JP2012178509A - Multilayer film coil and manufacturing method thereof - Google Patents

Multilayer film coil and manufacturing method thereof Download PDF

Info

Publication number
JP2012178509A
JP2012178509A JP2011041520A JP2011041520A JP2012178509A JP 2012178509 A JP2012178509 A JP 2012178509A JP 2011041520 A JP2011041520 A JP 2011041520A JP 2011041520 A JP2011041520 A JP 2011041520A JP 2012178509 A JP2012178509 A JP 2012178509A
Authority
JP
Japan
Prior art keywords
pattern
film pattern
conductive film
insulating film
coil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011041520A
Other languages
Japanese (ja)
Other versions
JP5699005B2 (en
Inventor
Koji Watanabe
晃司 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Aviation Electronics Industry Ltd
Original Assignee
Japan Aviation Electronics Industry Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Aviation Electronics Industry Ltd filed Critical Japan Aviation Electronics Industry Ltd
Priority to JP2011041520A priority Critical patent/JP5699005B2/en
Publication of JP2012178509A publication Critical patent/JP2012178509A/en
Application granted granted Critical
Publication of JP5699005B2 publication Critical patent/JP5699005B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a multilayer film coil in which there is no through-hole and a bulk-shaped magnetic core is available, without using a photolithography step.SOLUTION: A multilayer film coil is formed in a helical shape by alternately layering a pattern of a conductive film and a pattern of an insulating film on a substrate and connecting the patterns of the conductive films with each other. When a circumferential length for one round around an axis of the helical shape is defined as P, the pattern of the conductive film and the pattern of the insulating film have determined circumferential lengths Lc and Li shorter than P. The pattern of the conductive film or the insulating film is formed right above the substrate. Regarding the same direction around the axis of the helical shape, an end point starting the pattern of the insulating film is matched to a position advanced from an end point starting the pattern of the conductive film right below the end point starting the pattern of the insulating film by a circumferential length P-Li, the end point starting the pattern of the conductive film is matched to a position advanced from the end point starting the pattern of the insulating film right below the end point starting the pattern of the conductive film by a circumferential length P-Lc, and the patterns are layered, respectively.

Description

この発明は、薄膜を積層して形成されるヘリカル(軸に垂直な平面への射影について同一のパターンを繰り返す螺旋)形状をなす多層膜コイルと、その作製方法に関する。   The present invention relates to a multilayer coil having a helical shape formed by laminating thin films (a spiral that repeats the same pattern for projection onto a plane perpendicular to an axis) and a method for manufacturing the same.

ヘリカル形状をなす多層膜コイルの先行技術としては、例えば特許文献1に開示された小型のチップ状コイルが知られている。図17にそのチップ状コイルの斜視図を示す。導電性薄膜2e,2f,2gが、1層目、2層目、3層目と積層され、コイル端子5aと、ワイヤーボンディング等で接続するパッド端子5bとの間でヘリカルコイルが形成されている。   As a prior art of a multilayer film coil having a helical shape, for example, a small chip coil disclosed in Patent Document 1 is known. FIG. 17 shows a perspective view of the chip coil. Conductive thin films 2e, 2f, and 2g are stacked on the first, second, and third layers, and a helical coil is formed between the coil terminal 5a and the pad terminal 5b that is connected by wire bonding or the like. .

図18に図17のチップ状コイルの断面図を示す。図18(a)はA−A断面図、図18(b)はB−B断面図である。1はコイル基板であり、1層目の導電性薄膜2eの上に下部絶縁層3aが積層され、その上に2層目の導電性薄膜2fが積層され、その上に上部絶縁層3bが積層され、その上に3層目の導電性薄膜2gが積層されている。そして、最上層には、チップ状コイルの全体を覆うように保護膜7が形成されている。1層目の導電性薄膜2eと2層目の導電性薄膜2fとはスルーホール4aで接続され、2層目と3層目はスルーホール4bで接続される。9a,9b,9cは膜状磁心であり、それぞれの膜状磁心の間には下部絶縁層3aと上部絶縁層3bが介在している。   FIG. 18 is a cross-sectional view of the chip coil shown in FIG. 18A is a cross-sectional view taken along the line AA, and FIG. 18B is a cross-sectional view taken along the line BB. Reference numeral 1 denotes a coil substrate, in which a lower insulating layer 3a is laminated on a first conductive thin film 2e, a second conductive thin film 2f is laminated thereon, and an upper insulating layer 3b is laminated thereon. A third layer of conductive thin film 2g is laminated thereon. And the protective film 7 is formed in the uppermost layer so that the whole chip-shaped coil may be covered. The first conductive thin film 2e and the second conductive thin film 2f are connected by a through hole 4a, and the second and third layers are connected by a through hole 4b. Reference numerals 9a, 9b, and 9c denote film-shaped magnetic cores, and a lower insulating layer 3a and an upper insulating layer 3b are interposed between the respective film-shaped magnetic cores.

特開平10−233315号公報Japanese Patent Laid-Open No. 10-233315

従来のチップ状コイルは、導電性薄膜間を接続するのに絶縁層に設けたスルーホールを必要としていた。よって、コイルにはスルーホール分の絶縁層の厚みが余分に必要であり、コイルの巻き数を増やすとコイル全体の厚みが厚くなる課題がある。また、コイルの中心軸に設けられる磁心が、絶縁層によって分離された膜状磁心であり、作用の強いバルク(bulk)状の磁心を設けることが難しいという課題がある。また、チップ状コイルの作製には、一定の設備と工数を必要とするフォトリソグラフィ技術(以降、フォトリソ工程とも称する)を用いるのでコスト高になる課題がある。   A conventional chip coil requires a through hole provided in an insulating layer to connect between conductive thin films. Therefore, the coil requires an extra thickness of the insulating layer for the through hole, and increasing the number of turns of the coil increases the thickness of the entire coil. Further, the magnetic core provided on the central axis of the coil is a film-shaped magnetic core separated by an insulating layer, and there is a problem that it is difficult to provide a bulky magnetic core having a strong action. In addition, the production of the chip-shaped coil has a problem of high cost because it uses a photolithography technique (hereinafter also referred to as a photolithography process) that requires a certain amount of equipment and man-hours.

この発明は、このような問題点に鑑みてなされたものであり、スルーホールを用いる必要がなく、バルク状の磁心が使え、フォトリソ工程が不要な多層膜コイルとその作製方法を提供することを目的とする。   The present invention has been made in view of such problems, and it is intended to provide a multilayer film coil that does not require the use of a through hole, can use a bulk magnetic core, and does not require a photolithography process, and a method for manufacturing the same. Objective.

この発明の多層膜コイルは、基板上に導電膜のパターンと絶縁膜のパターンとが交互に積層され、その導電膜のパターン同士が接続されたヘリカル形状である。そのヘリカル形状の軸回りの一周分の周長をPとするとき、導電膜のパターンと絶縁膜のパターンとは周長Pよりも短い定まった周沿いの長さLc,Liを有する。そして、基板上の最下層である場合を除き、ヘリカル形状の軸回りの同一向きについて、絶縁膜のパターンの開始の端点はその直下の導電膜のパターンの開始の端点よりも周沿いの長さP−Liだけ進んだ位置に整合され、導電膜のパターンの開始の端点はその直下の絶縁膜のパターンの開始の端点よりも周沿いの長さP−Lcだけ進んだ位置に整合されてそれぞれ積層され、Li+Lc>Pである。   The multilayer coil according to the present invention has a helical shape in which conductive film patterns and insulating film patterns are alternately stacked on a substrate, and the conductive film patterns are connected to each other. When the circumferential length of one circumference around the helical axis is P, the conductive film pattern and the insulating film pattern have lengths Lc and Li along the circumference which are shorter than the circumferential length P. And, except for the lowermost layer on the substrate, for the same orientation around the axis of the helical shape, the starting end point of the insulating film pattern is longer in the circumference than the starting end point of the conductive film pattern immediately below it The start point of the conductive film pattern is aligned with the position advanced by P-Li, and the start end point of the conductive film pattern is aligned with the position advanced by the length P-Lc along the circumference from the start point of the insulating film pattern immediately below it. Laminated and Li + Lc> P.

この発明によれば、軸回りの定まった同一向きについて、「絶縁膜のパターンの開始の端点は、その直下の導電膜のパターンの開始の端点よりも周沿いの長さP−Liだけ進んだ位置に整合され」る要件によって、絶縁膜のパターンとその直下の導電膜のパターンとを合わせた長さが周長Pに等しくなるため、絶縁膜のパターンの終末の端点は、必ず直下の導電膜のパターンの開始の端点にちょうど突き当たって終端する構成となる。同じく「導電膜のパターンの開始の端点はその直下の絶縁膜のパターンの開始の端点よりも周沿いの長さP−Lcだけ進んだ位置に整合され」る要件によって、導電膜のパターンとその直下の絶縁膜のパターンとを合わせた長さが周長Pに等しくなるため、導電膜のパターンの終末の端点は、必ず直下の絶縁膜のパターンの開始の端点にちょうど突き当たって終端する構成となる。   According to the present invention, “the end point of the insulating film pattern has advanced by a length P-Li along the circumference from the starting end point of the pattern of the conductive film immediately below it in the same direction around the axis. The total length of the insulating film pattern and the conductive film pattern immediately below it is equal to the circumferential length P due to the requirement of “aligned to the position”. It is configured to end just by hitting the starting end point of the film pattern. Similarly, according to the requirement that “the end point of the conductive film pattern is aligned at a position advanced by a length P-Lc along the circumference from the start end point of the insulating film pattern immediately below the conductive film pattern” Since the combined length of the pattern of the insulating film immediately below is equal to the circumferential length P, the end point of the end of the pattern of the conductive film always ends by directly abutting the end point of the pattern of the insulating film immediately below. Become.

このように構成されることによって、この発明の多層膜コイルは、パターンどうしの無駄な重畳部分や間隙が形成されず、従って不要の凹凸もない、膜のパターンが最密に充填され最適にコンパクトで滑らかな交互積層が可能となる。そして、Lc,LiがPよりも短いこととLi+Lc>Pであることとの要件によって、導電膜のパターンの直上の絶縁膜のパターンで覆われない露出部分の形成と、その露出部分における次の導電膜のパターンとの接続とが担保され、コイルが形成される。すなわち、絶縁膜を間に挟んだ導電膜はP−Li>0の長さ分絶縁膜を挟まずに直接重なり合う。この重なり部分で導電膜同士の導通が得られるので、従来技術のようにスルーホールを必要としない。また、それぞれ定まった形状の導電膜のパターンと絶縁膜のパターンを交互に積層する構造なので、フォトリソ工程を用いずに、メカマスクの利用によって、コイルの形態によってはたかだか2枚或いはたった1枚のメカマスクの利用によって、簡便な成膜工程で導電膜と絶縁膜とを交互積層してコイルを形成することが可能である。   By being configured in this way, the multilayer coil of the present invention does not form useless overlapping portions or gaps between patterns, and therefore there is no unnecessary unevenness, and the film pattern is closely packed and optimally compact And smooth alternating lamination becomes possible. Then, depending on the requirement that Lc and Li are shorter than P and Li + Lc> P, formation of an exposed portion that is not covered with the pattern of the insulating film immediately above the pattern of the conductive film, and the next in the exposed portion Connection with the pattern of the conductive film is secured, and a coil is formed. That is, the conductive films sandwiching the insulating film directly overlap each other without the insulating film being sandwiched by the length of P-Li> 0. Since conduction between the conductive films can be obtained at the overlapping portion, a through hole is not required unlike the prior art. In addition, since the structure of the conductive film and the pattern of the insulating film, each having a predetermined shape, are alternately laminated, the mechanical mask is used without using the photolithography process, and at most two or only one mechanical mask depending on the form of the coil. By using this, it is possible to form a coil by alternately laminating conductive films and insulating films by a simple film forming process.

この発明の多層膜コイル200の構造の一例を示す斜視図。The perspective view which shows an example of the structure of the multilayer film coil 200 of this invention. 導電成膜マスク20と絶縁成膜マスク25の平面図と側面図の一例を示す図。The figure which shows an example of the top view and side view of the conductive film-forming mask 20 and the insulating film-forming mask 25. 薄膜を形成する蒸着装置の概略図を示す図。The figure which shows the schematic of the vapor deposition apparatus which forms a thin film. 回転メカマスクを用いて薄膜を形成する蒸着装置の概略図を示す図。The figure which shows the schematic of the vapor deposition apparatus which forms a thin film using a rotation mechanical mask. 図4に示す矢印Aの方向から見た回転メカマスク45と基板ホルダー48とを示す図。The figure which shows the rotation mechanical mask 45 and the substrate holder 48 seen from the direction of the arrow A shown in FIG. 導電膜のパターン14と絶縁膜のパターン12を交互に成膜する工程を示す図。The figure which shows the process of forming into a pattern the pattern 14 of an electrically conductive film, and the pattern 12 of an insulating film alternately. 中心角α=30°とした場合の回転メカマスク70の平面図を示す図。The figure which shows the top view of the rotation mechanical mask 70 at the time of setting center angle (alpha) = 30 degrees. 中心角α=60°とした場合の回転メカマスク80の平面図を示す図。The figure which shows the top view of the rotation mechanical mask 80 at the time of setting center angle (alpha) = 60 degrees. 開口部の数kを奇数個とした場合の一例である回転メカマスク80の平面図を示す図。The figure which shows the top view of the rotation mechanical mask 80 which is an example when the number k of an opening part is an odd number. 導電膜のパターンと絶縁膜のパターンを、正N角形(四角)とした場合の一例である回転メカマスク100の平面図を示す図。The figure which shows the top view of the rotation mechanical mask 100 which is an example when the pattern of an electrically conductive film and the pattern of an insulating film are regular N squares (square). 導電膜のパターンと絶縁膜のパターンを、正六角形、m=1とした場合の回転メカマスク110の平面図を示す図。The figure which shows the top view of the rotation mechanical mask 110 when the pattern of an electrically conductive film and the pattern of an insulating film are a regular hexagon and m = 1. 導電膜のパターンと絶縁膜のパターンを、正六角形、m=2とした場合の回転メカマスク120の平面図を示す図。The figure which shows the top view of the rotation mechanical mask 120 when the pattern of an electrically conductive film and the pattern of an insulating film are a regular hexagon and m = 2. 導電膜のパターンと絶縁膜のパターンを、正五角形、m=2とした場合の回転メカマスク130の平面図を示す図。The figure which shows the top view of the rotation mechanical mask 130 when the pattern of an electrically conductive film and the pattern of an insulating film are regular pentagons and m = 2. 回転メカマスク130を用いて、コイル形成をする様子を示す図。The figure which shows a mode that coil formation is performed using the rotation mechanical mask 130. FIG. 図3に示す矢印Aの方向から見た基板ホルダー48′と回転メカマスク45′を示す図。The figure which shows the board | substrate holder 48 'seen from the direction of arrow A shown in FIG. 3, and rotation mechanical mask 45'. 多層膜コイルの軸に、一体の磁心を配置した多層膜コイル170の斜視図を示す図。The figure which shows the perspective view of the multilayer film coil 170 which has arrange | positioned the integral magnetic core to the axis | shaft of a multilayer film coil. 従来のチップ状コイルの斜視図を示す図。The figure which shows the perspective view of the conventional chip-shaped coil. 図17のチップ状コイルの断面を示す図。The figure which shows the cross section of the chip-shaped coil of FIG.

以下、この発明の実施の形態を図面を参照して説明する。複数の図面中同一のものには同じ参照符号を付し、説明は繰り返さない。   Embodiments of the present invention will be described below with reference to the drawings. The same reference numerals are given to the same components in a plurality of drawings, and the description will not be repeated.

図1にこの発明の多層膜コイル200の構造例を斜視図で示す。非導電性の例えばガラス材で構成される高さの低い円柱状の基板10の上に、周沿いの長さP−Lcの円弧が切り欠かれた円環形状の周沿いの長さLcの導電膜のパターン14aが、切り欠かれたP−Lcの部分を右向き(図1において)にして成膜されている。Pはヘリカル形状の円をなす軸回りの一周分の周長であり、LcはPより小とされる。この例では、絶縁膜のパターン12aは、導電膜のパターン14aよりもやや幅広である。絶縁膜のパターン12aは、導電膜のパターン14aの上(基板10と反対側)に、図中の矢印の向きに見下ろして時計回りとなる向きに、端点T2から周沿いの長さLiだけ成膜されている。開始の端点T2は、基板10の上側から見て、導電膜のパターン14aの開始の端点T1よりも時計回りに周沿いの長さP−Liだけ進んだ位置である。ここで、LiもPより小とされ、またLi+Lc>Pである。なお、図1においては、P、Lc、Liは円環形状の外周の長さを示している。しかし、これに限る必要はなく、あらかじめ定めておけば、円環形状のどの部分の長さでもかまわない。例えば、内周の長さや中心の長さでもかまわない。 FIG. 1 is a perspective view showing an example of the structure of a multilayer film coil 200 of the present invention. On a cylindrical substrate 10 having a low height and made of a non-conductive glass material, for example, a circular arc having a length P-Lc along the circumference is cut out and the length Lc along the circumference of the annular shape is cut. A conductive film pattern 14a is formed with the notched P-Lc portion facing right (in FIG. 1). P is the circumference of one round around the axis forming the helical circle, and Lc is smaller than P. In this example, the insulating film pattern 12a is slightly wider than the conductive film pattern 14a. Pattern 12a of the insulating film, on the conductive film pattern 14a (substrate 10 opposite), in the direction of the clockwise looking down in a direction indicated by an arrow in the figure, the length Li along from the end point T 2 peripheral A film is formed. The starting end point T 2 is a position advanced from the starting end point T 1 of the conductive film pattern 14 a by a length P-Li along the circumference in the clockwise direction when viewed from above the substrate 10. Here, Li is also smaller than P, and Li + Lc> P. In FIG. 1, P, Lc, and Li indicate the length of the outer periphery of the annular shape. However, the present invention is not limited to this, and any length of the ring shape may be used as long as it is determined in advance. For example, the length of the inner circumference or the length of the center may be used.

このようにすれば、導電膜のパターン14aとその直上の絶縁膜のパターン12aとを合わせた周沿いの長さがちょうど周長Pに等しくなるので、絶縁膜のパターン12aの終端の端点T3は、導電膜のパターン14aの開始の端点T1にちょうど突き当たる。したがって、端点T1と端点T3の間に無駄な空隙や重畳が形成されず、この両端点の突き当たりの部分において導電膜のパターン14aと絶縁膜のパターン12aとは滑らかに接続する。そしてその両端点の突き当たりの部分の上に成膜されるパターン、この例では導電膜のパターン14bを、その無駄な空隙や重畳による凹凸の無い下層の上に滑らかに形成することができる。なお、この例では、導電膜のパターン14aの終端の近傍に電極16aが成膜される例を示している。 In this way, the length along the circumference of the conductive film pattern 14a and the insulating film pattern 12a immediately above the conductive film pattern 14a is just equal to the circumferential length P. Therefore, the end point T 3 of the insulating film pattern 12a is terminated. , just abuts against the end point T 1 of the start of the conductive film pattern 14a. Therefore, useless gaps or overlaps are not formed between the end point T 1 and the end point T 3 , and the conductive film pattern 14 a and the insulating film pattern 12 a are smoothly connected at the end of the end points. Then, the pattern formed on the portion at the end of the both end points, in this example, the conductive film pattern 14b, can be smoothly formed on the lower layer free from the voids and the unevenness due to the overlap. In this example, the electrode 16a is formed in the vicinity of the end of the conductive film pattern 14a.

そして次に、第3層目となる導電膜のパターン14bが、その直下の絶縁膜のパターン12aの開始の端点T2よりも時計回りに周沿いの長さP−Lc進んだ位置を開始の端点として成膜され、同様にその導電膜のパターン14bの終端の端点が絶縁膜のパターン12aの開始の端点T2に突き当たる。ここで第1層目の導電膜のパターン14aの露出していた長さP−Liの円弧部分の表面において、その第1層目の導電膜のパターン14aと第3層目の導電膜のパターン14bとが直接に接続する。以降同様にして絶縁膜のパターンと導電膜のパターンとの交互積層を繰り返し、この例では第7層目の導電膜のパターン14dに他方の電極16bが形成され、その上には保護膜を兼ねた絶縁膜のパターン12dが成膜されてヘリカル形状の多層膜コイル200が、電極16aと16b間に形成されている。 And then, the pattern 14b of the conductive film to be the third layer is, the starting position advanced length P-Lc along the circumferential clockwise than the end point T 2 of the beginning of the pattern 12a of the insulating film immediately below its is deposited as the end point, as well as the end points of the end of the pattern 14b of the conductive film comes into contact with the end point T 2 of the beginning of the pattern 12a of the insulating film. Here, on the surface of the arc portion of the length P-Li where the first-layer conductive film pattern 14a is exposed, the first-layer conductive film pattern 14a and the third-layer conductive film pattern. 14b is directly connected. Thereafter, in the same manner, the alternate lamination of the insulating film pattern and the conductive film pattern is repeated. In this example, the other electrode 16b is formed on the conductive film pattern 14d of the seventh layer, and also serves as a protective film thereon. An insulating film pattern 12d is formed to form a helical multilayer coil 200 between the electrodes 16a and 16b.

このようにして、最適にコンパクトな多層膜コイルが構成される。なおこの実施例1において、LcとLiとは互いに等しい長さである必要はない。またこの例では、導電膜間の短絡防止を強化するために、絶縁膜のパターン12a〜12dを導電膜のパターン14a〜14dよりもやや幅広としているが、これらを同一の幅で形成してもよい。   In this way, an optimally compact multilayer coil is constructed. In Example 1, Lc and Li need not have the same length. In this example, the insulating film patterns 12a to 12d are made slightly wider than the conductive film patterns 14a to 14d in order to enhance the prevention of short circuit between the conductive films. Good.

さらに、この例では導電膜のパターンと絶縁膜のパターンとに円環形状を用いたが、本発明においてコイルのヘリカル形状は、軸に垂直な平面への射影が正円となる線形状を描くものに限らない。実施例1の変形例として、非正円や多角形を含む周長がPの周回形状を繰り返すヘリカル形状のコイルが、実施例1と同様に構成され得る。
〔多層膜コイル200の作製方法〕
次に、図1に示した多層膜コイル200の作製方法を説明する。
Furthermore, in this example, an annular shape is used for the conductive film pattern and the insulating film pattern. However, in the present invention, the helical shape of the coil draws a linear shape whose projection onto a plane perpendicular to the axis is a perfect circle. Not limited to things. As a modified example of the first embodiment, a helical coil that repeats a circular shape having a circumference including a non-circular circle or a polygon may be configured in the same manner as in the first embodiment.
[Method for Manufacturing Multilayer Coil 200]
Next, a method for manufacturing the multilayer coil coil 200 shown in FIG. 1 will be described.

図2に、導電膜のパターン14を成膜する導電成膜マスク20の一例と、絶縁膜のパターン12を成膜する絶縁成膜マスク25の一例を示す。図2(a)は導電膜のパターン14を成膜する導電成膜マスク20の一例、図2(b)は絶縁膜のパターン12を成膜する絶縁成膜マスク25の一例である。この導電成膜マスク20と絶縁成膜マスク25は、例えばステンレス等の金属円板で構成されるメカマスクであり、成膜の工程において、図3に示すように基板10の表面にほぼ接するように位置決めされる。   FIG. 2 shows an example of a conductive film forming mask 20 for forming the conductive film pattern 14 and an example of an insulating film forming mask 25 for forming the insulating film pattern 12. 2A shows an example of a conductive film forming mask 20 for forming a conductive film pattern 14, and FIG. 2B shows an example of an insulating film forming mask 25 for forming an insulating film pattern 12. The conductive film forming mask 20 and the insulating film forming mask 25 are mechanical masks made of, for example, a metal disk such as stainless steel, and are substantially in contact with the surface of the substrate 10 as shown in FIG. Positioned.

導電成膜マスク20と絶縁成膜マスク25とは、それぞれ、図1の多層膜コイル200の導電膜のパターン14、絶縁膜のパターン12に各一致する導電膜のパターンの開口部21、絶縁膜のパターンの開口部26を有している。すなわち、導電膜のパターンの開口部21は、図2(a)に示すように、周長Pの円環から周沿いの長さP−Lcの円弧を切り欠いた周沿いの長さLcの円環形状を有している。また絶縁膜のパターンの開口部26は、図2(b)に示すように、周長Pの円環から周沿いの長さP−Liの円弧を切り欠いた周沿いの長さLiの円環形状を有している。そして絶縁膜のパターンの開口部26は、導電膜のパターンの開口部21よりもやや幅広とされている。   The conductive film formation mask 20 and the insulation film formation mask 25 are respectively the conductive film pattern 14 of the multilayer coil 200 of FIG. 1, the conductive film pattern opening 21 corresponding to the insulation film pattern 12, and the insulation film. The opening 26 of the pattern is provided. That is, as shown in FIG. 2A, the opening 21 of the conductive film pattern has a length Lc along the circumference obtained by cutting out a circular arc having a length P-Lc along the circumference from a ring with a circumference P. It has an annular shape. Further, as shown in FIG. 2B, the opening 26 of the pattern of the insulating film is a circle having a length Li along the circumference obtained by cutting out an arc having a length P-Li along the circumference from a ring having a circumference P. It has a ring shape. The opening 26 of the insulating film pattern is slightly wider than the opening 21 of the conductive film pattern.

導電膜と絶縁膜のパターンは一般的な蒸着法若しくはスパッタ法によって成膜される。図3に真空蒸着法で用いる蒸着装置の概略図を示して薄膜形成方法を説明する。真空チャンバー40内は、排気ポンプ42によって例えば10−4Pa以下の高真空に保たれる。熱源としての電子銃41は、導電膜の蒸着源43と絶縁膜の蒸着源44を、それぞれの成膜時に蒸発させる。導電膜の蒸着源43は例えばCu、絶縁膜の蒸着源44は例えばS等が用いられる。 The pattern of the conductive film and the insulating film is formed by a general vapor deposition method or a sputtering method. FIG. 3 shows a schematic diagram of a vapor deposition apparatus used in the vacuum vapor deposition method, and the thin film formation method will be described. The inside of the vacuum chamber 40 is maintained at a high vacuum of, for example, 10 −4 Pa or less by the exhaust pump 42. The electron gun 41 as a heat source evaporates the conductive film deposition source 43 and the insulating film deposition source 44 at the time of film formation. The conductive film evaporation source 43, for example Cu, evaporation source 44 of the insulating film is, for example, S i O 2 or the like is used.

対向する位置に基板ホルダー48と基板10が配置され、その上に導電成膜マスク20または絶縁成膜マスク25が、基板10の表面にほぼ接するように位置決めされる。ここで導電成膜マスク20と絶縁成膜マスク25とは、基板10上に交互に取り換え設置され、導電成膜マスク20が設置される時に導電膜の蒸着源43が、絶縁成膜マスク25が設置される時に絶縁膜の蒸着源44が、それぞれ電子銃41によって蒸着される。その取り換え設置の際、軸回りの同一の向きについて、絶縁成膜マスク25のその向きに関する絶縁膜のパターンの開口部26の始まりの端点は、その直前に設置された導電成膜マスク20のその向きに関する導電膜のパターンの開口部21の始まりの端点の位置よりも、その向きについて周沿いにP−Liだけ進んだ位置に来るように位置合わせされる。同じく、導電成膜マスク20のその向きに関する導電膜のパターンの開口部21の始まりの端点は、その直前に設置された絶縁成膜マスク25のその向きに関する絶縁膜のパターンの開口部26の始まりの端点の位置よりも、その向きについて周沿いにP−Lcだけ進んだ位置に来るように位置合わせされる。   The substrate holder 48 and the substrate 10 are disposed at opposite positions, and the conductive film formation mask 20 or the insulation film formation mask 25 is positioned on the substrate holder 48 and the substrate 10 so as to be substantially in contact with the surface of the substrate 10. Here, the conductive film formation mask 20 and the insulation film formation mask 25 are alternately installed on the substrate 10. When the conductive film formation mask 20 is installed, the conductive film deposition source 43 is replaced by the insulation film formation mask 25. When installed, an insulating film deposition source 44 is deposited by each electron gun 41. At the time of the replacement installation, with respect to the same direction around the axis, the starting end point of the opening 26 of the insulating film pattern related to that direction of the insulating film formation mask 25 is that of the conductive film formation mask 20 installed immediately before that. The position of the conductive film pattern with respect to the direction is aligned so as to reach a position advanced by P-Li along the circumference with respect to the position of the starting end point of the opening 21 of the conductive film pattern. Similarly, the starting end point of the opening portion 21 of the conductive film pattern related to the direction of the conductive film forming mask 20 is the beginning of the opening portion 26 of the insulating film pattern related to the direction of the insulating film forming mask 25 installed immediately before the end point. It is aligned so as to come to a position advanced by P-Lc along the circumference with respect to the direction of the end point.

このようにして、2枚のメカマスクを交互に、軸回りに方位をずらしつつ設置して成膜してゆくことで、図1の多層膜コイル200を積層してゆくことができる。   Thus, the multilayer film coil 200 of FIG. 1 can be laminated | stacked by carrying out film-forming by installing two mechanical masks alternately, shifting an azimuth | direction around an axis | shaft.

また変形例として、導電膜のパターン及び絶縁膜のパターンが正多角形からそれぞれ1辺ないし連続する複数の辺を切り欠いて得る形状を有するようなコイルであっても、全く同様に2枚のメカマスクを軸回りにずらしながら交互に設置して成膜してゆくことができる。或いは、導電膜のパターンと絶縁膜のパターンとを長さ及び幅に関して全く同じ形状とし、たった1枚のメカマスクをその両方に共用して軸回りに方位をずらしながら交互に成膜を行い、コイルを作製することもできる。その他、垂直断面への射影が正円や正多角形でないようなヘリカル形状の多層膜コイルも、導電膜及び絶縁膜のパターンのためにそれぞれ必要な数だけのメカマスクを用意して、成膜し積層してゆくことができる。   As a modification, even if the conductive film pattern and the insulating film pattern have a shape obtained by cutting out one side or a plurality of continuous sides from a regular polygon, two coils are exactly the same. The mechanical masks can be alternately installed while being shifted around the axis to form a film. Alternatively, the pattern of the conductive film and the pattern of the insulating film are made the same in terms of length and width, and only one mechanical mask is shared by both, and the film is alternately formed while shifting the direction around the axis. Can also be produced. In addition, a helical multilayer coil whose projection on the vertical cross section is not a perfect circle or regular polygon is also prepared by preparing as many mechanical masks as necessary for the conductive film and insulating film patterns. Can be stacked.

以上は最も一般的な場合であるが、これに対して特に、コイルのヘリカル形状が断面正円(半径R)であり、導電膜のパターンと絶縁膜のパターンとが共に、kをk≧3の整数として   The above is the most general case, but in particular, the helical shape of the coil is a perfect circle (radius R), and k is k ≧ 3 for both the conductive film pattern and the insulating film pattern. As an integer

Figure 2012178509
Figure 2012178509

と書けるような中心角Φをもつ円弧状とすればさらに作製の容易がはかれる。すなわちこの場合には、実施例1の2枚のメカマスクに替えて、導電膜のパターンの開口部と絶縁膜のパターンの開口部との両方を形成した1枚の回転メカマスクを利用し、それを真空チャンバー内で回動させながら交互の成膜を行ってゆくことで、メカマスクの取り換え設置をせずに、しかも複数個の多層膜コイルを同時に並行して、効率的に作製できる。以下、この例について詳細に説明する。 If the arc shape has a central angle Φ that can be written as follows, the fabrication is further facilitated. That is, in this case, instead of the two mechanical masks of the first embodiment, a single rotating mechanical mask in which both the opening of the conductive film pattern and the opening of the insulating film pattern are formed is used. By alternately forming the films while rotating in the vacuum chamber, a plurality of multilayer coils can be efficiently manufactured in parallel without replacing the mechanical mask. Hereinafter, this example will be described in detail.

図4に、回転メカマスクを用いる蒸着装置の概略図を示す。蒸着源43、44に対向する位置に基板ホルダー48と複数の被膜基板(図示の例では、基板10aと10b)と回転メカマスク45が配置される。被膜基板は上記した基板10(図1)と同じものであり、蒸着源43,44側の面を被膜面として基板ホルダー48に固定されている。その被膜基板の被膜面に近接して回転メカマスク45が配置されている。   FIG. 4 shows a schematic view of a vapor deposition apparatus using a rotating mechanical mask. A substrate holder 48, a plurality of coated substrates (substrates 10 a and 10 b in the illustrated example), and a rotating mechanical mask 45 are disposed at positions facing the vapor deposition sources 43 and 44. The coated substrate is the same as the substrate 10 (FIG. 1) described above, and is fixed to the substrate holder 48 with the surface on the side of the vapor deposition sources 43 and 44 as the coated surface. A rotating mechanical mask 45 is disposed in the vicinity of the coating surface of the coating substrate.

回転メカマスク45が回転モーター49によって回転されることで、それぞれの被膜基板の上に位置する導電膜のパターンの開口部と絶縁膜のパターンの開口部とが切り替わる。被膜基板(すべて)の被膜面の上に導電膜のパターンの開口部が配置された時は、蒸着源43が電子銃41によって蒸発され、被膜基板の被膜面に導電膜(例えばCu)のパターンが成膜される。絶縁膜のパターンを成膜する時には、被膜基板の被膜面の上に絶縁膜のパターンの開口部が配置され蒸着源44が蒸発されて、絶縁膜(例えばS2)のパターンが成膜される。 When the rotary mechanical mask 45 is rotated by the rotary motor 49, the opening portion of the conductive film pattern and the opening portion of the insulating film pattern located on each coating substrate are switched. When the opening portion of the conductive film pattern is disposed on the coating surface of the coating substrate (all), the evaporation source 43 is evaporated by the electron gun 41, and the conductive film (for example, Cu) pattern is formed on the coating surface of the coating substrate. Is deposited. When forming an insulating film pattern, an opening portion of the insulating film pattern is disposed on the coating surface of the coating substrate, the evaporation source 44 is evaporated, and a pattern of the insulating film (for example, S i O 2 ) is formed. Is done.

回転メカマスクには、その回転軸からの方位につき上記(1)式のαに等しい角度ごとの間隔をあけ、かつ、パターンの円環形状の中心が回転軸の周りの同一半径Rmの周上となるように、全部でk個の導電膜または絶縁膜のパターンの開口部を設ける。   The rotating mechanical mask is spaced at an angle equal to α in the equation (1) with respect to the direction from the rotation axis, and the center of the ring shape of the pattern is on the circumference of the same radius Rm around the rotation axis. Thus, a total of k conductive film or insulating film pattern openings are provided.

このような回転メカマスクを利用して作製できる多層膜コイルの例として、まず、導電膜のパターンと絶縁膜のパターンとがともに中心角Φ=270°の円弧状である多層膜コイルについて説明する。この場合、上記(1)式のα=90°、整数k=4である。図5に、図4に示す矢印A方向から見たこの例の多層膜コイルを作製するための回転メカマスク45と基板ホルダー48を示す。図5(a)が回転メカマスク45の形状を示す図であり、図5(b)が基板ホルダー48と基板10a、10bの配置を示す図である。回転メカマスク45には、回転軸(原点)47を中心とした所定の半径Rmの円周上に、中心角α=90°分の弧を切り欠いた円環形状の導電膜のパターンの開口部45aと45bと、絶縁膜のパターンの開口部46aと46bとが、2個ずつ合わせて計4個、全て同一の向きに、パターンの切り欠きの中心角と等しい角度すなわちα=90°ごとの間隔を空けた方位に、交互に設けられる。   As an example of a multilayer coil that can be manufactured using such a rotating mechanical mask, a multilayer coil in which the conductive film pattern and the insulating film pattern are both arcs with a central angle Φ = 270 ° will be described first. In this case, α = 90 ° and integer k = 4 in the above equation (1). FIG. 5 shows a rotating mechanical mask 45 and a substrate holder 48 for manufacturing the multilayer film coil of this example as seen from the direction of arrow A shown in FIG. FIG. 5A is a diagram showing the shape of the rotating mechanical mask 45, and FIG. 5B is a diagram showing the arrangement of the substrate holder 48 and the substrates 10a and 10b. In the rotating mechanical mask 45, an opening portion of a ring-shaped conductive film pattern in which an arc corresponding to a central angle α = 90 ° is cut out on a circumference having a predetermined radius Rm centered on a rotation axis (origin) 47. 45a and 45b, and two openings 46a and 46b in the insulating film pattern, a total of four, all in the same direction, an angle equal to the central angle of the pattern notch, that is, every α = 90 ° They are alternately provided in spaced directions.

2つの被膜基板である基板10aと基板10bは、例えば図5(a)の導電膜のパターンの開口部45a,45bの位置に同時に整合することができるように配置される。つまり、回転メカマスク45の導電膜のパターンの開口部45a,45b又は絶縁膜のパターンの開口部46a,46bの何れか一方の種類の開口部に対応する位置に、基板ホルダー48上に図5(b)に例示するように配置される(配置する基板は、もちろん何れか一方のみでもよい。)。   The two coated substrates, the substrate 10a and the substrate 10b, are arranged so that they can be simultaneously aligned with the positions of the openings 45a and 45b of the conductive film pattern in FIG. 5A, for example. In other words, the conductive film pattern openings 45a and 45b of the rotating mechanical mask 45 or the insulating film pattern openings 46a and 46b are positioned on the substrate holder 48 in a position corresponding to one of the openings of FIG. It arrange | positions as illustrated in b) (Of course, any one may be arrange | positioned).

図6に、導電膜のパターン14と絶縁膜のパターン12を交互に成膜する工程を示す。図6(a)は、図5(b)に示した基板10aの上に電極16a付きの導電膜のパターン14aが成膜された状態を示す。なお、説明は基板10a上の薄膜形成について説明するが、回転メカマスク45を用いて図5(b)に示したように基板ホルダー48の上に基板10bも配置すると、基板10bの上にも同じ薄膜が同時に成膜されることになる。   FIG. 6 shows a process of alternately forming the conductive film pattern 14 and the insulating film pattern 12. FIG. 6A shows a state in which a conductive film pattern 14a with an electrode 16a is formed on the substrate 10a shown in FIG. 5B. The description will be made on the formation of a thin film on the substrate 10a. However, if the substrate 10b is also arranged on the substrate holder 48 as shown in FIG. A thin film is formed simultaneously.

図6(a)の導電膜のパターン14aは、図5(a)に示した位置の回転メカマスク45を反時計方向(矢印Aの方向から見て)に90°回転させて、導電膜のパターンの開口部45aを、基板10aの上に位置決めして成膜されたものである。電極16aは、予め図示しない電極形成用のマスクによって成膜される。   The conductive film pattern 14a in FIG. 6A is obtained by rotating the rotating mechanical mask 45 at the position shown in FIG. 5A by 90 ° counterclockwise (viewed from the direction of arrow A). The opening 45a is positioned and formed on the substrate 10a. The electrode 16a is formed in advance by an electrode forming mask (not shown).

図6(b)に示す絶縁膜のパターン12aは、図6(a)の導電膜のパターン14aを成膜した時の回転メカマスク45を、時計方向に90°回転させて導電膜のパターン14aの上に成膜された絶縁膜である。この時、絶縁膜のパターン12aは、導電膜のパターン14aの開始の端点よりも、時計方向に周沿いの長さP−Liの長さ進んだ位置から成膜される。なお、図6を用いた説明では、円環形状の中心部分の周沿いの長さを、単に周沿いの長さと言うことにする。   The insulating film pattern 12a shown in FIG. 6B is obtained by rotating the rotating mechanical mask 45 when the conductive film pattern 14a of FIG. It is the insulating film formed on the top. At this time, the insulating film pattern 12a is formed from a position advanced by a length P-Li along the circumference in the clockwise direction from the starting end point of the conductive film pattern 14a. In the description using FIG. 6, the length along the circumference of the center portion of the annular shape is simply referred to as the length along the circumference.

図6(c)に示す導電膜のパターン14bは、更に回転メカマスク45を時計方向に90°回転させ、基板10aの位置に導電膜のパターンの開口部45bを位置決めして成膜された導電膜である。この時、導電膜のパターン14bは、絶縁膜のパターン12aの開始の端点よりも、時計方向に周沿いの長さP−Lcの長さ進んだ位置から成膜され、一層前の導電膜のパターン14aと斜線で示す部分で導通する。   The conductive film pattern 14b shown in FIG. 6C is formed by further rotating the rotating mechanical mask 45 by 90 ° in the clockwise direction and positioning the opening 45b of the conductive film pattern at the position of the substrate 10a. It is. At this time, the conductive film pattern 14b is formed from a position advanced by a length P-Lc along the circumference in the clockwise direction from the starting end point of the insulating film pattern 12a. Conduction is conducted at a portion indicated by hatching with the pattern 14a.

図6(d)に示す絶縁膜のパターン12bは、更に回転メカマスク45を時計方向に90°回転させ、導電膜のパターン14bの開始の端点よりも、時計方向に周沿いの長さP−Li進んだ位置から成膜される。   In the insulating film pattern 12b shown in FIG. 6D, the rotating mechanical mask 45 is further rotated 90 ° in the clockwise direction, and the length P-Li along the circumference in the clockwise direction from the starting end point of the conductive film pattern 14b. The film is formed from the advanced position.

図6(e)に示す導電膜のパターン14cは、更に回転メカマスク45を時計方向に90°回転させ、絶縁膜のパターン12bの開始の端点よりも、時計方向に周沿いの長さP−Lc進んだ位置から成膜される。そして、図示しない電極形成用のマスクによって電極16bが形成される。導電膜のパターン14cは、一層前の導電膜のパターン14bと斜線で示す部分で導通する。
[変形例1]
以上は整数k=4の場合の例を述べたが、一般に、kを偶数とすると、回転メカマスクに、回転軸からの方位につき角度α=360°/kごとの間隔をあけて交互に、導電膜のパターンの開口部と絶縁膜のパターンの開口部とをk/2個ずつ設けることで、何れか一方の種類の開口部に対応する位置に1個以上k/2個以下の数だけ被膜基板を配置して成膜することができる。よって、kが偶数の場合は、両者のパターンの形状を変えることが可能である。したがって、kが偶数の場合は、図5(a)に示すように導電膜のパターンの開口部45a,45bの幅を、絶縁膜のパターンの開口部46a,46bの幅よりも狭くすると好都合である。その方が、積層される導電膜のパターン同士の短絡を発生し難くすることができる。
In the conductive film pattern 14c shown in FIG. 6E, the rotating mechanical mask 45 is further rotated 90 ° clockwise, and the length P-Lc along the circumference in the clockwise direction from the starting end point of the insulating film pattern 12b. The film is formed from the advanced position. Then, the electrode 16b is formed by an electrode forming mask (not shown). The conductive film pattern 14c is electrically connected to the previous conductive film pattern 14b at a hatched portion.
[Modification 1]
Although the example in the case of the integer k = 4 has been described above, in general, when k is an even number, the rotating mechanical mask is alternately conductive at intervals of an angle α = 360 ° / k per direction from the rotation axis. By providing k / 2 openings for the pattern of the film and openings for the pattern of the insulating film, the number of the coatings is one or more and no more than k / 2 at the position corresponding to one of the openings. A substrate can be placed to form a film. Therefore, when k is an even number, it is possible to change the shapes of both patterns. Therefore, when k is an even number, it is advantageous to make the widths of the openings 45a and 45b of the conductive film pattern narrower than the widths of the openings 46a and 46b of the insulating film pattern as shown in FIG. is there. This can make it difficult for a short circuit between the patterns of the conductive films to be stacked.

絶縁膜のパターンと導電膜のパターンの周沿いの長さLi,Lcは、上記して説明した例に限定されない。その長さは任意の長さに設定することが可能である。図7に、弧の長さP−Li若しくはP−Lcを決める中心角αをα=30°とした場合の回転メカマスク70の平面図を示す。   The lengths Li and Lc along the circumference of the insulating film pattern and the conductive film pattern are not limited to the example described above. The length can be set to an arbitrary length. FIG. 7 shows a plan view of the rotating mechanical mask 70 when the central angle α for determining the arc length P-Li or P-Lc is α = 30 °.

回転メカマスク70には、回転軸(原点)76を中心とした所定の半径Rmの円周上に、中心角α=30°に対する弧の長さP−Lcが切り欠かれた周沿いの長さがLcの円環形状の導電膜のパターンの開口部70a〜70fと、周沿いの長さがLiの絶縁膜のパターンの開口部71a〜71fとが6個ずつ合わせて計12個(k=12)、全て同一の向きに30°の角度毎に交互に配置される。なお、図7では、導電膜のパターンの開口部70a〜70fを灰色、絶縁膜のパターンの開口部71a〜71fを白抜きで示している。   The rotating mechanical mask 70 has a length along the circumference in which the arc length P-Lc with respect to the central angle α = 30 ° is cut out on the circumference having a predetermined radius Rm with the rotation axis (origin) 76 as the center. A total of 12 openings 70a to 70f in the ring-shaped conductive film pattern of Lc and 6 openings 71a to 71f in the pattern of the insulating film having a circumferential length of Li (k = 12) All are alternately arranged in the same direction every 30 °. In FIG. 7, the openings 70a to 70f in the conductive film pattern are shown in gray, and the openings 71a to 71f in the insulating film pattern are shown in white.

回転メカマスク70の導電膜のパターンの開口部又は絶縁膜のパターンの開口部の何れか一方の種類の開口部に対応する位置に1個以上k/2個以下の被膜基板を配置し、被膜基板の上に導電膜のパターン又は絶縁膜のパターンの一方を成膜し、回転メカマスクを回転軸76を中心に同一の向きに中心角α分の角度を回転させて導電膜のパターンと絶縁膜のパターンとを交互に積層して多層膜コイルを作製する。   One or more k / 2 or less coated substrates are arranged at positions corresponding to any one of the openings of the conductive film pattern or the insulating film pattern of the rotating mechanical mask 70, and the coated substrate One of the conductive film pattern and the insulating film pattern is formed on the substrate, and the rotating mechanical mask is rotated about the rotation axis 76 in the same direction by an angle corresponding to the central angle α to form the conductive film pattern and the insulating film pattern. A multilayer coil is manufactured by alternately laminating patterns.

以上、k=4とk=12の例を示したが、kが偶数であれば同様にしてk/2個の多層膜コイルを同時に作製できる。
[変形例2]
実施例1、実施例2、実施例2変形例1では、絶縁膜のパターンは導電膜のパターンよりも幅広であった。しかし、導電膜のパターンと絶縁膜のパターンは、同一形状にしても良い。図8に中心角Φ=300°、α=60°に対する弧の長さが切り欠かれた導電膜のパターンと絶縁膜のパターンとが同一形状の回転メカマスク80を示す。回転メカマスク80は、開口部のパターンが同一なので、導電膜のパターンの開口部と絶縁膜のパターンの開口部とは共通であって区別はなく、それらの開口部に対応する位置に1個以上最大k=6個までの数の被膜基板を配置して、回転メカマスクをα=60°ずつ回転させ導電膜と絶縁膜とを交互に成膜してゆくことができる。
The example in which k = 4 and k = 12 has been described above. However, if k is an even number, k / 2 multilayer coils can be manufactured at the same time.
[Modification 2]
Example 1, Example 2, Example 2 In Modification 1, the pattern of the insulating film was wider than the pattern of the conductive film. However, the conductive film pattern and the insulating film pattern may have the same shape. FIG. 8 shows a rotating mechanical mask 80 in which the conductive film pattern and the insulating film pattern in which the arc length with respect to the central angles Φ = 300 ° and α = 60 ° is cut out are the same. Since the rotating mechanical mask 80 has the same opening pattern, the opening of the conductive film pattern and the opening of the insulating film pattern are common and are not distinguished, and one or more at positions corresponding to these opening portions. By arranging a maximum of k = 6 coated substrates and rotating the rotating mechanical mask by α = 60 °, the conductive film and the insulating film can be alternately formed.

実施例2ではkを偶数とした場合を示したが、kを奇数としてもよい。図9に、k=3(α=120°)としたときの回転メカマスク90の平面図を示す。   In the second embodiment, k is an even number, but k may be an odd number. FIG. 9 shows a plan view of the rotating mechanical mask 90 when k = 3 (α = 120 °).

kが奇数の場合は、導電膜のパターンの開口部と絶縁膜のパターンの開口部を、回転メカマスク90の全周に渡って交互に設けることができない。つまりkが奇数の時は、導電膜のパターンの開口部と絶縁膜のパターンの開口部とは共通の形状とされ、(上述の実施例2変形例2と同じく)開口部は共通で利用される。例えばk=3の場合、開口部91,92,93は、回転軸(原点)96を中心とした所定の半径Rmの円周上にα=120°毎に同一の向きに設けられる。ここで、被膜基板は、全ての開口部に対応する基板ホルダー48上に配置することが可能である。つまり、回転メカマスク90を用いる際の被膜基板は、何れかの開口部に対応する位置に1個以上k個以下の数、配置される。図9の場合、被膜基板は最大3個配置することができる。   When k is an odd number, the opening of the conductive film pattern and the opening of the insulating film pattern cannot be alternately provided over the entire circumference of the rotating mechanical mask 90. In other words, when k is an odd number, the opening of the conductive film pattern and the opening of the insulating film pattern have a common shape, and the opening is used in common (similar to the above-described second modification 2). The For example, when k = 3, the openings 91, 92, 93 are provided in the same orientation every α = 120 ° on the circumference of a predetermined radius Rm centered on the rotation axis (origin) 96. Here, the coated substrate can be disposed on the substrate holder 48 corresponding to all the openings. That is, the number of the coated substrates when using the rotating mechanical mask 90 is 1 or more and not more than k at the position corresponding to any opening. In the case of FIG. 9, up to three coated substrates can be arranged.

回転メカマスク90を使用して絶縁膜のパターンと導電膜のパターンを成膜する工程は、各膜を成膜する度に回転メカマスク90を回転させる角度が120度である点が異なるだけで、図6で説明した工程と全く同じである。なお、3以外の奇数5、7、9、11でも同様である。   The process of forming the insulating film pattern and the conductive film pattern using the rotating mechanical mask 90 is different only in that the rotation angle of the rotating mechanical mask 90 is 120 degrees each time each film is formed. This is exactly the same as the process described in FIG. The same applies to odd numbers 5, 7, 9, and 11 other than 3.

実施例2と実施例3とでは、絶縁膜のパターンと導電膜のパターンの形状が円環形状の場合について説明した。しかし、その形状はN≧3(Nは整数)の正N角形でもよい。その場合は、mを1≦m<N/2である整数として、その正N角形から連続したm個の辺を切り欠いた形状で導電膜及び絶縁膜のパターンを構成する。すなわち上述の導電膜及び絶縁膜のパターンの長さLc及びLiは、ともに正N角形の連続したN−m個の辺の長さ分に相当し、ここでm<N/2とするのは、上述の実施例1に関して述べた一般的な条件Li+Lc>Pを担保するためである。図10に、N=4、正四角形とした場合の回転メカマスク100を示す。上記不等式の条件から、今の場合は必然的にm=1である。従って、回転メカマスク100には、回転軸(原点)106を中心とした所定の半径Rmの円周上に、中心角α’=360°/(N/m)=360°/k’=90°毎に(k’=N/mについては後述する。)一辺が切り欠かれた正四角形(カタカナの「コ」を左右反対にした形)の導電膜のパターンの開口部101aと101bと、絶縁膜のパターンの開口部102aと102bとが2個ずつ合わせて計4個、全て同一の向きに90度の角度毎に交互に設けられる。   In Example 2 and Example 3, the case where the shape of the pattern of the insulating film and the pattern of the conductive film is an annular shape has been described. However, the shape may be a regular N-gon with N ≧ 3 (N is an integer). In that case, m is an integer satisfying 1 ≦ m <N / 2, and the pattern of the conductive film and the insulating film is formed in a shape in which m sides continuous from the regular N-gon are notched. That is, the lengths Lc and Li of the conductive film and insulating film patterns described above correspond to the length of N−m continuous sides of a regular N-gon, where m <N / 2. This is to ensure the general condition Li + Lc> P described in connection with the first embodiment. FIG. 10 shows the rotating mechanical mask 100 when N = 4 and a regular square. From the condition of the above inequality, m = 1 is inevitably in this case. Therefore, the rotation mechanical mask 100 has a central angle α ′ = 360 ° / (N / m) = 360 ° / k ′ = 90 ° on the circumference of a predetermined radius Rm with the rotation axis (origin) 106 as the center. For each (k ′ = N / m will be described later), the openings 101a and 101b of the conductive film pattern of a regular square with one side cut out (a shape in which the “Ka” of Katakana is reversed to the left and right) are insulated from each other. A total of four openings 102a and 102b in the pattern of the film are provided in total, and are alternately provided every 90 degrees in the same direction.

切り欠かれた辺の数をmとすると、図10において、導電膜のパターンの開口部101a,101bと、絶縁膜のパターンの開口部102a,102bはN−m=4−1=3個の辺の連続した形状であり、上記したLiとLcに相当する長さは3個の辺の連続した長さである。ここで一般に、mを、k′=N/mが偶数(今の場合はk’=4/1=4)となるNの約数とすれば、導電膜のパターンの開口部と絶縁膜のパターンの開口部との形状を変えることが可能である。すなわち図10の例においては、絶縁膜のパターンの開口部102a,102bと、導電膜のパターンの開口部101a,101bの形状を変えることが可能である。そして、絶縁膜のパターンの開口部102a,102bを、導電膜のパターンの開口部101a,101bよりも相対的に幅広の形状にすることが可能であり、それによって積層される導電膜のパターン同士の短絡を発生し難くすることができる。
[変形例]
これに対し、k’=N/mが奇数となる場合について次に述べる。図11に、回転メカマスク100の変形例として正六角形(N=6)でm=2とした回転メカマスク110の例を示す。この例では、k’=N/m=3である。回転メカマスク110には、回転軸116を中心とした所定の半径Rmの円周上に、中心角α′=120°毎に2辺が切り欠かれた正六角形の開口部111〜113が3個、全て同一の向きに120°の角度毎に設けられる。k’が奇数の場合は、実施例3で説明した同じ理由で、絶縁膜のパターンの開口部と導電膜のパターンの開口部は、共通の形状とされる。
Assuming that the number of cut-out sides is m, in FIG. 10, the openings 101a and 101b of the conductive film pattern and the openings 102a and 102b of the insulating film pattern are Nm = 4-1 = 3. The side is a continuous shape, and the length corresponding to the above-described Li and Lc is the continuous length of three sides. In general, if m is a divisor of N such that k ′ = N / m is an even number (in this case k ′ = 4/1 = 4), the openings of the conductive film pattern and the insulating film It is possible to change the shape of the opening of the pattern. That is, in the example of FIG. 10, it is possible to change the shapes of the openings 102a and 102b in the insulating film pattern and the openings 101a and 101b in the conductive film pattern. Then, the openings 102a and 102b in the insulating film pattern can be formed to have a relatively wider shape than the openings 101a and 101b in the conductive film pattern. It is possible to make it difficult to generate a short circuit.
[Modification]
On the other hand, the case where k ′ = N / m is an odd number will be described next. FIG. 11 shows an example of a rotating mechanical mask 110 as a modified example of the rotating mechanical mask 100 with a regular hexagon (N = 6) and m = 2. In this example, k ′ = N / m = 3. The rotating mechanical mask 110 has three regular hexagonal openings 111 to 113 having two sides cut out at every central angle α ′ = 120 ° on the circumference of a predetermined radius Rm centered on the rotating shaft 116. , All provided in the same direction at every 120 ° angle. When k ′ is an odd number, the opening of the insulating film pattern and the opening of the conductive film pattern have a common shape for the same reason described in the third embodiment.

一般に、k’が奇数の場合には、回転メカマスク(110)の開口部に対応する位置に1個以上N個以下の被膜基板を配置し、その被膜基板の上に導電膜のパターン又は絶縁膜のパターンの一方を成膜する。そして、回転メカマスク(110)を、回転軸(原点)(116)を中心に同一の向きに中心角α′分回転させて導電膜のパターンと絶縁膜のパターンとを交互に積層して多層膜コイルを作製する。   Generally, when k ′ is an odd number, one or more and N or less coated substrates are arranged at positions corresponding to the openings of the rotating mechanical mask (110), and a conductive film pattern or insulating film is formed on the coated substrate. One of the patterns is formed. Then, the rotating mechanical mask (110) is rotated about the rotation axis (origin) (116) in the same direction by the central angle α ′, and the conductive film pattern and the insulating film pattern are alternately laminated to form a multilayer film. A coil is produced.

同じくk’が奇数となる場合のもう1つの例として、図12に正五角形(N=5)でm=1とした回転メカマスク120の例を示す。回転メカマスク120には、回転軸126を中心とした所定の半径Rmの円周上に、中心角α′=72°(360°/N)毎に1辺が切り欠かれた正五角形の開口部121〜125が5個、全て同一の向きに72°の角度毎に設けられる。   Similarly, as another example in the case where k ′ is an odd number, FIG. 12 shows an example of a rotating mechanical mask 120 having a regular pentagon (N = 5) and m = 1. The rotating mechanical mask 120 has a regular pentagonal opening in which one side is notched at every central angle α ′ = 72 ° (360 ° / N) on the circumference of a predetermined radius Rm centered on the rotating shaft 126. Five of 121 to 125 are provided at every 72 ° angle in the same direction.

絶縁膜のパターンの開口部と導電膜のパターンの開口部は共通の形状とされる点、及び、回転メカマスク120を、回転軸(原点)126を中心に同一の向きに中心角α′分の角度を回転させて、それぞれの膜を成膜する作製方法は実施例4変形例と同じである。   The opening portion of the insulating film pattern and the opening portion of the conductive film pattern have a common shape, and the rotating mechanical mask 120 has a central angle α ′ in the same direction around the rotation axis (origin) 126. The manufacturing method for forming each film by rotating the angle is the same as that of the fourth embodiment.

以上は、図10〜図12に示す例を参照して、k’=N/mが偶数または奇数となる、すなわちmがNの約数となるように選んだ場合について述べた。   The case where k ′ = N / m is selected to be an even number or an odd number, that is, m is a divisor of N has been described above with reference to the examples illustrated in FIGS.

しかし、mがNの約数でない、すなわちk’=N/mが(偶数または奇数の)整数とならないような整数の組Nとmを選んでも、やはり回転メカマスクを利用して本発明を実施することは可能である。そのような場合には、回転メカマスクに回転軸からの方位につき角度360°/Nごとの間隔をあけて、導電膜のパターンと絶縁膜のパターンとに共通する開口部をN個、全て同一の向きに配置して設け、それらの開口部に対応する位置に1個以上N個以下の被膜基板を固定して、回転メカマスクを回転軸周りに360°・m/Nに等しい角度ずつ回転しながら導電膜と絶縁膜とを交互に成膜してゆけばよい。   However, even if an integer set N and m is selected such that m is not a divisor of N, that is, k ′ = N / m is not an integer (even or odd), the present invention is still implemented using a rotating mechanical mask. It is possible to do. In such a case, the opening is common to the pattern of the conductive film and the pattern of the insulating film at an angle of 360 ° / N with respect to the direction from the rotation axis in the rotating mechanical mask. 1 or more and N or less coated substrates are fixed at positions corresponding to the openings, and the rotating mechanical mask is rotated around the rotation axis by an angle equal to 360 ° · m / N. A conductive film and an insulating film may be alternately formed.

図13に、N=5、m=2とした回転メカマスク130の例を示す。回転メカマスク130には、回転軸136を中心とした所定の半径Rmの円周上に、2辺が切り欠かれた正五角形の開口部131〜135が5個、全て同一の向きに360°/N=360°/5=72°の角度毎に設けられる。そして、その72°の2倍の角度すなわち144°に等しい角度ずつ回転させて導電膜と絶縁膜とを交互に成膜・積層することで左巻きに導電パターンがつながり、コイルが形成できる。   FIG. 13 shows an example of the rotating mechanical mask 130 where N = 5 and m = 2. The rotating mechanical mask 130 has five regular pentagonal openings 131 to 135 with two sides cut out on the circumference of a predetermined radius Rm with the rotation axis 136 as the center, all in the same direction at 360 ° / N = 360 ° / 5 = 72 °. Then, the conductive film and the insulating film are alternately formed and stacked by rotating twice the angle of 72 °, that is, an angle equal to 144 °, so that the conductive pattern is connected to the left hand and a coil can be formed.

このコイル形成の様子を図14に示す。図14(a)は、図13の開口部131に対応する位置に被膜基板を配置して導電膜のパターンe1,d1,c1を形成した状態を示している。図14(b)は、回転メカマスク130を時計方向に360°・2/5=144°回転させ開口部134が被膜基板の上になる状態で絶縁膜のパターンb1,a,e2を成膜した状態を示す。導電膜のパターンe1の上に絶縁膜のパターンe2が成膜される。 The state of this coil formation is shown in FIG. FIG. 14A shows a state in which the conductive film patterns e 1 , d 1 , and c 1 are formed by disposing a film substrate at a position corresponding to the opening 131 in FIG. In FIG. 14B, the rotating mechanical mask 130 is rotated 360 ° · 2/5 = 144 ° clockwise, and the insulating film patterns b 1 , a 1 , e 2 are formed in a state where the opening 134 is on the coating substrate. The state where the film is formed is shown. An insulating film pattern e 2 is formed on the conductive film pattern e 1 .

図14(c)は、更に回転メカマスク130を時計方向に360°・2/5=144°回転させ開口部132が被膜基板の上になる状態で導電膜のパターンd2,c2,b2を成膜した状態を示す。1層目の導電膜のパターンd,c1と導通が取れた導電膜のパターンb2が、絶縁膜のパターンb1の上に成膜されてコイルの導線が左巻きの方向で延長されることが分かる。図14(d)は、次の絶縁膜のパターンの成膜工程で、絶縁膜のパターンdが導電膜のパターンdの上に延長された状態を示す。図14(e)は、その次の成膜工程で絶縁膜のパターンaの上に導電膜のパターンaが成膜された状態を示している。なお、この実施例5について説明したコイルの作成方法、すなわち回転メカマスクを360°・m/Nに等しい角度ずつ回転させながら、導電膜のパターンと絶縁膜のパターンを交互に成膜する方法は、上述のmがNの約数でない場合だけに限定されず、k’=N/mが偶数または奇数である場合にも、導電膜のパターンと絶縁膜のパターンとが同一の形状でさえあれば、より一般的にこれを利用してその正N角形状の多層膜コイルが作製できる。 FIG. 14C shows the conductive film patterns d 2 , c 2 , b 2 in a state in which the rotating mechanical mask 130 is further rotated 360 ° · 2/5 = 144 ° clockwise and the opening 132 is on the coating substrate. Shows a state where the film is formed. A conductive film pattern b 2, which is electrically connected to the first conductive film patterns d 1 and c 1 , is formed on the insulating film pattern b 1 , and the coil conductor is extended in the counterclockwise direction. I understand that. FIG. 14D shows a state in which the insulating film pattern d 3 is extended on the conductive film pattern d 2 in the next insulating film pattern forming step. FIG. 14 (e) shows a state where the conductive film pattern a 3 on top of the pattern a 2 is the insulating film is formed in the next deposition process. Note that the coil creation method described in the fifth embodiment, that is, the method of alternately forming the conductive film pattern and the insulating film pattern while rotating the rotating mechanical mask by an angle equal to 360 ° · m / N, The present invention is not limited only to the case where m is not a divisor of N. Even when k ′ = N / m is an even number or an odd number, it is only necessary that the conductive film pattern and the insulating film pattern have the same shape. More generally, this can be used to produce a regular N-angle multilayer coil.

以上説明した例は、図3に示す矢印Aの方向から見て、回転メカマスクを時計方向に中心角α若しくはα′ずつ回転させるごとに、導電膜のパターンと絶縁膜のパターンとを交互に成膜して多層膜コイルを作製する方法である。この作製方法では左巻きの多層膜コイルが作製される。つまり、回転メカマスクの回動方向とコイルの巻き線の方向は逆向きとなる。   In the example described above, the conductive film pattern and the insulating film pattern are alternately formed each time the rotating mechanical mask is rotated clockwise by the central angle α or α ′ as seen from the direction of the arrow A shown in FIG. In this method, a multilayer coil is formed by film formation. In this manufacturing method, a left-handed multilayer coil is manufactured. That is, the rotating direction of the rotating mechanical mask and the winding direction of the coil are opposite to each other.

右巻きの多層膜コイルの作製も同様な方法で作製することが可能である。図15(a)に、右巻きの多層膜コイルを作製する場合の回転メカマスク45′、図15(b)に基板ホルダー48′上の基板10a′,10b′を示す。図15(a)と(b)は、説明済みの図5をY軸(開口部45aと45bの配列方向)対称とした図であり、各参照符号には「′」を付して区別をしているが、開口部の方向が異なるだけで同じ働きをするものである。   The right-handed multilayer coil can be manufactured in the same manner. FIG. 15 (a) shows a rotating mechanical mask 45 ′ for producing a right-handed multilayer coil, and FIG. 15 (b) shows the substrates 10a ′ and 10b ′ on the substrate holder 48 ′. FIGS. 15A and 15B are diagrams in which FIG. 5 described above is symmetric with respect to the Y axis (the direction in which the openings 45a and 45b are arranged). However, it works the same only in the direction of the opening.

回転メカマスク45′を反時計方向に中心角度αずつ回転させながら導電膜のパターンと絶縁膜のパターンとを交互に成膜することで、右巻きの多層膜コイルを作製することができる。その工程は、回転メカマスク45′の回転方向が異なるだけで、図6と同じである。   A right-handed multilayer coil can be produced by alternately forming a conductive film pattern and an insulating film pattern while rotating the rotating mechanical mask 45 ′ counterclockwise by a central angle α. The process is the same as that in FIG. 6 except that the rotation direction of the rotating mechanical mask 45 'is different.

図16に、多層膜コイルのヘリカル形状の軸の位置に一体(バルク状)の磁性体を設けた多層膜コイル170の斜視図を示す。多層膜コイル170は、基板173の上に形成された多層膜コイル171のヘリカル形状の軸の位置に例えばフェライト材料の一体の磁性体174が設けられたものである。   FIG. 16 is a perspective view of a multilayer coil 170 in which an integral (bulk) magnetic body is provided at the position of the helical axis of the multilayer coil. The multilayer coil 170 is obtained by providing an integral magnetic body 174 of, for example, a ferrite material at the position of the helical axis of the multilayer coil 171 formed on the substrate 173.

この発明の多層膜コイルの作製方法によれば、絶縁膜のパターンと導電膜のパターンがフォトリソ工程に拠らずに選択的に成膜することが出来るので、図16に示すように多層膜コイルの中心部に一体の磁性体を容易に配置することが可能である。作用の強い一体の磁性体を設けることで多層膜コイルの性能を向上させることができる。   According to the method for manufacturing a multilayer coil of the present invention, since the insulating film pattern and the conductive film pattern can be selectively formed without depending on the photolithography process, as shown in FIG. It is possible to easily dispose an integral magnetic body at the center of each. The performance of the multilayer coil can be improved by providing an integral magnetic body having a strong action.

また、図16では、多層膜コイル171の上に、多層膜コイル172を積み重ねて1個の多層膜コイル170とする概念も示している。組み合わされる多層膜コイル172は、多層膜コイル171と同方向の巻き線のコイルで有っても良いし、逆方向の巻き線で有っても良い。多層膜コイル172は、極めて薄いドーナツ形状の基板の上にこの発明の方法で作製されたコイルである。図16では、ドーナツ形状の基板の表記は省略している。   FIG. 16 also shows a concept in which the multilayer film coil 172 is stacked on the multilayer film coil 171 to form one multilayer film coil 170. The multilayer coil 172 to be combined may be a coil wound in the same direction as the multilayer film coil 171 or may be wound in the opposite direction. The multilayer film coil 172 is a coil manufactured by the method of the present invention on a very thin donut-shaped substrate. In FIG. 16, the notation of a donut-shaped substrate is omitted.

このように成膜済みの多層膜コイルを複数個組み合わせて1個の多層膜コイルを作製するようにしても良い。この方法によれば、磁性体174に対して後付けで色々な仕様の多層膜コイルを作製することも可能である。   In this way, a single multilayer coil may be produced by combining a plurality of multilayer coils already formed. According to this method, it is also possible to manufacture a multilayer film coil having various specifications with respect to the magnetic body 174.

以上述べたように、この発明による多層膜コイルは、絶縁層に設けた導体のスルーホール(しばしばビア、ビアホール等とも呼ばれる)を用いることなく、コイルを構成する導体の膜層同士が直接に接続され、しかも各層がコイルの小型化のために最適な仕方で配設される多層膜コイルの構造を提供する。また、多層膜コイルであってしかも中央にバルク状の磁心を簡単に設けることのできる構成を提供する。   As described above, in the multilayer coil according to the present invention, the conductor film layers constituting the coil are directly connected to each other without using conductor through holes (often referred to as vias, via holes, etc.) provided in the insulating layer. In addition, the present invention provides a multilayer coil structure in which each layer is disposed in an optimum manner for miniaturization of the coil. Further, the present invention provides a configuration that is a multilayer film coil and that can easily provide a bulk magnetic core in the center.

また、この発明の多層膜コイル作製方法によれば、フォトリソグラフィの工程を必要としない。また、メカマスクの利用によって、またコイルの形態によってはたった1枚のメカマスクをチャンバー内で回動させることで、導電層と絶縁層の交互積層ができる。また、導電膜のパターンの終末の端点は、必ず直下の絶縁膜の開始の端点にちょうど突き当たって終端する構成となる。このように構成されることによって、この発明の多層膜コイルは、パターン同士の無駄な重畳部分や間隙が形成されず、不要な凹凸もない最適にコンパクトで滑らかな交互積層を可能にする。   In addition, according to the multilayer coil manufacturing method of the present invention, no photolithography process is required. In addition, by using a mechanical mask and by rotating only one mechanical mask in the chamber depending on the form of the coil, conductive layers and insulating layers can be alternately stacked. Also, the end point at the end of the pattern of the conductive film is always brought into contact with the start end point of the insulating film immediately below and ends. By being configured in this way, the multilayer coil of the present invention enables optimum compact and smooth alternating lamination without forming unnecessary overlapping portions and gaps between patterns and without unnecessary irregularities.

導電性薄膜 2e,2f,2g
下部絶縁層 3a 上部絶縁層 3b
スルーホール 4a,4b
コイル端子 5a パッド端子 5b
保護膜 7
膜状磁心 9a,9b,9c
基板 10,10a,10b,173
絶縁膜のパターン 12a〜12d 導電膜のパターン 14a〜14d
電極 16a,16b
導電成膜マスク 20 絶縁成膜マスク 25
真空チャンバー 40 電子銃 41
排気ポンプ 42 蒸着源 43,44
基板ホルダー 48 回転モーター 49
回転軸(原点) 47,76,86,96,106,116,126,136
回転メカマスク 45,70,80,90,100,110,120,130
開口部 21,26,45a,45b,46a,46b,70a〜70f,71a〜71f,80a〜80f,91〜93,101a,101b,102a,102b,111〜113,121〜125,131〜135
多層膜コイル 170,171,172,200
磁性体 174
Conductive thin film 2e, 2f, 2g
Lower insulating layer 3a Upper insulating layer 3b
Through hole 4a, 4b
Coil terminal 5a Pad terminal 5b
Protective film 7
Film core 9a, 9b, 9c
Substrate 10, 10a, 10b, 173
Insulating film patterns 12a to 12d Conductive film patterns 14a to 14d
Electrode 16a, 16b
Conductive film formation mask 20 Insulation film formation mask 25
Vacuum chamber 40 Electron gun 41
Exhaust pump 42 Deposition source 43, 44
Substrate holder 48 Rotating motor 49
Rotation axis (origin) 47, 76, 86, 96, 106, 116, 126, 136
Rotating mechanical mask 45, 70, 80, 90, 100, 110, 120, 130
Openings 21, 26, 45a, 45b, 46a, 46b, 70a-70f, 71a-71f, 80a-80f, 91-93, 101a, 101b, 102a, 102b, 111-113, 121-125, 131-135
Multilayer coil 170,171,172,200
Magnetic body 174

Claims (14)

基板上に導電膜のパターンと絶縁膜のパターンとが交互に積層されてなり、その導電膜のパターン同士が接続されてヘリカル形状のコイルを構成する多層膜コイルであって、
前記ヘリカル形状の軸回りの一周分の周長をPとするとき、導電膜のパターンと絶縁膜のパターンとは前記Pよりも短い定まった周沿いの長さLc,Liを有し、前記基板上の最下層である場合を除き、前記軸回りの同一向きについて、絶縁膜のパターンの開始の端点はその直下の導電膜のパターンの開始の端点よりも周沿いの長さP−Liだけ進んだ位置に整合され、導電膜のパターンの開始の端点はその直下の絶縁膜のパターンの開始の端点よりも周沿いの長さP−Lcだけ進んだ位置に整合されてそれぞれ積層されており、Li+Lc>Pである多層膜コイル。
A multilayer coil in which conductive film patterns and insulating film patterns are alternately stacked on a substrate, and the conductive film patterns are connected to each other to form a helical coil,
When the circumferential length of one round around the helical axis is P, the conductive film pattern and the insulating film pattern have a predetermined circumferential length Lc, Li shorter than P, and the substrate Except in the case of the uppermost lower layer, with respect to the same direction around the axis, the starting end point of the insulating film pattern advances by a length P-Li along the circumference from the starting end point of the conductive film pattern immediately below it. The starting end point of the conductive film pattern is aligned to the position advanced by the length P-Lc along the circumference from the starting end point of the insulating film pattern immediately below the conductive film pattern. A multilayer coil in which Li + Lc> P.
請求項1に記載された多層膜コイルであって、
前記ヘリカル形状は、その軸に垂直な平面への射影が半径Rの正円であり、前記導電膜のパターンと前記絶縁膜のパターンとは、kをk≧3なる整数として、共に中心角φが、
φ=360°・Lc/2πR=360°・Li/2πR=360°−α
但しα=360°/k
の中心角φに対応する円弧状であり、前記周沿いの長さP−Li及びP−Lcは、共に前記中心角αの円弧の長さであることを特徴とする多層膜コイル。
The multilayer coil coil according to claim 1, wherein
The helical shape is a perfect circle whose projection onto a plane perpendicular to the axis is a radius R, and the conductive film pattern and the insulating film pattern are both center angles φ with k being an integer of k ≧ 3. But,
φ = 360 ° · Lc / 2πR = 360 ° · Li / 2πR = 360 ° -α
However, α = 360 ° / k
The multilayer film coil is characterized in that it has an arc shape corresponding to the center angle φ, and the lengths P-Li and P-Lc along the circumference are both arc lengths of the center angle α.
請求項2に記載した多層膜コイルであって、
前記kは偶数であり、前記絶縁膜のパターンの幅は、前記導電膜のパターンの幅よりも太いことを特徴とする多層膜コイル。
The multilayer film coil according to claim 2,
The multilayer film coil, wherein k is an even number, and a width of the pattern of the insulating film is larger than a width of the pattern of the conductive film.
請求項2に記載した多層膜コイルであって、
前記kは奇数であり、前記絶縁膜のパターンと前記導電膜のパターンは、同一形状であることを特徴とする多層膜コイル。
The multilayer film coil according to claim 2,
The multilayer film coil, wherein k is an odd number, and the pattern of the insulating film and the pattern of the conductive film have the same shape.
請求項1に記載した多層膜コイルであって、
前記ヘリカル形状は、その軸に垂直な平面への射影がN≧3(Nは整数)の正N角形であり、
前記導電膜のパターンと前記絶縁膜のパターンとは、mを1≦m<N/2なる整数として共に前記正N角形のN−m個の辺の連続した形状であり、前記周沿いの長さLiとLcは共に前記N−m個の辺の連続した長さであることを特徴とする多層膜コイル。
The multilayer coil coil according to claim 1,
The helical shape is a regular N-gon with a projection onto a plane perpendicular to the axis of N ≧ 3 (N is an integer),
The conductive film pattern and the insulating film pattern each have a continuous shape of Nm sides of the regular N-gon, where m is an integer satisfying 1 ≦ m <N / 2, and the length along the circumference. Both the thicknesses Li and Lc are continuous lengths of the Nm sides.
請求項5に記載した多層膜コイルであって、
前記絶縁膜のパターンと前記導電膜のパターンとは同一の形状であることを特徴とする多層膜コイル。
The multilayer coil coil according to claim 5, wherein
The multilayer coil, wherein the insulating film pattern and the conductive film pattern have the same shape.
請求項5に記載した多層膜コイルであって、
前記mは、k′=N/mが偶数となるNの約数であり、前記絶縁膜のパターンは、前記導電膜のパターンよりも相対的に幅広の形状を有することを特徴とする多層膜コイル。
The multilayer coil coil according to claim 5, wherein
The multilayer film is characterized in that m is a divisor of N such that k ′ = N / m is an even number, and the pattern of the insulating film has a relatively wider shape than the pattern of the conductive film. coil.
請求項5に記載した多層膜コイルであって、
前記mは、k′=N/mが奇数となるNの約数であることを特徴とする多層膜コイル。
The multilayer coil coil according to claim 5, wherein
M is a divisor of N such that k ′ = N / m is an odd number.
請求項3に記載した多層膜コイルを成膜チャンバー内で作製する方法であって、
回転軸を中心とした所定の半径の円周上の前記中心角αと等しい角度毎に前記導電膜のパターンの開口部と前記絶縁膜のパターンの開口部とがk/2個ずつ合わせてk個、全て同一の向きに交互に配置された回転メカマスクを用い、
前記回転メカマスクの前記導電膜のパターンの開口部又は前記絶縁膜のパターンの開口部の何れか一方の種類の開口部に対応する位置に1個以上k/2個以下の被膜基板を配置し、
前記被膜基板の上に前記導電膜のパターン又は前記絶縁膜のパターンの一方を成膜し、
前記回転メカマスクを、前記回転軸を中心に前記同一の向きに前記中心角α分の角度を回転させて、前記導電膜のパターンと絶縁膜のパターンとを交互に積層して多層膜コイルを作製する多層膜コイル作製方法。
A method for producing a multilayer coil coil according to claim 3 in a film formation chamber,
The conductive film pattern openings and the insulating film pattern openings are k / 2 pieces each at an angle equal to the central angle α on the circumference of a predetermined radius around the rotation axis. Using rotating mechanical masks that are alternately arranged in the same direction,
1 or more and k / 2 or less coated substrates are disposed at positions corresponding to any one of the openings of the conductive film pattern or the insulating film pattern of the rotating mechanical mask,
Forming one of the conductive film pattern or the insulating film pattern on the coated substrate,
The rotary mechanical mask is rotated about the rotation axis by the central angle α in the same direction, and the conductive film pattern and the insulating film pattern are alternately laminated to produce a multilayer coil. A multilayer film coil manufacturing method.
請求項4に記載した多層膜コイルを成膜チャンバー内で作製する方法であって、
回転軸を中心とした所定の半径の円周上の前記中心角αと等しい角度毎に前記導電膜のパターンと前記絶縁膜のパターンに共通する開口部がk個、全て同一の向きに交互に配置された回転メカマスクを用い、
前記回転メカマスクの何れかの開口部に対応する位置に1個以上k個以下の被膜基板を配置し、
前記被膜基板の上に前記導電膜のパターン又は前記絶縁膜のパターンの一方を成膜し、
前記回転メカマスクを、前記回転軸を中心に前記同一の向きに前記中心角α分の角度を回転させて前記導電膜のパターンと絶縁膜のパターンとを交互に積層して多層膜コイルを作製する多層膜コイル作製方法。
A method for producing the multilayer coil according to claim 4 in a film formation chamber,
For each angle equal to the central angle α on the circumference of a predetermined radius around the rotation axis, there are k openings that are common to the conductive film pattern and the insulating film pattern, all alternately in the same direction. Using the arranged rotating mechanical mask,
1 or more and k or less coated substrates are disposed at positions corresponding to any of the openings of the rotating mechanical mask,
Forming one of the conductive film pattern or the insulating film pattern on the coated substrate,
The rotating mechanical mask is rotated about the rotation axis by the angle of the central angle α in the same direction, and the conductive film pattern and the insulating film pattern are alternately stacked to produce a multilayer coil. Multilayer coil manufacturing method.
請求項6に記載した多層膜コイルを成膜チャンバー内で作製する方法であって、
回転軸の周りの同一径の周上にその回転軸からの方位につき360°/Nに等しい角度ごとの間隔をあけて前記導電膜のパターン及び前記絶縁膜のパターンに共通する開口部がN個、全て同一の向きに配置して設けられた回転メカマスクを用い、
前記成膜チャンバー内において、その回転メカマスクの、前記開口部の下方に同時に対応する位置に1個以上N個以下の基板を固定して、導電膜または絶縁膜の一方を成膜し、回転メカマスクを前記回転軸の周りに定まった向きに360°・m/Nに等しい角度だけ回動し、導電膜または絶縁膜の他方を成膜することを繰り返すことで、導電膜のパターンと絶縁膜のパターンとを交互積層することを特徴とする多層膜コイル作製方法。
A method for producing a multilayer coil according to claim 6 in a film formation chamber,
On the circumference of the same diameter around the rotation axis, there are N openings common to the conductive film pattern and the insulating film pattern at intervals equal to 360 ° / N per direction from the rotation axis. , Using rotating mechanical masks that are all arranged in the same direction,
In the film forming chamber, one or more and N or less substrates are fixed to positions corresponding to the rotating mechanical mask below the opening at the same time, and one of the conductive film and the insulating film is formed, and the rotating mechanical mask is formed. Is rotated around the rotation axis by an angle equal to 360 ° · m / N, and the formation of the other of the conductive film or the insulating film is repeated, whereby the pattern of the conductive film and the insulating film A multilayer coil manufacturing method, wherein patterns are alternately laminated.
請求項7に記載した多層膜コイルを成膜チャンバー内で作製する方法であって、
回転軸を中心とした所定の半径の円周上に、中心角α′=360°/k′に等しい角度ごとに間隔を空けて前記導電膜のパターンの開口部と前記絶縁膜のパターンの開口部とがk′/2個ずつ合わせてk′個、全て同一の向きに交互に配置された回転メカマスクを用い、
前記回転メカマスクの前記導電膜のパターンの開口部又は前記絶縁膜のパターンの開口部の何れか一方の種類の開口部に対応する位置に1個以上k′/2個以下の被膜基板を配置し、
前記被膜基板の上に前記導電膜のパターン又は前記絶縁膜のパターンの一方を成膜し、
前記回転メカマスクを、前記回転軸を中心に前記同一の向きに前記中心角α′分の角度を回転させて、前記導電膜のパターンと絶縁膜のパターンとを交互に積層して多層膜コイルを作製する多層膜コイル作製方法。
A method for producing the multilayer film coil according to claim 7 in a film formation chamber,
The conductive film pattern opening and the insulating film pattern opening are spaced apart by an angle equal to a central angle α ′ = 360 ° / k ′ on the circumference of a predetermined radius centered on the rotation axis. Using rotating mechanical masks that are alternately arranged in the same direction, k ′, with k ′ / 2 parts in total,
One or more k ′ / 2 or less coated substrates are arranged at positions corresponding to any one of the openings of the conductive film pattern or the insulating film pattern of the rotating mechanical mask. ,
Forming one of the conductive film pattern or the insulating film pattern on the coated substrate,
The rotating mechanical mask is rotated by an angle corresponding to the central angle α ′ in the same direction around the rotation axis, and the conductive film pattern and the insulating film pattern are alternately stacked to form a multilayer coil. A multilayer film coil manufacturing method to be manufactured.
請求項8に記載した多層膜コイルを成膜チャンバー内で作製する方法であって、
回転軸を中心とした所定の半径の円周上に、中心角α′=360°/k′に等しい角度ごとに間隔を空けて前記導電膜のパターンと前記絶縁膜のパターンに共通する開口部がk′個、全て同一の向きに交互に配置された回転メカマスクを用い、
前記回転メカマスクの前記開口部に対応する位置に1個以上k′個以下の被膜基板を配置し、
前記被膜基板の上に前記導電膜のパターン又は前記絶縁膜のパターンの一方を成膜し、
前記回転メカマスクを、前記回転軸を中心に前記同一の向きに前記中心角α′分の角度を回転させて前記導電膜のパターンと絶縁膜のパターンとを交互に積層して多層膜コイルを作製する多層膜コイル作製方法。
A method for producing the multilayer film coil according to claim 8 in a film formation chamber,
An opening common to the conductive film pattern and the insulating film pattern on the circumference of a predetermined radius centered on the rotation axis, with an interval equal to the central angle α ′ = 360 ° / k ′. K ', using rotating mechanical masks arranged alternately in the same direction,
1 or more and k ′ or less coated substrates are disposed at positions corresponding to the openings of the rotating mechanical mask,
Forming one of the conductive film pattern or the insulating film pattern on the coated substrate,
The rotating mechanical mask is rotated about the rotation axis by the central angle α ′ in the same direction, and the conductive film pattern and the insulating film pattern are alternately stacked to form a multilayer coil. A multilayer film coil manufacturing method.
請求項1乃至8の何れかに記載した多層膜コイルであって、
前記基板上の前記ヘリカル形状の軸の位置に一体の磁性体の磁心が設けられたことを特徴とする多層膜コイル。
The multilayer coil coil according to any one of claims 1 to 8,
A multilayer coil, wherein a magnetic core of an integral magnetic material is provided at the position of the helical shaft on the substrate.
JP2011041520A 2011-02-28 2011-02-28 Multilayer coil and manufacturing method thereof Active JP5699005B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011041520A JP5699005B2 (en) 2011-02-28 2011-02-28 Multilayer coil and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011041520A JP5699005B2 (en) 2011-02-28 2011-02-28 Multilayer coil and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012178509A true JP2012178509A (en) 2012-09-13
JP5699005B2 JP5699005B2 (en) 2015-04-08

Family

ID=46980155

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011041520A Active JP5699005B2 (en) 2011-02-28 2011-02-28 Multilayer coil and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5699005B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146568A1 (en) * 2012-03-27 2013-10-03 株式会社村田製作所 Electronic component

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9174818B1 (en) 2011-11-29 2015-11-03 Brunswick Corporation Marine engines and exhaust systems for marine engines having a catalyst for treating exhaust
US9903251B1 (en) 2011-11-29 2018-02-27 Brunswick Corporation Outboard motors and exhaust systems for outboard motors having an exhaust conduit supported inside the V-shape
US9758228B1 (en) 2016-07-01 2017-09-12 Brunswick Corporation Exhaust manifolds for outboard marine engines
US10329978B1 (en) 2018-02-13 2019-06-25 Brunswick Corporation High temperature exhaust systems for marine propulsion devices

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188320U (en) * 1985-05-15 1986-11-25
JPS62141707A (en) * 1985-12-17 1987-06-25 Toshiba Corp Solenoid coil
JPH03278506A (en) * 1990-03-28 1991-12-10 Murata Mfg Co Ltd Laminated coil component and manufacture thereof
JP2006261577A (en) * 2005-03-18 2006-09-28 Tdk Corp Laminated inductor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61188320U (en) * 1985-05-15 1986-11-25
JPS62141707A (en) * 1985-12-17 1987-06-25 Toshiba Corp Solenoid coil
JPH03278506A (en) * 1990-03-28 1991-12-10 Murata Mfg Co Ltd Laminated coil component and manufacture thereof
JP2006261577A (en) * 2005-03-18 2006-09-28 Tdk Corp Laminated inductor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013146568A1 (en) * 2012-03-27 2013-10-03 株式会社村田製作所 Electronic component
JPWO2013146568A1 (en) * 2012-03-27 2015-12-14 株式会社村田製作所 Electronic components
US9697946B2 (en) 2012-03-27 2017-07-04 Murata Manufacturing Co., Ltd. Electronic component

Also Published As

Publication number Publication date
JP5699005B2 (en) 2015-04-08

Similar Documents

Publication Publication Date Title
JP5699005B2 (en) Multilayer coil and manufacturing method thereof
US11189418B2 (en) Coil component
US6525635B2 (en) Multilayer inductor
TWI438798B (en) Coil device
CN106992056B (en) Coil component
JP2018207028A (en) Coil component and manufacturing method therefor
US11056268B2 (en) Coil component
JP2005317724A (en) Coil part
JP2013021279A (en) Common mode filter with multi spiral layer structure and method of manufacturing the same
JP2017228768A (en) Coil component and manufacturing method thereof
KR20180034255A (en) Electronic component
US20190190357A1 (en) Stator, stator manufacturing method and motor
JP2007123424A (en) Common mode filter
US8896406B2 (en) Laminated coil
JP4968588B2 (en) Coil device
JP2006237221A (en) Current limiting coil device
JP7367716B2 (en) coil parts
US20200075220A1 (en) Multilayer coil component and method of manufacturing multilayer coil component
JP5600094B2 (en) Multi-layer spiral structure common mode filter and manufacturing method thereof
JP5600095B2 (en) Multi-layer spiral structure common mode filter and manufacturing method thereof
US20190190356A1 (en) Stator, stator manufacturing method and motor
JP2020017772A (en) Coil component
WO2012091141A1 (en) Wire winding device and method for manufacturing same
KR100235200B1 (en) An accumulated film coils of a transformer
WO2024034455A1 (en) Inductor component and substrate with built-in inductor component

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140212

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150216

R150 Certificate of patent or registration of utility model

Ref document number: 5699005

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250