JP2012178241A - 誘導加熱調理器 - Google Patents
誘導加熱調理器 Download PDFInfo
- Publication number
- JP2012178241A JP2012178241A JP2011039560A JP2011039560A JP2012178241A JP 2012178241 A JP2012178241 A JP 2012178241A JP 2011039560 A JP2011039560 A JP 2011039560A JP 2011039560 A JP2011039560 A JP 2011039560A JP 2012178241 A JP2012178241 A JP 2012178241A
- Authority
- JP
- Japan
- Prior art keywords
- temperature
- data series
- heating
- infrared
- cooking
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Images
Landscapes
- Induction Heating Cooking Devices (AREA)
Abstract
【課題】鍋等の材質や形状によらず正確に加熱制御できる誘導加熱調理器を提供する。
【解決手段】実施の形態の誘導加熱調理器は、トッププレート16及び被加熱物35より輻射される赤外線を検知する赤外線センサ32と、トッププレートの温度を検知する温度センサ39と、温度センサの検知する温度変化によって温度上昇を検出し、温度上昇期間において、温度センサの検知出力に応じて加熱手段18による火力を制御するための温度上昇制御データ系列(1a〜1c)〜(7a〜7c)を設定すると共に、赤外線センサ32の検知出力に応じて、温度上昇制御データ系列に従う火力設定値を決定して火力制御する制御部41とを備え、温度センサの温度検知出力と温度変化率の変化状況とに応じて火力を制御するための温度上昇制御データ系列を複数種のデータ系列の中から選定し、かつ、赤外線センサの検知出力に応じて火力制御する。
【選択図】 図25
【解決手段】実施の形態の誘導加熱調理器は、トッププレート16及び被加熱物35より輻射される赤外線を検知する赤外線センサ32と、トッププレートの温度を検知する温度センサ39と、温度センサの検知する温度変化によって温度上昇を検出し、温度上昇期間において、温度センサの検知出力に応じて加熱手段18による火力を制御するための温度上昇制御データ系列(1a〜1c)〜(7a〜7c)を設定すると共に、赤外線センサ32の検知出力に応じて、温度上昇制御データ系列に従う火力設定値を決定して火力制御する制御部41とを備え、温度センサの温度検知出力と温度変化率の変化状況とに応じて火力を制御するための温度上昇制御データ系列を複数種のデータ系列の中から選定し、かつ、赤外線センサの検知出力に応じて火力制御する。
【選択図】 図25
Description
実施の形態は、誘導加熱調理器に関する。
従来の誘導加熱調理器において、トッププレートの下方に被加熱物より輻射される赤外線を温度指標として検知する赤外線センサと、トッププレートの温度を検知する温度センサとを備えたものがある。また、トッププレートの温度が低い時に、赤外線センサの信号と温度センサにより加熱容器の温度を算出する技術もある。
ところが、従来の加熱制御技術によれば、被加熱物として鍋の材質や形状により鍋の赤外線輻射率が相違し、正確な温度に基づく加熱制御が難しい問題点があった。
本発明は、上記従来技術の課題に鑑みてなされたもので、被加熱部である鍋等の材質や形状によらずに正確に加熱制御ができる誘導加熱調理器を提供することを目的とする。
実施の形態の誘導加熱調理器は、被加熱物が載置されるトッププレートと、前記トッププレートの下方に設置され、前記被加熱物を加熱コイルにより誘導加熱する加熱手段と、前記トッププレート及び前記被加熱物より輻射される赤外線を検知する赤外線センサと、前記トッププレートの温度を検知する温度センサと、前記温度センサの検知する温度変化によって温度上昇を検出し、温度上昇期間において、前記温度センサの検知出力の変化率の変化状況を検知する温度センサ温度変化検出手段と、前記温度センサの温度検知出力と前記温度センサ温度変化検出手段の温度変化率の変化状況の検知出力とに応じて前記加熱手段による火力を制御するための前記赤外線センサーの検知出力に応じた温度上昇制御データ系列を複数種のデータ系列の中から選定し、前記赤外線センサの検知出力に応じて火力制御する制御部とを備えたことを特徴とするものである。
以下、実施の形態を図に基づいて詳説する。
(第1の実施の形態)
以下、システムキッチンに組み込まれる誘導加熱調理器に適用した第1の実施の形態について、図1〜図7を参照しながら説明する。図3は、キッチンキャビネット1に、加熱調理器2が組み込まれた状態の外観斜視図であり、図4は、トッププレートを外した状態で示す調理器本体3の平面図である。加熱調理器2の調理器本体3は、キャビネット1に設けられた開口4に落とし込み状態に組み込まれている。この調理器本体3の下部には、図3に示すロースタ部5が設けられている。
以下、システムキッチンに組み込まれる誘導加熱調理器に適用した第1の実施の形態について、図1〜図7を参照しながら説明する。図3は、キッチンキャビネット1に、加熱調理器2が組み込まれた状態の外観斜視図であり、図4は、トッププレートを外した状態で示す調理器本体3の平面図である。加熱調理器2の調理器本体3は、キャビネット1に設けられた開口4に落とし込み状態に組み込まれている。この調理器本体3の下部には、図3に示すロースタ部5が設けられている。
前記調理器本体3は、図4に示すように、上面が開口しており、内部の手前側に加熱手段としての二つの誘導加熱コイル8、9が設けられ、また中央奥部に別の加熱手段として例えばラジエントヒータからなるヒータ10が設けられている。また、この調理器本体3内には、表示回路基板11が配設されており、この表示回路基板11には、多数の加熱強度表示用の発光ダイオードからなる表示器群12A、12Bが実装されていると共に、例えば蛍光表示管からなる表示器15A,15Bが実装されている。
さらに、図3、図5に示すように、前記調理器本体3の上面には、誘導加熱コイル8、9及びヒータ10を上方から覆うように、耐熱ガラス製の透視可能なトッププレート16が配置される。このトッププレート16において、左右の誘導加熱コイル8、9及びヒータ10の上方に対応する部位はそれぞれ円形模様の調理器載置表示部17、18、19が設けられている。
図5は、以下に述べる表示部から光が放出されて、トッププレート16上の各表示部が浮かび上がったように光表示されている状態を示している。トッププレート16の裏面において、調理器載置表示部17、18の前側には、前記表示器群12A、12Bの上方に位置して調理条件表示部12AH、12BHが塗装膜に形成された抜き孔により設けられ、表示器15A、15Bの上方に位置して調理条件表示部15AH、15BHが同様に抜き孔により設けられている。なお、これらの各調理条件表示部12AH、12BH,15AH、15BHは、それぞれ対応する表示器によって下方から照明表示されることで、透視可能なトッププレート16を介してその上面から図5に示すように目視できる。
また、トッププレート16の前縁部(調理器本体3より前方へ張り出した部分)の下面には、入力案内用表示部20AH〜27AH、20BH〜27BHが同様に抜き孔により設けられている。これら入力案内用表示部20AH〜27AH、20BH〜27BHは、本体3の内部に配置される図示しない発光体からの発光により浮かび上がるように光表示される。なお、発光体が消灯しているときには、トッププレート16上面から内部はほぼ見えない状態(いわゆるブラックアウト状態)となる。
前記右側の入力案内用表示部20AH〜27AHと、左側の入力案内用表示部20BH〜27BHとは、それぞれ基本的に同じ構成であり、また、右側の入力案内用表示部20AH〜27AH下方部、及び左側の入力案内用表示部20BH〜27BH下方部に設けられた操作部などの構成についても、基本的に同じであるので、右側の入力案内用表示部20AH〜27AH下方部の操作部などについて以下説明する。
入力案内用表示部20AHは加熱調理のスタート/切り用、入力案内用表示部21AHはメニュー選択用、入力案内用表示部22AHは加熱強度や加熱時間のアップ設定用、入力案内用表示部23AHは同ダウン設定用、入力案内用表示部24AH〜27AHは加熱強度設定用である。また、これら入力案内用表示部20AH〜27AHの下方には、ユーザが手指により接触操作したことを静電容量の変化により検出する操作部20AT〜27ATが設けられている(図7参照)。
図6は、加熱調理器2の縦断側面図である。冷却ダクト30の内部には、シールドケース31が配置されている。このシールドケース31は、誘導加熱コイル8の中心部から下方に延びると、吹出口30aの直下位置にて水平方向(図6では左方)に折れ曲がった断面ほぼL字状の容器となっている。シールドケース31の奥部には、赤外線センサ32が受光部(赤外線フィルタ32a)を水平方向(図6では右方)に向けた状態で配置されている。赤外線センサ32は、前記赤外線フィルタ32a,赤外線検出部32b,図示しない信号処理回路を一体的に備えたユニットで構成されている。また、シールドケース31の内部で吹出口30aの直下位置に対応する部分には、集光反射部33が配置されている。集光反射部33は、赤外線センサ32と一体となったユニットを構成して、シールドケース31の内部に配置されている。
シールドケース31のうち、集光反射部33の上方に位置する部分には開口部34が形成されており、例えばフライパンなどの調理器具35から放射された赤外線が、開口部34を通って集光反射部33に向かうようになっている。
トッププレート16の下面には、例えばシリコンなどの金属系あるいは窒化ケイ素などの窒化金属材料等をスパッタ法により成膜してなる薄膜36が設けられており、赤外線や可視光が半透過するように構成されている。そして、トッププレート16の下面で、開口部34が密着した部分の内部、すなわち、赤外線センサ32の視野面には、薄膜36が成膜されておらず、透明な赤外線透過窓37となっている。これにより、調理器具35から放射された赤外線が効率良く赤外線透過窓37を透過するようになっている。
このような構成において、集光反射部33は、トッププレート16(赤外線透過窓37)を介して調理器具35から放射された赤外線をほぼ水平方向に反射して赤外線センサ32に集光させる(図6中、破線で示す光路参照)。
ところで、このように透明な赤外線透過窓37を設けると、当該赤外線透過窓37を通して誘導加熱調理器2の内部が見えてしまう。そこで、開口部34内部において赤外線透過窓37に対向する部分に、赤外線透過フィルタ38が設けられている。赤外線透過フィルタ38は、赤外線フィルタ32aより広い範囲の波長透過領域(図13の帯域Wよりも広い範囲の波長領域)を有し、且つ、可視光を透過させない特性を有する部材で構成されている。すなわち、調理器具35から集光反射部33を介して赤外線センサ32に至る赤外線の光路の途中に赤外線フィルタが二重に配置された構成となっている。尚、赤外線透過フィルタ38は、帯域Vと帯域Wの両方の帯域を含む波長透過領域を有するように構成してもよい。
また、トッププレート16の下面において、誘導加熱コイル8の内周側と、誘導加熱コイル8が巻回されている部分の上方に位置する部位とには、例えばサーミスタなどで構成される温度センサ39a,39bが配置されている。これらの温度センサ39a,39bは、トッププレート16下面の温度を検知する。
図7は、制御系の構成を示す機能ブロック図である。火力制御装置(制御部)41は、調理器本体3の内部に設けられており、マイクロコンピュータによって構成されている。火力制御装置41には、トッププレート16の下方に配置されている操作部(操作手段)20T〜27Tから操作信号が入力されると共に、赤外線センサ32,温度センサ39からの温度検知信号が各センサに対応する検知部32c,39cを介して入力されている。
そして、火力制御装置41は、これらの入力並びに予め記憶された制御プログラムに基づいて、表示部12H,15H,20H〜27Hの作動を制御すると共にインバータ(高周波電流供給手段)42を制御し、誘導加熱コイル8(及び9)にインバータ42を介して高周波電流を供給して制御する。例えば、ユーザが操作部20T〜27Tを操作することで、調理メニューを選択し、調理条件を設定すると、対応する表示部12H,15H,20H〜27Hの表示を制御すると共に対応する加熱制御を行う。
誘導加熱コイル8には、共振コンデンサ43が直列に接続されている。これらのコイル8またはコンデンサ43は、調理器具35の材質に応じて出力調整を行なうため、コイル8の巻数が可変となるように(例えば、多段コイル構成)、又はコンデンサ43の容量が可変となるように構成してもよい。インバータ42には、商用交流電源44を、整流回路45を介して直流に変換したものが駆動用電源として供給されている。また、商用交流電源44は、図7では図示を省略しているヒータ10にも、図示しない通電制御部を介して供給されている。
また、整流回路45の入力側と、インバータ42の出力側とには、夫々電流トランス46,47が配置されており、それらの検知信号は火力制御装置41に与えられている。そして、火力制御装置41は、加熱調理器2への入力電流ipとインバータ42の出力電流(コイル電流)icとを検出するようになっている。尚、以上において、誘導加熱コイル8及び9,インバータ42,共振コンデンサ43は、加熱手段48を構成している。
次に、本実施の形態の動作を説明する。
まず、実施の形態の誘導加熱調理器の温度測定原理について説明する。図12に示すVpu,Vpt,Vbは、それぞれトッププレート16の上面,下面近傍,フライパン下面からの赤外線輻射エネルギを示し、赤外線センサ32に入力されるエネルギVtoは(=Vpu+Vpt+Vb)となる。図12において、エネルギVpt,Vbは、トッププレート16を透過して赤外線センサ32に入射するため、トップフレート下面からの赤外線輻射エネルギVpuより小さい値となる。尚、Vpt>Vbとなるのは、ステンレス製であるフライパンの輻射率が小さいことによる。
図14(a)は、鍋底の板厚が厚い(熱容量大)フライパンと、鍋底の板厚が薄い(熱容量小)フライパンとを加熱した場合の電力変化をP1,P2で示している。また、図14(b)には、同様に鍋底の板厚が厚いものと薄いものとをそれぞれ加熱した場合の、鍋底(Tb1,Tb2)及びトッププレート下面(Tpu1,Tpu2)の温度変化を示す。そして、図14(c)は、同様の加熱ケースについて、赤外線センサの検知出力の変化をVto1,Vto2として示す。
フライパン調理時に予熱を行う場合などのように鍋底の温度が急上昇する場合、図12(a)に示すようにトッププレート上面の温度は急上昇するが、下面の温度は上昇しない。これは上述のように、トッププレートがガラス製で熱伝導率が悪く、熱容量も大きいことに起因する。一方、フライパンは輻射率が小さいため温度が上昇しても輻射される赤外線は少ないが、トッププレートの上面は鍋底に近接しているので熱伝導により温度が上昇し、上面から輻射される赤外線も急激に増加する。そこで、トッププレートを介した赤外線の輻射エネルギを考慮していない場合には、温度検知精度が悪くなる。
より詳細に説明すると、図12(b),(c)は、図12(a)におけるケース(2),(5)にそれぞれ対応し、図14の時刻t1,t5におけるフライパンの鍋底温度Tb,トッププレートの上面温度Tpt及び下面温度Tpu,これらの温度に対応する赤外線センサの検出値Vb,Vpt,Vpuを示す。鍋底温度Tbは、何れも250℃とする。トッププレートの温度が低い図12(b)の場合、赤外線センサの総検出値Vtoは(20mV+4mV+10mV=)34mVとなるはずだが、従来方式ではVpu=10mVを差し引いているため検出値Vo2=24mVとなり、これが検出温度250℃に相当する。
一方、トッププレートの温度が高い図12(c)の場合、赤外線センサの総検出値Vtoは(20mV+50mV+300mV=)370mVとなるはずだが、従来のようにVpu=300mVを差し引くと、検出値Vo5=70mVとなり、これは検出温度310℃に相当する。したがって、60℃の誤差を生じることになる。
また、赤外線センサの総検出値Vtoは、トッププレート下面からの輻射エネルギに対応するVpuが占める割合が非常に大きい。このVpuに相当する値をサーミスタで検知した温度から推定すれば、その推定自体が不正確になる。すなわち、誘導加熱では、図15に示すように、鍋底における誘導電流の分布状態にバラツキがあるため、温度分布のバラツキも大きくなる。すると、トッププレートの温度分布のバラツキも大きくなるから、赤外線センサの検知結果とサーミスタが検知するトッププレート下面の温度とが異なる。更に、トッププレートの下面側では冷却風が循環しているので、トッププレート下面の温度とサーミスタが検知する温度との間にも差が生じる。
そして、検出値Vptはトッププレート上面温度Tptにより変化し、検出値Vbは鍋の輻射率により変化する。そのため、双方とも誤差が大きい(Vto−Vpu)に基づいて鍋底温度を検出すれば、検出誤差が非常に大きくなってしまう。以下に具体例で説明する。
図16は、フライパンを空焚き状態にした場合のトッププレート下面温度Tpuと赤外線センサの検出値Vとの関係を示している。検出値Vpuは、下面温度Tpuに基づいて指数関数的に上昇する。検出値Vgo(=Vpu+Vpt)は、検出値Vptが温度Tptの上昇に伴い増加するので、それが検出値Vpuに上乗せされた特性となる。また、総検出値Vtoは、鍋底温度Tbが加熱開始初期段階でトッププレートの温度が低い場合でも高温になるから、温度Tbに基づいた略一定の検出値Vbが検出値Vgoに上乗せされた特性となる。
加熱を開始すると、鍋底温度Tb,トッププレート上面温度Tpt,同下面温度Tpuの順に上昇するので、加熱初期には、総検出値VtoにVbが占める割合が大きくなるが、時間が経過してトッププレートの温度が上昇すると、Vgoが占める割合が大きくなる。図12(c)のケースでは、総検出値Vtoは370mVであり、従来方式では、Tpu=220℃に対応して出力されるVpu=300mVを減じてVo5=70mVとなる。この場合に、Tpu=210℃と温度を10℃低く検出したとすると、Vpu=260mVとなって、Vo5=110mVとなる。この値は、検出温度300℃に相当する。すなわち、従来方式では、トッププレート下面の温度に10℃の検出誤差があると、鍋底温度の検出誤差が50℃となる。
また、フライパンの鍋底が塗装されている場合は、鍋底からの輻射熱が増加するため、光沢があるステンレス製の場合に比較すると、Vbは約3倍の60mV程度になる。すると、図12(c)のケースでは、総検出値Vtoは410mVとなり、従来方式でVpu=300mVを減じるとVo5=110mVとなる。すなわち、検出温度300℃に相当するから、やはり鍋底温度の検出誤差が50℃となる。
これに対して実施の形態の誘導加熱調理器では、加熱が開始されて温度が上昇する期間では、被加熱物の温度に近い温度センサの検知出力に応じて温度上昇制御データ系列を選択設定し、トッププレート下面からの輻射エネルギに対応する赤外線センサの検知出力に応じて設定した温度上昇制御データ系列に従う設定値を決定することにより、被加熱物の熱容量が小さい場合でも、温度の上昇度合いを高精度に制御し、被加熱物が過昇温度状態になることを確実に防止する。
次に、本実施の形態の作用について図1及び図2を参照して説明する。図2は、火力制御装置41が内部のメモリにデータテーブルとして記憶保持している、温度上昇制御データ系列(但し、データ系列(10’)を除く)の一例を示すものである。図2の横軸は、データ系列(10’)に利用するトッププレート16の下面温度Tpuの目盛り(上軸)と共に、データ系列(1)〜(9)に利用する赤外線センサ32の出力電圧Vto[mV]の目盛り(下軸)を示しており、縦軸は、誘導加熱の火力出力P[kW]である。そして、データ系列(1)〜(9)は、25℃から25℃刻みで上昇する下面温度Tpuをパラメータとする温度上昇制御データの系列を示している。
この場合、データ系列(1)〜(9)の火力減衰率(直線の傾き)は、光沢があるステンレス製鍋の底の温度が、例えば250℃に到達した場合に輻射される赤外線エネルギに応じて、赤外線センサ32が出力する電圧Vb=20mVに相当するように設定されている。尚、データ系列(1)〜(9)は、下面温度Tpuについて、大まかな値を離散的に示しているが、実際に使用するデータは、下面温度Tpuをより詳細に切り分けたものとなる。
例えば、データ系列(1)では、下面温度Tpu=25℃の場合、出力電圧Vto=10mVに達すると火力Pを初期値3kWから低下させ、出力電圧Vto=30mVに達すると、火力Pを最低出力である200Wに設定するようになっている。また、データ系列(6)では、下面温度Tpu=150℃の場合、出力電圧Vto=140mVに達すると火力Pを初期値3kWから低下させ、出力電圧Vtoが160mVに達すると、火力Pを最低出力200Wに設定する。そして、下面温度Tpuが変化する場合は、それに応じて使用するデータ系列をダイナミックに変更する。
これらのデータ系列の内、データ系列(9)が上限として設定されている。すなわち、出力電圧Vtoがデータ系列(9)より大きくなると、データ系列(9)の傾きに従って火力Pが減少し、出力電圧Vtoが360mVになると火力P(出力)は0kWになる。よって、鍋底温度はそれ以上に上昇することがないのでデータ系列(9)が上限となる。
尚、この上限値の設定方法としては、その他例えば、データ系列(9)よりも右側に位置する図示しないデータ系列をさらに設定し、下面温度Tpuが、上述したステンレス製鍋の底の温度が250℃になっている場合に対応する温度で傾きが垂直となるデータ系列を設定すれば、そのデータ系列が上限となる。この上限は任意に設定可能であり、例えば下面温度Tpu=150℃に対応するデータ系列(6)の傾きを垂直に設定すれば、当該データ系列(6)が上限になる。
また、これらのデータ系列(1)〜(9)については、通常の調理手順に従う場合は、フライパン等の調理器具35の温度を上昇させる期間に使用される。この「温度を上昇させる期間」とは、赤外線センサ32の検出値が温度上昇データ系列の上限値(データ系列(9))に到達するまでの期間を意味し、例えばデータ系列(1)〜(9)については、フライパン等の調理器具35の予熱,揚げ物調理における油が適温となるまでの加熱,あるいは、揚げ物調理において調理物を投入した際に低下した油の温度の回復など、温度を上昇させる必要がある場合に火力を上昇させて、調理器具35の温度を素早く短時間で目標温度に到達させる期間である。そして、データ系列(1)〜(9)は、赤外線センサ32の検知出力に応じて火力Pを比例制御するためのデータ系列となっている。
また、データ系列(10’)[温度制御データ]は、温度センサ39が検知する温度Tpuに応じて加熱調理を行う場合に使用する火力データであり、上記検知出力に応じて火力Pを比例制御するためのデータ系列となっている。このデータ系列(10’)は、調理器具35の温度が過剰に上昇することを防止するため、火力の上限値を制御するデータであり、データ系列(9)より右側に位置させることで、例えば透明な赤外線透過窓37が汚れた場合に赤外線がうまく検出できなかった場合などに過剰な温度上昇を防止する機能(過昇温防止機能)をなす。すなわち、データ系列(10’)の火力上限値を、データ系列(9)の火力上限値よりも高く設定することで、安全な調理が可能となる。
図1は、火力制御装置41が行う誘導加熱制御を示すフローチャートである。先ず、温度センサ39の出力電圧に基づきトッププレート16の下面温度Tpuを検出し(ステップS1)、続いて、赤外線センサ32の出力電圧Vto(図2の下側横軸)を検出する(ステップS2)。そして、温度上昇火力設定値PS1を、上記温度Tpu及び出力電圧Vtoに応じて、図2に示すデータ系列に基づき設定する(ステップS3)。すなわち、温度Tpuに応じてデータ系列(1)〜(9)の何れかを選択し、選択したデータ系列上で、出力電圧Vtoに応じて加熱火力PS1を設定する。
例えば、温度Tpuを100℃として検出した場合は、図2中のデータ系列(4)が選択される。そして、赤外線センサ32の出力電圧Vtoが80mVから85mVに変化すると、その変化に応じて、データ系列(4)に基づく火力設定値PS1が1.5kWから0.8kWに変更される。すなわち、ステップS6に示すように、現状の火力Pが、ステップS3で目標値として設定された火力PS1に対して差がある場合は、現状の火力PをPS1に一致させるように制御する。
尚、上述した例は、赤外線センサ32の出力電圧Vtoが変化しても温度Tpuが変化しない場合を想定したが、実際には、出力電圧Vtoが上昇すれば同時に温度Tpuも上昇する。したがって、実際の火力PS1は、データ系列(4)において火力1.5kWに相当するデータから若干斜め右下にずれて、出力電圧Vto(85mV)の延長線上に位置する1.5kW〜0.8kWの間に設定されることになる。
すなわち、調理器具35を徐々に加熱して行く通常の調理では、初期段階で調理器具35の温度が上昇すると、温度Tpu及び赤外線センサ32の出力電圧Vtoが上昇する。図2を参照して説明すると、火力設定値PS1は、温度Tpuが低いデータ系列の火力が大きい位置から、火力が小さい位置、すなわち右斜め下に向かって緩やかに移動する。そして、温度Tpuが220℃に到達すると、調理器具35の温度がそれ以上に上昇しないように、火力設定値PS1は、上限値として設定されたデータ系列(9)に沿って下降して行く。
一方、調理器具35を加熱している最中に調理器具35内に調理物が投入されると、調理器具35の温度が一気に低下する。この時、トッププレート16の下面温度Tpuはあまり変化しないが、赤外線センサ32の出力電圧Vtoは一気に減少するから、温度Tpuに基づくデータ系列に沿って火力設定値が一気に上昇するように制御される。この制御は後述する。
続いて、温度Tpu(図2の上側横軸)が、データ系列(9)に対応する220℃以上か否かを判断し(ステップS4)、温度Tpuが220℃以上であれば、調理器具35の過昇温防止機能として作用するデータ系列(10’)に従って制御される。これは、温度Tpuが高くなればデータ系列(10’)に基づき火力設定値を低下させることで、ステップS5に示すg(Tpu)を関数とするもので比例制御することに対応する。
この動作は、赤外線センサ32の検出出力に基づきデータ系列(9)において過昇温防止を図る上限値を超えて、トッププレート16の下面温度Tpuがより高く上昇することで、赤外線検出が適切に機能しないケースに対応する。この場合は、温度Tpuだけをパラメータとするデータ系列(10’)により火力を制御する。
本実施の形態の誘導加熱調理器では、昇温加熱時に次の加熱制御も行う。赤外線センサ32の上限温度をサーミスタ温度センサ39の検出温度に応じて補正する制御をする。すなわち、図20のグラフにおいて、加熱開始時には、上限温度データの設定値を破線のAD1(図20では、赤外線AD値として300)に設定する。そして、トッププレート16と調理器(鍋)の温度上昇にともなって温度センサ39の検出温度の精度が高まるに連れ、赤外線温度センサ32の上限温度設定値を高温側の破線AD2(赤外線AD値として490)、破線AD3(同620)に順次にシフトさせる。そして、最終的には通常加熱目標値AD4(同650)に設定する。例えば、温度センサ39によるトッププレート温度Tpuが200℃に到達するまでは、上限温度AD1にて制御する。そして、続いてトッププレート温度Tpuが250℃に到達するまでは、上限温度AD2にて制御し、Tpuが280℃に到達するまでは、上限温度AD3にて制御し、このTpuが280℃を超えると、通常の加熱目標上限値AD4にて制御する。このように昇温加熱制御することにより、過昇温加熱を確実に防ぐことができる。
一般に鍋の材質により、赤外線センサ32による目標温度に対する検出出力は同じでも、温度センサ39による検出温度は大きく異なることがある。同じ積算電力量を加えると、材質が異なる鍋であっても、実際の鍋の温度上昇はほぼ同じである。ところが、赤外線センサ32による温度計測値に対して温度センサ39による温度検出値は低く出る傾向になる。そこで、同じ積算電力量を加えた場合には、温度センサ39による温度上昇が赤外線温度検出値にほぼ一致するように赤外線温度検出値を補正する。
そのためには次の処理を行う。加熱開始初期の段階で、一定温度幅だけ鍋温度を上昇させるのに必要とした積算電力量を測定し、その積算電力量の大小に応じて鍋の材質を判断し、加熱昇温制御時に用いる制御データテーブルを変え、目標温度到達時の温度センサ39による検出温度を赤外線センサ32による温度計測値に一致させる処理をする。この昇温加熱制御について図19のフローチャートを用いて説明する。最初に赤外線目標温度が今回の昇温加熱制御中にすでに補正済みか否かを判断する(ステップS111)。そして補正済みであれば、補正後の赤外線目標温度に対して昇温加熱を継続する。
赤外線目標温度が補正済みでなければ、次に、標準鍋に対する赤外線目標温度(上限値)を選択する(ステップS112)。そして、加熱開始温度から温度センサ39の検出温度が30℃上昇したか否かを判定する。そして加熱開始温度から30℃上昇していれば、電力積算を開始し、かつ、電力積算開始温度Tstからさらに40℃上昇(Tde=Tst+40℃)したか否かを判断する(ステップS113)。40℃上昇していなければ、加熱を継続する。
温度センサ39の検出温度が電力積算開始温度Tstより40℃上昇したと判断すれば、次に、Tst温度から40℃上昇するまでの積算電力量(W・秒)を算出する(ステップS114)。続いて、鍋の材質に応じた赤外線目標温度の補正のために、次の演算式により目標温度を求め、これを赤外線目標温度に設定し直す(ステップS115)。
目標温度=(標準鍋の該当積算電力量/当該鍋の積算電力量)
×標準鍋の赤外線目標温度
つまり、サーミスタ温度センサ39による検出温度が現実の調理器具35の温度よりも低めに出やすい調理器具35の加熱開始直後には赤外線目標温度の上限温度設定値を低めに変更することにより、温度センサ39と赤外線センサ32との温度検出値が早期に一致するように制御する。これにより、調理器具35としての鍋の鍋底のそりや鍋の材質、表面状態に依存する赤外線輻射率の差異による温度検出誤差を少なくできる。したがって、材質や形状の異なる調理器具を使用しても所望の加熱制御ができ、誘導加熱調理器としての調理性能の向上が図れる。
×標準鍋の赤外線目標温度
つまり、サーミスタ温度センサ39による検出温度が現実の調理器具35の温度よりも低めに出やすい調理器具35の加熱開始直後には赤外線目標温度の上限温度設定値を低めに変更することにより、温度センサ39と赤外線センサ32との温度検出値が早期に一致するように制御する。これにより、調理器具35としての鍋の鍋底のそりや鍋の材質、表面状態に依存する赤外線輻射率の差異による温度検出誤差を少なくできる。したがって、材質や形状の異なる調理器具を使用しても所望の加熱制御ができ、誘導加熱調理器としての調理性能の向上が図れる。
図21のグラフは、標準鍋としての鉄鍋では、1kW・s当たりの温度上昇値は0.6℃であるのに対して、ステンレス鍋の場合、温度上昇がしやすく、例えば、SUS鍋1では0.2℃の温度上昇が見られ、SUS鍋4では約0.4℃の温度上昇が見られる。そこで、例えば、図23のTpus=40℃に示すように、温度上昇率の差異に応じて赤外線目標温度の上限値を可変に設定する。鉄鍋(標準鍋として設定)に対する赤外線目標温度の上限値を200℃に設定してあれば、SUS鍋1の場合には170℃に変更し、SUS鍋4の場合には180℃に変更し、SUS鍋7の場合には195℃に変更するのである。
続いて、鍋が小鍋であるか否かを判定する(ステップS116)。小鍋であれば、加熱電力のMax電力を1kWに絞る(ステップS117)。しかしながら、小鍋判定が出なければ、補正後の赤外線目標温度に到達するように加熱制御を継続する。この小鍋の判定は、ステップS114における積算電力量が所定の基準値よりも極端に小さい場合、つまり、調理器具35の熱容量が小さい場合に小鍋であると判定する。
この小鍋の判定によって加熱電力のMaxを1kWに絞ることにより、熱容量の小さい小鍋やSUS製のフライパンの空焚きによる急激な温度上昇を防止することができる。
上記の調理器具35を加熱している最中に調理器具35内に調理物が投入され、調理器具35の温度が一気に低下した時、温度Tpuに基づくデータ系列に沿って火力設定値を一気に上昇するように制御する。この場合の適温検知について、図17のフローチャートを参照して説明する。図17にフローチャートは、例えば1秒間に1回のルーチンとして繰り返えされる。最初に赤外線目標温度を赤外線目標AD値に変換する(ステップS101)。この赤外線による温度と赤外線の出力AD値とは、例えば、図2に示したTpuの温度℃とVtoの出力電圧mVとの対応関係に基づき換算される。ただし、機器の特性に応じて変化するものであるので、機器ごとに火力制御装置41に換算データを登録しておくことになる。
次に、今回のルーチンでの赤外線計測AD値が赤外線目標AD値に対して一定範囲内、±5以内に達したか否かを判定する(ステップS102)。この範囲内に達していなければ適温報知カウンタのカウント値Cnt=0にリセットする(ステップS103)。
このステップS102の判定において、±5の範囲内に達していれば、次に、今回のルーチンでの赤外線計測AD値が前回の赤外線計測AD値が±1以内しか変化していないか否かを判定する(ステップS104)。ここでも、赤外線計測AD値の変化が±1の範囲内でなければ、カウント値Cnt=0にリセットする(ステップS103)。
この変化が±1以内であれば、続いて、適温報知カウンタのカウント値Cntを1インクリメントし、Cnt←Cnt+1とする(ステップS105)。そして、カウント値Cnt≧25になったか否か判定する(ステップS106)。つまり、赤外線計測AD値が25秒間継続して赤外線目標AD値に対して±5以内に達し、かつ、赤外線計測AD値の時間変化が±1/sec以内に落ち着いたか否かを判定する。
このステップS106の判定において、赤外線計測AD値が未だ25秒間継続して安定した状態に到達していなければ、適温報知カウンタのカウント値Cntを保持したまま、次回のルーチンに移行する(ステップS106にてNOに分岐して終了)。
他方、ステップS106の判定において、Cnt≧25になっていれば、YESに分岐して、適温到達検知を報知する(ステップS107)。適温報知は表示部にて表示し、あるいはブザーで知らせるものとする。
また、適温検知の結果に応じて、図18に示すように、赤外線センサ32の検知出力に応じた温度上昇制御テーブルに従う火力設定値を変更する設定にすることができる。すなわち、適温検知前の赤外線比例制御データの傾きが30と緩やかで鈍感な設定にし、適温検知後には赤外線比例制御データの傾きを20と急峻にして敏感な設定に変更することができる。これにより、適温到達前の昇温制御中は火力を強めにし、適温到達後は設定温度を正確に維持する制御ができることになる。
以上のように本実施の形態によれば、火力制御装置41は、調理器具35の温度が上昇する期間に、温度センサ39の検知出力に応じて加熱手段48による火力を制御するためのデータ系列(1)〜(9)を設定すると共に、赤外線センサ32の検知出力(トッププレート16の下面からの輻射エネルギに対応する赤外線センサ32の検出出力Vpuを排除しない、全体の検出出力Vto)に応じて、データ系列(1)〜(9)の内から前記設定されたデータ系列に従う火力設定値を決定するようにした。したがって、赤外線センサ32の検知出力を減じて当該検知出力に含まれている情報を利用せずに排除することなく、上記検知出力に応じて設定したデータ系列(1)〜(9)の設定値を変化させるので、調理器具35の熱容量が小さい場合でも、温度の上昇度合いを高精度に制御でき、過昇温度状態になることを確実に防止できる。
また、火力制御装置41は、温度センサ39の検知出力に応じて加熱手段48による火力を制御するためのデータ系列(10’)も併せて設定するので、調理器具35の状況並びに温度センサ39の検知出力に応じて比例制御を行うことで、制御及び調理性能の信頼性を向上させることができる。
また、火力制御装置41は、データ系列(9)と、データ系列(10’)とをそれぞれ上限値に設定したので、赤外線センサ32の検出出力,及び温度センサ39の検出出力の双方により過昇温防止機能を作用させることができ、温度監視を2重に行うことができる。特に、温度センサ39により検知される温度がデータ系列(9)に対応する温度Tpu(220℃)よりも高い場合はデータ系列(10’)に移行できるように、前者の火力出力上限値よりも後者の火力出力上限値を高く設定した。これにより、赤外線センサ32により赤外線が適切に検出できなかった場合でも、次善の過昇温防止機能として温度センサ39に基づき制御できるから、さらに安全な調理が可能となる。
そして、データ系列(1)〜(9)を、それぞれ赤外線センサ32の検知出力に応じて火力Pを比例制御するデータとして設定したので、例えばフライパン調理の際に調理器具35の温度が急上昇することが想定される場合でも、過昇温防止機能を高い精度で実現できる。
また、フライパンでの油をひいた予熱やカツレツ等の少量の油での揚げ物調理の場合でも、油温度の急上昇を抑えることができ、過昇温防止が確実に行える。同時に、鍋底のソリや赤外線輻射率の異なる鍋を用いても、精度良く天ぷら調理開始可能な適温報知やフライパン炒め物調理の予熱完了報知が行えるようになる。
さらに、材質や形状の異なる調理器具を使用しても所望の加熱制御ができ、誘導加熱調理器としての調理性能の向上が図れる。また、熱容量の小さい鍋や小鍋を判定することによって加熱電力のMaxを絞ることにより、熱容量の小さい小鍋やSUS製のフライパンの空焚きによる急激な温度上昇を防止することができる。
加えて、適温報知制御において、赤外線センサ32の検知出力に応じて温度上昇制御テーブルの設定値を変更することにより、フライパンでの油をひいた予熱やカツレツ等の少量の油での揚げ物調理の場合でも、油温度の急上昇によるオーバーシュートが防止でき、同時に、フライパン調理や天ぷら調理具材投入時の温度低下に対してすばやく火力を回復でき、調理性能の向上が図れる。
(第2の実施の形態)
図8〜図11は第2の実施の形態を示すものであり、第1の実施の形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。図9は、火力制御装置41が内部のメモリにデータテーブルとして記憶保持している、予熱制御データ系列(但し、データ系列(10)を除く)の一例を示すものである。図9の横軸は、トッププレート16の下面温度Tpuと共に、赤外線センサ32の出力電圧Vto[mV]の目盛を示しており、縦軸は、誘導加熱の火力出力P[kW]である。そして、データ系列(1)〜(9)は、25℃から25℃刻みで上昇する下面温度Tpuをパラメータとする予熱制御データ[温度上昇制御データ]の系列を示している。
図8〜図11は第2の実施の形態を示すものであり、第1の実施の形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。図9は、火力制御装置41が内部のメモリにデータテーブルとして記憶保持している、予熱制御データ系列(但し、データ系列(10)を除く)の一例を示すものである。図9の横軸は、トッププレート16の下面温度Tpuと共に、赤外線センサ32の出力電圧Vto[mV]の目盛を示しており、縦軸は、誘導加熱の火力出力P[kW]である。そして、データ系列(1)〜(9)は、25℃から25℃刻みで上昇する下面温度Tpuをパラメータとする予熱制御データ[温度上昇制御データ]の系列を示している。
この場合、データ系列(1)〜(9)の火力減衰率(直線の傾き)は、光沢があるステンレス製鍋の底の温度が、例えば250℃に到達した場合に輻射される赤外線エネルギに応じて、赤外線センサ32が出力する電圧Vb=20mVに相当するように設定されている。尚、データ系列(1)〜(9)は、下面温度Tpuについて、大まかな値を離散的に示しているが、実際に使用するデータは、下面温度Tpuをより詳細に切り分けたものとなる。
例えば、データ系列(1)では、下面温度Tpu=25℃の場合、出力電圧Vto=10mVに達すると火力Pを初期値3kWから低下させ、出力電圧Vto=30mVに達すると、火力Pを最低出力である200Wに設定するようになっている。また、データ系列(6)では、下面温度Tpu=150℃の場合、出力電圧Vto=140mVに達すると火力Pを初期値3kWから低下させ、出力電圧Vtoが160mVに達すると、火力Pを最低出力200Wに設定する。そして、予熱中に、下面温度Tpuが変化する場合は、それに応じて使用するデータ系列をダイナミックに変更する。
データ系列(9)よりも右側に位置する図示しないデータ系列については、下面温度Tpuが、上述したステンレス製鍋の底の温度が250℃になっている場合に対応する温度で傾きが垂直に設定されていると、そのデータ系列が上限として設定されることになる。この上限は任意に設定可能であり、例えば下面温度Tpu=150℃に対応するデータ系列(6)の傾きを「0」に設定すれば、当該データ系列(6)が上限になる。これらのデータ系列(1)〜(9)については、通常の調理手順に従う場合は、フライパン等の調理器具35を予熱するため温度を上昇させる期間に使用される。そして、データ系列(1)〜(9)は、赤外線センサ32の検知出力に応じて火力Pを比例制御するためのデータ系列となっている。
また、データ系列(10)[温度制御データ系列]は、温度センサ39が検知する温度Tpuに応じて加熱調理を行う場合に使用する火力データであり、上記検知出力に応じて火力Pを比例制御するためのデータ系列となっている。そして図9は、データ系列(10)を、ユーザによる調理設定に応じて変化させる場合のバリエーションを示している。すなわち、図9に示すデータ系列(10)は一例であり(図10中の(11a)に対応する)、実際にはユーザによる調理メニューの設定に応じて、図10に示すデータ系列の何れか1つが選択される。
これらは、およそ4つの群に分けられており、データ系列(1〜3)の第1群は、例えば加熱温度が140℃〜160℃程度となる「とろとろオムレツ」や「ホットケーキ」などの調理に対応する。データ系列(4〜6)の第2群は、例えば加熱温度が170℃〜190℃程度となる「ハンバーグ」などの調理に対応し、データ系列(7〜14)の第3群は、例えば加熱温度が200℃〜220℃程度となる「ステーキ」などの調理に対応する。そして、データ系列(12a〜14a)の第4群は、例えば加熱温度が220℃〜270℃程度となる「野菜炒め」などの調理に対応する。また、「揚げ物」調理の場合は、加熱温度が140℃〜200℃程度となるので、第1群,第2群の双方に跨ることになる。
つまり、予熱が完了して調理器具35の温度が安定した後に加熱調理を行う場合は、主にデータ系列(10)等を使用することになるが、加熱調理の途中に具材等が追加投入されて調理器具35の温度が一時的に低下すると、データ系列(1)〜(9)を用いた制御に戻る場合がある。尚、これらのデータ系列(1)〜(10)等は、データテーブルとして予め記憶保持するものに限らず、演算式(関数)を用いて算出してもよい。
また、この第2の実施の形態においても、第1の実施の形態と同様に図17、図18に示した適温報知制御機能を備え、フライパンの温度低下時の再加熱時に適用する。
図8は、火力制御装置41が行う誘導加熱制御を示すフローチャートである。先ず、温度センサ39の出力電圧に基づきトッププレート16の下面温度Tpuを検出し(ステップS11)、続いて、赤外線センサ32の出力電圧Vto(図9の下側横軸)を検出する(ステップS12)。そして、予熱火力PS1を、上記温度Tpu及び出力電圧Vtoに応じて、図9に示すデータ系列に基づき設定する(ステップS13)。すなわち、温度Tpuに応じてデータ系列(1)〜(9)の何れかを選択し、選択したデータ系列上で、出力電圧Vtoに応じて加熱火力PS1を設定する。
続いて、温度Tpuに応じて、図9に示すデータ系列(10)に基づき、加熱調理を行うための火力PS2を設定する(ステップS14)。それから、実際に出力されている火力Pに相当する電力値を検出する(ステップS15)。以降のステップS16〜S18は、予熱時並びに加熱時に共通の制御となる。すなわち、ステップS15で検出した火力Pと、予熱火力PS1又は加熱火力PS2との大小を比較し(ステップS16)、[P<PS1:PS2]であれば火力Pを増加させ(ステップS17)、[P>PS1:PS2]であれば火力Pを減少させる(ステップS18)。そして、[P=PS1:PS2]であれば、そのままステップS1に戻る。以上のようにして、図9に示す制御データ系列に応じて予熱制御並びにその後の加熱制御を行うことができる(上述のように、加熱制御から予熱制御に移行する場合がある)。
上述した作用について、図9に示す負荷線Ls2,Ls4を参照して説明する。これらの負荷線Ls2,Ls4は、調理器具35の温度が上昇するのにともない調理器具35からの放熱量が増加するので、右上がりの傾きを有している。この場合の「放熱」は、主に例えば野菜などの被調理物に熱を奪われたり、調理器具35自体の加熱(温度上昇)や、調理器具35からの放熱等により、調理器具35の底から熱が奪われたりすることで生じる。したがって、実際の負荷線は2次曲線的に変化するが、図9では近似的に直線で示している。
例えば「野菜炒め」調理を行うことを想定すると、調理の初期段階において野菜に水分が多く含まれている状態では、負荷線の傾きは急峻に立っているが、調理が進むと野菜に含まれる水分が減少し、調理器具35の底から熱が奪われ難くなる。すると、負荷線はLs2のようになり、さらに調理が進めば負荷線はLs4のように変化する。そして、火力Pは、負荷線とデータ系列(1)〜(10)との交点で決まる。
負荷線がLs2の状態では、データ系列(10)との交点であるPs2に到達する以前に、下面温度Tpu=125℃であればデータ系列(5)とPs2’で交差するので、赤外線センサ32の出力電圧Vtoの上昇に応じて火力Pを低下させる。
一方、負荷線がLs2の状態において下面温度Tpu=150℃である場合でも、データ系列(6)には移行しない。これは、負荷線がLs2の延長線とデータ系列(6)との交点である火力設定値PAが、上限値となるデータ系列(10)を超えているため、火力設定値がデータ系列(10)に従う比例制御データに移行されるからである。つまり、図9の横軸(上側)で、温度Tpu=150℃に対応したデータ系列(10)の火力設定値PBが動作点となる。
そして、負荷線がLs2の状態においてデータ系列(10)との交点であるPs2に到達すれば、データ系列(10)は上限値であるから、火力制御はデータ系列(10)に移行され、図9の横軸(上側)の下面温度Tpuに基づいて、データ系列(10)に従う比例制御が実行される。
負荷線がLs4に移行し、下面温度Tpu=150℃に上昇すると、データ系列(6)とPs4で交差する。この状態からさらに調理が進めば、負荷線の傾きはLs4より小さくなる。一方、調理器具35に新たに野菜が追加投入されると、負荷線の傾きは立つように変化する。
以上のように調理の進行状況に応じて負荷線の傾きが変化する過程で、下面温度Tpuとの関係により負荷線がデータ系列(10)と交差する状態になると、加熱制御は、温度センサ39の検知出力である下面温度Tpuのみに応じてデータ系列(10)に基づき行われるようになる。すなわち、図9中において、データ系列(10)を境界として右上部の領域となるデータ系列は火力制御に利用されることはなく、全ての制御はデータ系列(10)を境界とする左下の領域に亘るデータに基づいて行われる。
また、図11は、ステップS1で下面温度Tpuを取得する場合に、2つの温度センサ39a,39bより得られる検知出力をどのように取り扱うかを一覧で示している。すなわち、ユーザが選択した調理メニューの種類や調理の進行状況に応じて、それらの処理を変化させる。
例えば調理メニューが「フライパン調理」である場合、予熱を行っている期間は、温度センサ39a,39bの検知出力のうち検知温度が低い方を採用する。そして、予熱後は、サブメニューが例えば「ステーキ」であれば検知温度が低い方を採用し、サブメニューが例えば「カツレツ」であれば検知温度が高い方を採用する。また、調理メニューが「野菜炒め」であれば一貫して検知温度が高い方を採用し、「玉子焼き」であれば一貫して検知温度が低い方を採用する。
すなわち、「フライパン調理:ステーキ」の場合は、一般にフライパンに引く油の量が少なくフライパンの温度が上昇し易いので、予熱時には検知温度が低い方に従ってデータ系列(1)〜(9)を選択設定する。そして、予熱が完了して調理を行う場合には、逆に検知温度が高い方に従ってデータ系列(10)に基づく制御データを設定する。また、「フライパン調理:カツレツ」の場合は、一般にフライパンに引く油の量が多くフライパンの温度が上昇し難い。故に、予熱時並びに予熱後に調理を行う場合の何れも、検知温度が低い方に従ってデータ系列(1)〜(9)を選択設定し、またデータ系列(10)に基づく制御データを設定する。
また、「野菜炒め」の場合は、調理が高温で行われるので、予熱時並びに予熱後に調理を行う場合の何れも、検知温度が高い方に従ってデータ系列(1)〜(10)を選択設定等する。「玉子焼き」の場合は、調理が比較的低温で行われ、且つ調理器具35の底面全体が均一に加熱される状態が望ましいため、2つの温度センサ39a,39bの検知出力を平均した値を採用する。
以上のように第2の実施の形態によれば、火力制御装置41は、予熱時のように調理器具35の温度が上昇する期間に、温度センサ39の検知出力に応じて加熱手段48による火力を制御するためのデータ系列(1)〜(9)を設定すると共に、赤外線センサ32の検知出力(トッププレート16下面からの輻射エネルギに対応する赤外線センサ32の検知出力を減じて排除しない全体の赤外線出力)に応じて、データ系列(1)〜(9)のうち、前記設定されたデータ系列に従う火力設定値を決定するようにした。したがって、特許文献1のように赤外線センサ32の検知出力を減じて当該検知出力に含まれている情報を利用せずに排除することなく、上記検知出力に応じて設定したデータ系列(1)〜(9)の設定値を変化させるので、調理器具35の熱容量が小さい場合でも、温度の上昇度合いを高精度に制御でき、過昇温度状態になることを確実に防止できる。
また、火力制御装置41は、温度センサ39の検知出力に応じて加熱手段48による火力を制御するためのデータ系列(10)も併せて設定するので、予熱が終了し、トッププレート16の上面,下面の温度が比較的安定した状態で調理を行う場合は、温度センサ39の検知出力に応じて比例制御を行うことで、制御精度,調理性能を向上させることができる。
また、火力制御装置41は、データ系列(1)〜(9)と、データ系列(10)とにそれぞれ上限値を設定する場合に、前者の火力出力Pの上限値を後者の上限値以上に設定するので、調理器具35が例えば光沢のあるステンレス製である場合でも、過昇温防止機能を高い精度で実現できる。
そして、データ系列(1)〜(9)と、データ系列(10)とを、それぞれ赤外線センサ32の検知出力、温度センサ39の検知出力に応じて火力Pを比例制御するデータとして設定したので、例えばフライパン調理の予熱時に調理器具35の温度が急上昇することが想定される場合でも、過昇温防止機能を高い精度で実現できる。また、予熱の終了後、トッププレート16の上面,下面の温度が比較的安定した状態で調理を行う場合も、温度センサ39の検知出力に応じて比例制御により制御精度,調理性能を向上させることができる。
さらに、火力制御装置41は、データ系列(10)を調理条件に対応させて複数用意し、操作部20AT〜27ATを介して設定された調理条件に応じて何れか1つを選択するので、フライパン調理や揚げ物調理などが選択された場合に、それぞれの調理の形態に応じて最適な比例制御を行うためのデータ系列を設定できる。
加えて、火力制御装置41は、温度センサ39a,39bより出力される検知結果の平均値を採用するか、又は前記検知結果の何れかを選択したものに応じて、データ系列(1)〜(9)を設定し、また、上記検知結果について温度が最低を示すもの,温度が最高を示すもの,あるいは前記検知結果の平均値の何れかに基づいてデータ系列(10)に従う制御データを決定する。
すなわち、誘導加熱では、図15に示したように、調理器具35の鍋底に流れる誘導電流の分布にむらがあるため、鍋底の温度分布にもむらが生じる。また、鍋底の形状に凹凸がある場合には、温度センサ39の検知結果がばらつくことがある。そこで、温度センサ39a,39bより出力される検知結果について温度が最高を示すものを採用すれば、過昇温を防止する観点では、安全側に制御できる。また、上記検知結果について温度が最高を示すものを採用すれば、データ系列に基づく制御データの変化速度を速くすることができる。例えば「野菜炒め」のように高火力で調理する場合は、より高い火力を設定することができる。また、上記検知結果について平均値を採用すれば、「玉子焼き」のように加熱温度に精度が必要とされる制御に好適である。
本実施の形態にあっても、図17、図18に示した適温報知機能により、フライパンでの油をひいた予熱やカツレツ等の少量の油での揚げ物調理の場合でも、油温度の急上昇を抑えることができ、過昇温防止が確実に行える。同時に、鍋底のソリや赤外線輻射率の異なる鍋を用いても、精度良く天ぷら調理開始可能な適温報知やフライパン炒め物調理の予熱完了報知が行えるようになる。
また、適温報知制御において、赤外線センサ32の検知出力に応じて温度上昇制御テーブルの設定値を変更することにより、フライパンでの油をひいた予熱やカツレツ等の少量の油での揚げ物調理の場合でも、油温度の急上昇によるオーバーシュートが防止でき、同時に、フライパン調理や天ぷら調理具材投入時の温度低下に対してすばやく火力を回復でき、調理性能の向上が図れる。
また、本実施の形態においても、図20に示した昇温加熱時にTpuの温度上昇に応じて赤外線温度上限値を高温側に順次にシフトさせながら昇温加熱する制御を採用することができる。また、図19、図22に示した鍋のそりや材質の差異により、赤外線温度目標値の補正を行う制御を採用することができる。
さらに、本実施の形態においても、第1の実施の形態と同様に、制御部41が、温度上昇制御データ系列(1)〜(7)に上限値(7)を設定すると共に、温度センサ39の温度が上限値に相当する温度よりも一定値だけ低い所定値を超えた時に、温度センサ39の検知出力によらずに赤外線センサ32の温度上昇制御データ系列(7)の上限値に従う火力設定値にして火力制御するものとすることができる。
(第3の実施の形態)
図22〜図26を用いて、第3の実施の形態の誘導加熱調理器について説明する。第1の実施の形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
図22〜図26を用いて、第3の実施の形態の誘導加熱調理器について説明する。第1の実施の形態と同一部分には同一符号を付して説明を省略し、以下異なる部分について説明する。
本実施の形態の特徴は、火力制御装置(制御部)41が行う火力制御にある。図22は、火力制御装置(制御部)41が内部のメモリにデータテーブルとして記憶保持している、予熱制御データ系列の一例を示すものである。制御部41は、温度上昇期間において、温度センサ39の検知出力に応じて加熱手段48による火力を制御するための温度上昇制御データ系列として、図22のグラフに示すデータ系列(1a)〜(7a)、(1b)〜(7b)、(1c)〜(7c)を設定すると共に、赤外線センサ32の検知出力Vtoに応じて、温度上昇制御データ系列(1a)〜(7a)、(1b)〜(7b)、(1c)〜(7c)に従う火力設定値を決定する。そして、この制御部41は、温度上昇制御データ系列(1a)〜(7a)、(1b)〜(7b)、(1c)〜(7c)に上限値(7a)、(7b)、(7c)を設定すると共に、温度センサ39の温度が上限値(7a)、(7b)、(7c)に相当する温度より一定値だけ低い所定値の値を超えた場合には、温度センサ39の検知出力によらず赤外線センサ32の温度上昇制御データ系列の上限値(7a)、(7b)、(7c)に従う火力設定値とする。
本実施の形態の誘導加熱調理器による加熱制御を説明する。図24は、鉄鍋とステンレス(SUS)製フライパンとで揚げ物調理をした場合の制御例を示す。鉄鍋は鍋底のフラットなシリコン塗装鍋であり、温度上昇によっても変形がほとんどなく、鍋底はトッププレート16に密着しており、トッププレート16から離れることがない。他方、SUS製フライパンは鍋底中央が鍋内側に凹んでトッププレート16との間に隙間ができており、成形時の残留歪のため温度が上昇すると変形してトッププレート16との間の隙間がさらに大きくなるものである。
鉄鍋は、鍋底フラットでトッププレート16と密着しており、シリコン塗装されているため輻射率が大きく、温度上昇にともなう変形もないため、赤外線センサ検出電圧、温度センサ温度検出値は、図24のVto1、Tpu1の曲線に示すように、略直線的に上昇し、安定時の値は大きな値(高い検出温度)となる。他方、SUS製フライパンは、輻射率が小さく、鍋底が凹んでおり、温度上昇にともない凹変形がさらに大きくなるため、図24のVto2、Tpu2の曲線に示すように、温度センサ39による温度検出値Tpu2の立ち上りは、鉄鍋のTpu1に比べ遅くなる。また、温度上昇にともない変形しトッププレート16との間の隙間がさらに大きくなるので、時間経過にともなう単位時間当たりの温度上昇(温度上昇率)の低下は、鉄鍋のTpu1に比べ大きくなる。すなわち、鉄鍋のTpu1は略直線的に上昇するが、SUS製フライパンのTpu2は徐々に寝てくる。また、鍋底温度が同じでも、赤外線センサ32の検出電圧、温度センサ39の温度検出値が共に小さな値となる。
この温度上昇時の温度変化を踏まえ、本実施の形態の制御部41は、加熱開始時の温度センサ39の温度検出値Tpuの上昇率により、鍋の輻射率や鍋底の反り具合による赤外線センサ32の鍋温度検出誤差を補正する。この補正方法を、図23を用い以下説明する。
図23のグラフの横軸は、加熱中に10degだけ温度上昇する間の1kW・s当りの温度センサ39の検出値Tpuの温度上昇値(率)ΔTws(℃/kW・s)であり、加熱開始以降、逐次検出している。縦軸は赤外線センサ32の設定温度Tts(℃)である。また、パラメータのTpusは、ΔTws検出時の温度センサ39の検出値Tpuである。すなわち、ΔTwsの検出時の温度センサ39の検出値Tpu(=Tpus)に応じて赤外線センサ32の設定温度Tts(℃)をさらに補正する。尚、図23では、パラメータTpusを離散的に示したが、実際には、連続的なものである。
以上の赤外線センサ32による鍋温度検出誤差補正の具体例を以下に示す。
[1]Tpus=40℃において:鉄鍋ΔTws=0.15(℃/kW・s)、SUS製フライパンΔTws=0.15(℃/kW・s)。
鉄鍋Tts=200℃、SUS製フライパンTts=200℃。
したがって、鉄鍋の場合、最終的には、図22の温度制御データ系列(7c)により制御され、安定時の負荷線がLs6とすると、赤外線センサ制御温度Ttsは、Tts=200℃となり、赤外線センサ検出温度Tto=200℃で安定する。
また、温度上昇過程では、図22の温度上昇制御データ系列(1c)〜(6c)により制御される。
[2]Tpus=120℃において:鉄鍋ΔTws=0.15(℃/kW・s)、SUS製フライパンΔTws=0.05(℃/kW・s)。
鉄鍋Tts=200℃、SUS製フライパンTts=180℃。
したがって、SUS製フライパンの場合、最終的には、図22の温度上昇制御データ系列(7a)により制御され、安定時の負荷線がLs6とすると、赤外線センサ制御温度Ttsは、Tts=180℃となる。
温度上昇過程では、Tpuが40℃〜120℃の間では、図22の温度上昇制御データ系列(1a)〜(6c)により制御される。すなわち、Tpuが40℃付近ではデータ系列(1c)〜(2c)により、Tpuが80℃付近ではデータ系列(3b)〜(4b)により、Tpuが120℃付近では、データ系列(5a)〜(6a)により制御され、最終的にはデータ系列(7a)により制御される。
以上の図22のデータ系列を用いた加熱制御において、温度上昇制御データ系列(7a)〜(7c)は、Tpuをパラメータとしない赤外線センサ出力Vto(Tto)により決まる。つまり、Tpu=160℃に到達すると、その後は、Tpuをパラメータとしない温度上昇制御データ系列(7a)〜(7c)により制御する。
以上の加熱制御を、図25のフローチャートを用いて説明する。
Ttsは赤外線センサ32の設定温度、Tpuは温度センサ39の温度検出値、TpusはΔTwsを算出する際の温度上昇値の基点である。
ステップS201:初期設定として、Ttsを200℃に設定して制御を始め、現在の温度センサ39の検知温度(例えば25℃)をTpusとして記憶させる。
ステップS202:上限値よりも一定値だけ低い所定温度(例えば160℃)に、温度センサ39の検出温度Tpuが達したか否かを判定する。加熱により温度が上昇すると、赤外線センサ32による検出温度の方が、温度センサ39による検出温度Tpuよりも精度が良くなる。これは、温度センサ39の特性のバラツキの影響によるものである。そこで、センサ切替のため、赤外線センサ32の精度の方が良くなる値としてこの所定温度(ここでは、160℃)を設定している。
ステップS203:温度センサ39のバラツキの影響を受けないように、上限値(7)は固定値として、後述するΔTwsに基づく(a)〜(c)のみの補正を行って、制御を行う。初期は初期値の(b)としてデータ系列(7b)で制御を行う(図22)。
ステップS204:温度センサ39の検出温度Tpuを考慮した方が正確であるため、温度センサ39に基づく(1)〜(6)と、後述するΔTwsに基づく(a)〜(c)の補正を行い、制御を行う。加熱開始の初期には、温度センサ39の検知温度Tpuが25℃であった場合、(b)系列を選択するとして、温度上昇制御データ系列(1b)で制御を行う(図22)。
ステップS205:温度上昇の基点温度Tpusより10deg上昇したか否かを判定する。例えば、35℃以上に達したか否かを判定する。達していなければ、特にΔTwsに基づく補正を行わずに、ステップS202〜S205の処理を繰り返す。Tpusより10deg上昇すれば、補正を行うためにステップS206に進む。
ステップS206:Tpusから10deg上昇する間の1kW・s当たりのTpuの温度上昇値ΔTwsを算出する。
ステップS207:ΔTwsによってTtsを補正する(図23参照)。図23は40℃、80℃、120℃の3つの温度を例としてあげているが、1℃ごとに設定されているのが好ましい。この補正は、図22のグラフでは、系列(a)〜(c)の変更を意味する。変更が終わったら、このときの温度(例えば36℃)を基準温度Tpusとして記憶し、また次の10deg上昇するまで、同様の制御を行うようにステップS2に戻る。
この加熱制御により、温度センサ39の特性のバラツキや温度センサ39のトッププレート16への密着度合いなどで誤差の出やすい温度センサ39の検出特性の影響が、精度の高い赤外線センサ32の検出値へ影響するのを防ぎ、全体として精度良い温度制御が可能となる。
また、制御部41は、温度上昇制御データ系列を温度センサ39の検知温度に基づく温度上昇変化率に応じて可変に設定するので、鍋底のソリや鍋の輻射率の差異による温度検出誤差を少なくすることができ、鍋底のソリや鍋の輻射率の差異による加熱開始時の温度のオーバーシュートの防止や温度立ち上り速度の改善などができる。また、この結果として、材料や形状の異なる調理容器を使用しても調理性能が異なることはないので、調理性能向上を図ることができる。
(第4の実施の形態)
本実施の形態は、制御部41が、加熱開始時点からの経過時間に応じて温度上昇制御データ系列(1a)〜(7a)、(1b)〜(7b)、(1c)〜(7c)を可変に設定することを特徴とする。
本実施の形態は、制御部41が、加熱開始時点からの経過時間に応じて温度上昇制御データ系列(1a)〜(7a)、(1b)〜(7b)、(1c)〜(7c)を可変に設定することを特徴とする。
第3の実施の形態では、制御部41が、温度上昇制御データ系列(1a)〜(7a)、(1b)〜(7b)、(1c)〜(7c)を温度センサ39の検知温度に基づく温度上昇変化率に応じて可変に設定したが、これに代えて、本実施の形態では、制御部41は、加熱開始時点からの経過時間に応じて温度上昇制御データ系列を可変に設定する。つまり、加熱開始初期には、図22の温度上昇制御データ系列をデータ系列(1b)〜(7b)からデータ系列(1a)〜(7a)に変えることでパラメータの温度センサ検出値Tpuを大きくし、加熱後半には、データ系列(1c)〜(7c)に変えて制御する。
このように、経過時間に応じて温度上昇制御データ系列を可変に設定することにより、熱容量の少ないフライパンの空焚きなどフライパンの温度の急上昇を抑えることが可能であり、予熱時に少量の油を投入しても発火することなく安全な調理ができるようになる。
(他の実施の形態)
本発明は上記し又は図面に記載した実施の形態にのみ限定されるものではなく、以下のような変形又は拡張が可能である。例えば、複数の温度センサの検知出力の取り扱いは、図11に示すものに限らず、個別の設計に応じて適宜変更してよい。温度センサ39は、1つのみでも、若しくは3つ以上設けてもよい。誘導加熱コイル18についても、1つだけ、若しくは3つ以上設けてもよい。データ系列(10)について、調理メニューごとにバリエーションを設けることは、必要に応じて行えばよい。また、各データ系列は、必ずしも比例制御を行うデータに限ることはなく、適宜変更してよい。さらに、調理器具35はフライパンに限ることなく、その他の鍋などである場合も同様に適用できる。
本発明は上記し又は図面に記載した実施の形態にのみ限定されるものではなく、以下のような変形又は拡張が可能である。例えば、複数の温度センサの検知出力の取り扱いは、図11に示すものに限らず、個別の設計に応じて適宜変更してよい。温度センサ39は、1つのみでも、若しくは3つ以上設けてもよい。誘導加熱コイル18についても、1つだけ、若しくは3つ以上設けてもよい。データ系列(10)について、調理メニューごとにバリエーションを設けることは、必要に応じて行えばよい。また、各データ系列は、必ずしも比例制御を行うデータに限ることはなく、適宜変更してよい。さらに、調理器具35はフライパンに限ることなく、その他の鍋などである場合も同様に適用できる。
2 加熱調理器(誘導加熱調理器)
8,9 誘導加熱コイル
12H,15H 調理条件表示部
16 トッププレート
20AT〜27AT 操作部
32 赤外線センサ
35 調理器具(被加熱物)
39 温度センサ
41 火力制御装置(制御部)
42 インバータ
48 加熱手段
8,9 誘導加熱コイル
12H,15H 調理条件表示部
16 トッププレート
20AT〜27AT 操作部
32 赤外線センサ
35 調理器具(被加熱物)
39 温度センサ
41 火力制御装置(制御部)
42 インバータ
48 加熱手段
Claims (2)
- 被加熱物が載置されるトッププレートと、
前記トッププレートの下方に設置され、前記被加熱物を加熱コイルにより誘導加熱する加熱手段と、
前記トッププレート及び前記被加熱物より輻射される赤外線を検知する赤外線センサと、
前記トッププレートの温度を検知する温度センサと、
前記温度センサの検知する温度変化によって温度上昇を検出し、温度上昇期間において、前記温度センサの検知出力の変化率の変化状況を検知する温度センサ温度変化検出手段と、
前記温度センサの温度検知出力と前記温度センサ温度変化検出手段の温度変化率の変化状況の検知出力とに応じて前記加熱手段による火力を制御するための前記赤外線センサーの検知出力に応じた温度上昇制御データ系列を複数種のデータ系列の中から選定し、前記赤外線センサの検知出力に応じて火力制御する制御部とを備えたことを特徴とする誘導加熱調理器。 - 前記制御部は、加熱開始時点からの経過時間に応じて前記温度上昇制御データ系列を可変に設定することを特徴とする請求項1に記載の誘導加熱調理器。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011039560A JP2012178241A (ja) | 2011-02-25 | 2011-02-25 | 誘導加熱調理器 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011039560A JP2012178241A (ja) | 2011-02-25 | 2011-02-25 | 誘導加熱調理器 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2012178241A true JP2012178241A (ja) | 2012-09-13 |
Family
ID=46979969
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011039560A Withdrawn JP2012178241A (ja) | 2011-02-25 | 2011-02-25 | 誘導加熱調理器 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2012178241A (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210259061A1 (en) * | 2020-02-18 | 2021-08-19 | Lg Electronics Inc. | Induction heating type cooktop with increased heating stability |
-
2011
- 2011-02-25 JP JP2011039560A patent/JP2012178241A/ja not_active Withdrawn
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20210259061A1 (en) * | 2020-02-18 | 2021-08-19 | Lg Electronics Inc. | Induction heating type cooktop with increased heating stability |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5641488B2 (ja) | 誘導加熱調理器 | |
JP2012204314A (ja) | 誘導加熱調理器 | |
JP5340479B2 (ja) | 誘導加熱調理器 | |
JP2008140678A (ja) | 加熱調理器 | |
JP5308830B2 (ja) | 誘導加熱調理器 | |
JP5047222B2 (ja) | 電磁調理器 | |
JP2013251140A (ja) | 加熱調理器 | |
JP5380172B2 (ja) | 誘導加熱調理器 | |
JP2013062188A (ja) | 誘導加熱調理器 | |
JP2012178241A (ja) | 誘導加熱調理器 | |
JP2012204315A (ja) | 誘導加熱調理器 | |
JP5380171B2 (ja) | 誘導加熱調理器 | |
JP5624392B2 (ja) | 誘導加熱調理器 | |
JP2012022853A (ja) | 誘導加熱調理器 | |
JP2012178242A (ja) | 誘導加熱調理器 | |
JP2013254617A (ja) | 誘導加熱調理器 | |
JP5241575B2 (ja) | 誘導加熱調理器 | |
JP2012160303A (ja) | 誘導加熱調理器 | |
JP5979990B2 (ja) | 誘導加熱調理器 | |
JP2010282860A (ja) | 誘導加熱調理器 | |
JP5865010B2 (ja) | 誘導加熱調理器 | |
JP4973568B2 (ja) | 誘導加熱調理器 | |
JP2013097936A (ja) | 誘導加熱調理器 | |
JP2011003390A (ja) | 誘導加熱調理器 | |
JP5889130B2 (ja) | 誘導加熱調理器およびその制御方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20140128 |
|
A300 | Withdrawal of application because of no request for examination |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 20140513 |