JP2012180583A - Long metal foil with multiple pores and method for manufacturing the same - Google Patents

Long metal foil with multiple pores and method for manufacturing the same Download PDF

Info

Publication number
JP2012180583A
JP2012180583A JP2011045972A JP2011045972A JP2012180583A JP 2012180583 A JP2012180583 A JP 2012180583A JP 2011045972 A JP2011045972 A JP 2011045972A JP 2011045972 A JP2011045972 A JP 2011045972A JP 2012180583 A JP2012180583 A JP 2012180583A
Authority
JP
Japan
Prior art keywords
metal foil
copper foil
porous
laminated
long metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011045972A
Other languages
Japanese (ja)
Inventor
Yoshiteru Murogaki
良照 室垣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SAKAI ELECTRONIC INDUSTRY CO Ltd
Original Assignee
SAKAI ELECTRONIC INDUSTRY CO Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SAKAI ELECTRONIC INDUSTRY CO Ltd filed Critical SAKAI ELECTRONIC INDUSTRY CO Ltd
Priority to JP2011045972A priority Critical patent/JP2012180583A/en
Publication of JP2012180583A publication Critical patent/JP2012180583A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Cell Electrode Carriers And Collectors (AREA)
  • ing And Chemical Polishing (AREA)
  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a long metal foil with multiple pores, in which a number of micropores are formed and which is free from folded wrinkles, deformation and strain, is wound up in a roll form, and has a small thickness, and to provide a method for manufacturing the long metal foil with multiple pores.SOLUTION: The long metal foil A with multiple pores having a length of 500 m or more and suitable as an electrode for a winding type capacitor is manufactured by laminating dry film resists, one of which serves as a resist layer 3a and the other of which serves as a reinforcing layer 3b on both surfaces of an extremely thin and long copper foil A, to obtain a long laminated copper foil, and then performing an exposure process, a development process, an etching process, and a process for removing the residual resist layer and reinforcing layer by using the laminated copper foil, and directly winding up the long metal foil A with multiple pores obtained through the process for removing the residual resist layer and reinforcing layer, in a roll form.

Description

本発明は、例えば、コンデンサの電極材料として用いられる多孔長尺金属箔及びその製造方法に関する。   The present invention relates to a porous long metal foil used as, for example, an electrode material of a capacitor and a method for manufacturing the same.

インフラや自動車の回生電源として大電流、超急充放電特性、半永久的な寿命等の優位性からコンデンサ(キャパシタ)が注目されている。
超瞬時電力供給用途のコンデンサの場合、電極に瞬時充放電電力を高める工夫が必要で、電極自体の内部抵抗低減と大容量化を可能にする要件を満たす事が求められている。
Capacitors are attracting attention as a regenerative power source for infrastructure and automobiles due to advantages such as large current, ultra-rapid charge / discharge characteristics, and semi-permanent lifetime.
In the case of a capacitor for ultra-instantaneous power supply, the electrode needs to be devised to increase the instantaneous charge / discharge power, and is required to satisfy the requirements that enable the internal resistance of the electrode itself to be reduced and the capacity to be increased.

また、上記コンデンサとして、陰極となる長尺の金属箔と、陽極となる長尺の金属箔との間に誘電体膜を交互に重ねて巻き込んだ旋回型コンデンサがある(特許文献1,2参照)。
かかるコンデンサを大型化することなく軽量で容量の大きいものとする方法としては、以下のような方法が挙げられる。
(1)電極材料として電気伝導性のよいものを用いる。
(2)陰極及び陽極として幅広でシームレスのものを用いる。
(3)金属箔としてできるだけ薄いものを用いる。
(4)電極表面積を増やすため、金属箔に多数の孔を設ける。
Further, as the capacitor, there is a swivel capacitor in which a dielectric film is alternately wound between a long metal foil serving as a cathode and a long metal foil serving as an anode (see Patent Documents 1 and 2). ).
Examples of a method for making such a capacitor lightweight and large in capacity without increasing the size include the following methods.
(1) An electrode material having good electrical conductivity is used.
(2) Use a wide and seamless cathode and anode.
(3) Use as thin a metal foil as possible.
(4) A large number of holes are provided in the metal foil in order to increase the electrode surface area.

特開昭61−121317号公報JP 61-121317 A 特開平2−137211号公報JP-A-2-137211

上記(1)の条件を満足するには、従来と同様のアルミニウム箔や銅箔を用いればよい。また、(2)の条件を満足しようとする場合、ロールツーロールで市販の金属箔に多数の孔を穿孔するようにすればよい。
しかし、(3)のように金属箔を極薄のものにした場合、(4)の条件を満足しようとすると、ロールツーロールで機械的に穿孔する方法では、バリの問題や表面傷などの問題がある。
In order to satisfy the above condition (1), the same aluminum foil or copper foil as in the past may be used. Further, when the condition (2) is to be satisfied, a large number of holes may be drilled in a commercially available metal foil by roll-to-roll.
However, when the metal foil is made extremely thin as in (3), when trying to satisfy the condition of (4), the roll-to-roll mechanical perforation method causes problems such as burrs and surface scratches. There's a problem.

そこで、穿孔には、一般的に化学的エッチング法が用いられるが、箔の厚さを極薄のものにした場合、化学的エッチング法においても、誘電体層の信頼性を損なう折れ皺、変形、歪みが発生するという問題がある。   Therefore, a chemical etching method is generally used for perforation. However, if the thickness of the foil is extremely thin, even in the chemical etching method, folds and deformations that impair the reliability of the dielectric layer are impaired. There is a problem that distortion occurs.

本発明は、上記事情に鑑みて、多数の微細孔が形成されているとともに、折れ皺、変形、歪みがないロール状に巻回された厚みの薄い多孔長尺金属箔及びその製造方法を提供することを目的としている。   SUMMARY OF THE INVENTION In view of the above circumstances, the present invention provides a thin porous long metal foil having a large number of micropores and wound in a roll shape free from creases, deformation, and distortion, and a method for producing the same. The purpose is to do.

上記目的を達成するために、本発明にかかる多孔長尺金属箔の製造方法(以下、「本発明の製造方法」と記す)は、一方の面から他方の面まで貫通する多数の微細孔がほぼ全長にわたって穿設された多孔長尺金属箔の製造方法であって、長尺の金属箔の一方の面にドライフィルムレジストが接着または圧着されたレジスト層を有し、前記金属箔の他方の面に化学的溶解剥離型補強フィルムが接着または圧着された補強層を備える長尺の積層金属箔を、前記積層金属箔の長手方向の一側から他側に向かって露光装置に送り込み、前記レジスト層を所定幅ごとに露光して前記微細孔の繰り返しパターンをつぎつぎに焼き付ける露光工程と、この露光工程で露光された露光処理済み部分を長手方向の一側から他側に向かって現像装置に送り込み、レジスト層の微細孔形成用の易溶解部を現像液で溶解除去する現像工程と、前記積層金属箔の現像済み部分を積層金属箔の長手方向の一側から他側に向かってエッチング装置に送り込み、金属箔の露出部分をエッチングして微細孔を形成するエッチング工程と、前記積層金属箔のエッチング済み部分を積層金属箔の長手方向の一側から他側に向かって剥離装置に送り込み、残存レジスト層及び補強層を剥離液に曝して剥離除去する残存レジスト層及び補強層除去工程とを備え、残存レジスト層及び補強層除去工程経て得られた多孔長尺金属箔を直接ロール状に巻き取ることを特徴としている。   In order to achieve the above object, the method for producing a porous long metal foil according to the present invention (hereinafter referred to as “the production method of the present invention”) has a large number of fine holes penetrating from one surface to the other surface. A method for producing a porous long metal foil drilled over almost the entire length, comprising a resist layer having a dry film resist adhered or pressure-bonded to one surface of the long metal foil, and the other of the metal foil A long laminated metal foil provided with a reinforcing layer having a chemically dissolved and peelable reinforcing film bonded or pressure-bonded to the surface is fed from one side of the laminated metal foil in the longitudinal direction to the other side to the exposure apparatus, and the resist An exposure process in which the layer is exposed at predetermined widths, and the repeated pattern of the fine holes is successively printed, and the exposed portion exposed in this exposure process is sent from one side of the longitudinal direction to the other side in the development direction. , Les A developing step for dissolving and removing the easily soluble portion for forming micropores in the strike layer with a developing solution, and the developed portion of the laminated metal foil is fed from one side of the laminated metal foil to the other side in the longitudinal direction. Etching the exposed portion of the metal foil to form fine holes, and sending the etched portion of the laminated metal foil from one side of the laminated metal foil to the other side in the longitudinal direction to the peeling device, A residual resist layer and a reinforcing layer removing step that peels and removes the layer and the reinforcing layer by exposing to a stripping solution, and directly winds the porous long metal foil obtained through the residual resist layer and the reinforcing layer removing step into a roll shape It is characterized by.

本発明の製造方法は、特に限定されないが、露光工程において、易溶解部の中央に直径より小径の、現像液による非除去部を設けるとともに、エッチング工程において、積層金属箔のレジスト層側を下側にしてエッチング装置内に通し、エッチング装置内で積層金属箔の下側からエッチング液をスプレーしてエッチングするようにしてもよい。
すなわち、上記のようにすれば、微細孔が下側の面から上側の面に向かって徐々に縮径している、断面すり鉢状に形成される。したがって、径大側を対極に向けるようにすれば、電極面積をより大きなものとすることとができる。
The production method of the present invention is not particularly limited, but in the exposure step, a non-removable portion with a developer having a diameter smaller than the diameter is provided in the center of the easily soluble portion, and in the etching step, the resist layer side of the laminated metal foil is placed below. The etching solution may be sprayed from the lower side of the laminated metal foil and etched in the etching device.
That is, if it carries out as mentioned above, a micropore will be formed in cross-sectional mortar shape which is diameter-reduced gradually toward the upper surface from a lower surface. Therefore, if the large diameter side is directed to the counter electrode, the electrode area can be increased.

本発明の製造方法において、積層金属箔は、予め形成された物を用いるようにしても構わないが、ロール状に巻回された長尺の金属箔の一端を引き出しながら金属箔の一方の面にドライフィルムレジストを接着または圧着してレジスト層を形成するとともに、他方の面に化学溶解性補強フィルムを接着または圧着して補強層を形成する長尺の積層金属箔形成工程をまず実施するようにしても構わない。
金属箔としては、特に限定されず、例えば、銅箔、銀箔、アルミニウム箔等が挙げられるが、高電気伝導率、耐腐食性、コスト面で優れていることから銅箔が好ましい。
In the manufacturing method of the present invention, the laminated metal foil may be a preformed one, but one side of the metal foil is drawn while pulling out one end of the long metal foil wound in a roll shape. First, a long laminated metal foil forming process is performed in which a dry film resist is bonded or pressure bonded to form a resist layer, and a chemically soluble reinforcing film is bonded or pressure bonded to the other surface to form a reinforcing layer. It doesn't matter.
The metal foil is not particularly limited and includes, for example, copper foil, silver foil, aluminum foil, and the like, and copper foil is preferable because of its high electrical conductivity, corrosion resistance, and cost.

本発明の製造方法で用いられるドライフィルムレジスト(感光性フィルム)は、ネガ型及びポジ型のいずれでも構わず、一般にプリント配線基板の製造に用いられる市販のものが用いられるが、ドライフィルムレジストの特性として、剥離の際に粉々にならず、まとまって剥がれるアルカリ溶解タイプのドライフィルムレジスト(例えば、ニチゴー・モートン(株)製の商品名102J30、日立化成商事(株)製の商品名H9030、PH1033、RY3310、旭化成(株)製の商品名AQ4038、MVA506などの市販品を用いることができる)が好ましい。
本発明の製造方法の補強層となる化学的溶解剥離型補強フィルムとしては、剥離液によって少なくとも金属箔との界面が化学溶解して剥離除去することができれば、特に限定されず、感光樹脂でなくても構わないし、上記ドライフィルムレジストを補強層の化学的溶解剥離型補強フィルムとしても用いることができる。
The dry film resist (photosensitive film) used in the production method of the present invention may be either a negative type or a positive type, and commercially available products generally used for the production of printed wiring boards are used. As a characteristic, it is an alkali-dissolving dry film resist that does not shatter at the time of peeling (for example, product name 102J30 manufactured by Nichigo Morton Co., Ltd., product names H9030, PH1033 manufactured by Hitachi Chemical Co., Ltd.) , RY3310, and commercial products such as trade names AQ4038 and MVA506 manufactured by Asahi Kasei Co., Ltd. can be used).
The chemical dissolution peeling type reinforcing film that becomes the reinforcing layer of the production method of the present invention is not particularly limited as long as at least the interface with the metal foil can be chemically dissolved and removed by the peeling solution, not a photosensitive resin. Alternatively, the dry film resist can be used as a chemically dissolving and peeling type reinforcing film for the reinforcing layer.

上記露光工程において用いられるフォトマスクとしては、樹脂フィルムやガラス板が用いられるが、露光精度を考慮すると、ガラス板が好ましい。
また、露光工程の光源としては、ドライフィルムレジストを良好に感光させることができれば、特に限定されないが、仕上がり精度を向上させるために、平行光線となるように照射できることが好ましい。
As the photomask used in the exposure step, a resin film or a glass plate is used, but a glass plate is preferable in consideration of exposure accuracy.
The light source for the exposure step is not particularly limited as long as the dry film resist can be satisfactorily exposed. However, in order to improve the finishing accuracy, it is preferable that the light can be irradiated so as to be parallel rays.

現像工程で用いられる現像液としては、除去部を精度よく溶解除去できれば、特に限定されないが、例えば、炭酸ナトリウム、炭酸カリウム、水酸化ナトリウム、四ホウ酸ナトリウム等のアルカリの希薄溶液(アルカリ濃度0.1〜5質量%程度)が挙げられる。
現像工程において、上記現像液は、下方からスプレー噴霧することが好ましい。
また、現像工程では、通常、現像処理完了後、現像液を洗浄除去したのち、乾燥を行う。乾燥はエアーナイフ等で行うようにすればよい。
The developer used in the development step is not particularly limited as long as the removal portion can be dissolved and removed with high precision. For example, a dilute alkali solution (alkali concentration of 0, such as sodium carbonate, potassium carbonate, sodium hydroxide, sodium tetraborate) is used. About 1 to 5% by mass).
In the development step, the developer is preferably sprayed from below.
In the development step, usually, after completion of the development process, the developer is washed and removed and then dried. The drying may be performed with an air knife or the like.

エッチング工程で用いられるエッチング液としては、金属箔を精度よくエッチングできれば、特に限定されないが、例えば、塩化第二銅溶液、塩化第二鉄溶液、銅アンモニア錯体溶液等が挙げられる。
エッチング工程において、上記エッチング液は、下方からスプレー噴霧することが好ましい。
The etching solution used in the etching step is not particularly limited as long as the metal foil can be accurately etched, and examples thereof include a cupric chloride solution, a ferric chloride solution, and a copper ammonia complex solution.
In the etching step, the etching solution is preferably sprayed from below.

残存レジスト層及び補強層除去工程で用いられる剥離液としては、特に限定されないが、例えば、上記現像工程で用いられるアルカリ溶液の高濃度なものが挙げられる。市販のドライフィルム専用の剥離用薬液を用いても構わない。
残存レジスト層及び補強層除去工程において、剥離方式は、浸漬式、スプレー式のいずれでも構わないが、スプレー式が好ましい。
また、残存レジスト層及び補強層除去工程では、通常、剥離完了後、剥離液を洗浄除去したのち、乾燥を行う。乾燥はエアーナイフ等で行うようにすればよい。
The stripping solution used in the remaining resist layer and reinforcing layer removing step is not particularly limited, and examples thereof include a high concentration solution of an alkaline solution used in the developing step. You may use the chemical | medical agent for peeling only for a commercially available dry film.
In the residual resist layer and reinforcing layer removing step, the peeling method may be either an immersion method or a spray method, but a spray method is preferable.
In the step of removing the remaining resist layer and the reinforcing layer, usually, after the peeling is completed, the peeling solution is washed and removed, and then dried. The drying may be performed with an air knife or the like.

上記本発明の製造方法で得られる多孔長尺金属箔は、特に限定されないが、例えば、旋回型(巻回型)のコンデンサ、電解コンデンサ、リチウムイオンキャパシタ、燃料電池などの電極材料として好適に用いられる。
上記電極材料とは、陰極、正極だけでなく、例えば、集電体として用いられるものを含む。
The porous long metal foil obtained by the production method of the present invention is not particularly limited. For example, it is suitably used as an electrode material for a swivel (winding) capacitor, an electrolytic capacitor, a lithium ion capacitor, a fuel cell, or the like. It is done.
The electrode material includes not only the cathode and the positive electrode but also those used as a current collector, for example.

本発明にかかる多孔長尺金属箔の製造方法は、上記のように、長尺の金属箔の一方の面にドライフィルムレジストが接着または圧着されたレジスト層を有し、前記金属箔の他方の面に化学的溶解剥離型補強フィルムが接着または圧着された補強層を備える長尺の積層金属箔を、前記積層金属箔の長手方向の一側から他側に向かって露光装置に送り込み、前記レジスト層を所定幅ごとに露光して前記微細孔の繰り返しパターンをつぎつぎに焼き付ける露光工程と、この露光工程で露光された露光処理済み部分を長手方向の一側から他側に向かって現像装置に送り込み、レジスト層の微細孔形成用の易溶解部を現像液で溶解除去する現像工程と、前記積層金属箔の現像済み部分を積層金属箔の長手方向の一側から他側に向かってエッチング装置に送り込み、金属箔の露出部分をエッチングして微細孔を形成するエッチング工程と、前記積層金属箔のエッチング済み部分を積層金属箔の長手方向の一側から他側に向かって剥離装置に送り込み、残存レジスト層及び補強層を剥離液に曝して剥離除去する残存レジスト層及び補強層除去工程とを備え、残存レジスト層及び補強層除去工程経て得られた多孔長尺金属箔を直接ロール状に巻き取るようにしたので、多数の微細孔が穿設された多孔長尺金属箔を、厚みが薄い金属箔を用いても、折れ皺、変形、歪みが発生することなく生産性よく製造することができる。
そして、厚みが薄い金属箔を用いて得られた多孔長尺金属箔は、例えば、旋回型のコンデンサの電極として好適に用いられる。
すなわち、金属箔の厚みを薄くすることで、コンデンサを大型化することなく軽量で容量の大きいものとすることができるとともに、折れ皺、変形、歪みがないので、誘電体層の信頼性を損なうことがない。
As described above, the method for producing a porous long metal foil according to the present invention has a resist layer in which a dry film resist is bonded or pressure-bonded to one surface of a long metal foil, and the other of the metal foils A long laminated metal foil provided with a reinforcing layer having a chemically dissolved and peelable reinforcing film bonded or pressure-bonded to the surface is fed from one side of the laminated metal foil in the longitudinal direction to the other side to the exposure apparatus, and the resist An exposure process in which the layer is exposed at predetermined widths, and the repeated pattern of the fine holes is successively printed, and the exposed portion exposed in this exposure process is sent from one side of the longitudinal direction to the other side in the development direction. A developing step of dissolving and removing the easily soluble portion for forming micropores of the resist layer with a developer, and an already developed portion of the laminated metal foil is transferred from one side of the laminated metal foil to the other side in the longitudinal direction. Etching, etching the exposed portion of the metal foil to form micropores, and sending the etched portion of the laminated metal foil from one side of the laminated metal foil to the other side in the longitudinal direction, A residual resist layer and a reinforcing layer removing step for removing the residual resist layer and the reinforcing layer by exposing them to a stripping solution, and winding the porous long metal foil obtained through the residual resist layer and the reinforcing layer removing step directly in a roll shape As a result, it is possible to manufacture a porous long metal foil having a large number of micropores with high productivity without occurrence of creases, deformation, or distortion even when a thin metal foil is used. it can.
And the porous elongate metal foil obtained using the metal foil with thin thickness is used suitably as an electrode of a swivel type capacitor, for example.
That is, by reducing the thickness of the metal foil, the capacitor can be made light and large without increasing the size of the capacitor, and the reliability of the dielectric layer is impaired because there is no crease, deformation, or distortion. There is nothing.

本発明にかかる多孔長尺銅箔の1つの実施の形態をあらわす斜視図である。It is a perspective view showing one embodiment of the porous long copper foil concerning the present invention. 図1の銅箔の拡大断面図である。It is an expanded sectional view of the copper foil of FIG. 図1の多孔長尺銅箔の製造方法における積層金属箔形成工程を模式的に説明する図である。It is a figure which illustrates typically the laminated metal foil formation process in the manufacturing method of the porous long copper foil of FIG. 図1の多孔長尺銅箔の製造方法における露光工程を模式的に説明する図である。It is a figure which illustrates typically the exposure process in the manufacturing method of the porous elongate copper foil of FIG. 露光工程で用いるフォトマスクの平面図である。It is a top view of the photomask used at an exposure process. 図1の多孔長尺銅箔の製造方法における現像工程を模式的に説明する図である。It is a figure which illustrates typically the image development process in the manufacturing method of the porous long copper foil of FIG. 現像工程における現像方法を説明する図である。It is a figure explaining the development method in a development process. 図1の多孔長尺銅箔の製造方法におけるエッチング工程以降の工程を模式的に説明する図である。It is a figure which illustrates typically the process after the etching process in the manufacturing method of the porous long copper foil of FIG. エッチング工程におけるエッチング方法を説明する図である。It is a figure explaining the etching method in an etching process.

以下に、本発明を、その実施の形態をあらわす図面を参照しつつ詳しく説明する。
図1及び図2は、本発明にかかる多孔長尺金属箔の一つの実施の形態である多孔長尺銅箔をあらわしている。
Hereinafter, the present invention will be described in detail with reference to the drawings showing embodiments thereof.
FIG.1 and FIG.2 represents the porous long copper foil which is one Embodiment of the porous long metal foil concerning this invention.

図1に示すように、この多孔長尺銅箔Aは、ロール状に巻回されていて、電解銅箔1の厚み方向の一方の面から他方の面に貫通する多数の微細孔2がほぼ全体に穿設されている。   As shown in FIG. 1, this porous long copper foil A is wound in a roll shape, and has a large number of fine holes 2 penetrating from one surface in the thickness direction of the electrolytic copper foil 1 to the other surface. It is drilled throughout.

つぎに、上記多孔長尺銅箔Aの製造方法の1例を、図3〜図9を用いて工程順に説明する。   Next, an example of a method for producing the porous long copper foil A will be described in the order of steps with reference to FIGS.

(1)積層金属箔形成工程
図3に示すように、長尺の電解銅箔1が巻回された電解銅箔原料ロールから電解銅箔1の一端を引き出し、積層金属箔形成装置に通し、電解銅箔1の両面にドライフィルムレジスト(例えば、ニチゴー・モートン(株)製商品名102J30)3を熱圧着して、電解銅箔1の一方の面にドライフィルムレジスト3から形成されたレジスト層3aが積層され、他方の面に同じドライフィルムレジスト3からなる補強層3bが積層された積層金属箔としての積層銅箔Bにして巻取り機でロール状に巻取る。
すなわち、積層金属箔形成装置内では、電解銅箔1とドライフィルムレジスト3,3との間に空気がかみ込まないようにしてドライフィルムレジスト3,3を電解銅箔1に添わせ、上下にローラーR1,R2によって熱圧着するようになっている。
上記ローラーR1,R2は、特に限定されないが、フッ素ゴム製ローラー、シリコーンゴム製ローラーが好適に用いられ、中でも、熱ローラーの平行をだすためにフッ素ゴム(例えば、デュポン社製の商品名バイトン)製ローラーを用いることがより好ましい。
なお、特に限定されないが、電解銅箔1を上記積層金属箔形成装置に通す前工程として、電解銅箔1の表裏面を洗浄液によって洗浄し、清浄化しておくことが好ましい。洗浄液としては、特に限定されないが、例えば、純水が用いられる。
また、積層金属箔形成工程においては、巻き始め時の破れや電解銅箔1のロスがないように、積層金属箔形成装置内にPET(ポリエチレンテレフタレート)などで形成されたダミーフィルムを通しておく。
そして、このダミーフィルムの巻取り機側の端部を巻取り機の芯に巻きつけておき、他端を電解銅箔原料ロールから引き出された電解銅箔1の引き出し端部に少し重ね合わせた状態で接合する。なお、接合は、重なり部分を両面粘着テープで接着するとともに、重なり部分の周縁にさらに粘着テープを貼り付けるなどして、ダミーフィルムと電解銅箔1との間にエッチンング工程においてエッチング液が入り込まないようにシールした状態にしておくことが好ましい。
電解銅箔1は、特に限定されないが、旋回型コンデンサの電極として用いる場合、例えば、長さ500m、厚さ15μm、幅350mmが用いられる。
また、一本の電解銅箔原料ロールの終端(ロールの芯側)まで、電解銅箔1の両面にドライフィルムレジスト3が積層されると、電解銅箔1の終端に上記と同様にしてダミーフィルムの始端を接続し、さらに、接続されたダミーフィルムの終端に新しい電解銅箔原料ロールから電解銅箔1の一端を引き出して接続し、連続して積層銅箔Bを先の積層銅箔B上に巻き込むようにしても構わない。
(1) Laminated metal foil forming step As shown in FIG. 3, one end of the electrolytic copper foil 1 is drawn from the electrolytic copper foil raw material roll on which the long electrolytic copper foil 1 is wound, and passed through the laminated metal foil forming apparatus. Resist layer formed from dry film resist 3 on one surface of electrolytic copper foil 1 by thermocompression bonding of dry film resist (for example, product name 102J30 manufactured by Nichigo-Morton Co., Ltd.) 3 on both surfaces of electrolytic copper foil 1 3a is laminated, and a laminated copper foil B as a laminated metal foil in which a reinforcing layer 3b made of the same dry film resist 3 is laminated on the other side is wound into a roll by a winder.
That is, in the laminated metal foil forming apparatus, the dry film resists 3 and 3 are attached to the electrolytic copper foil 1 so that air does not get caught between the electrolytic copper foil 1 and the dry film resists 3 and 3, and Thermocompression bonding is performed by rollers R1 and R2.
The rollers R1 and R2 are not particularly limited, but a fluororubber roller and a silicone rubber roller are preferably used. Among them, a fluororubber (for example, trade name Viton manufactured by DuPont) is used in order to make the heat roller parallel. It is more preferable to use a roller.
In addition, although it does not specifically limit, It is preferable to wash | clean the front and back of the electrolytic copper foil 1 with a washing | cleaning liquid as a pre-process which lets the electrolytic copper foil 1 pass the said laminated metal foil formation apparatus. Although it does not specifically limit as a washing | cleaning liquid, For example, a pure water is used.
Further, in the laminated metal foil forming step, a dummy film formed of PET (polyethylene terephthalate) or the like is passed through the laminated metal foil forming apparatus so that there is no tear at the start of winding and no loss of the electrolytic copper foil 1.
Then, the end of the dummy film on the winder side is wound around the core of the winder, and the other end is slightly overlapped with the drawn end of the electrolytic copper foil 1 drawn from the electrolytic copper foil raw material roll. Join in state. In addition, the bonding is performed by adhering the overlapping portion with a double-sided adhesive tape, and further sticking an adhesive tape to the periphery of the overlapping portion, so that the etching solution does not enter between the dummy film and the electrolytic copper foil 1 in the etching step. It is preferable to keep the sealed state.
The electrolytic copper foil 1 is not particularly limited, but when used as an electrode of a swivel capacitor, for example, a length of 500 m, a thickness of 15 μm, and a width of 350 mm are used.
Further, when the dry film resist 3 is laminated on both surfaces of the electrolytic copper foil 1 up to the terminal end (the core side of the roll) of one electrolytic copper foil raw material roll, a dummy is formed at the terminal of the electrolytic copper foil 1 in the same manner as described above. Connect the beginning of the film, and connect one end of the electrolytic copper foil 1 from the new electrolytic copper foil raw material roll to the end of the connected dummy film, and connect the laminated copper foil B to the previous laminated copper foil B. It does not matter if it is rolled up.

(2)露光工程
図4に示すように、上記積層金属箔形成工程で得られたロール状の積層銅箔Bの始端に接続されたダミーフィルム(図示せず)を露光装置4内を通し、露光装置4の出口側に設けた巻取り機(図示せず)の芯に巻き付ける。
そして、上記巻取り機による積層銅箔Bの巻取り動作及び停止動作を間欠的に繰り返しながら、積層銅箔Bを巻取り側に巻き取っていく。
なお、上記一回の巻取り動作時間は、積層銅箔Bが露光装置4内に設けられた図5に示すフォトマスク41のほぼ露光区域の幅(積層銅箔Bの長手方向の寸法)分巻き取られる時間に設定されている。一方、一回の停止動作時間は、一回の露光処理時間以上に設定されている、
露光装置4は、一回の停止動作時間内に露光装置4内でフォトマスク41に対応するレジスト層3aをフォトマスク41の露光パターンに露光させるように設定されている。
露光処理は、フォトマスク41が、レジスト層3aの表面に密着するように内部を所定時間(3秒〜8秒、好ましくは6秒)、真空状態(真空圧は85kPa以下、82kPa以下が好ましい)にして行うとともに、レジスト層3aにフォトマスク41越しに平行光線(波長及び光量は、レジスト層3aに用いられるドライフィルムの種類に応じて適宜決定される)が照射される。
また、フォトマスクフォトマスク41は、ガラス板からなり、図5に示すように、円形をした多数のマスク部41aと、このマスク部41aを囲むように設けられた大光透過部41bと、各マスク部41aの中央に設けられた小光透過部41cとを備えている。小光透過部41cの直径は、特に限定されないが、50μm程度が好ましい。
すなわち、露光工程では、巻取り動作及び停止動作を繰り返し、かつ停止動作時に露光処理を行い、積層銅箔Bをレジスト層3aが、中央に島状の小硬化部33を有し、大硬化部32に囲まれた円形の易溶解部となる未硬化部31を多数備えた露光済み積層銅箔Cとして巻取り機でロール状に巻き取る。
(2) Exposure Step As shown in FIG. 4, a dummy film (not shown) connected to the starting end of the roll-shaped laminated copper foil B obtained in the laminated metal foil forming step is passed through the exposure device 4, It is wound around the core of a winder (not shown) provided on the exit side of the exposure apparatus 4.
Then, the laminated copper foil B is wound up on the winding side while intermittently repeating the winding operation and stopping operation of the laminated copper foil B by the winder.
The one winding operation time is substantially equal to the width of the exposure area of the photomask 41 shown in FIG. 5 in which the laminated copper foil B is provided in the exposure apparatus 4 (the dimension in the longitudinal direction of the laminated copper foil B). The time to be wound is set. On the other hand, one stop operation time is set to be longer than one exposure processing time,
The exposure apparatus 4 is set so that the resist layer 3a corresponding to the photomask 41 is exposed to the exposure pattern of the photomask 41 within the exposure apparatus 4 within one stop operation time.
The exposure process is such that the photomask 41 is in close contact with the surface of the resist layer 3a for a predetermined time (3 to 8 seconds, preferably 6 seconds) and in a vacuum state (the vacuum pressure is preferably 85 kPa or less and 82 kPa or less). Then, the resist layer 3a is irradiated with a parallel light beam (the wavelength and the light amount are appropriately determined according to the type of dry film used for the resist layer 3a) through the photomask 41.
Further, the photomask photomask 41 is made of a glass plate, and as shown in FIG. 5, a large number of circular mask portions 41a, a large light transmission portion 41b provided so as to surround the mask portion 41a, And a small light transmitting portion 41c provided in the center of the mask portion 41a. Although the diameter of the small light transmission part 41c is not specifically limited, About 50 micrometers is preferable.
That is, in the exposure process, the winding operation and the stop operation are repeated, and the exposure process is performed during the stop operation. The laminated copper foil B has the resist layer 3a and the island-shaped small cured portion 33 in the center, and the large cured portion. As the exposed laminated copper foil C having a large number of uncured portions 31 that are round easily meltable portions surrounded by 32, the film is wound in a roll shape by a winder.

(3)現像工程
図6に示すように、上記露光工程で得られたロール状の露光済み積層銅箔Cの始端に接続されたダミーフィルム(図示せず)を、露光済み積層銅箔Cのレジスト層3a側が現像装置5内で下側を向くように現像装置5内を通し、現像装置5の出口側に設けた巻取り機(図示せず)のロール芯に巻き付ける。
そして、一定速度(現像装置5の長さ、レジスト層3aに用いるドライフィルムレジストの種類、現像液の種類等処理条件によってことなるが、例えば、3〜3.5m/min)
で巻き取りながら、現像装置5内で、図7に示すように、レジスト層3aに下方からスプレー(スプレー圧、例えば、0.07〜0.09MPa)51によって現像処理液(例えば、0.1〜5質量%の炭酸ナトリウム)52を噴霧し、レジスト層3aを溶解除去する。
すなわち、現像工程では、未硬化部31を溶解除去することによって、図6に示す非エッチング部である中央に島状の小硬化部33を有し、大硬化部32に囲まれた円筒状の電解銅箔1に達する多数の透孔34がレジスト層3aに形成された現像済み積層銅箔Dにして巻取り機でロール状に巻き取る。
なお、図示していないが、ドライフィルムレジストがベースフィルム層を備えている場合は、露光済み積層銅箔Cが現像装置5に入る直前でレジスト層3a表面からベースフィルム層を構成するフィルムを剥離する。
(3) Development process As shown in FIG. 6, the dummy film (not shown) connected to the beginning of the roll-shaped exposed laminated copper foil C obtained in the above-described exposure process is formed on the exposed laminated copper foil C. The resist layer 3a is passed through the developing device 5 so that the resist layer 3a faces downward in the developing device 5, and is wound around a roll core of a winder (not shown) provided on the outlet side of the developing device 5.
And a constant speed (depending on processing conditions such as the length of the developing device 5, the type of dry film resist used for the resist layer 3a, the type of developer, etc., for example, 3 to 3.5 m / min)
As shown in FIG. 7, in the developing device 5, the resist layer 3 a is sprayed from below (spray pressure, for example, 0.07 to 0.09 MPa) 51 with a developing solution (for example, 0.1). .About.5 mass% sodium carbonate) 52 is sprayed to dissolve and remove the resist layer 3a.
That is, in the development step, the uncured portion 31 is dissolved and removed, thereby having an island-shaped small cured portion 33 at the center which is the non-etched portion shown in FIG. A large number of through-holes 34 reaching the electrolytic copper foil 1 are formed into a developed laminated copper foil D formed in the resist layer 3a and wound up in a roll shape by a winder.
Although not shown, when the dry film resist has a base film layer, the film constituting the base film layer is peeled off from the surface of the resist layer 3a immediately before the exposed laminated copper foil C enters the developing device 5. To do.

(4)エッチング工程
図8に示すように、上記現像工程で得られたロール状の現像済み積層銅箔Dの始端に接続されたダミーフィルム(図示せず)を、現像済み積層銅箔Dのレジスト層3a側が最終処理装置内で下側を向くように最終処理装置内を通し、最終処理装置の出口側に設けた巻取り機(図示せず)のロール芯に巻き付ける。
なお、最終処理装置は、図8に示すように、エッチング部6と、残存レジスト層及び補強層除去部7とを一連に備えている。
エッチング部6は、エッチング装置6aと、第1洗浄乾燥装置6bとを備えている。残存レジスト層及び補強層除去部7は、残存レジスト層及び補強層除去装置7aと、第2洗浄乾燥装置7bとを備えている。
そして、エッチング工程では、図9に示すように、エッチング装置6a内でレジスト層3aに下方からスプレー(スプレー圧、例えば、0.05〜0.07MPa)61によってエッチング液(例えば、塩化第2銅溶液)62を噴霧する。
噴霧されたエッチング液は、透孔34に入り込み、電解銅箔1の透孔34部分に臨む部分をエッチングする。
透孔34の中央に小硬化部33が残っているので、このエッチングによって電解銅箔1に図2に示すようなすり鉢状の微細孔2が拡径部側を下側にして形成される。
続いて、エッチング工程では、微細孔2が形成されたのち、図示していないが、第1洗浄乾燥装置6b内で洗浄乾燥される。
(4) Etching Step As shown in FIG. 8, a dummy film (not shown) connected to the starting end of the roll-shaped developed laminated copper foil D obtained in the developing step is used as the developed laminated copper foil D. The resist layer 3a is passed through the final processing apparatus so that the resist layer 3a faces downward in the final processing apparatus, and wound around a roll core of a winder (not shown) provided on the outlet side of the final processing apparatus.
As shown in FIG. 8, the final processing apparatus includes an etching unit 6 and a residual resist layer and reinforcing layer removal unit 7 in series.
The etching unit 6 includes an etching device 6a and a first cleaning / drying device 6b. The remaining resist layer / reinforcing layer removing unit 7 includes a remaining resist layer / reinforcing layer removing device 7a and a second cleaning / drying device 7b.
In the etching step, as shown in FIG. 9, an etching solution (for example, cupric chloride) is applied to the resist layer 3a from below by spraying (spray pressure, for example, 0.05 to 0.07 MPa) 61 in the etching apparatus 6a. Solution) 62 is sprayed.
The sprayed etching solution enters the through hole 34 and etches the portion facing the through hole 34 portion of the electrolytic copper foil 1.
Since the small hardening part 33 remains in the center of the through-hole 34, the mortar-shaped fine hole 2 as shown in FIG.
Subsequently, in the etching process, after the fine holes 2 are formed, the fine holes 2 are cleaned and dried in the first cleaning / drying apparatus 6b (not shown).

(5)残存レジスト層及び補強層除去工程
残存レジスト層及び補強層除去工程は、第1洗浄乾燥装置6bから巻取り側に巻き取られたエッチング済み部が、まず、残存レジスト層及び補強層除去装置7a内に入り、図示していないが、残存レジスト層及び補強層除去装置7a内で上下からスプレー(スプレー圧、例えば、0.08〜0.12MPa)から水酸化ナトリウムを主成分とする剥離液を噴霧し、残存レジスト層(大硬化部32及び小硬化部33)と、補強層3bとを剥離除去する。
そして、第2水洗乾燥装置7b内で残存レジスト層(大硬化部32及び小硬化部33)及び補強層3bが除去された電解銅箔1が洗浄乾燥される。
続いて、乾燥されて清浄化されて第2水洗乾燥装置7bからでて微細孔2が形成された多孔長尺銅箔Aが折れ皺無くロール状に巻き取られて製品化される。
(5) Residual resist layer and reinforcing layer removing step The remaining resist layer and reinforcing layer removing step is performed by first removing the residual resist layer and the reinforcing layer from the etched portion wound on the winding side from the first cleaning / drying device 6b. Although entering into the apparatus 7a, although not shown in figure, the residual resist layer and the reinforcement layer removal apparatus 7a are peeled from the top and bottom (spray pressure, for example, 0.08 to 0.12 MPa) with sodium hydroxide as a main component. The liquid is sprayed to peel and remove the remaining resist layer (large cured portion 32 and small cured portion 33) and the reinforcing layer 3b.
Then, the electrolytic copper foil 1 from which the remaining resist layer (the large cured portion 32 and the small cured portion 33) and the reinforcing layer 3b have been removed is washed and dried in the second water washing and drying apparatus 7b.
Subsequently, the porous long copper foil A, which is dried and purified and is formed from the second washing and drying apparatus 7b and having the fine holes 2 formed thereon, is wound into a roll shape without breaking and is commercialized.

この製造方法は、上記のように、まず、ロール状に巻回された長尺銅箔の始端を引き出しながら、両面にドライフィルムレジスト3を積層して積層銅箔Bを得たのち、この積層銅箔Bを用いて、露光工程、現像工程及びエッチング工程を実施するようにしたので、電解銅箔1が長尺で厚さが極薄いものであっても、露光工程、現像工程及びエッチング工程で折れ皺、変形、歪みのない状態で処理でき、ハンドリング性がよい。
しかも、残存レジスト層及び補強層除去工程を経て直ちにロール状に巻き取られるので、製品である多孔長尺金属箔Aも折れ皺、変形、歪み、バリや傷のない状態で得られる。
As described above, in this manufacturing method, first, a dry copper resist B is obtained by laminating the dry film resist 3 on both sides while pulling out the starting end of the long copper foil wound in a roll shape, and then the laminated copper foil B is obtained. Since the exposure process, the development process, and the etching process are performed using the copper foil B, even if the electrolytic copper foil 1 is long and extremely thin, the exposure process, the development process, and the etching process. It can be processed without creases, deformations and distortions, and has good handling properties.
In addition, since it is immediately wound up in a roll shape through the residual resist layer and reinforcing layer removing step, the product porous long metal foil A can also be obtained in a state free from creases, deformation, distortion, burrs and scratches.

そして、残存レジスト層及び補強層除去工程では、剥離液によって化学的に残存レジスト層(大硬化部32及び小硬化部33)と、補強層3bとを除去するようにしたので、多数の微細孔2が形成された電解銅箔1への剥離ストレスが防止でき、より折れ皺、変形、歪みのない状態で得られる。   In the residual resist layer and reinforcing layer removing step, the residual resist layer (large cured portion 32 and small cured portion 33) and the reinforcing layer 3b are chemically removed by the stripping solution, so that a large number of fine holes are removed. The peeling stress to the electrolytic copper foil 1 on which 2 is formed can be prevented, and the electrolytic copper foil 1 can be obtained in a state free from creases, deformation, and distortion.

また、上記のように電解銅箔1として、極薄のものを用いることができるので、多孔長尺銅箔Aも極薄化できるとともに、出来上がった多孔長尺銅箔Aが直ちにロール状に巻き取られるようにしたので、極薄であってもより折れ皺、変形、歪みのない状態で巻き取ることができる。
そして、得られた極薄の多孔長尺銅箔Aを用いれば、例えば、コンデンサなどを小型化で容量的に大きなものにすることができる。
Further, as described above, an extremely thin one can be used as the electrolytic copper foil 1, so that the porous long copper foil A can be made extremely thin, and the finished porous long copper foil A is immediately wound into a roll. Since it was taken, even if it is very thin, it can wind up in a state without a crease, a deformation | transformation, and distortion.
And if the obtained ultra-thin porous long copper foil A is used, for example, a capacitor or the like can be reduced in size and increased in capacity.

また、得られた極薄の多孔長尺銅箔Aが、シームレスかつ長尺であるので、旋回型コンデンサの電極として好適に用いることができる。
さらに、上記製造方法においては、レジスト層3aだけでなく、補強層3bもドライフィルムレジスト3で形成するようにしたので、補強層3bをレジスト層3a(レジスト層3aを補強層3b)として用いることができる。すなわち、露光工程において、露光装置4の構造を選ばず、ロールの始端を上側から引き出しても、下側から引き出しても使用することができる。
Moreover, since the obtained ultra-thin porous long copper foil A is seamless and long, it can be suitably used as an electrode of a swivel capacitor.
Furthermore, in the above manufacturing method, not only the resist layer 3a but also the reinforcing layer 3b is formed of the dry film resist 3, so that the reinforcing layer 3b is used as the resist layer 3a (the resist layer 3a is used as the reinforcing layer 3b). Can do. That is, in the exposure process, the structure of the exposure apparatus 4 can be used regardless of the structure of the exposure apparatus 4, even if the starting end of the roll is pulled out from the upper side or the lower end.

本発明は、上記の実施の形態に限定されない。例えば、上記の実施の形態では、エッチング工程及び残存レジスト層及び補強層除去工程とを一連で行い、現像工程が別に行われるようになっていたが、現像工程、エッチング工程及び残存レジスト層及び補強層除去工程を一連で行うようにしてもよい。
上記の実施の形態では、積層金属箔形成工程において、レジスト層となるドライフィルムレジストと、補強層となるドライフィルムレジストとを電解銅箔の上下の同じ位置で電解銅箔に沿わせ熱圧着するようにしていたが、前後に位置をずらせるようにしても構わない。
The present invention is not limited to the above embodiment. For example, in the above embodiment, the etching process and the remaining resist layer and the reinforcing layer removing process are performed in series and the developing process is performed separately. However, the developing process, the etching process, the remaining resist layer and the reinforcing process are performed separately. You may make it perform a layer removal process in series.
In the above embodiment, in the laminated metal foil forming step, the dry film resist to be the resist layer and the dry film resist to be the reinforcing layer are thermocompression bonded along the electrolytic copper foil at the same position above and below the electrolytic copper foil. However, the position may be shifted back and forth.

A 多孔長尺銅箔
B 積層銅箔
C 露光済み積層銅箔
D 現像済み積層銅箔
R1,R2 ローラー
1 電解銅箔
2 微細孔
3a レジスト層
3b 補強層
31 未硬化部(易溶解部)
32 大硬化部
33 小硬化部
34 透孔
4 露光装置
41 フォトマスク
41a マスク部
41b 大光透過部
41c 小光透過部
5 現像装置
51 スプレー
52 現像処理液
6 エッチング部
6a エッチング装置
6b 第1洗浄乾燥装置
61 スプレー
62 エッチング液
7 残存レジスト層及び補強層除去部
7a 残存レジスト層及び補強層除去装置
7b 第2洗浄乾燥装置
A porous copper foil B laminated copper foil C exposed laminated copper foil D developed laminated copper foil R1, R2 roller 1 electrolytic copper foil 2 micropore 3a resist layer 3b reinforcing layer 31 uncured part (easily soluble part)
32 Large curing portion 33 Small curing portion 34 Through-hole 4 Exposure device 41 Photomask 41a Mask portion 41b Large light transmission portion 41c Small light transmission portion 5 Development device 51 Spray 52 Development treatment liquid 6 Etching portion 6a Etching device 6b First cleaning and drying Device 61 Spray 62 Etching solution 7 Residual resist layer / reinforcement layer removal unit 7a Residual resist layer / reinforcement layer removal device 7b Second cleaning / drying device

Claims (7)

一方の面から他方の面まで貫通する多数の微細孔がほぼ全長にわたって穿設された多孔長尺金属箔の製造方法であって、
長尺の金属箔の一方の面にドライフィルムレジストが接着または圧着されたレジスト層を有し、前記金属箔の他方の面に化学的溶解剥離型補強フィルムが接着または圧着された補強層を備える長尺の積層金属箔を、前記積層金属箔の長手方向の一側から他側に向かって露光装置に送り込み、前記レジスト層を所定幅ごとに露光して前記微細孔の繰り返しパターンをつぎつぎに焼き付ける露光工程と、
この露光工程で露光された露光処理済み部分を長手方向の一側から他側に向かって現像装置に送り込み、レジスト層の微細孔形成用の易溶解部を現像液で溶解除去する現像工程と、
前記積層金属箔の現像済み部分を積層金属箔の長手方向の一側から他側に向かってエッチング装置に送り込み、金属箔の露出部分をエッチングして微細孔を形成するエッチング工程と、
前記積層金属箔のエッチング済み部分を積層金属箔の長手方向の一側から他側に向かって剥離装置に送り込み、残存レジスト膜及び補強層を剥離液に曝して剥離除去する残存レジスト膜及び補強層除去工程とを備え、残存レジスト膜及び補強層除去工程経て得られた多孔長尺金属箔を直接ロール状に巻き取ることを特徴とする多孔長尺金属箔の製造方法。
A method for producing a porous long metal foil in which a large number of micropores penetrating from one surface to the other surface are formed over substantially the entire length,
It has a resist layer to which a dry film resist is bonded or pressure-bonded on one surface of a long metal foil, and a reinforcing layer to which a chemically dissolving peelable reinforcing film is bonded or pressure-bonded to the other surface of the metal foil The long laminated metal foil is sent from one side of the laminated metal foil in the longitudinal direction to the other side of the exposure apparatus, and the resist layer is exposed for each predetermined width, and the repeated pattern of the fine holes is successively baked. An exposure process;
A development process in which the exposed portion exposed in this exposure process is sent from one side to the other in the longitudinal direction to the developing device, and the easy-dissolving part for forming micropores in the resist layer is dissolved and removed with a developer;
An etching process in which the developed portion of the laminated metal foil is sent to an etching apparatus from one side in the longitudinal direction of the laminated metal foil to the other side, and the exposed portion of the metal foil is etched to form micropores;
The etched portion of the laminated metal foil is sent to a peeling device from one side to the other side in the longitudinal direction of the laminated metal foil, and the residual resist film and the reinforcing layer are peeled and removed by exposing the residual resist film and the reinforcing layer to a peeling solution. A method for producing a porous long metal foil comprising a removing step, and winding the porous long metal foil obtained through the residual resist film and reinforcing layer removing step directly in a roll shape.
多孔長尺金属箔が旋回型コンデンサの電極として用いられる請求項1に記載の多孔長尺金属箔の製造方法   The method for producing a porous long metal foil according to claim 1, wherein the porous long metal foil is used as an electrode of a swivel capacitor. 露光工程において、易溶解部の中央に直径より小径の、現像液による非除去部を設けるとともに、
エッチング工程において、積層金属箔のレジスト層側を下側にしてエッチング装置内に通し、エッチング装置内で積層金属箔の下側からエッチング液をスプレーしてエッチングする請求項1または請求項2に記載の多孔長尺金属箔の製造方法。
In the exposure step, a non-removable part with a developer having a smaller diameter than the diameter is provided at the center of the easily dissolving part,
3. The etching process according to claim 1, wherein the etching is performed by spraying an etching solution from the lower side of the laminated metal foil in the etching apparatus in the etching apparatus with the resist layer side of the laminated metal foil facing downward. Manufacturing method of porous long metal foil.
ロール状に巻回された長尺の金属箔の一端を引き出しながら金属箔の一方の面にドライフィルムレジストを接着または圧着してレジスト層を形成するとともに、他方の面に化学溶解性補強フィルムを接着または圧着して補強層を形成する長尺の積層金属箔形成工程を経て露光工程を行う請求項1〜請求項3に記載の多孔長尺金属箔の製造方法。   While pulling out one end of a long metal foil wound in a roll shape, a dry film resist is adhered or pressure-bonded to one surface of the metal foil to form a resist layer, and a chemically soluble reinforcing film is formed on the other surface. The manufacturing method of the porous elongate metal foil of Claims 1-3 which performs an exposure process through the elongate laminated metal foil formation process which adhere | attaches or crimps | bonds and forms a reinforcement layer. 金属箔が銅箔である請求項1〜請求項4のいずれかに記載の多孔長尺金属箔の製造方法。   Metal foil is copper foil, The manufacturing method of the porous elongate metal foil in any one of Claims 1-4. 補強層がドライフィルムレジストで形成される請求項1〜請求項5のいずれかに記載の多孔長尺金属箔の製造方法。   The method for producing a porous long metal foil according to any one of claims 1 to 5, wherein the reinforcing layer is formed of a dry film resist. 請求項3に記載の製造方法で得られてなり、一方の面から他方の面まで貫通する多数の微細孔がほぼ全長にわたって穿設された多孔長尺金属箔であって、前記微細孔の断面がすり鉢をしていることを特徴とする多孔長尺金属箔。   A porous long metal foil obtained by the manufacturing method according to claim 3, wherein a plurality of micropores penetrating from one surface to the other surface are formed over substantially the entire length, and a cross-section of the micropores A porous long metal foil characterized by a mortar.
JP2011045972A 2011-03-03 2011-03-03 Long metal foil with multiple pores and method for manufacturing the same Withdrawn JP2012180583A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011045972A JP2012180583A (en) 2011-03-03 2011-03-03 Long metal foil with multiple pores and method for manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011045972A JP2012180583A (en) 2011-03-03 2011-03-03 Long metal foil with multiple pores and method for manufacturing the same

Publications (1)

Publication Number Publication Date
JP2012180583A true JP2012180583A (en) 2012-09-20

Family

ID=47012016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011045972A Withdrawn JP2012180583A (en) 2011-03-03 2011-03-03 Long metal foil with multiple pores and method for manufacturing the same

Country Status (1)

Country Link
JP (1) JP2012180583A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015183933A (en) * 2014-03-24 2015-10-22 大日本印刷株式会社 Freezer with defrosting device
JP2015183934A (en) * 2014-03-24 2015-10-22 大日本印刷株式会社 Heat exchanger with defrosting device
JP2017014610A (en) * 2015-06-30 2017-01-19 株式会社光金属工業所 On-vehicle molded article and method for manufacturing on-vehicle molded article
US10062907B2 (en) * 2013-05-09 2018-08-28 Asahi Kasei Pax Corporation Perforated film, coating film, and electricity storage device
CN109183033A (en) * 2018-08-21 2019-01-11 嘉应学院 A kind of preparation method of the netted copper foil of lithium ion battery
JP2019114781A (en) * 2017-12-21 2019-07-11 ゼネラル・アトミックスGeneral Atomics Glass dielectric capacitor and manufacturing process of glass dielectric capacitor
WO2021177261A1 (en) * 2020-03-02 2021-09-10 タツタ電線株式会社 Ground connection withdrawing film
CN114934272A (en) * 2022-04-29 2022-08-23 东莞领益精密制造科技有限公司 Metal strip group, scroll screen forming process and mobile phone
WO2023134532A1 (en) * 2022-01-13 2023-07-20 宁德时代新能源科技股份有限公司 Etching device
JP7395711B2 (en) 2020-03-02 2023-12-11 タツタ電線株式会社 Metal layer and electromagnetic shielding film

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10062907B2 (en) * 2013-05-09 2018-08-28 Asahi Kasei Pax Corporation Perforated film, coating film, and electricity storage device
JP2015183933A (en) * 2014-03-24 2015-10-22 大日本印刷株式会社 Freezer with defrosting device
JP2015183934A (en) * 2014-03-24 2015-10-22 大日本印刷株式会社 Heat exchanger with defrosting device
JP2017014610A (en) * 2015-06-30 2017-01-19 株式会社光金属工業所 On-vehicle molded article and method for manufacturing on-vehicle molded article
JP7489519B2 (en) 2017-12-21 2024-05-23 ゼネラル・アトミックス Glass dielectric capacitor and manufacturing process for glass dielectric capacitor
JP2019114781A (en) * 2017-12-21 2019-07-11 ゼネラル・アトミックスGeneral Atomics Glass dielectric capacitor and manufacturing process of glass dielectric capacitor
CN109183033B (en) * 2018-08-21 2020-12-18 嘉应学院 Preparation method of reticular copper foil for lithium ion battery
CN109183033A (en) * 2018-08-21 2019-01-11 嘉应学院 A kind of preparation method of the netted copper foil of lithium ion battery
WO2021177261A1 (en) * 2020-03-02 2021-09-10 タツタ電線株式会社 Ground connection withdrawing film
JP6991400B1 (en) * 2020-03-02 2022-01-13 タツタ電線株式会社 Ground connection drawer film
JP7395711B2 (en) 2020-03-02 2023-12-11 タツタ電線株式会社 Metal layer and electromagnetic shielding film
WO2023134532A1 (en) * 2022-01-13 2023-07-20 宁德时代新能源科技股份有限公司 Etching device
CN114934272A (en) * 2022-04-29 2022-08-23 东莞领益精密制造科技有限公司 Metal strip group, scroll screen forming process and mobile phone
CN114934272B (en) * 2022-04-29 2023-12-08 东莞领益精密制造科技有限公司 Metal strip group, scroll screen forming process and mobile phone

Similar Documents

Publication Publication Date Title
JP2012180583A (en) Long metal foil with multiple pores and method for manufacturing the same
JP4050682B2 (en) Method for manufacturing flexible printed circuit board
CN103874788A (en) Method for producing metal filters
TWI538590B (en) Printed circuit board and method for manufacturing same
CN101374386B (en) Method for preparing printed circuit board
JP2006041459A (en) Bga package substrate and its manufacturing method
CN104812171A (en) Printed circuit board and processing method thereof
JP2014093523A (en) Method of manufacturing printed circuit board
CN103731993A (en) Machining method for single-side flexible printed circuit board
JP4912100B2 (en) Electric double layer capacitor
JP2010042567A (en) Method of manufacturing suspend metal mask, and suspend metal mask
JP2008041511A (en) Method of manufacturing metal foil for collector
CN102958279A (en) PCB (printed circuit board) etching method and work-in-process PCB
JP5230878B2 (en) Method for producing metal foil sheet
KR102418672B1 (en) Method of making a roll material for a multi-layer printed circuit board
TW201008431A (en) Method for manufacturing flexible printed circuit boards
JP5765460B2 (en) Method for producing metal foil sheet
JP5660159B2 (en) Method for producing metal foil sheet
JP4523232B2 (en) Printed coil manufacturing method and printed wiring board manufacturing method
JP6973703B2 (en) Manufacturing method of printed wiring board
JP2020193364A (en) Metal filter and production method of metal filter
TW201419966A (en) Electroplating process of circuit board
JP2014036064A (en) Method of manufacturing printed circuit board
JP2010042569A (en) Method of manufacturing suspend metal mask, and suspend metal mask
JP2001079795A (en) Forming method of porous metal foil sheet

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513