperature of the non-transshipment repair part was also maintained at a high temperature. Regarding this, the present inventors have found that the non-transshipment repaired portion is heated by heat transfer (heat compensation) from a combustion chamber that is not the target of repair, and the temperature of the brick is maintained at a high temperature.
上記の知見に基づいて、本発明者らはさらに鋭意検討した結果、補修対象の燃焼室に隣接する燃焼室の温度を制御することにより、非積替補修部の温度を煉瓦が劣化しない温度に制御できることを見出し、本発明を完成させた。 Based on the above findings, as a result of further diligent studies, the present inventors have controlled the temperature of the combustion chamber adjacent to the combustion chamber to be repaired so that the temperature of the non-transshipment repaired portion is set to a temperature at which the brick does not deteriorate. They found that they could be controlled and completed the present invention.
以上に基づき、上記の課題を解決するための本発明の1つの態様は、複数の燃焼室が炉幅方向に一列に配置されたコークス炉において、少なくとも8以上の燃焼室の窯口を積替補修により更新するコークス炉の補修方法であって、コークス炉において、積替補修を行う燃焼室のうち1列又は2列以上連続する燃焼室を積替補修燃焼室群とし、積替補修燃焼室群の積替補修を行う部位を積替補修部とし、積替補修燃焼室群の積替補修部以外の部位を非積替補修部とするとき、コークス炉を保温休止状態にして積替補修部を積替補修する積替補修工程を備え、積替補修工程において、積替補修燃焼室群に隣接する隣接燃焼室の温度を制御することにより、非積替補修部全体の温度を煉瓦非劣化温度範囲内に制御することを特徴とする、コークス炉の補修方法である。 Based on the above, one aspect of the present invention for solving the above problems is to transship at least eight or more combustion chamber kilns in a coke oven in which a plurality of combustion chambers are arranged in a row in the furnace width direction. It is a method of repairing a coke oven that is renewed by repair. In a coke oven, one or two or more rows of continuous combustion chambers among the combustion chambers for transshipment repair are designated as the transshipment repair combustion chamber group, and the transshipment repair combustion chamber is used. When the part where the group is transshipped and repaired is the transshipment repair part and the part other than the transshipment repair part of the combustion chamber group is the non-transshipment repair part, the coke oven is put into a heat insulation state and the transshipment repair is performed. It is equipped with a transshipment repair process for transshipping and repairing parts, and in the transshipment repair process, the temperature of the entire non-transshipment repair part is not bricked by controlling the temperature of the adjacent combustion chamber adjacent to the transshipment repair combustion chamber group. This is a coke oven repair method characterized by controlling within the deterioration temperature range.
また、コークス炉において、積替補修燃焼室群及び隣接燃焼室以外の燃焼室を非積替補修燃焼室群としたとき、積替補修工程において、隣接燃焼室の温度を非積替補修燃焼室群の平均温度よりも高い温度に制御してもよく、隣接燃焼室の温度を非積替補修燃焼室群の平均温度に対して100度〜200度高い温度に制御してもよい。非積替補修部全体の温度を950度以上1250度以下の範囲に制御してもよい。 Further, in the coke oven, when the combustion chambers other than the transshipment repair combustion chamber group and the adjacent combustion chamber are designated as the non-transshipment repair combustion chamber group, the temperature of the adjacent combustion chamber is set to the non-transshipment repair combustion chamber in the transshipment repair process. The temperature may be controlled to be higher than the average temperature of the group, or the temperature of the adjacent combustion chamber may be controlled to be 100 to 200 degrees higher than the average temperature of the non-transshipment repair combustion chamber group. The temperature of the entire non-transshipment repair unit may be controlled in the range of 950 ° C. or higher and 1250 ° C. or lower.
さらに、隔たった二列の隣接燃焼室に積替補修燃焼室群が挟まれる場合、積替補修燃焼室群は連続する7列以下の燃焼室から構成されることがよく、隣接燃料室の両側に積替補修燃焼室群が配置されている場合、一方の積替補修燃焼室群の積替補修部と他方の積替補修燃焼室群の積替補修部とは炉長方向位置が異なっていることがよい。 Further, when the transshipment repair combustion chamber group is sandwiched between two adjacent combustion chambers separated by each other, the transshipment repair combustion chamber group is often composed of seven or less continuous combustion chambers, and both sides of the adjacent fuel chamber. When the transshipment repair combustion chamber group is arranged in, the position in the furnace length direction is different between the transshipment repair part of one transshipment repair combustion chamber group and the transshipment repair part of the other transshipment repair combustion chamber group. It is good to be there.
本発明によれば、補修対象となる燃焼室の窯口の数が多い場合に、効率良く積替補修を行うことができる。また、これにより積替補修によるコークス生産量の低下を抑制できる。 According to the present invention, when the number of kiln openings in the combustion chamber to be repaired is large, transshipment repair can be performed efficiently. In addition, this makes it possible to suppress a decrease in coke production due to transshipment repair.
以下、本発明のコークス炉の補修方法について説明する。本発明の特徴はコークス炉を保温休止状態にして燃焼室の窯口の積替補修を行うことである。 Hereinafter, the method for repairing the coke oven of the present invention will be described. The feature of the present invention is to carry out transshipment repair of the kiln opening of the combustion chamber by putting the coke oven in a heat retaining state.
ここで、室炉式コークス炉の方向に関しては、垂直方向を「高さ方向」、炭化室と燃焼室とが交互に重層する方向を「炉幅方向」、そして乾留完了したコークスが押し出される方向を「炉長方向」称することが一般的であり、本明細書でもこの呼称を採用する。
炭化室と燃焼室について、炉長方向で炉外に面している部位を「窯口」と称する。窯口は炉長方向の両端に有るので、これらを区別する場合に、コークス押出機の存在する側をPS(Pusher Side)、コークスが排出される側をCS(Coke Side)と称する。これらの呼称も一般的であり、本明細書でもこの呼称を採用する。
また、コークス炉のうち補修対象となる複数の燃焼室を含む領域(以下、単に「補修領域」とも称する。)について保温休止を実施する。補修領域は、炉配置上の構成や作業単位などで決定される炉団と称される単位で選定することが好ましいが、これに限定されない。
本明細書において、温度を表す単位「度」は「℃」を意味する。
Here, regarding the direction of the chamber-type coke oven, the vertical direction is the "height direction", the direction in which the carbonization chamber and the combustion chamber are alternately layered is the "furnace width direction", and the direction in which the coke that has been dried and distilled is extruded. Is generally referred to as "furnace length direction", and this designation is also adopted in this specification.
Regarding the carbonization chamber and the combustion chamber, the part facing the outside of the furnace in the direction of the furnace length is called the "kiln mouth". Since the kiln mouths are located at both ends in the furnace length direction, the side where the coke extruder exists is called PS (Pusher Side) and the side where coke is discharged is called CS (Coke Side) when distinguishing between them. These designations are also common, and these designations are also adopted herein.
In addition, heat retention is suspended in the coke oven that includes a plurality of combustion chambers to be repaired (hereinafter, also simply referred to as “repair area”). The repair area is preferably selected by a unit called a furnace group, which is determined by the configuration of the furnace arrangement and the work unit, but is not limited to this.
In the present specification, the unit "degree" for expressing temperature means "° C".
図1に補修領域の炉団の一部であるコークス炉10を示した。図1はコークス炉10を上方から観察した平面図である。図1に記載されているように、コークス炉10は複数の燃焼室11が炉幅方向に一列に配置されている。燃焼室11は複数のフリューから構成され、全体として炉長方向に延在している。またコークス炉10は、燃焼室11間のそれぞれに炭化室12が配置されている。すなわち、コークス炉10は燃焼室11と炭化室12とが交互に配列されている構成となっている。燃焼室11と炭化室12との下部には蓄熱室(不図示)が配置されている。かかるコークス炉10の構成は一般的な室炉式コークス炉の構成と同じである。 FIG. 1 shows a coke oven 10 which is a part of the furnace group in the repair area. FIG. 1 is a plan view of the coke oven 10 observed from above. As shown in FIG. 1, in the coke oven 10, a plurality of combustion chambers 11 are arranged in a row in the furnace width direction. The combustion chamber 11 is composed of a plurality of flues and extends in the direction of the furnace length as a whole. Further, in the coke oven 10, carbonization chambers 12 are arranged between the combustion chambers 11. That is, the coke oven 10 has a configuration in which combustion chambers 11 and carbonization chambers 12 are alternately arranged. A heat storage chamber (not shown) is arranged below the combustion chamber 11 and the carbonization chamber 12. The configuration of the coke oven 10 is the same as that of a general chamber-type coke oven.
本発明のコークス炉の補修方法は、少なくとも8以上の燃焼室11の窯口を積替補修により更新するものである。上述したように、8未満の燃焼室11の窯口を積替補修により更新する場合、保温休止状態で積替補修を行うことによる悪影響が生じる虞がある。補修対象とする燃焼室11の窯口の数は好ましくは10以上である。補修対象とする燃焼室11の窯口数の上限は特に限定されない。 The method for repairing a coke oven of the present invention is to renew at least eight or more combustion chambers 11 kilns by transshipment repair. As described above, when the kiln mouth of the combustion chamber 11 having less than 8 is renewed by transshipment repair, there is a possibility that adverse effects may occur due to the transshipment repair in the heat retaining state. The number of kiln openings in the combustion chamber 11 to be repaired is preferably 10 or more. The upper limit of the number of kilns in the combustion chamber 11 to be repaired is not particularly limited.
また、本発明のコークス炉の補修方法は、コークス炉10を保温休止状態にして積替補修部を積替補修する積替補修工程を備えている。
補修領域のコークス炉の保温休止方法については、周知の方法を適用することができる。窯口補修法を適用する燃焼室は、補修領域のすべての燃焼室でもよいし、すでに補修が実施された等の理由で窯口補修を実施しない燃焼室があってもよい。ただし、保温休止の際には補修領域の全ての炭化室からコークスを排出しておくことがよい。
Further, the method for repairing a coke oven of the present invention includes a transshipment repair step in which the coke oven 10 is placed in a heat retaining state and the transshipment repair unit is transshipped and repaired.
A well-known method can be applied to the heat insulation suspension method of the coke oven in the repair area. The combustion chamber to which the kiln mouth repair method is applied may be all the combustion chambers in the repair area, or there may be a combustion chamber in which the kiln mouth repair is not carried out because the repair has already been carried out. However, it is advisable to discharge coke from all carbonization chambers in the repair area during the heat insulation suspension.
ここで、本明細書において、積替補修を行う燃焼室11のうち1列又は2列以上連続する燃焼室11を1つの積替補修燃焼室群20とし、積替補修燃焼室群20のうち積替補修を行う部位を積替補修部21とし、積替補修燃焼室群20の前記積替補修部以外の部位を非積替補修部22として設定する。また、積替補修燃焼室群20に隣接する燃焼室を隣接燃焼室30とし、積替補修燃焼室群20及び前記隣接燃焼室30以外の燃焼室11を非積替補修燃焼室群40として設定する。
積替補修部21は、一般的に燃焼室11の窯口から2〜4フリューの範囲に設定される。窯口に近いフリューは損傷が大きいためである。ただし、本発明はこれに限定されない。
Here, in the present specification, one row or two or more rows of continuous combustion chambers 11 among the combustion chambers 11 for transshipment repair are designated as one transshipment repair combustion chamber group 20, and among the transshipment repair combustion chamber groups 20. The part where the transshipment repair is performed is set as the transshipment repair part 21, and the part other than the transshipment repair part of the transshipment repair combustion chamber group 20 is set as the non-transshipment repair part 22. Further, the combustion chamber adjacent to the transshipment repair combustion chamber group 20 is set as the adjacent combustion chamber 30, and the combustion chambers 11 other than the transshipment repair combustion chamber group 20 and the adjacent combustion chamber 30 are set as the non-transshipment repair combustion chamber group 40. To do.
The transshipment repair unit 21 is generally set in the range of 2 to 4 flues from the kiln opening of the combustion chamber 11. This is because the flue near the kiln mouth is heavily damaged. However, the present invention is not limited to this.
さらに、本発明のコークス炉の補修方法は、上記積替補修工程において、積替補修燃焼室群20に隣接する隣接燃焼室30の温度を制御することにより、非積替補修部22全体の温度を煉瓦非劣化温度範囲内に制御するものである。 Further, the coke oven repair method of the present invention controls the temperature of the adjacent combustion chamber 30 adjacent to the transshipment repair combustion chamber group 20 in the transshipment repair step, thereby controlling the temperature of the entire non-transshipment repair unit 22. Is controlled within the non-deterioration temperature range of bricks.
「非積替補修部22全体」とは、非積替補修部22に配置される全てのフリューを指す。また、「煉瓦非劣化温度範囲」とは煉瓦が劣化しない温度範囲である。コークス炉10(燃焼室11)の煉瓦は保温休止状態であっても、煉瓦が劣化しない温度範囲に保つ必要がある。煉瓦非劣化温度範囲未満の温度では、煉瓦に亀裂や割れ等が生じる場合がある。煉瓦非劣化温度範囲を超える温度では、煉瓦が溶融する場合がある。煉瓦非劣化温度範囲は燃焼室11に使用される煉瓦の構成等によって異なるため特に限定されないが、800度以上1350度以下であることがよい。好ましくは900度以上1300度以下、より好ましくは950度以上1250度以下である。
以上のことから、非積替補修部22全体の温度を煉瓦非劣化温度範囲内に制御するとは、非積替補修部22に配置される全てのフリューのそれぞれの温度を煉瓦非劣化温度内に制御するという意味である。
The “whole non-transshipment repair unit 22” refers to all the flues arranged in the non-transshipment repair unit 22. The "brick non-deterioration temperature range" is a temperature range in which the brick does not deteriorate. The bricks of the coke oven 10 (combustion chamber 11) need to be kept in a temperature range in which the bricks do not deteriorate even in the heat retention state. At temperatures below the non-deterioration temperature range of bricks, the bricks may crack or crack. Brick may melt at temperatures above the non-deteriorated temperature range. The brick non-deterioration temperature range is not particularly limited because it varies depending on the configuration of the brick used in the combustion chamber 11, but it is preferably 800 ° C. or higher and 1350 ° C. or lower. It is preferably 900 degrees or more and 1300 degrees or less, and more preferably 950 degrees or more and 1250 degrees or less.
From the above, controlling the temperature of the entire non-transshipment repair unit 22 within the brick non-deterioration temperature range means that the temperature of each flue arranged in the non-transshipment repair unit 22 is within the brick non-deterioration temperature. It means to control.
一方で、隣接燃焼室30の温度は、前述のとおり非積替補修部22全体の温度を煉瓦非劣化温度内に制御することを目的に設定される。 On the other hand, the temperature of the adjacent combustion chamber 30 is set for the purpose of controlling the temperature of the entire non-transshipment repair unit 22 within the brick non-deterioration temperature as described above.
通常、燃焼室11はPS、CSの両側から燃焼ガスが導入され、各フリューにおいて燃焼ガスを燃焼し、燃焼室を加熱する。しかし、積替補修燃焼室群20は一方の窯口側(例えばCS)を積替補修部21とし、窯口を積替補修する場合、燃焼室11を加熱する燃焼ガスは他方の窯口側(例えばPS)からのみ導入される。そのため、非積替補修部22において、燃焼ガスが導入される窯口に近いフリューでは適切な量の燃焼ガスが導入されるが、該窯口から遠くなるほどフリューに導入される燃焼ガス量は少なくなる。積替補修部21と非積替補修部22との境界に近接するフリューでは、より燃焼ガスの量が少なくなり、煉瓦非劣化温度内に制御することが難しくなる。このようなことから、非積替補修部22は燃焼ガスを導入する窯口側から遠ざかるにつれて温度が低くなり、その結果非積替え補修部全体に温度勾配が生じる。 Normally, combustion gas is introduced into the combustion chamber 11 from both sides of PS and CS, and the combustion gas is burned in each flue to heat the combustion chamber. However, in the transshipment repair combustion chamber group 20, one kiln opening side (for example, CS) is used as the transshipment repair unit 21, and when the kiln opening is transshipped and repaired, the combustion gas that heats the combustion chamber 11 is on the other kiln opening side. Introduced only from (eg PS). Therefore, in the non-transshipment repair unit 22, an appropriate amount of combustion gas is introduced into the flue near the kiln opening into which the combustion gas is introduced, but the amount of combustion gas introduced into the flue decreases as the distance from the kiln opening increases. Become. In the flue close to the boundary between the transshipment repair unit 21 and the non-transshipment repair unit 22, the amount of combustion gas is further reduced, and it becomes difficult to control the temperature within the non-deterioration temperature of the brick. For this reason, the temperature of the non-transshipment repair unit 22 decreases as the distance from the kiln opening side into which the combustion gas is introduced increases, and as a result, a temperature gradient is generated in the entire non-transshipment repair unit.
これは、導入する燃焼ガスの量を単に増加させただけでは解決することができない問題であった。なぜならば、燃焼ガス量を増加させた場合、燃焼ガスを導入する窯口側のフリューでは燃焼ガスの量が大きく増加するが、該窯口から遠いフリューでは燃焼ガスの量はそれほど増加しないためである。そして、その結果、非積替補修部22全体の温度勾配が拡大するため、燃焼ガスを導入する窯口側のフリューでは煉瓦非劣化温度を超える問題が新たに生じ、一方で積替補修部21と非積替補修部22との境界に近接するフリューでは依然として煉瓦非劣化温度未満になる問題が残る。 This was a problem that could not be solved simply by increasing the amount of combustion gas introduced. This is because when the amount of combustion gas is increased, the amount of combustion gas increases significantly in the flue on the kiln opening side where the combustion gas is introduced, but the amount of combustion gas does not increase so much in the flue far from the kiln opening. is there. As a result, the temperature gradient of the entire non-transshipment repair unit 22 expands, so that the flue on the kiln opening side where the combustion gas is introduced has a new problem of exceeding the brick non-deterioration temperature, while the transshipment repair unit 21 In the flue near the boundary between the non-transshipment repair section 22 and the non-transshipment repair section 22, there still remains the problem that the temperature is lower than the non-deterioration temperature of the brick.
積替補修とコークス操業とを並行して行う従来の補修方法では、積替補修を行う燃焼室以外の燃焼室ではコークス操業のために高温に加熱されている。そのため、積替補修を行わない(コークス操業を行っている)燃焼室からの伝熱(熱補償)により、積替補修を行う燃焼室(非積替補修部)全体が煉瓦非劣化温度内に制御されており、このような問題は認識されていなかった。この様子を図2に示した。図2の矢印は伝熱を概念的に表している。図3、4においても同様である。 In the conventional repair method in which the transshipment repair and the coke operation are performed in parallel, the combustion chambers other than the combustion chamber in which the transshipment repair is performed are heated to a high temperature for the coke operation. Therefore, due to heat transfer (heat compensation) from the combustion chamber that does not perform transshipment repair (coke operation is performed), the entire combustion chamber (non-transshipment repair section) that performs transshipment repair is within the brick non-deterioration temperature. It was controlled and such issues were not recognized. This situation is shown in FIG. The arrows in FIG. 2 conceptually represent heat transfer. The same applies to FIGS. 3 and 4.
一方、保温休止状態ではコークス操業を行わないため、積替補修を行わない燃焼室11からの伝熱は期待できない。そのため、従来の補修方法に沿って、単にコークス炉を保温休止状態にして積替補修を行うと、非積替補修部22全体の温度を煉瓦非劣化温度範囲内に制御することが難しい。 On the other hand, since the coke operation is not performed in the heat retention pause state, heat transfer from the combustion chamber 11 without transshipment repair cannot be expected. Therefore, if the coke oven is simply put in a heat-retaining state and the transshipment repair is performed according to the conventional repair method, it is difficult to control the temperature of the entire non-transshipment repair unit 22 within the brick non-deterioration temperature range.
かかる問題に対し、発明者らは、保温休止状態であっても、積替補修燃焼室群20に隣接する隣接燃焼室30のみの温度を制御することで、隣接燃焼室30からの伝熱により非積替補修部22全体の温度を煉瓦非劣化温度範囲内に制御することが可能となることを見出した。この様子を図3に示した。 In response to this problem, the inventors are able to transfer heat from the adjacent combustion chamber 30 by controlling the temperature of only the adjacent combustion chamber 30 adjacent to the transshipment repair combustion chamber group 20 even in the heat retention pause state. It has been found that the temperature of the entire non-transshipment repair unit 22 can be controlled within the non-deterioration temperature range of bricks. This situation is shown in FIG.
隣接燃焼室30の温度は、特に限定されないが、非積替補修燃焼室群40の平均温度よりも高い温度に制御されることがよい。具体的には、非積替補修燃焼室群40の平均温度に対して50度〜300度、好ましくは100度〜200度高い温度に制御されることがよい。これにより、隣接燃焼室30からの伝熱により、燃焼ガスが導入される窯口から遠い非積替補修部22のフリューの温度を上昇させることができる。一方で、燃焼ガスが導入される窯口に近い非積替補修部22のフリューの温度は隣接燃焼室30の温度と同等又は隣接燃焼室30の温度よりも高いため、隣接燃焼室30からの伝熱の影響は少ない。このように、隣接燃焼室30からの伝熱を利用することにより、低温のフリューの温度を底上げでき、且つ、高温のフリューに対してはほとんど影響を与えることがないため、非積替補修部22全体の温度を安定に煉瓦非劣化温度範囲内に制御することが可能になる。隣接燃焼室30の上限は特に限定されないが、煉瓦非劣化温度範囲を超えないように制御することがよい。具体的には、1300度以下若しくは1250度以下にすることがよい。 The temperature of the adjacent combustion chamber 30 is not particularly limited, but may be controlled to be higher than the average temperature of the non-transshipment repair combustion chamber group 40. Specifically, the temperature may be controlled to be 50 to 300 degrees, preferably 100 to 200 degrees higher than the average temperature of the non-transshipment repair combustion chamber group 40. As a result, the temperature of the flue of the non-transshipment repair unit 22 far from the kiln opening into which the combustion gas is introduced can be raised by heat transfer from the adjacent combustion chamber 30. On the other hand, since the temperature of the flue of the non-transshipment repair unit 22 near the kiln where the combustion gas is introduced is equal to the temperature of the adjacent combustion chamber 30 or higher than the temperature of the adjacent combustion chamber 30, the temperature from the adjacent combustion chamber 30 is increased. The effect of heat transfer is small. In this way, by utilizing the heat transfer from the adjacent combustion chamber 30, the temperature of the low-temperature flue can be raised, and the high-temperature flue has almost no effect. Therefore, the non-transshipment repair unit It is possible to stably control the temperature of the entire 22 within the brick non-deterioration temperature range. The upper limit of the adjacent combustion chamber 30 is not particularly limited, but it may be controlled so as not to exceed the brick non-deterioration temperature range. Specifically, it may be 1300 degrees or less or 1250 degrees or less.
ここで、非積替補修燃焼室群40の平均温度とは、非積替補修燃焼室群40に属する燃焼室11の温度を平均したものである。ただし、非積替補修燃焼室群40の平均温度には、劣化や損傷によりコークス操業ができない燃焼室の温度を含めない。
燃焼室11の温度は、燃焼室11を構成するフリューにPSからCSに向かって番号を振り、上位から1/3、1/2、2/3の位置にあるフリューの温度を平均したものである。フリューの温度は公知の方法により測定する。例えば、放射温度計を用いてフリュー底部の温度を測定する方法があげられる。
Here, the average temperature of the non-transshipment repair combustion chamber group 40 is the average temperature of the combustion chamber 11 belonging to the non-transshipment repair combustion chamber group 40. However, the average temperature of the non-transshipment repair combustion chamber group 40 does not include the temperature of the combustion chamber in which coke operation cannot be performed due to deterioration or damage.
The temperature of the combustion chamber 11 is the average of the temperatures of the flues located at the 1/3, 1/2, and 2/3 positions from the top by numbering the flues constituting the combustion chamber 11 from PS to CS. is there. The temperature of the flue is measured by a known method. For example, a method of measuring the temperature at the bottom of the flue using a radiation thermometer can be mentioned.
積替補修工程において、非積替補修燃焼室群40の温度も煉瓦非劣化温度範囲内に制御されているが、保温休止状態でありコークス操業を行っていないため、コスト削減の観点からなるべく低い温度に制御されている。具体的には、1000度前後に制御されている。 In the transshipment repair process, the temperature of the non-transshipment repair combustion chamber group 40 is also controlled within the brick non-deterioration temperature range, but it is as low as possible from the viewpoint of cost reduction because the heat insulation is suspended and coke operation is not performed. It is controlled by temperature. Specifically, it is controlled to around 1000 degrees.
次に、積替補修燃焼室群20の具体的な構成例を説明する。
まず、隔たった二列の隣接燃焼室30に積替補修燃焼室群20が挟まれる場合、積替補修燃焼室群20は連続する7列以下の燃焼室11から構成されることがよい。積替補修燃焼室群20の構成を連続する燃焼室11の数を7列以下とした理由は、両側の隣接燃焼室30からの伝熱を考慮したものである。
Next, a specific configuration example of the transshipment repair combustion chamber group 20 will be described.
First, when the transshipment repair combustion chamber group 20 is sandwiched between the adjacent combustion chambers 30 in two rows separated from each other, the transshipment repair combustion chamber group 20 may be composed of continuous combustion chambers 11 in seven rows or less. The reason why the number of continuous combustion chambers 11 in the transshipment repair combustion chamber group 20 is 7 rows or less is that heat transfer from the adjacent combustion chambers 30 on both sides is taken into consideration.
また、1つの隣接燃料室30の両側に積替補修燃焼室群20が配置されている場合、
一方の積替補修燃焼室群20の積替補修部21と他方の積替補修燃焼室群20の積替補修部21とは炉長方向位置が異なることがよい。これは例えば、一方の積替補修燃焼室群20の積替補修部21がPS側に配置され、他方の積替補修燃焼室群20の積替補修部21がCS側に配置される状態である。このような配置にする理由は、特にガンタイプのコークス炉において同一の燃焼室のPS、CSを同時に補修をすると燃焼ガスを導入できなくなり温度保持が不可能になるためである。
これらの具体的な構成を組み合わせた一例を図4に示した。
When the transshipment repair combustion chamber group 20 is arranged on both sides of one adjacent fuel chamber 30, the case where the transshipment repair combustion chamber group 20 is arranged.
The position in the furnace length direction may be different between the transshipment repair unit 21 of one transshipment repair combustion chamber group 20 and the transshipment repair unit 21 of the other transshipment repair combustion chamber group 20. This is, for example, in a state where the transshipment repair unit 21 of one transshipment repair combustion chamber group 20 is arranged on the PS side and the transshipment repair unit 21 of the other transshipment repair combustion chamber group 20 is arranged on the CS side. is there. The reason for such an arrangement is that, especially in a gun type coke oven, if PS and CS in the same combustion chamber are repaired at the same time, the combustion gas cannot be introduced and the temperature cannot be maintained.
An example of combining these specific configurations is shown in FIG.
以上、本発明のコークス炉の補修方法について説明した。本発明によれば、補修対象となる燃焼室の窯口の数が8以上である場合に、従来の補修方法よりも効率良く積替補修を行うことができる。また、これにより従来よりも積替補修によるコークス生産量の低下を抑制できる。 The repair method of the coke oven of the present invention has been described above. According to the present invention, when the number of kiln openings in the combustion chamber to be repaired is 8 or more, transshipment repair can be performed more efficiently than the conventional repair method. In addition, this makes it possible to suppress a decrease in coke production due to transshipment repair as compared with the conventional case.
以下、実施例を用いて説明するが、本発明はこれに限定されない。 Hereinafter, the present invention will be described with reference to examples, but the present invention is not limited thereto.
1.非積替補修部の温度制御
まず、特許文献1に記載されている従来の補修方法を用いた場合、すなわち、積替補修燃焼室群とそれ以外の燃焼室とのそれぞれで温度管理を行う場合の積替補修燃焼室群の非積替補修部の各フリューの温度を図5の線Aに示した。図5のフリューNo.は、燃焼ガスが導入されるフリューから積替補修部に近いフリューになるほど大きくなるように設定した。点線は従来の補修方法の積替補修燃焼室群以外の燃焼室の温度を表しており、平均温度は1020度である。
1. 1. Temperature control of non-transshipment repair section First, when the conventional repair method described in Patent Document 1 is used, that is, when temperature control is performed in each of the transshipment repair combustion chamber group and the other combustion chambers. The temperature of each flue in the non-transshipment repair section of the transshipment repair combustion chamber group is shown in line A of FIG. FuRyu No. in FIG. Was set to increase from the flue into which the combustion gas is introduced to the flue closer to the transshipment repair section. The dotted line represents the temperature of the combustion chambers other than the transshipment repair combustion chamber group of the conventional repair method, and the average temperature is 1020 degrees.
また、特許文献1に記載されている従来の補修方法を、単純に保温休止状態で行った場合の積替補修燃焼室群の非積替補修部の各フリューの温度を図5の線Bに示した。この場合、積替補修燃焼室群以外の燃焼室は保温休止状態なので、平均温度を1000度に設定されている。 Further, when the conventional repair method described in Patent Document 1 is simply performed in the heat retention state, the temperature of each flue in the non-transshipment repair section of the transshipment repair combustion chamber group is shown in line B of FIG. Indicated. In this case, since the combustion chambers other than the transshipment repair combustion chamber group are in the heat retention pause state, the average temperature is set to 1000 degrees.
図5より、従来の補修方法は積替補修燃焼室群以外の燃焼室、特に積替補修燃焼室群に隣接する燃焼室からの伝熱があるため、積替補修燃焼室群の非積替補修部の温度を煉瓦非劣化温度範囲(900度以上1300度以下)内に制御することができた。一方で、従来の補修方法を単純に保温休止状態で行うと、積替補修燃焼室群に隣接する燃焼室から伝熱による影響が小さいため、積替補修部に近い非積替補修部のフリューでは900度を下回った。すなわち、煉瓦に劣化が生じ得る温度であった。 From FIG. 5, the conventional repair method has heat transfer from combustion chambers other than the transshipment repair combustion chamber group, particularly from the combustion chamber adjacent to the transshipment repair combustion chamber group, so that the transshipment repair combustion chamber group is not transshipped. The temperature of the repaired part could be controlled within the non-deterioration temperature range of bricks (900 degrees or more and 1300 degrees or less). On the other hand, if the conventional repair method is simply performed in the heat retention state, the influence of heat transfer from the combustion chamber adjacent to the transshipment repair combustion chamber group is small, so the flue of the non-transshipment repair unit close to the transshipment repair unit. Then it was below 900 degrees. That is, it was a temperature at which the brick could deteriorate.
次に本発明の補修方法を用いて、非積替補修部の温度制御について検証した。すなわち、コークス炉の非積替補修燃焼室群を保温休止状態にする一方で、積替補修燃焼室群に隣接する隣接燃焼室の温度を、非積替補修部全体が煉瓦非劣化温度範囲内に制御されるように制御した。具体的には、隣接燃焼室の温度を非積替補修燃焼室群の平均温度(950度)よりも高い温度である1000度及び1150度に制御した。また、この際、非積替補修部に導入する燃焼ガスの量を適宜調整した。その結果を図6に示した。 Next, using the repair method of the present invention, the temperature control of the non-transshipment repair part was verified. That is, while the non-transshipment repair combustion chamber group of the coke oven is kept warm, the temperature of the adjacent combustion chamber adjacent to the transshipment repair combustion chamber group is kept within the brick non-deterioration temperature range for the entire non-transshipment repair section. It was controlled to be controlled by. Specifically, the temperature of the adjacent combustion chamber was controlled to 1000 ° C. and 1150 ° C., which are higher than the average temperature (950 ° C.) of the non-transshipment repair combustion chamber group. At this time, the amount of combustion gas introduced into the non-transshipment repair section was appropriately adjusted. The result is shown in FIG.
図6に示したように、いずれの場合も非積替補修部全体の温度が煉瓦非劣化温度範囲(900度以上1300度以下)内に制御することができた。また、隣接燃焼室の温度を1150度に制御した場合、1000度に制御した場合に比べて、非積替補修部全体の温度勾配が小さくなり、その結果、非積替補修部全体の温度をより厳しい基準の煉瓦非劣化温度範囲(950度以上1250度以下)内に収まるように制御できることが分かった。 As shown in FIG. 6, in each case, the temperature of the entire non-transshipment repair section could be controlled within the brick non-deterioration temperature range (900 ° C. or higher and 1300 ° C. or lower). Further, when the temperature of the adjacent combustion chamber is controlled to 1150 degrees, the temperature gradient of the entire non-transshipment repair section becomes smaller than that when the temperature is controlled to 1000 degrees, and as a result, the temperature of the entire non-transshipment repair section is reduced. It was found that the temperature can be controlled to be within the stricter standard brick non-deterioration temperature range (950 ° C or higher and 1250 ° C or lower).
2.シミュレーション
21列の燃焼室の窯口全てを積替補修する場合を、コンピュータでシミュレーションし、施工順序等を最適化した。最適化においては、最も工期が短くなるものを選択した。シミュレーションは、特許文献1に記載されている従来の補修方法と上記した本発明の補修方法とのそれぞれで行った。
評価基準としては、1単位のフリューを積替補修するのに要する日数(日/フリュー)を採用した。
2. Simulation A computer was used to simulate the case of transshipping and repairing all the kilns in the combustion chamber in row 21, and the construction order was optimized. For optimization, the one with the shortest construction period was selected. The simulation was performed by each of the conventional repair method described in Patent Document 1 and the above-mentioned repair method of the present invention.
As the evaluation standard, the number of days (days / flue) required for transshipment repair of one unit of flue was adopted.
従来の補修方法で行う場合、8.6(日/フリュー)であった。一方で、本発明の補修方法で行う場合、1.7(日/フリュー)であった。このように、本発明の補修方法を用いることにより、従来の補修方法に比べて工期を約1/5に低減することができた。 When the conventional repair method was used, it was 8.6 (day / flue). On the other hand, when the repair method of the present invention was used, it was 1.7 (day / flue). As described above, by using the repair method of the present invention, the construction period can be reduced to about 1/5 as compared with the conventional repair method.
10 コークス炉
11 燃焼室
12 炭化室
20 積替補修燃焼室群
21 積替補修部
22 非積替補修部
30 隣接燃焼室
40 非積替補修燃焼室群
10 Coke furnace 11 Combustion chamber 12 Carbonization chamber 20 Transshipment repair Combustion chamber group 21 Transshipment repair unit 22 Non-transshipment repair unit 30 Adjacent combustion chamber 40 Non-transshipment repair combustion chamber group
Claims (6)
前記コークス炉において、積替補修を行う前記燃焼室のうち1列又は2列以上連続する前記燃焼室を積替補修燃焼室群とし、前記積替補修燃焼室群の積替補修を行う部位を積替補修部とし、前記積替補修燃焼室群の前記積替補修部以外の部位を非積替補修部とするとき、
前記コークス炉を保温休止状態にして前記積替補修部を積替補修する積替補修工程を備え、
前記積替補修工程において、前記積替補修燃焼室群に隣接する隣接燃焼室の温度を制御することにより、前記非積替補修部全体の温度を煉瓦非劣化温度範囲内に制御することを特徴とする、
コークス炉の補修方法。 A method for repairing a coke oven in which a plurality of combustion chambers are arranged in a row in the width direction of the furnace, in which at least eight or more of the kilns of the combustion chambers are renewed by transshipment repair.
In the coke furnace, the combustion chambers in which one row or two or more rows are continuous among the combustion chambers for transshipment repair are designated as the transshipment repair combustion chamber group, and the parts for transshipment repair of the transshipment repair combustion chamber group are designated. When the transshipment repair section is used and the part other than the transshipment repair section of the transshipment repair combustion chamber group is used as the non-transshipment repair section,
A transshipment repair process for transshipping and repairing the transshipment repair unit by putting the coke oven in a heat retaining state is provided.
In the transshipment repair step, the temperature of the entire non-transshipment repair unit is controlled within the brick non-deterioration temperature range by controlling the temperature of the adjacent combustion chamber adjacent to the transshipment repair combustion chamber group. To
How to repair a coke oven.
前記積替補修工程において、前記隣接燃焼室の温度を前記非積替補修燃焼室群の平均温度よりも高い温度に制御することを特徴とする、請求項1に記載の補修方法。 In the coke oven, when the combustion chambers other than the transshipment repair combustion chamber group and the adjacent combustion chamber are designated as a non-transshipment repair combustion chamber group,
The repair method according to claim 1, wherein in the transshipment repair step, the temperature of the adjacent combustion chamber is controlled to a temperature higher than the average temperature of the non-transshipment repair combustion chamber group.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019152928A JP7284399B2 (en) | 2019-08-23 | 2019-08-23 | Coke oven repair method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019152928A JP7284399B2 (en) | 2019-08-23 | 2019-08-23 | Coke oven repair method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2021031581A true JP2021031581A (en) | 2021-03-01 |
JP7284399B2 JP7284399B2 (en) | 2023-05-31 |
Family
ID=74675458
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019152928A Active JP7284399B2 (en) | 2019-08-23 | 2019-08-23 | Coke oven repair method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP7284399B2 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54134701A (en) * | 1978-04-11 | 1979-10-19 | Nippon Steel Corp | Suspension of operation of coke oven without cooling |
JPS5578086A (en) * | 1978-12-06 | 1980-06-12 | Nippon Steel Corp | Suspension of operation of coke oven without cooling |
JPS5798586A (en) * | 1980-12-10 | 1982-06-18 | Sumikin Coke Co Ltd | Method for heating combustion chamber during hot stacking and replacing operation of coke oven |
CN104357067A (en) * | 2014-10-14 | 2015-02-18 | 辽宁中弘信冶金技术有限公司 | Coke oven maintenance method |
JP2018150424A (en) * | 2017-03-10 | 2018-09-27 | 新日鐵住金株式会社 | Method for hot rearrangement-repairing oven brick of coke oven |
-
2019
- 2019-08-23 JP JP2019152928A patent/JP7284399B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS54134701A (en) * | 1978-04-11 | 1979-10-19 | Nippon Steel Corp | Suspension of operation of coke oven without cooling |
JPS5578086A (en) * | 1978-12-06 | 1980-06-12 | Nippon Steel Corp | Suspension of operation of coke oven without cooling |
JPS5798586A (en) * | 1980-12-10 | 1982-06-18 | Sumikin Coke Co Ltd | Method for heating combustion chamber during hot stacking and replacing operation of coke oven |
CN104357067A (en) * | 2014-10-14 | 2015-02-18 | 辽宁中弘信冶金技术有限公司 | Coke oven maintenance method |
JP2018150424A (en) * | 2017-03-10 | 2018-09-27 | 新日鐵住金株式会社 | Method for hot rearrangement-repairing oven brick of coke oven |
Also Published As
Publication number | Publication date |
---|---|
JP7284399B2 (en) | 2023-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN107075379B (en) | Coke ovens with improved exhaust gas delivery in the secondary heating chamber | |
JP2017171901A (en) | Furnace body drying method and burner during firing in furnace body facility of coke oven | |
JP2021031581A (en) | Method for repairing coke oven | |
JP6631326B2 (en) | Furnace body drying method at the time of burning in furnace body equipment of coke oven | |
NO834076L (en) | Oven with open chamber for burning of carbonaceous blocks | |
JPS6154350B2 (en) | ||
CN103897712B (en) | Transverse alternately heating device of vertical coke-extracting type coke oven | |
JPS6152194B2 (en) | ||
JP2020186298A (en) | Method of drying coke oven | |
JPS6131749B2 (en) | ||
JP5703852B2 (en) | Coke oven hot transfer furnace wall temperature rising method | |
CN108800929A (en) | A kind of heating furnace using radiative cylinder indirectly heat boiler tube | |
JPS627959B2 (en) | ||
US2196321A (en) | Regenerative soaking pit furnace | |
JP5045341B2 (en) | Hot transshipment method for furnace wall bricks in coke oven. | |
JP4916907B2 (en) | Coke oven combustion management method and combustion management apparatus | |
KR101424904B1 (en) | Method for repairing coke oven | |
CN103881731A (en) | Transversal continuous heating device for vertical coke-discharge type coke oven | |
JPS6152195B2 (en) | ||
JP2021138859A (en) | Method of repairing pillar wall of regeneration chamber in coke oven | |
JP6554940B2 (en) | Thermal storage brickwork structure of coke oven thermal storage room | |
CN204779642U (en) | Hot -air furnace | |
US1798297A (en) | Flue construction for kilns | |
RU2007434C1 (en) | Vertical continuous coke oven | |
JPH0860160A (en) | Heat-storing chamber of coke oven |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20220407 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20221214 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20221227 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230221 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230418 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230501 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 7284399 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |