JP2012180462A - Curable resin composition, cured product thereof, and various articles derived from the same - Google Patents

Curable resin composition, cured product thereof, and various articles derived from the same Download PDF

Info

Publication number
JP2012180462A
JP2012180462A JP2011044690A JP2011044690A JP2012180462A JP 2012180462 A JP2012180462 A JP 2012180462A JP 2011044690 A JP2011044690 A JP 2011044690A JP 2011044690 A JP2011044690 A JP 2011044690A JP 2012180462 A JP2012180462 A JP 2012180462A
Authority
JP
Japan
Prior art keywords
resin composition
curable resin
moles
component
ethylenically unsaturated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011044690A
Other languages
Japanese (ja)
Other versions
JP5712677B2 (en
Inventor
Hiroshi Fujita
浩史 藤田
Takeshi Fukuda
猛 福田
Hideki Aida
秀樹 合田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Arakawa Chemical Industries Ltd
Original Assignee
Arakawa Chemical Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Arakawa Chemical Industries Ltd filed Critical Arakawa Chemical Industries Ltd
Priority to JP2011044690A priority Critical patent/JP5712677B2/en
Publication of JP2012180462A publication Critical patent/JP2012180462A/en
Application granted granted Critical
Publication of JP5712677B2 publication Critical patent/JP5712677B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a curable composition including an ultraviolet curable silsesquioxane compound containing substantially no silanol group, wherein the problem that conventional silsesquioxanes in which alkoxy groups are left and curable compositions including the same are defective in stability is solved.SOLUTION: The curable resin composition includes as essential components an epoxy group-containing silsesquioxane (A) containing substantially no silanol group and an epoxy resin curing agent (B). The silsesquioxane (A) is obtained by bringing, into hydrolysis and condensation using a solid catalyst, a mixture including epoxy group-containing alkoxysilanes (a1) represented by the general formula (1): RSi(OR)(1) (wherein Rrepresents a 1-8C hydrocarbon group having at least one epoxy group or an aromatic hydrocarbon group having at least one epoxy group, and Rrepresents H, a 1-8C hydrocarbon group or an aromatic hydrocarbon group) and metal alkoxides (a2) having no epoxy group in such a way that {number of moles of (a2)}/{sum of number of moles of (a1) and number of moles of (a2)} (molar ratio) becomes ≤0.8.

Description

本発明は、紫外線硬化性樹脂組成物、当該組成物を紫外線硬化させて得られる硬化物、およびこれらから誘導される各種物品に関する。   The present invention relates to an ultraviolet curable resin composition, a cured product obtained by ultraviolet curing the composition, and various articles derived therefrom.

一般式[RSiO3/2で表されるシルセスキオキサン化合物の合成法としては、フェニルトリクロロシランを加水分解し、その後水酸化カリウム(KOH)を用い平衡化反応させる方法(非特許文献1)をはじめ多くの方法が知られている。一般的には、加水分解反応、縮合反応を迅速に行うために酸性または塩基性触媒を併用することが多い。シルセスキオキサンの合成における酸性触媒としては、通常ギ酸や酢酸等の有機酸や塩酸、硫酸等の鉱酸が用いられる(特許文献1)。塩基性触媒としてはKOHや水酸化ナトリウム(NaOH)等のアルカリ塩類やトリエチルアミン、テトラメチルアンモニウムヒドロキシドなどの有機アミンやアンモニウムヒドロキシド類が用いられる。 As a method for synthesizing a silsesquioxane compound represented by the general formula [RSiO 3/2 ] n , a method in which phenyltrichlorosilane is hydrolyzed and then equilibrated with potassium hydroxide (KOH) (non-patent document) Many methods are known including 1). In general, an acidic or basic catalyst is often used in combination in order to rapidly perform a hydrolysis reaction and a condensation reaction. As an acidic catalyst in the synthesis of silsesquioxane, organic acids such as formic acid and acetic acid and mineral acids such as hydrochloric acid and sulfuric acid are usually used (Patent Document 1). As the basic catalyst, alkali salts such as KOH and sodium hydroxide (NaOH), organic amines such as triethylamine and tetramethylammonium hydroxide, and ammonium hydroxides are used.

一般的に、シルセスキオキサン化合物は水酸基やアルコキシ基がほぼ消費された構造となっているため、安定性に優れた化合物である。しかしながらコーティング剤や封止材として使用する際には、残存水酸基や残存アルコキシ基が少ないために、基材への密着性や強度といった性能が不足する問題があった。   In general, a silsesquioxane compound has a structure in which hydroxyl groups and alkoxy groups are almost consumed, and thus is a compound having excellent stability. However, when used as a coating agent or a sealing material, there are problems of insufficient performance such as adhesion to a base material and strength because there are few residual hydroxyl groups and residual alkoxy groups.

この問題を解決するために、水酸基やアルコキシ基を残存させた状態のシルセスキオキサン化合物の合成が試みられているが、特に水酸基を残存させた状態のシルセスキオキサンの安定性を向上させることは非常に困難であった。水酸基を残存させた際の安定性の悪化は、シルセスキオキサン化合物の合成の際に用いた酸、あるいは塩基性の加水分解、縮合触媒が残存し、活性の高い反応性基である水酸基の縮合反応を進行させてしまうことが原因である。   In order to solve this problem, synthesis of a silsesquioxane compound in which a hydroxyl group or an alkoxy group remains is attempted, but in particular, the stability of the silsesquioxane in a state in which a hydroxyl group remains is improved. It was very difficult. The deterioration of the stability when the hydroxyl group remains is due to the presence of the acid used in the synthesis of the silsesquioxane compound, the basic hydrolysis or condensation catalyst, and the hydroxyl group which is a highly active reactive group. The cause is that the condensation reaction proceeds.

また、アルコキシ基を残存させた状態のシルセスキオキサン化合物の合成は、一般的な酸あるいはアルカリ触媒を用いた場合、アルコキシ基の残存率や分子量の制御が非常に困難という問題があった。   Further, the synthesis of the silsesquioxane compound with the alkoxy group remaining has a problem that it is very difficult to control the residual ratio of the alkoxy group and the molecular weight when a general acid or alkali catalyst is used.

特開2007−291313号公報JP 2007-291313 A

Brown J. F.ら、ジャーナル オブ ジ アメリカン ケミカル ソサエティ(J.Am.Chem.Soc,)82, 6194‐6195,1960Brown J.M. F. J. Am. Chem. Soc, 82, 6194-6195, 1960, Journal of the American Chemical Society.

本発明は、従来のアルコキシ基を残存させたシルセスキオキサンおよびこれを含有する硬化性組成物の安定性が非常に悪いという欠点を解消した硬化が可能な実質的にシラノール基を含まないシルセスキオキサン化合物を含有する硬化性組成物を提供することを目的とする。   The present invention is a silsesquioxane in which a conventional alkoxy group remains, and a silanol group substantially free of silanol groups capable of curing, which has solved the disadvantage that stability of a curable composition containing the silsesquioxane is extremely poor. It aims at providing the curable composition containing a sesquioxane compound.

本発明者は上記課題を解決すべく鋭意検討した結果、特定の実質的にシラノール基を含まないエチレン性不飽和結合含有シルセスキオキサンおよび重合開始剤とからなる組成物、およびその紫外線硬化物によって上記課題を解決しうることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above-mentioned problems, the present inventor has obtained a composition comprising a specific ethylenically unsaturated bond-containing silsesquioxane substantially free of silanol groups and a polymerization initiator, and an ultraviolet cured product thereof. Thus, the inventors have found that the above problems can be solved, and have completed the present invention.

すなわち、本発明は、一般式(1):R1Si(OR23(1)(式中、R1は少なくとも1つのエチレン性不飽和結合を有する炭素数1〜8の炭化水素基、または少なくとも1つのエチレン性不飽和結合を有する芳香族炭化水素基を表し、R2は水素原子、炭素数1〜8の炭化水素基、または芳香族炭化水素基を表す)で示されるエチレン性不飽和結合含有アルコキシシラン類(a1)およびエチレン性不飽和結合を有しない金属アルコキシド類(a2)を{(a2)のモル数}/{(a1)のモル数と(a2)のモル数との合計}(モル比)が0.8以下となるように含有する混合物を、固体触媒を用いて加水分解、縮合させることによって得られる実質的にシラノール基を含まないエチレン性不飽和結合含有シルセスキオキサン(A)ならびに重合開始剤(B)を必須成分として含有することを特徴とする硬化性樹脂組成物;当該組成物を硬化させて得られることを特徴とする硬化物;当該硬化性樹脂組成物を基材に塗布、硬化させることにより、コーティング層が形成されていることを特徴とする物品;当該硬化性樹脂組成物を被着物に塗布し、これの塗布面と別の部材とを貼りあわせ、ついで硬化させて得られることを特徴とする多層構造体;当該硬化性樹脂組成物を封止材として用い、硬化させて得られることを特徴とする封止物品に関する。 That is, the present invention relates to the general formula (1): R 1 Si (OR 2 ) 3 (1) (wherein R 1 is a hydrocarbon group having 1 to 8 carbon atoms having at least one ethylenically unsaturated bond, Or an aromatic hydrocarbon group having at least one ethylenically unsaturated bond, and R 2 represents a hydrogen atom, a hydrocarbon group having 1 to 8 carbon atoms, or an aromatic hydrocarbon group). Saturated bond-containing alkoxysilanes (a1) and metal alkoxides (a2) having no ethylenically unsaturated bonds are converted into {number of moles of (a2)} / {number of moles of (a1) and number of moles of (a2). Silicates containing ethylenically unsaturated bonds substantially free of silanol groups, obtained by hydrolyzing and condensing a mixture containing (total ratio) (molar ratio) of 0.8 or less using a solid catalyst. Oxane (A) And a polymerization initiator (B) as an essential component; a curable resin composition obtained by curing the composition; a curable resin composition as a base material An article characterized in that a coating layer is formed by applying and curing to a coating; applying the curable resin composition to an adherend, bonding the coated surface and another member, and then curing It is related with the sealing article characterized by being obtained by making it harden | cure using the said curable resin composition as a sealing material.

本発明によれば、耐熱性、耐薬品性、表面硬度などの諸特性が改善された硬化物を提供しうる紫外線硬化性樹脂組成物を提供できる。また該紫外線硬化性樹脂組成物から得られる本発明の硬化物は、コーティング剤、接着剤、封止材などとして有用である。当該コーティング剤は、物品の製造に、当該接着剤は、多層構造体の製造に、当該封止剤は、封止物品の製造に用いることができる。本発明による物品は導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板またはプリズムなどの光学部材用途として有用である。本発明による多層構造体は液晶パネル、ELパネル、PDPパネル、カラーフィルターまたは光ディスク基板などのディスプレイ部材用途として有用である。本発明による封止物品は、発光素子、受光素子、光電変換素子、または光伝送関連部品などの電子部品用途として有用である。   ADVANTAGE OF THE INVENTION According to this invention, the ultraviolet curable resin composition which can provide the hardened | cured material in which various characteristics, such as heat resistance, chemical resistance, and surface hardness, were improved can be provided. Further, the cured product of the present invention obtained from the ultraviolet curable resin composition is useful as a coating agent, an adhesive, a sealing material and the like. The coating agent can be used for manufacturing an article, the adhesive can be used for manufacturing a multilayer structure, and the sealing agent can be used for manufacturing a sealed article. The article according to the present invention is useful as an optical member such as a light guide plate, a polarizing plate, a liquid crystal panel, an EL panel, a PDP panel, an OHP film, an optical fiber, a color filter, an optical disk substrate, a lens, a plastic substrate for a liquid crystal cell, or a prism. The multilayer structure according to the present invention is useful for use as a display member such as a liquid crystal panel, an EL panel, a PDP panel, a color filter, or an optical disk substrate. The sealing article according to the present invention is useful as an electronic component such as a light emitting device, a light receiving device, a photoelectric conversion device, or an optical transmission related component.

実施例4および比較例4で得られた硬化物の粘弾性測定による動的貯蔵弾性率の測定結果である。It is a measurement result of the dynamic storage elastic modulus by the viscoelasticity measurement of the hardened | cured material obtained in Example 4 and Comparative Example 4.

本発明で用いられるエチレン性不飽和結合含有シルセスキオキサン(A)(以下、成分(A)という)は、一般式(1):RSi(OR(式中、R1は少なくとも1つのエチレン性不飽和結合を有する炭素数1〜8の炭化水素基、または少なくとも1つのエチレン性不飽和結合を有する芳香族炭化水素基を表し、R2は水素原子、炭素数1〜8の炭化水素基、または芳香族炭化水素基を表す)で示されるエチレン性不飽和結合含有アルコキシシラン類(a1)(以下、成分(a1)という)およびエチレン性不飽和結合を有しない金属アルコキシド類(a2)(以下、成分(a2)という)を{成分(a2)のモル数}/{成分(a1)のモル数と成分(a2)のモル数との合計}(モル比)が0.8以下となるように含有する混合物を、固体触媒を用いて加水分解および縮合して得られる化合物である。成分(a1)の具体例としては、3−アクリロイルプロピルトリメトキシシラン、3−メタクリロイルプロピルトリメトキシシラン、3−アクリロイルプロピルトリエトキシシラン、3−メタクリロイルプロピルトリエトキシシラン、アリルトリメトキシシラン、アリルトリエトキシシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルトリプロポキシシラン、ビニルトリブトキシシラン、ビニルトリアセトキシシラン、ビニルトリ(2−メトキシエトキシ)シランなどが挙げられ、該例示化合物はいずれか単独で、または適宜に組み合わせて使用できる。該例示化合物のうち、3−メタクリロイルプロピルトリメトキシシラン、3−アクリロイルプロピルトリメトキシシラン、アリルトリメトキシシラン、ビニルトリメトキシシランは、加水分解反応の反応性が高く、かつ入手が容易であるため特に好ましい。 The ethylenically unsaturated bond-containing silsesquioxane (A) (hereinafter referred to as component (A)) used in the present invention has the general formula (1): R 1 Si (OR 2 ) 3 (wherein R 1 is Represents a hydrocarbon group having 1 to 8 carbon atoms having at least one ethylenically unsaturated bond, or an aromatic hydrocarbon group having at least one ethylenically unsaturated bond, wherein R 2 is a hydrogen atom, having 1 to 8 carbon atoms; And an alkoxysilane having an ethylenically unsaturated bond (a1) (hereinafter referred to as component (a1)) and a metal alkoxide having no ethylenically unsaturated bond (A2) (hereinafter referred to as component (a2)) is {number of moles of component (a2)} / {total number of moles of component (a1) and number of moles of component (a2)} (molar ratio). Mix containing 8 or less A compound obtained by hydrolysis and condensation using a solid catalyst. Specific examples of the component (a1) include 3-acryloylpropyltrimethoxysilane, 3-methacryloylpropyltrimethoxysilane, 3-acryloylpropyltriethoxysilane, 3-methacryloylpropyltriethoxysilane, allyltrimethoxysilane, allyltriethoxy. Silane, vinyltrimethoxysilane, vinyltriethoxysilane, vinyltripropoxysilane, vinyltributoxysilane, vinyltriacetoxysilane, vinyltri (2-methoxyethoxy) silane, etc., and the exemplified compounds are either alone or Combinations can be used as appropriate. Among the exemplified compounds, 3-methacryloylpropyltrimethoxysilane, 3-acryloylpropyltrimethoxysilane, allyltrimethoxysilane, and vinyltrimethoxysilane are particularly highly reactive because they are highly reactive in hydrolysis and readily available. preferable.

また、成分(a2)の具体例としては、トリメチルメトキシシラン、トリメチルエトキシシラン、トリエチルメトキシシラン、トリエチルエトキシシラン、トリフェニルメトキシシラン、トリフェニルエトキシシランなどのトリアルキルアルコキシシラン類、ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジエチルジメトキシシラン、ジエチルジエトキシシラン、ジフェニルジメトキシシラン、ジフェニルジエトキシシラン、メチルフェニルジメトキシシラン、メチルフェニルジエトキシシランなどのジアルキルジアルコキシシラン類、メチルトリメトキシシラン、メチルトリエトキシシラン、エチルトリメトキシシラン、エチルトリエトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシランなどのアルキルトリアルコキシシラン類、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブトキシシランなどのテトラアルコキシシラン類、テトラメトキシチタン、テトラエトキシチタン、テトラプロポキシチタン、テトラブトキシチタンなどのテトラアルコキシチタン類、テトラエトキシジルコニウム、テトラプロポキシジルコニウム、テトラブトキシジルコニウムなどのテトラアルコキシジルコニウム類などを使用しうる。成分(a2)は、いずれか単独で、または2種以上を組み合わせて用いることができる。これらのうち、トリアルキルアルコキシシラン類、ジアルキルジアルコキシシラン類、テトラアルコキシシラン類を用いることで、成分(A)の架橋密度を調整することができる。アルキルトリアルコキシシラン類を用いることで、成分(A)中に含まれるエチレン性不飽和結合を有する炭化水素基の量を調整することができる。テトラアルコキシチタン類、テトラアルコキシジルコニウム類を用いることで、最終的に得られる紫外線硬化物の屈折率を高くすることができる。   Specific examples of component (a2) include trialkylalkoxysilanes such as trimethylmethoxysilane, trimethylethoxysilane, triethylmethoxysilane, triethylethoxysilane, triphenylmethoxysilane, triphenylethoxysilane, dimethyldimethoxysilane, dimethyl Dialkylsilanes such as diethoxysilane, diethyldimethoxysilane, diethyldiethoxysilane, diphenyldimethoxysilane, diphenyldiethoxysilane, methylphenyldimethoxysilane, methylphenyldiethoxysilane, methyltrimethoxysilane, methyltriethoxysilane, Alkyl compounds such as ethyltrimethoxysilane, ethyltriethoxysilane, phenyltrimethoxysilane, and phenyltriethoxysilane Tetraalkoxysilanes such as alkoxysilanes, tetramethoxysilane, tetraethoxysilane, tetrapropoxysilane, tetrabutoxysilane, tetraalkoxytitaniums such as tetramethoxytitanium, tetraethoxytitanium, tetrapropoxytitanium, tetrabutoxytitanium, tetraethoxy Tetraalkoxyzirconium such as zirconium, tetrapropoxyzirconium, tetrabutoxyzirconium and the like can be used. The component (a2) can be used either alone or in combination of two or more. Of these, the crosslink density of the component (A) can be adjusted by using trialkylalkoxysilanes, dialkyldialkoxysilanes, and tetraalkoxysilanes. By using alkyltrialkoxysilanes, the amount of hydrocarbon groups having an ethylenically unsaturated bond contained in component (A) can be adjusted. By using tetraalkoxytitanium or tetraalkoxyzirconium, the refractive index of the finally obtained ultraviolet cured product can be increased.

成分(a2)を成分(a1)と併用する場合は、{成分(a2)のモル数}/{成分(a1)のモル数と成分(a2)のモル数との合計}(モル比)が0.8以下とすることが好ましい。0.8を超える場合、得られる成分(A)中に含まれるエチレン性不飽和結合を有する炭化水素基のモル数が少なくなるため、紫外線硬化性が低下するとともに、硬化物の硬度などの物性についての改善効果も不十分となる傾向がある。また、[成分(a1)および成分(a2)に含まれる各アルコキシ基の合計モル数]/[成分(a1)のモル数と成分(a2)のモル数との合計](モル比:成分(A)1分子あたりに含まれるアルコキシ基の平均個数を示す)が2.5以上3.5以下であることが好ましく、2.7以上3.2以下であることがより好ましい。2.5未満の場合、得られる成分(A)の架橋密度が低く、硬化物の耐熱性が低下する傾向がある。また、3.5を超える場合、成分(A)を製造する際、ゲル化しやすくなる。 When component (a2) is used in combination with component (a1), {number of moles of component (a2)} / {total number of moles of component (a1) and moles of component (a2)} (molar ratio) It is preferable to set it to 0.8 or less. If it exceeds 0.8, the number of moles of hydrocarbon groups having an ethylenically unsaturated bond contained in the resulting component (A) decreases, so that the UV curability is lowered and the physical properties such as the hardness of the cured product. There is also a tendency that the improvement effect on is insufficient. Further, [the total number of moles of each alkoxy group contained in the component (a1) and the component (a2)] / [sum of the number of moles of the component (a1) and the number of moles of the component (a2)] (molar ratio: component ( A) (showing the average number of alkoxy groups contained in one molecule) is preferably 2.5 or more and 3.5 or less, and more preferably 2.7 or more and 3.2 or less. When it is less than 2.5, the crosslinking density of the obtained component (A) is low, and the heat resistance of the cured product tends to decrease. Moreover, when it exceeds 3.5, it becomes easy to gelatinize when manufacturing a component (A).

本発明に用いられる成分(A)は、成分(a1)単独やこれに成分(a2)を併用して、それらを加水分解後、縮合させて得ることができる。加水分解反応によって、成分(a1)や成分(a2)に含まれるアルコキシ基が水酸基となり、アルコールが副生する。加水分解反応に必要な水の量は、[加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)が0.4以上10以下であればよく、好ましくは1である。0.4未満の場合、成分(A)中に加水分解されずに残るアルコキシ基が多くなるため好ましくない。また、10を超える場合、後に行う縮合反応(脱水反応)の際に除くべき水の量が多くなるため、経済的に不利である。   Component (A) used in the present invention can be obtained by condensing component (a1) alone or in combination with component (a2), condensing them after hydrolysis. By the hydrolysis reaction, the alkoxy group contained in component (a1) or component (a2) becomes a hydroxyl group, and alcohol is by-produced. The amount of water required for the hydrolysis reaction is [number of moles of water used for hydrolysis reaction] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio). 4 or more and 10 or less, preferably 1. When the ratio is less than 0.4, the number of alkoxy groups remaining in the component (A) without being hydrolyzed increases, which is not preferable. On the other hand, if it exceeds 10, the amount of water to be removed in the subsequent condensation reaction (dehydration reaction) increases, which is economically disadvantageous.

また、成分(a2)としてテトラアルコキシチタン類、テトラアルコキシジルコニウム類等、特に加水分解性および縮合反応性の高い金属アルコキシド類を併用する場合には、急速に加水分解および縮合反応が進行し、系がゲル化してしまう場合がある。この場合、成分(a1)の加水分解反応を終了させ、実質的にすべての水が消費された状態にした後、該成分(a2)を添加することによって、ゲル化を避けることができる。   In addition, when the component (a2) is used in combination with a tetraalkoxytitanium, a tetraalkoxyzirconium or the like, particularly a metal alkoxide having a high hydrolyzability and condensation reactivity, the hydrolysis and condensation reaction proceeds rapidly, and the system May gel. In this case, gelation can be avoided by adding the component (a2) after the hydrolysis reaction of the component (a1) has been completed and all water has been consumed.

加水分解反応に用いられる固体触媒は、エチレン性不飽和結合含有アルコキシシラン類(a1)、エチレン性不飽和結合を有しない金属アルコキシド類(a2)、及びこれらの加水分解物、エチレン性不飽和結合含有シルセスキオキサン(A)、加水分解や縮合時に用いる溶剤、水に不溶のものであって、酸性あるいは塩基性のイオン性基を有する、室温で固体の触媒材料である。加水分解反応に用いる固体触媒の具体例としては、イオン交換樹脂、活性白土、カーボン系固体酸等が挙げられ、該例示化合物はいずれか単独で、または適宜に組み合わせて使用できる。該例示化合物のうち、イオン交換樹脂は、加水分解反応の反応性が高く、かつ入手が容易であるため特に好ましい。イオン交換樹脂としては、強酸型陽イオン交換樹脂、弱酸型陽イオン交換樹脂、強塩基型陰イオン交換樹脂、弱塩基型陰イオン交換樹脂を使用でき、それらの市販品としては、強酸型陽イオン交換樹脂としては、ダイヤイオン SKシリーズ、同UBKシリーズ、同PKシリーズ、同HPK25・PCPシリーズ(いずれも三菱化学(株)製商品名)、アンバーライト IR120B、同IR124、同200CT、同252、アンバージェット 1020、同1024、同1060、同1220、アンバーリスト 15DRY、同15JWET、同16WET、同31WET、同35WET(いずれもオルガノ(株)製商品名)など、弱酸型陽イオン交換樹脂としては、ダイヤイオン WKシリーズ、同WK40(いずれも三菱化学(株)製商品名)、アンバーライト FPC3500、同IRC76(いずれもオルガノ(株)製商品名)など、強塩基型陰イオン交換樹脂としてはダイヤイオン SAシリーズ、同UBA120、同PA300シリーズ、同PA400シリーズ、同HPA25(いずれも三菱化学(株)製商品名)、アンバーライト IRA400J、同IRA402BL、同IRA404J、同IRA900J、同IRA904、同IRA458RF、同IRA958、アンバージェット 4400、同4002、同4010(いずれもオルガノ(株)製商品名)など、弱塩基型陰イオン交換樹脂としては、ダイヤイオン WA10、同WA20シリーズ、同WA30(いずれも三菱化学(株)製商品名)、アンバーライト IRA410J、同IRA411、同IRA910CT、同IRC747UPS、同IRC748、同IRA743、アンバーリスト A21(いずれもオルガノ(株)製商品名)などを使用しうる。反応速度や副反応の抑制などにより使用するイオン交換樹脂のタイプを任意に選択できるが、反応性から強酸型陽イオン交換樹脂および強塩基型陰イオン交換樹脂が特に好ましい。   The solid catalyst used in the hydrolysis reaction includes ethylenically unsaturated bond-containing alkoxysilanes (a1), metal alkoxides having no ethylenically unsaturated bonds (a2), and their hydrolysates, ethylenically unsaturated bonds. It is a catalyst material which is insoluble in water containing silsesquioxane (A), a solvent used in hydrolysis and condensation, and water, and has an acidic or basic ionic group at room temperature. Specific examples of the solid catalyst used in the hydrolysis reaction include an ion exchange resin, activated clay, a carbon-based solid acid, and the like. The exemplified compounds can be used alone or in appropriate combination. Among the exemplified compounds, ion exchange resins are particularly preferable because of high reactivity of hydrolysis reaction and easy availability. As the ion exchange resin, strong acid type cation exchange resin, weak acid type cation exchange resin, strong base type anion exchange resin, weak base type anion exchange resin can be used. As replacement resins, Diaion SK series, UBK series, PK series, HPK25 / PCP series (all trade names manufactured by Mitsubishi Chemical Corporation), Amberlite IR120B, IR124, 200CT, 252 and Amber Jet 1020, 1024, 1060, 1220, Amberlyst 15DRY, 15JWET, 16WET, 31WET, 35WET (all trade names of Organo Co., Ltd.) AEON WK series, WK40 (both manufactured by Mitsubishi Chemical Corporation) Product name), Amberlite FPC3500, IRC76 (both are names of products manufactured by Organo Co., Ltd.) and other strong base type anion exchange resins such as Diaion SA series, UBA120, PA300 series, PA400 series, HPA25 ( All are trade names manufactured by Mitsubishi Chemical Corporation), Amberlite IRA400J, IRA402BL, IRA404J, IRA900J, IRA904, IRA458RF, IRA958, Amberjet 4400, 4002, 4010 (all Organo) As a weak base type anion exchange resin, such as Diaion WA10, WA20 series, WA30 (all are trade names manufactured by Mitsubishi Chemical Corporation), Amberlite IRA410J, IRA411, IRA 10CT, the IRC747UPS, same IRC748, same IRA743, (both of Organo Co., Ltd., trade name) Amberlyst A21 and the like may be employed. Although the type of ion exchange resin to be used can be arbitrarily selected depending on the reaction rate and side reaction suppression, strong acid type cation exchange resins and strong base type anion exchange resins are particularly preferred in view of reactivity.

加水分解反応に用いられる固体触媒の平均粒子径は100μm〜5mm程度であることが好ましく、300μm〜2mm程度であることがより好ましい。2mmを超えると表面積が小さくなり反応性が低くなる。300μmより小さいと触媒を濾過で取り除く際に濾過できなかったり、時間がかかったりする。   The average particle size of the solid catalyst used for the hydrolysis reaction is preferably about 100 μm to 5 mm, and more preferably about 300 μm to 2 mm. If it exceeds 2 mm, the surface area becomes small and the reactivity becomes low. If it is smaller than 300 μm, it cannot be filtered or takes time when the catalyst is removed by filtration.

加水分解反応に用いられる固体触媒の添加量は、成分(a1)および成分(a2)の合計100重量部に対して0.1〜25重量部であることが好ましく、1〜10重量部であることがより好ましい。25重量部よりも多いと、後に除くべき触媒の量が多くなるため、経済的に不利である。また0.1重量部よりも少ないと、実質的に反応が進行しなかったり、反応時間が長くなったりする傾向がある。反応温度、時間は、成分(a1)や成分(a2)の反応性に応じて任意に設定できるが、通常0〜100℃程度、好ましくは20〜80℃、1分〜4時間程度である。   The addition amount of the solid catalyst used for the hydrolysis reaction is preferably 0.1 to 25 parts by weight with respect to 100 parts by weight in total of the component (a1) and the component (a2), and is 1 to 10 parts by weight. It is more preferable. If the amount is more than 25 parts by weight, the amount of the catalyst to be removed later increases, which is economically disadvantageous. On the other hand, when the amount is less than 0.1 parts by weight, the reaction does not substantially proceed or the reaction time tends to be long. Although reaction temperature and time can be arbitrarily set according to the reactivity of a component (a1) or a component (a2), they are about 0-100 degreeC normally, Preferably it is about 20-80 degreeC, 1 minute-about 4 hours.

該加水分解反応は、溶剤の存在下または不存在下に行うことができる。溶剤の種類は格別限定されず、任意の溶剤を1種類以上選択して用いることができるが、後述の縮合反応に用いる溶剤と同一のものを用いることが好ましい。成分(a1)や成分(a2)の反応性が低い場合は、無溶剤で行うことが好ましい。 The hydrolysis reaction can be performed in the presence or absence of a solvent. The type of the solvent is not particularly limited, and one or more arbitrary solvents can be selected and used, but it is preferable to use the same solvent as that used in the condensation reaction described later. When the reactivity of component (a1) or component (a2) is low, it is preferable to carry out without solvent.

上記方法で加水分解反応を行うが、[加水分解されてできた水酸基のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)が0.5以上になるように進行させることが好ましく、0.8以上に調整することがさらに好ましい。加水分解反応に続く縮合反応は、加水分解で生じた水酸基間だけでなく、該水酸基と残存アルコキシ基との間でも進行するため、少なくとも半分(モル比が0.5以上)が加水分解されていればよい。   The hydrolysis reaction is carried out by the above method, but the [number of moles of hydroxyl group formed by hydrolysis] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) is 0. It is preferable to make it progress so that it may become 0.5 or more, and it is still more preferable to adjust to 0.8 or more. The condensation reaction following the hydrolysis reaction proceeds not only between the hydroxyl groups generated by hydrolysis but also between the hydroxyl groups and the remaining alkoxy groups, so that at least half (molar ratio is 0.5 or more) is hydrolyzed. Just do it.

縮合反応においては、前記の水酸基間で水が副生し、また水酸基とアルコキシ基間ではアルコールが副生して、ガラス化する。縮合反応には、加水分解反応に用いた固体触媒をそのまま用いてもよいし固体触媒を濾別後、別の固体触媒を用いてもよい。また、加水分解反応に用いた固体触媒を濾別後、無触媒で縮合反応を行ってもよいし、公知の塩基性の脱水縮合触媒を任意に用いてもよい。反応温度、時間は成分(a1)や成分(a2)の反応性に応じてそれぞれ任意に設定できるが、通常は20〜150℃程度、好ましくは40〜100℃、30分〜12時間程度である。   In the condensation reaction, water is by-produced between the hydroxyl groups, and alcohol is by-produced between the hydroxyl groups and the alkoxy group to vitrify. In the condensation reaction, the solid catalyst used in the hydrolysis reaction may be used as it is, or another solid catalyst may be used after filtering the solid catalyst. In addition, after the solid catalyst used in the hydrolysis reaction is filtered off, the condensation reaction may be performed without a catalyst, or a known basic dehydration condensation catalyst may be arbitrarily used. The reaction temperature and time can be arbitrarily set according to the reactivity of the component (a1) or component (a2), but are usually about 20 to 150 ° C., preferably about 40 to 100 ° C. and about 30 minutes to 12 hours. .

塩基性の脱水縮合触媒は、格別限定はされず、従来公知の塩基性の脱水触媒を任意に用いることができる。具体例としては、水酸化ナトリウム(NaOH)、水酸化カリウム(KOH)、水酸化カルシウム(Ca(OH))などのアルカリ塩類、プロピルアミン、ブチルアミン、イソブチルアミン、s−ブチルアミン、アリルアミン、イソアミルアミン、2―エチルヘキシルアミン、3−メトキシプロピルアミン、3−エトキシプロピルアミン、3−アミノプロパノール、エタノールアミン、2−エチルヘキシロキシプロピルアミン、3−ラウリロキシプロピルアミン、エチレンジアミン、アニリン、ジプロピルアミン、ジブチルアミン、ジイソブチルアミン、メチルヘキシルアミン、ジオクチルアミン、ジ−2−エチルヘキシルアミン、N−メチルヘキシルアミン、ジエタノールアミン、トリエチルアミン、トリブチルアミン、トリオクチルアミン、トリ−2−エチルヘキシルアミン、トリアリルアミン、メチルジアリルアミン、N,N−ジイソプロピルエチルアミン、ジメチルアミノエチルアミン、エチルアミノエチルアミン、ジエチルアミノエチルアミン、テトラメチルエチレンジアミン、1、2−ジアミノプロパン、1,3−ジアミノプロパン、メチルアミノプロピルアミン、ジメチルアミノプロピルアミン、ジエチルアミノプロピルアミン、N−メチルモルフォリン、N−アミノプロピルモルフォリン、トリエチレンテトラミン、テトラエチレンペンタミン、ヘキサメチレンテトラリン、ピペリジン、2−ピペコリン、4−ピペコリン、N−メチルピペリジン、ベンジルアミン、ジベンジルアミン、ジメチルベンジルアミン、フェネチルアミン、シクロヘキシルアニリン、ピロリジン、ピロール、ピペラジン、N−メチルピペラジン、ピラジン、2−メチルピラジン、2,5−ジメチルピラジン、ピリジン、α−ピコリン、β−ピコリン、γ−ピコリン、2,6−ルチジン、2,4−ルチジン、2,4,6−コリジン、3ーアミノピリジン、4−ジメチルアミノピリジン、4−ヒドロキシピリジン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エンなどの有機アミン類、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾールなどのイミダゾール類、テトラメチルアンモニウムヒロドキシド、テトラブチルアンモニウムヒドロキシドなどのアンモニウムヒドロキシド類、アンモニアなどがあげられる。該例示化合物はいずれか単独で、または適宜に組み合わせて使用できる。該例示化合物のうち、NaOH、KOH、トリエチルアミン、1,8−ジアザビシクロ[5.4.0]ウンデカ−7−エン、1,5−ジアザビシクロ[4.3.0]ノナ−5−エン、2−メチルイミダゾール、2−フェニルイミダゾール、2−フェニル−4−メチルイミダゾール、2−ヘプタデシルイミダゾール、テトラメチルアンモニウムヒロドキシドは、縮合反応の反応性が高く、かつ入手が容易であるため特に好ましい。 The basic dehydration condensation catalyst is not particularly limited, and a conventionally known basic dehydration catalyst can be arbitrarily used. Specific examples include alkali salts such as sodium hydroxide (NaOH), potassium hydroxide (KOH), calcium hydroxide (Ca (OH) 2 ), propylamine, butylamine, isobutylamine, s-butylamine, allylamine, isoamylamine. 2-ethylhexylamine, 3-methoxypropylamine, 3-ethoxypropylamine, 3-aminopropanol, ethanolamine, 2-ethylhexyloxypropylamine, 3-lauryloxypropylamine, ethylenediamine, aniline, dipropylamine, di Butylamine, diisobutylamine, methylhexylamine, dioctylamine, di-2-ethylhexylamine, N-methylhexylamine, diethanolamine, triethylamine, tributylamine, trioctyl Min, tri-2-ethylhexylamine, triallylamine, methyldiallylamine, N, N-diisopropylethylamine, dimethylaminoethylamine, ethylaminoethylamine, diethylaminoethylamine, tetramethylethylenediamine, 1,2-diaminopropane, 1,3-diaminopropane , Methylaminopropylamine, dimethylaminopropylamine, diethylaminopropylamine, N-methylmorpholine, N-aminopropylmorpholine, triethylenetetramine, tetraethylenepentamine, hexamethylenetetralin, piperidine, 2-pipecoline, 4-pipecoline N-methylpiperidine, benzylamine, dibenzylamine, dimethylbenzylamine, phenethylamine, cyclohexylaniline, pipe Loridine, pyrrole, piperazine, N-methylpiperazine, pyrazine, 2-methylpyrazine, 2,5-dimethylpyrazine, pyridine, α-picoline, β-picoline, γ-picoline, 2,6-lutidine, 2,4-lutidine 2,4,6-collidine, 3-aminopyridine, 4-dimethylaminopyridine, 4-hydroxypyridine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3 .0] organic amines such as non-5-ene, imidazoles such as 2-methylimidazole, 2-phenylimidazole, 2-phenyl-4-methylimidazole, 2-heptadecylimidazole, tetramethylammonium hydroxide, Ammonium hydroxides such as tetrabutylammonium hydroxide, ammo Such as A, and the like. These exemplified compounds can be used alone or in appropriate combination. Among the exemplified compounds, NaOH, KOH, triethylamine, 1,8-diazabicyclo [5.4.0] undec-7-ene, 1,5-diazabicyclo [4.3.0] non-5-ene, 2- Methyl imidazole, 2-phenyl imidazole, 2-phenyl-4-methyl imidazole, 2-heptadecyl imidazole, and tetramethylammonium hydroxide are particularly preferable because of high reactivity of the condensation reaction and easy availability.

塩基性の脱水縮合触媒の添加量は、成分(a1)および成分(a2)の合計100重量部に対して0.001〜0.1重量部であることが好ましく、0.01〜0.05重量部であることがより好ましい。0.1重量部よりも多いと、反応性が高くなりすぎ、分子量の制御が困難になる。また0.001重量部よりも少ないと、実質的に反応が進行しなかったり、反応時間が長くなったりする傾向がある。   The addition amount of the basic dehydration condensation catalyst is preferably 0.001 to 0.1 parts by weight with respect to 100 parts by weight in total of the components (a1) and (a2), and 0.01 to 0.05. More preferred are parts by weight. When the amount is more than 0.1 parts by weight, the reactivity becomes too high, and it becomes difficult to control the molecular weight. On the other hand, when the amount is less than 0.001 part by weight, the reaction does not substantially proceed or the reaction time tends to be long.

また、塩基性の脱水縮合触媒としては塩基型陰イオン交換樹脂を前記塩基性の脱水触媒の代わりにまたは前記塩基性の脱水触媒と併用して用いることができる。塩基型陰イオン交換樹脂としては強塩基型陰イオン交換樹脂、弱塩基型陰イオン交換樹脂があげられる。当該イオン交換樹脂は縮合反応の反応性が高く、かつ入手が容易であるため特に好ましい。   Further, as the basic dehydration condensation catalyst, a basic anion exchange resin can be used in place of the basic dehydration catalyst or in combination with the basic dehydration catalyst. Examples of the base type anion exchange resin include a strong base type anion exchange resin and a weak base type anion exchange resin. The ion exchange resin is particularly preferable because it has high condensation reaction reactivity and is easily available.

本発明に用いられる塩基性の脱水縮合触媒としての塩基性イオン交換樹脂の添加量は、成分(a1)および成分(a2)の合計100重量部に対して0.1〜25重量部程度であることが好ましく、1〜10重量部であることがより好ましい。25重量部よりも多いと、後に除くべき触媒の量が多くなるため、経済的に不利である。また0.1重量部よりも少ないと、反応時間が長くなる傾向がある。   The addition amount of the basic ion exchange resin as the basic dehydration condensation catalyst used in the present invention is about 0.1 to 25 parts by weight with respect to 100 parts by weight as the total of the component (a1) and the component (a2). It is preferably 1 to 10 parts by weight. If the amount is more than 25 parts by weight, the amount of the catalyst to be removed later increases, which is economically disadvantageous. When the amount is less than 0.1 parts by weight, the reaction time tends to be long.

上記方法で縮合反応を行うが、[未反応の水酸基および未反応のアルコキシ基の合計モル数]/[成分(a1)や成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)が0.3以下になるように進行させることが好ましく、0.2以下に調整することがさらに好ましい。0.3を超える場合、未反応の水酸基およびアルコキシ基が紫外線硬化性樹脂組成物の保管中に縮合反応してゲル化したり、硬化後に縮合反応し揮発分が発生してクラックが発生するなど、硬化物の性能を損なうことがあるため注意が必要である。   Condensation reaction is carried out by the above method. [Total number of moles of unreacted hydroxyl group and unreacted alkoxy group] / [Total number of moles of alkoxy groups contained in component (a1) and component (a2)] (molar ratio ) Is preferably 0.3 or less, and more preferably 0.2 or less. If it exceeds 0.3, the unreacted hydroxyl group and alkoxy group undergo a condensation reaction during storage of the UV curable resin composition to gel, the condensation reaction occurs after curing, volatile matter occurs, and cracks occur, Care must be taken because the performance of the cured product may be impaired.

当該縮合反応は、溶剤の存在下または不存在下に行うことができる。溶剤の種類は格別限定されず、任意の溶剤を1種類以上選択して用いることができるが、縮合反応によって生成する水およびアルコールより高い沸点を有する溶剤を用いれば、反応系中よりこれらを留去することができるため好ましい。また、前述の加水分解反応に用いる溶剤と同一のものを用いることが好ましい。   The condensation reaction can be performed in the presence or absence of a solvent. The type of the solvent is not particularly limited, and one or more arbitrary solvents can be selected and used. However, if a solvent having a boiling point higher than that of water and alcohol generated by the condensation reaction is used, these solvents can be retained in the reaction system. Since it can leave, it is preferable. Moreover, it is preferable to use the same solvent as that used in the above hydrolysis reaction.

当該縮合反応の終了後、用いた触媒を除去すると、最終的に得られる紫外線硬化性樹脂組成物の安定性が向上するため好ましい。除去方法は、用いた触媒に応じて公知各種の方法から適宜に選択できる。例えば、塩基性イオン交換樹脂を用いた場合は当該触媒を濾別するだけでよいし、アルカリ塩類や高沸点のアミン類、アンモニウムヒドロキシドなどを用いた場合は酸性イオン交換樹脂による吸着により容易に除去できる。また、低沸点のアミン類を用いた場合は、縮合反応の終了後、該沸点以上に加熱したり、減圧したりして容易に除去できる。   It is preferable to remove the catalyst used after completion of the condensation reaction because the stability of the finally obtained ultraviolet curable resin composition is improved. The removal method can be appropriately selected from various known methods depending on the catalyst used. For example, when a basic ion exchange resin is used, the catalyst only needs to be filtered off, and when an alkali salt, a high boiling point amine, ammonium hydroxide, or the like is used, it is easily absorbed by an acidic ion exchange resin. Can be removed. When amines having a low boiling point are used, they can be easily removed after the condensation reaction by heating to a temperature higher than the boiling point or reducing the pressure.

当該縮合反応の終了後、縮合反応により発生した水を除去すると、最終的に得られる紫外線硬化性樹脂組成物の安定性が向上したり、残存アルコキシ基の加水分解を抑制できるため好ましい。除去方法は、該沸点以上に加熱したり、減圧したり、脱水剤を用いたりして容易に除去できる。   After completion of the condensation reaction, it is preferable to remove water generated by the condensation reaction because stability of the finally obtained ultraviolet curable resin composition can be improved and hydrolysis of the remaining alkoxy group can be suppressed. The removal method can be easily removed by heating above the boiling point, reducing the pressure, or using a dehydrating agent.

本発明に用いられる重合開始剤(B)としては、格別限定されず、従来公知の光カチオン開始剤、光ラジカル開始剤などを任意に選択できる。光カチオン開始剤としては、紫外線の照射により酸を発生する化合物であるスルホニウム塩、ヨードニウム塩、メタロセン化合物、ベンゾイントシレート等があげられ、それらの市販品としては、たとえばサイラキュアUVI−6970、同UVI−6974、同UVI−6990(いずれも米国ユニオンカーバイド社製)、イルガキュア264(チバ・ジャパン社製)、CIT−1682(日本曹達(株)製)、サンエイド SI−L85、同SI−L110、同SI−L145、同SI−L160、同SI−H15、同SI−H20、同SI−H25、同SI−H40、同SI−H50(三新化学工業(株)製)などがある。光カチオン重合開始剤の使用量は、該組成物100重量部に対し、通常10重量部程度以下、好ましくは1〜5重量部とされる。光ラジカル開始剤としては、ダロキュア1173、イルガキュア651、イルガキュア184、イルガキュア907(いずれもチバ・ジャパン社製)、ベンゾフェノン等があげられ、該組成物100重量部に対して15重量部程度以下、好ましくは1〜15重量部とされる。   As a polymerization initiator (B) used for this invention, it does not specifically limit, A conventionally well-known photocation initiator, a photoradical initiator, etc. can be selected arbitrarily. Examples of the photocation initiator include sulfonium salts, iodonium salts, metallocene compounds, benzoin tosylate, and the like, which are compounds that generate an acid upon irradiation with ultraviolet rays. Examples of such commercially available products include Cyracure UVI-6970 and UVI. -6974, UVI-6990 (all manufactured by Union Carbide, USA), Irgacure 264 (manufactured by Ciba Japan), CIT-1682 (manufactured by Nippon Soda Co., Ltd.), Sun-Aid SI-L85, SI-L110, SI-L145, SI-L160, SI-H15, SI-H20, SI-H25, SI-H40, SI-H50 (manufactured by Sanshin Chemical Industry Co., Ltd.). The usage-amount of a photocationic polymerization initiator is normally about 10 weight part or less with respect to 100 weight part of this composition, Preferably it is 1-5 weight part. Examples of the photo radical initiator include Darocur 1173, Irgacure 651, Irgacure 184, Irgacure 907 (all manufactured by Ciba Japan), benzophenone, and the like. Is 1 to 15 parts by weight.

紫外線硬化性樹脂組成物には、本発明の効果を損なわない範囲で、各種用途での必要性に応じて、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電剤、離型剤、表面処理剤、粘度調節剤、フィラー等を配合してもよい。   In the ultraviolet curable resin composition, the plasticizer, weathering agent, antioxidant, heat stabilizer, lubricant, antistatic agent, potentiator can be added to the ultraviolet ray curable resin composition as long as the effects of the present invention are not impaired. You may mix | blend a whitening agent, a coloring agent, a electrically conductive agent, a mold release agent, a surface treating agent, a viscosity modifier, a filler, etc.

こうして得られた紫外線硬化性樹脂組成物を用いて所望の硬化物を調製するためには、該組成物を所定の基材にコーティングし、または所定の型枠に充填し、溶剤を含む場合は該溶剤を揮発させた後、紫外線を照射すればよい。溶剤の揮発方法は溶剤の種類、量、膜厚等に応じて適宜決定すればよいが、40〜150℃程度、好ましくは60〜100℃に加熱し、常圧または減圧下で5秒〜2時間程度の条件とされる。紫外線の照射量は、紫外線硬化性樹脂組成物の種類、膜厚等に応じて適宜決定すればよいが、積算光量が50〜10000mJ/cm程度となるよう照射すればよい。また、厚膜でコーティングや充填を行った場合には、前述のように該組成物に光反応開始剤や光増感剤を添加することにより、光硬化性を向上させることが好ましい。 In order to prepare a desired cured product using the ultraviolet curable resin composition thus obtained, when the composition is coated on a predetermined substrate or filled in a predetermined mold and contains a solvent, What is necessary is just to irradiate an ultraviolet-ray after volatilizing this solvent. The method for volatilizing the solvent may be appropriately determined according to the type, amount, film thickness, etc. of the solvent, but it is heated to about 40 to 150 ° C., preferably 60 to 100 ° C., for 5 seconds to 2 at normal pressure or reduced pressure. The condition is about time. The irradiation amount of ultraviolet rays may be appropriately determined according to the type and film thickness of the ultraviolet curable resin composition, but may be irradiated so that the integrated light amount is about 50 to 10,000 mJ / cm 2 . Moreover, when coating or filling with a thick film, it is preferable to improve photocurability by adding a photoreaction initiator or a photosensitizer to the composition as described above.

また、紫外線照射して得られた硬化物を、更に加熱することで、硬化物の物性を一層向上させることができる。加熱の方法は適宜決定すればよいが、40〜300℃程度、好ましくは100〜250℃に加熱し、1分〜6時間程度の条件とされる。   Moreover, the physical property of hardened | cured material can be improved further by further heating the hardened | cured material obtained by ultraviolet irradiation. The heating method may be appropriately determined, but the heating is performed at about 40 to 300 ° C., preferably 100 to 250 ° C., and the conditions are about 1 minute to 6 hours.

(コーティング剤への適用)
紫外線硬化性樹脂組成物を所望の基材にコーティングし、紫外線硬化させることでコーティング層を得ることができる。基材としては、ガラス、鉄、アルミニウム、銅、スズドープ酸化インジウム(ITO)等の無機基材、ポリエチレン(PE)、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリエチレンテレフタレート(PEN)、ポリメチルメタクリレート(PMMA)、ポリスチレン(PSt)、ポリカーボネート(PC)、アクリロニトリル−ブタジエン−スチレン(ABS)、等の有機基材など、各種公知のものを適宜に選択使用できる。また、紫外線硬化性組成物を溶剤希釈することで、コーティング性をある程度向上させることもできる。上述のような紫外線硬化性組成物をコーティングし、紫外線硬化させることで、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板、プリズム等の光学部材用途に適した物品を得ることができる。
(Application to coating agent)
A coating layer can be obtained by coating an ultraviolet curable resin composition on a desired substrate and curing the composition with ultraviolet rays. As the substrate, inorganic substrates such as glass, iron, aluminum, copper, tin-doped indium oxide (ITO), polyethylene (PE), polypropylene (PP), polyethylene terephthalate (PET), polyethylene terephthalate (PEN), polymethyl methacrylate Various known materials such as organic base materials such as (PMMA), polystyrene (PSt), polycarbonate (PC), acrylonitrile-butadiene-styrene (ABS) can be appropriately selected and used. Further, the coating property can be improved to some extent by diluting the ultraviolet curable composition with a solvent. For light guide plate, polarizing plate, liquid crystal panel, EL panel, PDP panel, OHP film, optical fiber, color filter, optical disk substrate, lens, and liquid crystal cell by coating and curing the ultraviolet curable composition as described above Articles suitable for optical member applications such as plastic substrates and prisms can be obtained.

また、紫外線硬化性組成物から得られる硬化膜(コーティング層)の屈折率が基材の屈折率より高い場合には、反射防止効果を付与することができる。成分(A)の製造に際して、成分(a2)を成分(a1)と併用したりすることで、該紫外線硬化性組成物から得られる硬化膜の屈折率を向上させることができる。そのため、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板、プリズムに対して適用されるコーティング層に反射防止効果を付与したい場合には、紫外線硬化性組成物に成分(a2)を併用しておくことが好ましい。   Moreover, when the refractive index of the cured film (coating layer) obtained from an ultraviolet curable composition is higher than the refractive index of a base material, an antireflection effect can be provided. When the component (A) is produced, the refractive index of the cured film obtained from the ultraviolet curable composition can be improved by using the component (a2) together with the component (a1). Therefore, anti-reflection effect is applied to the coating layer applied to the light guide plate, polarizing plate, liquid crystal panel, EL panel, PDP panel, OHP film, optical fiber, color filter, optical disk substrate, lens, plastic substrate for liquid crystal cell, prism. In the case where it is desired to impart, component (a2) is preferably used in combination with the ultraviolet curable composition.

(接着剤への適用)
所定の基材(被着物)に当該硬化性樹脂組成物を塗布し、これの塗布面と別の部材とを貼りあわせ、ついで該組成物を紫外線硬化させることで目的とするディスプレイ部材用途に適した多層構造体を得ることができる。基材としては、前記のコーティング層形成時に用いたものと同様のものを使用できる。また、接着層の発泡を防ぐため、前述のように紫外線硬化性組成物中の揮発成分を10%未満、好ましくは5%未満にするか、張り合わせ前に揮発分を除去しておくのが好ましい。上述のような紫外線硬化性組成物で接着することで、接着層が透明な接着物が得られるため、液晶パネル、ELパネル、PDPパネル、カラーフィルター、光ディスク基板等を作成するのに好適である。
(Application to adhesive)
Suitable for the intended display member application by applying the curable resin composition to a predetermined substrate (adhesive), pasting the coated surface and another member, and then curing the composition with ultraviolet rays. A multilayer structure can be obtained. As the substrate, the same materials as those used when forming the coating layer can be used. In order to prevent foaming of the adhesive layer, it is preferable that the volatile component in the ultraviolet curable composition is less than 10%, preferably less than 5%, as described above, or the volatile component is removed before pasting. . Adhesion with a UV curable composition as described above provides an adhesive with a transparent adhesive layer, which is suitable for producing liquid crystal panels, EL panels, PDP panels, color filters, optical disk substrates, and the like. .

(封止材への適用)
紫外線硬化性樹脂組成物を厚膜塗布し、または所定の型枠に流し込んだ後、熱硬化させることで、透明な硬化物で封止された封止物品を得ることができる。このような封止物品は、発光素子、受光素子、光電変換素子、光伝送関連部品等の電子部品用途に、特に好適である。
(Application to sealing material)
A sealed article sealed with a transparent cured product can be obtained by applying a thick film of the ultraviolet curable resin composition or pouring it into a predetermined mold, followed by thermosetting. Such a sealing article is particularly suitable for use in electronic parts such as a light emitting element, a light receiving element, a photoelectric conversion element, and an optical transmission related part.

本発明の紫外線硬化性樹脂組成物を用いて所望の硬化物を調製するためには、該組成物を所定の基材にコーティングし、または所定の型枠に充填し、溶剤を含む場合は該溶剤を揮発させた後、紫外線を照射すればよい。溶剤の揮発方法は溶剤の種類、量、膜厚等に応じて適宜決定すればよいが、40〜150℃程度、好ましくは60〜100℃に加熱し、常圧または減圧下で5秒〜2時間程度の条件とされる。紫外線の照射量は、紫外線硬化性樹脂組成物の種類、膜厚等に応じて適宜決定すればよいが、積算光量が50〜10000mJ/cm程度となるよう照射すればよい。また、厚膜でコーティングや充填を行った場合には、前述のように該組成物に光増感剤などを添加することにより、光硬化性を向上させることが好ましい。 In order to prepare a desired cured product using the ultraviolet curable resin composition of the present invention, when the composition is coated on a predetermined substrate or filled in a predetermined mold and contains a solvent, What is necessary is just to irradiate an ultraviolet-ray after volatilizing a solvent. The method for volatilizing the solvent may be appropriately determined according to the type, amount, film thickness, etc. of the solvent, but it is heated to about 40 to 150 ° C., preferably 60 to 100 ° C., for 5 seconds to 2 at normal pressure or reduced pressure. The condition is about time. The irradiation amount of ultraviolet rays may be appropriately determined according to the type and film thickness of the ultraviolet curable resin composition, but may be irradiated so that the integrated light amount is about 50 to 10,000 mJ / cm 2 . Further, when coating or filling is performed with a thick film, it is preferable to improve photocurability by adding a photosensitizer or the like to the composition as described above.

また、紫外線照射して得られた硬化物を、更に加熱することで、硬化物の物性を一層向上させることができる。加熱の方法は適宜決定すればよいが、40〜300℃程度、好ましくは100〜250℃に加熱し、1分〜6時間程度の条件とされる。   Moreover, the physical property of hardened | cured material can be improved further by further heating the hardened | cured material obtained by ultraviolet irradiation. The heating method may be appropriately determined, but the heating is performed at about 40 to 300 ° C., preferably 100 to 250 ° C., and the conditions are about 1 minute to 6 hours.

以下、実施例および比較例をあげて本発明を具体的に説明する。なお、各例中、部および%は特記しない限り重量基準である。   Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples. In each example, parts and% are based on weight unless otherwise specified.

製造例1(縮合物(A−1)の製造)
攪拌機、冷却管、分水器、温度計、窒素吹き込み口を備えた反応装置に3−アクリロキシプロピルトリメトキシシラン(信越化学工業(株)製:商品名「KBM−5103」)59.6部、メチルトリメトキシシラン100.0部、イオン交換水31.7部([加水分解反応に用いる水のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)=0.75)、酸性イオン交換樹脂(三菱化学(株)製:商品名「ダイヤイオン PK228LH」)9.6部を仕込み、80℃で1時間加水分解反応させた。反応後、イオン交換樹脂の濾過を行い、加水分解物を得た。これをプロピレングリコールモノメチルエーテルアセテート180gに溶解し次いでトリエチルアミンを0.1部仕込み、80℃で2時間縮合反応させた。反応後減圧して、残存するメタノール、水、プロピレングリコールモノメチルエーテルアセテートの一部を留去することで、縮合物(A−1)を238g得た。[未反応のアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0.13、濃度は35.2%であった。得られた縮合物のH−NMR測定により4−6ppmの領域にシラノール基のピークがないことを確認した。
Production Example 1 (Production of condensate (A-1))
59.6 parts of 3-acryloxypropyltrimethoxysilane (manufactured by Shin-Etsu Chemical Co., Ltd .: trade name “KBM-5103”) in a reactor equipped with a stirrer, a condenser, a water separator, a thermometer, and a nitrogen inlet. , 100.0 parts of methyltrimethoxysilane, 31.7 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction] / [number of moles of alkoxy groups contained in component (a1)] (molar ratio) = 0 .75), 9.6 parts of acidic ion exchange resin (Mitsubishi Chemical Co., Ltd .: trade name “Diaion PK228LH”) was charged and hydrolyzed at 80 ° C. for 1 hour. After the reaction, the ion exchange resin was filtered to obtain a hydrolyzate. This was dissolved in 180 g of propylene glycol monomethyl ether acetate, 0.1 parts of triethylamine was added, and a condensation reaction was carried out at 80 ° C. for 2 hours. After the reaction, the pressure was reduced and a part of the remaining methanol, water, and propylene glycol monomethyl ether acetate was distilled off to obtain 238 g of the condensate (A-1). [Mole number of unreacted alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0.13, and the concentration was 35.2%. It was confirmed by 1 H-NMR measurement of the resulting condensate that there was no silanol group peak in the 4-6 ppm region.

製造例2(縮合物(A−2)の製造)
攪拌機、冷却管、分水器、温度計、窒素吹き込み口を備えた反応装置に3−メタクリロキシプロピルトリメトキシシラン(東レ・ダウコーニング(株)製:商品名「SZ−6030」)91.2部、メチルトリメトキシシラン100.0部、イオン交換水31.7部([加水分解反応に用いる水のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)=0.75)、酸性イオン交換樹脂(三菱化学(株)製:商品名「ダイヤイオン PK228LH」)9.6部を仕込み、80℃で1時間加水分解反応させた。反応後、イオン交換樹脂の濾過を行い、加水分解物を得た。これをプロピレングリコールモノメチルエーテルアセテート222.0gに溶解し次いでトリエチルアミンを0.1部仕込み、80℃で2時間縮合反応させた。反応後減圧して、残存するメタノール、水、プロピレングリコールモノメチルエーテルアセテートの一部を留去することで、縮合物(A−2)を323.4g得た。[未反応のアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0.13、濃度は35.6%であった。得られた縮合物のH−NMR測定により4−6ppmの領域にシラノール基のピークがないことを確認した。
Production Example 2 (Production of condensate (A-2))
3-Methacryloxypropyltrimethoxysilane (product name “SZ-6030” manufactured by Toray Dow Corning Co., Ltd.) 91.2 was added to a reactor equipped with a stirrer, a condenser, a water separator, a thermometer, and a nitrogen inlet. Parts, methyltrimethoxysilane 100.0 parts, ion-exchanged water 31.7 parts ([number of moles of water used for hydrolysis reaction] / [number of moles of alkoxy groups contained in component (a1)] (molar ratio) = 0.75), 9.6 parts of an acidic ion exchange resin (manufactured by Mitsubishi Chemical Co., Ltd .: trade name “Diaion PK228LH”) was charged and subjected to a hydrolysis reaction at 80 ° C. for 1 hour. After the reaction, the ion exchange resin was filtered to obtain a hydrolyzate. This was dissolved in 222.0 g of propylene glycol monomethyl ether acetate, then 0.1 part of triethylamine was added, and a condensation reaction was carried out at 80 ° C. for 2 hours. After the reaction, the pressure was reduced and a part of the remaining methanol, water, and propylene glycol monomethyl ether acetate was distilled off to obtain 323.4 g of the condensate (A-2). [Mole number of unreacted alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0.13, and the concentration was 35.6%. It was confirmed by 1 H-NMR measurement of the resulting condensate that there was no silanol group peak in the 4-6 ppm region.

製造例2(縮合物(A−3)の製造)
製造例1と同様の反応装置に、ビニルトリメトキシシラン90.0部、フェニルトリメトキシシラン(東京化成工業(株)製)120.4部、イオン交換水131.3部([加水分解反応に用いる水のモル数]/[成分(a1)と成分(a2)に含まれる各アルコキシ基の合計モル数](モル比)=2.0)、酸性イオン交換樹脂(三菱化学(株)製:商品名「ダイヤイオン PK228LH」)3.7部を仕込み、80℃で2時間加水分解反応させた。反応後、トルエン126.5gに溶解し、加熱した。72℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。メタノールの留去を1時間行った後にトルエン457.4gを仕込み、減圧して、残存するメタノール、水、トルエンを留去し、メチルエチルケトン101.7gに溶解し、イオン交換樹脂の濾過を行い、縮合物(A−3)を242.9g得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0、濃度は52.1%であった。得られた縮合物のH−NMR測定により4−6ppmの領域にシラノール基のピークがないことを確認した。
Production Example 2 (Production of condensate (A-3))
In the same reaction apparatus as in Production Example 1, 90.0 parts of vinyltrimethoxysilane, 120.4 parts of phenyltrimethoxysilane (manufactured by Tokyo Chemical Industry Co., Ltd.), 131.3 parts of ion-exchanged water ([for hydrolysis reaction) Number of moles of water used] / [total number of moles of each alkoxy group contained in component (a1) and component (a2)] (molar ratio) = 2.0), acidic ion exchange resin (manufactured by Mitsubishi Chemical Corporation): 3.7 parts of a product name “Diaion PK228LH” was charged, and a hydrolysis reaction was performed at 80 ° C. for 2 hours. After the reaction, it was dissolved in 126.5 g of toluene and heated. When the temperature was raised to 72 ° C., methanol generated by hydrolysis began to distill off. After the methanol was distilled off for 1 hour, 457.4 g of toluene was charged, the pressure was reduced, the remaining methanol, water, and toluene were distilled off, and the residue was dissolved in 101.7 g of methyl ethyl ketone, filtered through an ion exchange resin, and condensed. 242.9g of thing (A-3) was obtained. [Mole number of unreacted hydroxyl group and alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0, and the concentration was 52.1%. It was confirmed by 1 H-NMR measurement of the resulting condensate that there was no silanol group peak in the 4-6 ppm region.

比較製造例1(縮合物(A−4)の製造)
製造例1と同様の反応装置に、3−アクリロキシプロピルトリメトキシシラン59.6部、メチルトリメトキシシラン100.0部、イオン交換水31.7部([加水分解反応に用いる水のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)=0.75)、95%ギ酸0.9部、トルエン80部を仕込み、室温で30分間加水分解反応させた。反応後、加熱し、70℃まで昇温したところで、加水分解によって発生したメタノールが留去され始めた。75℃まで昇温し、縮合反応によって発生した水を留去した。さらに30分、75℃で反応させた後、50℃で3時間、段階的に圧力を下げながら減圧して、残存するメタノール、水、ギ酸、トルエンを留去しプロピレングリコールモノメチルエーテルアセテート150g仕込み、縮合物(A−4)を233g得た。[未反応の水酸基およびアルコキシ基のモル数]/[成分(a1)に含まれるアルコキシ基のモル数](モル比)は0.15、濃度は35.8%であった。得られた縮合物のH−NMR測定により4−6ppmの領域にシラノール基のピークが存在することを確認した。
Comparative production example 1 (Production of condensate (A-4))
In the same reaction apparatus as in Production Example 1, 59.6 parts of 3-acryloxypropyltrimethoxysilane, 100.0 parts of methyltrimethoxysilane, 31.7 parts of ion-exchanged water ([number of moles of water used for hydrolysis reaction) ] / [Number of moles of alkoxy groups contained in component (a1)] (molar ratio) = 0.75), 0.9 part of 95% formic acid, and 80 parts of toluene were charged and subjected to a hydrolysis reaction at room temperature for 30 minutes. When the reaction was heated and the temperature was raised to 70 ° C., methanol generated by hydrolysis began to distill off. The temperature was raised to 75 ° C., and water generated by the condensation reaction was distilled off. After further reacting at 75 ° C. for 30 minutes, the pressure was reduced while gradually reducing the pressure at 50 ° C. for 3 hours, and the remaining methanol, water, formic acid, and toluene were distilled off to prepare 150 g of propylene glycol monomethyl ether acetate. 233 g of condensate (A-4) was obtained. [Mole number of unreacted hydroxyl group and alkoxy group] / [Mole number of alkoxy group contained in component (a1)] (molar ratio) was 0.15, and the concentration was 35.8%. The 1 H-NMR measurement of the resulting condensate confirmed that a silanol group peak was present in the 4-6 ppm region.

実施例1(紫外線硬化性組成物の製造)
製造例1で得られた縮合物(A−1)100部に対し、成分(B)としてサンエイドSI−L110(三新化学工業(株))2部を配し、紫外線硬化性組成物とした。
Example 1 (Production of UV curable composition)
To 100 parts of the condensate (A-1) obtained in Production Example 1, 2 parts of Sun-Aid SI-L110 (Sanshin Chemical Industry Co., Ltd.) was arranged as a component (B) to obtain an ultraviolet curable composition. .

実施例2(紫外線硬化物の製造)
実施例1で得られた紫外線硬化組成物をガラス上に膜厚100μmで塗布し、120℃で30分間のプレキュア後、2000mJ/cmでUV照射(365nm高圧水銀灯)を行い、次いで200℃で1時間のアフターキュアを行い紫外線硬化物とした。
Example 2 (Production of UV cured product)
The UV curable composition obtained in Example 1 was coated on glass at a film thickness of 100 μm, precured at 120 ° C. for 30 minutes, then irradiated with UV at 2000 mJ / cm 2 (365 nm high pressure mercury lamp), then at 200 ° C. After 1 hour of after curing, an ultraviolet cured product was obtained.

実施例3(紫外線硬化物の製造)
実施例1で得られた紫外線硬化組成物を硬化後膜厚が約0.5mmとなるようアルミカップに流し込み、120℃で30分間のプレキュア後、2000mJ/cmでUV照射(365nm高圧水銀灯)を行い、次いで200℃で1時間のアフターキュアを行い紫外線硬化物とした。
Example 3 (Production of UV cured product)
The ultraviolet curable composition obtained in Example 1 was poured into an aluminum cup so that the film thickness after curing was about 0.5 mm, precured at 120 ° C. for 30 minutes, and then irradiated with UV at 2000 mJ / cm 2 (365 nm high pressure mercury lamp). Then, after curing at 200 ° C. for 1 hour, an ultraviolet cured product was obtained.

実施例4(紫外線硬化物の製造)
実施例1で得られた紫外線硬化組成物を硬化後膜厚が約0.5mmとなるようアルミカップに流し込み、120℃で30分間のプレキュア後、2000mJ/cmでUV照射(365nm高圧水銀灯)を行い、次いで200℃で1時間のアフターキュアを行い紫外線硬化物とした。
Example 4 (Production of UV cured product)
The ultraviolet curable composition obtained in Example 1 was poured into an aluminum cup so that the film thickness after curing was about 0.5 mm, precured at 120 ° C. for 30 minutes, and then irradiated with UV at 2000 mJ / cm 2 (365 nm high pressure mercury lamp). Then, after curing at 200 ° C. for 1 hour, an ultraviolet cured product was obtained.

実施例5〜8(熱硬化物の製造)
実施例1で得られた熱硬化組成物を表1に示す基材上に膜厚100μmで塗布し、120℃で30分間のプレキュア後、2000mJ/cmでUV照射(365nm高圧水銀灯)を行い、次いで200℃で1時間のアフターキュアを行い紫外線硬化物とした。
Examples 5 to 8 (Production of thermoset)
The thermosetting composition obtained in Example 1 was applied on the substrate shown in Table 1 with a film thickness of 100 μm, precured at 120 ° C. for 30 minutes, and then irradiated with UV at 2000 mJ / cm 2 (365 nm high pressure mercury lamp). Subsequently, after curing at 200 ° C. for 1 hour, an ultraviolet cured product was obtained.

Figure 2012180462
Figure 2012180462

表中、PCは、ポリカーボネート製テストパネル、PMMAは、ポリメタクリル酸メチル製テストパネル、PETは、ポリエチレンテレフタレート製テストパネル、TACは、トリアセチルセルロース製テストパネルを示す。 In the table, PC is a polycarbonate test panel, PMMA is a polymethylmethacrylate test panel, PET is a polyethylene terephthalate test panel, and TAC is a triacetylcellulose test panel.

比較例1
比較製造例1で得られた縮合物(A−4)100部に対し、成分(B)としてサンエイドSI−L110(三新化学工業(株))2部を配し、紫外線硬化性組成物とした。
Comparative Example 1
With respect to 100 parts of the condensate (A-4) obtained in Comparative Production Example 1, 2 parts of Sun-Aid SI-L110 (Sanshin Chemical Industry Co., Ltd.) is arranged as the component (B), and the ultraviolet curable composition and did.

表2より明らかなように、実施例1は、比較例2と比べて、安定性が向上していることが分かる。 As is apparent from Table 2, it can be seen that the stability of Example 1 is improved as compared with Comparative Example 2.

耐熱性
実施例3で得られた硬化物および膜厚0.5mmのポリメチルメタクリレートフィルム(比較例2という)を5mm×25mmにカットし、粘弾性測定器(エスアイアイ・ナノテクノロジー(株)製、商品名「DMS6100」、測定条件:振動数1Hz、スロープ3℃/分)を用いて動的貯蔵弾性率を測定して、耐熱性を評価した。測定結果を図1に示す。
Heat resistance The cured product obtained in Example 3 and a polymethyl methacrylate film having a thickness of 0.5 mm (referred to as Comparative Example 2) were cut into 5 mm × 25 mm, and a viscoelasticity measuring instrument (manufactured by SII Nanotechnology Co., Ltd.). The dynamic storage elastic modulus was measured using a trade name “DMS6100”, measurement conditions: frequency 1 Hz, slope 3 ° C./min) to evaluate heat resistance. The measurement results are shown in FIG.

図1から明らかなように、比較例2では、硬化物は120℃付近で貯蔵弾性率が大幅に低下している。これに対し、実施例3は比較例2と比べて貯蔵弾性率の低下が少なくなり、より耐熱性に優れていると認められる。   As is clear from FIG. 1, in Comparative Example 2, the cured product has a significantly reduced storage elastic modulus at around 120 ° C. On the other hand, it is recognized that Example 3 has a lower storage elastic modulus than Comparative Example 2, and is more excellent in heat resistance.

比較例3
ポリメチルメタクリレートの酢酸ブチル溶液をガラス上に膜厚100μmで塗布し、120℃で30分間の乾燥を行い硬化物とした。
Comparative Example 3
A butyl acetate solution of polymethyl methacrylate was applied on glass at a film thickness of 100 μm and dried at 120 ° C. for 30 minutes to obtain a cured product.

安定性
実施例1で得られた紫外線硬化性組成物および、比較例1で得られた紫外線硬化性組成物を遮光し、室温にて24時間保管した際の粘度安定性を評価した。結果を表2に示す。
○:粘度上昇が50%未満である。
×:粘度上昇が50%以上である。
Stability Viscosity stability when the ultraviolet curable composition obtained in Example 1 and the ultraviolet curable composition obtained in Comparative Example 1 were shielded from light and stored at room temperature for 24 hours was evaluated. The results are shown in Table 2.
○: Viscosity increase is less than 50%.
X: An increase in viscosity is 50% or more.

Figure 2012180462
Figure 2012180462

透明性
実施例3で得られた硬化物の測定波長590nmでの透過率を表3に示す。可視光領域での高い透過率を示している。
Transparency Table 3 shows the transmittance of the cured product obtained in Example 3 at a measurement wavelength of 590 nm. It shows high transmittance in the visible light region.

Figure 2012180462
Figure 2012180462

無機材への密着性、鉛筆硬度
実施例2および比較例3で得られた硬化物をJIS K−5400の一般試験法による碁盤目セロハンテープ剥離試験、鉛筆硬度試験により評価した。結果を表4に示す。表4より明らかなように、実施例2は、比較例3と比べて、密着性、鉛筆硬度が大きく向上していることが分かる。
Adhesiveness to inorganic material and pencil hardness The cured products obtained in Example 2 and Comparative Example 3 were evaluated by a grid cellophane tape peeling test and a pencil hardness test according to a general test method of JIS K-5400. The results are shown in Table 4. As is apparent from Table 4, it can be seen that Example 2 is greatly improved in adhesion and pencil hardness as compared with Comparative Example 3.

Figure 2012180462
Figure 2012180462

有機材への密着性
実施例5〜8で得られた硬化物をJIS K−5400の一般試験法による碁盤目セロハンテープ剥離試験により評価した。結果を表5に示す。表5より明らかなように、実施例5〜8の硬化物は有機基材への密着性が良好であることが分かる。
Adhesiveness to organic material The cured products obtained in Examples 5 to 8 were evaluated by a cross cellophane tape peeling test according to a general test method of JIS K-5400. The results are shown in Table 5. As is clear from Table 5, it can be seen that the cured products of Examples 5 to 8 have good adhesion to the organic substrate.

Figure 2012180462
Figure 2012180462

屈折率
実施例3および4で得られた硬化物をアッベ屈折率計((株)アタゴ製:商品名「多波長アッベ屈折計 DR−M2」)を用いて589nmでの屈折率を測定した。結果を表6に示す。表6から明らかなように屈折率の調整を行うことが可能である。
Refractive index The refractive index at 589 nm of the cured product obtained in Examples 3 and 4 was measured using an Abbe refractometer (manufactured by Atago Co., Ltd .: trade name “Multiwave Abbe Refractometer DR-M2”). The results are shown in Table 6. As is apparent from Table 6, the refractive index can be adjusted.

Figure 2012180462
Figure 2012180462

耐熱性、透明性、密着性、硬度より、実施例1〜3の紫外線硬化性組成物は、導光板、偏光板、液晶パネル、ELパネル、PDPパネル、OHPフィルム、光ファイバー、カラーフィルター、光ディスク基板、レンズ、液晶セル用プラスチック基板またはプリズムなどの光学部材用途として、液晶パネル、ELパネル、PDPパネル、カラーフィルターまたは光ディスク基板などのディスプレイ部材用途として、発光素子、受光素子、光電変換素子、または光伝送関連部品などの電子部品用途として好適であると認められる。
From the heat resistance, transparency, adhesion, and hardness, the ultraviolet curable compositions of Examples 1 to 3 are light guide plate, polarizing plate, liquid crystal panel, EL panel, PDP panel, OHP film, optical fiber, color filter, optical disk substrate. As optical member applications such as lenses, plastic substrates or prisms for liquid crystal cells, as display member applications such as liquid crystal panels, EL panels, PDP panels, color filters or optical disk substrates, light emitting elements, light receiving elements, photoelectric conversion elements, or light It is recognized that it is suitable for use in electronic parts such as transmission-related parts.

Claims (10)

一般式(1):
1Si(OR23
(式中、R1は少なくとも1つのエチレン性不飽和結合を有する炭素数1〜8の炭化水素基、または少なくとも1つのエチレン性不飽和結合を有する芳香族炭化水素基を表し、R2は水素原子、炭素数1〜8の炭化水素基、または芳香族炭化水素基を表す)で示されるエチレン性不飽和結合含有アルコキシシラン類(a1)およびエチレン性不飽和結合を有しない金属アルコキシド類(a2)を{(a2)のモル数}/{(a1)のモル数と(a2)のモル数との合計}(モル比)が0.8以下となるように含有する混合物を、固体触媒を用いて加水分解、縮合させることによって得られる実質的にシラノール基を含まないエチレン性不飽和結合含有シルセスキオキサン(A)ならびに重合開始剤(B)を必須成分として含有することを特徴とする硬化性樹脂組成物。
General formula (1):
R 1 Si (OR 2 ) 3
(Wherein R 1 represents a hydrocarbon group having 1 to 8 carbon atoms having at least one ethylenically unsaturated bond, or an aromatic hydrocarbon group having at least one ethylenically unsaturated bond, and R 2 represents hydrogen An ethylenically unsaturated bond-containing alkoxysilane (a1) represented by an atom, a hydrocarbon group having 1 to 8 carbon atoms, or an aromatic hydrocarbon group) and a metal alkoxide having no ethylenically unsaturated bond (a2) ) {The number of moles of (a2)} / {the sum of the number of moles of (a1) and the number of moles of (a2)} (molar ratio) is 0.8 or less. It contains an ethylenically unsaturated bond-containing silsesquioxane (A) substantially free of silanol groups and a polymerization initiator (B), which are obtained by hydrolysis and condensation using, as essential components. A curable resin composition.
エチレン性不飽和結合含有シルセスキオキサン(A)の製造に用いられる固体触媒が、イオン交換樹脂であることを特徴とする、請求項1に記載の硬化性樹脂組成物。 The curable resin composition according to claim 1, wherein the solid catalyst used in the production of the ethylenically unsaturated bond-containing silsesquioxane (A) is an ion exchange resin. 請求項1または2に記載の硬化性樹脂組成物を硬化させて得られることを特徴とする硬化物。   A cured product obtained by curing the curable resin composition according to claim 1. 請求項1または2に記載の硬化性樹脂組成物を基材に塗布、硬化させたコーティング層が形成されていることを特徴とする物品。   An article comprising a coating layer formed by applying and curing the curable resin composition according to claim 1 or 2 on a substrate. コーティング層の屈折率が基材の屈折率よりも高い請求項4に記載の物品。   The article according to claim 4, wherein the refractive index of the coating layer is higher than the refractive index of the substrate. 光学部材用途に適した請求項5に記載の物品。   The article according to claim 5, which is suitable for use as an optical member. 請求項1または2に記載の硬化性樹脂組成物を被着物に塗布し、これの塗布面と別の部材とを貼りあわせ、ついで硬化させて得られることを特徴とする多層構造体。   A multilayer structure obtained by applying the curable resin composition according to claim 1 or 2 to an adherend, bonding the coated surface and another member together, and then curing. ディスプレイ部材用途に適した請求項7に記載の多層構造体。   The multilayer structure according to claim 7 suitable for a display member application. 請求項1または2に記載の硬化性樹脂組成物を封止材として用い、硬化させて得られることを特徴とする封止物品。   A sealed article obtained by curing using the curable resin composition according to claim 1 as a sealing material. 電子部品用途に適した請求項9に記載の封止物品。
The sealed article according to claim 9, which is suitable for electronic component applications.
JP2011044690A 2011-03-02 2011-03-02 Curable resin composition, the cured product, and various articles derived therefrom Expired - Fee Related JP5712677B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011044690A JP5712677B2 (en) 2011-03-02 2011-03-02 Curable resin composition, the cured product, and various articles derived therefrom

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011044690A JP5712677B2 (en) 2011-03-02 2011-03-02 Curable resin composition, the cured product, and various articles derived therefrom

Publications (2)

Publication Number Publication Date
JP2012180462A true JP2012180462A (en) 2012-09-20
JP5712677B2 JP5712677B2 (en) 2015-05-07

Family

ID=47011928

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011044690A Expired - Fee Related JP5712677B2 (en) 2011-03-02 2011-03-02 Curable resin composition, the cured product, and various articles derived therefrom

Country Status (1)

Country Link
JP (1) JP5712677B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155495A (en) * 2014-02-20 2015-08-27 横浜ゴム株式会社 Adhesive composition for high-power optical fibre
JP2015155507A (en) * 2014-02-20 2015-08-27 横浜ゴム株式会社 Adhesive composition for polarisation-maintaining optical fibre
WO2017030090A1 (en) * 2015-08-18 2017-02-23 日産化学工業株式会社 Reactive silsesquioxane compound and polymerizable composition containing aromatic vinyl compound
WO2017038943A1 (en) * 2015-09-02 2017-03-09 日産化学工業株式会社 Polymerizable composition comprising silsesquioxane compound having acrylic group
JP2020530520A (en) * 2017-08-24 2020-10-22 コーロン インダストリーズ インク A coating film containing a coating resin composition and a cured product thereof as a coating layer.

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431806A (en) * 1990-05-29 1992-02-04 Showa Denko Kk Optical fiber
JPH0632903A (en) * 1992-05-19 1994-02-08 Nippon Shokubai Co Ltd Production of polysiloxane macromonomer
JPH06228457A (en) * 1993-02-03 1994-08-16 Nippon Shokubai Co Ltd Method for modifying surface of inorganic material, resin composition for molding material and production of silicic polymer therefor
JPH09241338A (en) * 1996-03-05 1997-09-16 Nippon Shokubai Co Ltd Organosilicon polymer composition and its production
JPH1045857A (en) * 1997-05-02 1998-02-17 Nippon Shokubai Co Ltd Production of silicon-containing polymer
JP2007326848A (en) * 2006-05-09 2007-12-20 Hitachi Chem Co Ltd Method for producing silicone oligomer
JP2008223030A (en) * 2008-03-24 2008-09-25 Nippon Shokubai Co Ltd Resin composition for forming ultraviolet ray shielding layer and ultraviolet ray shielding laminated body
JP2010055066A (en) * 2008-07-31 2010-03-11 Jsr Corp Radiation-sensitive composition for forming colored layer, color filter and color liquid crystal display element

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0431806A (en) * 1990-05-29 1992-02-04 Showa Denko Kk Optical fiber
JPH0632903A (en) * 1992-05-19 1994-02-08 Nippon Shokubai Co Ltd Production of polysiloxane macromonomer
JPH06228457A (en) * 1993-02-03 1994-08-16 Nippon Shokubai Co Ltd Method for modifying surface of inorganic material, resin composition for molding material and production of silicic polymer therefor
JPH09241338A (en) * 1996-03-05 1997-09-16 Nippon Shokubai Co Ltd Organosilicon polymer composition and its production
JPH1045857A (en) * 1997-05-02 1998-02-17 Nippon Shokubai Co Ltd Production of silicon-containing polymer
JP2007326848A (en) * 2006-05-09 2007-12-20 Hitachi Chem Co Ltd Method for producing silicone oligomer
JP2008223030A (en) * 2008-03-24 2008-09-25 Nippon Shokubai Co Ltd Resin composition for forming ultraviolet ray shielding layer and ultraviolet ray shielding laminated body
JP2010055066A (en) * 2008-07-31 2010-03-11 Jsr Corp Radiation-sensitive composition for forming colored layer, color filter and color liquid crystal display element

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015155507A (en) * 2014-02-20 2015-08-27 横浜ゴム株式会社 Adhesive composition for polarisation-maintaining optical fibre
WO2015125879A1 (en) * 2014-02-20 2015-08-27 横浜ゴム株式会社 Adhesive composition for polarisation-maintaining optical fibre
WO2015125882A1 (en) * 2014-02-20 2015-08-27 横浜ゴム株式会社 Adhesive composition for high-power optical fibre
CN106029812A (en) * 2014-02-20 2016-10-12 横滨橡胶株式会社 Adhesive composition for high-power optical fibre
JP2015155495A (en) * 2014-02-20 2015-08-27 横浜ゴム株式会社 Adhesive composition for high-power optical fibre
US9725629B2 (en) 2014-02-20 2017-08-08 The Yokohama Rubber Co., Ltd. Adhesive composition for polarization-maintaining optical fiber
US9765246B2 (en) 2014-02-20 2017-09-19 The Yokohama Rubber Co., Ltd. Adhesive composition for high-power optical fiber
US10450418B2 (en) 2015-08-18 2019-10-22 Nissan Chemical Industries, Ltd. Polymerizable composition comprising reactive silsesquioxane compound and aromatic vinyl compound
WO2017030090A1 (en) * 2015-08-18 2017-02-23 日産化学工業株式会社 Reactive silsesquioxane compound and polymerizable composition containing aromatic vinyl compound
WO2017038943A1 (en) * 2015-09-02 2017-03-09 日産化学工業株式会社 Polymerizable composition comprising silsesquioxane compound having acrylic group
JPWO2017038943A1 (en) * 2015-09-02 2018-06-14 日産化学工業株式会社 Polymerizable composition containing silsesquioxane compound having acrylic group
US10703863B2 (en) 2015-09-02 2020-07-07 Nissan Chemical Industries, Ltd. Polymerizable composition comprising silsesquioxane compound having acrylic group
JP2020530520A (en) * 2017-08-24 2020-10-22 コーロン インダストリーズ インク A coating film containing a coating resin composition and a cured product thereof as a coating layer.
JP6994562B2 (en) 2017-08-24 2022-01-14 コーロン インダストリーズ インク A coating film containing a coating resin composition and a cured product thereof as a coating layer.

Also Published As

Publication number Publication date
JP5712677B2 (en) 2015-05-07

Similar Documents

Publication Publication Date Title
JP5311744B2 (en) Ultraviolet curable resin composition, the cured product, and various articles derived therefrom
JP5489389B2 (en) Ultraviolet curable resin composition, the cured product, and various articles derived therefrom
JP6853668B2 (en) Light and thermosetting resin compositions, cured products, and laminates
CN107683299B (en) Curable composition, adhesive sheet, cured product, laminate, and method and device for producing adhesive sheet
TWI498357B (en) An organic silicon compound having an oxetanyl group, a process for producing the same, and a hardened composition
JP5712677B2 (en) Curable resin composition, the cured product, and various articles derived therefrom
JP5569703B2 (en) Epoxy group-containing silsesquioxane-modified epoxy resin, curable resin composition, cured product and coating agent
JP2012180463A (en) Curable resin composition, cured material of the same and various articles derived from the same
JPWO2006013863A1 (en) Polyorganosiloxane and curable composition containing the same
JP6785538B2 (en) Polyorganosylsesquioxane, curable compositions, adhesive sheets, laminates and equipment
KR20110029515A (en) Composition for coating plastic substrate comprising ultraviolet curable organic-inorganic hybrid solution
CN105452322A (en) Curable epoxy resin composition and cured product thereof, diolefin compound and production method therefor, and production method for diepoxy compound
CN109912798B (en) Organopolysiloxane compound and active energy ray-curable composition containing same
JP2016160342A (en) Photo- or thermal-setting resin composition, cured article and laminate
JP2017008145A (en) Curable composition, adhesive sheet, laminate and device
JP5527433B2 (en) Method for producing reactive polysiloxane solution
CN115003759B (en) Resin composition, method for producing same, and multicomponent curable resin composition
JP5892464B2 (en) UV cationic curable coating composition, cured coating film using the same, and method for producing the same
JP2009108109A (en) Thermosetting resin composition, cured product, and light emitting diode derived from them
JP2006152086A (en) Curable composition
WO2014136806A1 (en) Organopolysiloxane and manufacturing method thereof
CN114008113B (en) Resin composition, method for producing same, and multicomponent curable resin composition
JP4361008B2 (en) Curable composition
JP2022072415A (en) Active energy ray-curable composition
JP2014046240A (en) Method for manufacturing laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140528

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140818

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20141006

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150210

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150223

R150 Certificate of patent or registration of utility model

Ref document number: 5712677

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees