JP2012177189A - Treatment tank and electrolytic treatment device - Google Patents

Treatment tank and electrolytic treatment device Download PDF

Info

Publication number
JP2012177189A
JP2012177189A JP2011261913A JP2011261913A JP2012177189A JP 2012177189 A JP2012177189 A JP 2012177189A JP 2011261913 A JP2011261913 A JP 2011261913A JP 2011261913 A JP2011261913 A JP 2011261913A JP 2012177189 A JP2012177189 A JP 2012177189A
Authority
JP
Japan
Prior art keywords
electrolytic solution
electrolytic
processing tank
main body
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011261913A
Other languages
Japanese (ja)
Other versions
JP2012177189A5 (en
JP5742689B2 (en
Inventor
Maya Shakagoori
真矢 釋迦郡
Yoshihiko Hoshiide
芳彦 星出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Rayon Co Ltd
Original Assignee
Mitsubishi Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Rayon Co Ltd filed Critical Mitsubishi Rayon Co Ltd
Priority to JP2011261913A priority Critical patent/JP5742689B2/en
Publication of JP2012177189A publication Critical patent/JP2012177189A/en
Publication of JP2012177189A5 publication Critical patent/JP2012177189A5/en
Application granted granted Critical
Publication of JP5742689B2 publication Critical patent/JP5742689B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Water Treatment By Electricity Or Magnetism (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an electrolytic treatment device capable of preventing an electrolyte from being retained and of saving the using amount of the electrolyte even when treating a long-sized substrate, and to provide a treatment tank suitably used for the electrolytic treatment device.SOLUTION: The treatment tank 10 includes: a long-sized treatment tank body 11 in which the electrolyte L is housed, a cylindrical substrate A is immersed, and the inner surface 11a' of the bottom 11a of the tank body is bent into a circular arc shape; an electrolyte supply part 12 for supplying the electrolyte L to the treatment tank body 11; and an overflow part 13 for discharging the electrolyte L from the tank body 11. The electrolyte supply part 12 is provided above one side 11b of the tank body 11 along the longitudinal direction of the tank body 11, and the overflow part 13 is provided above the other side 11c of the tank body 11 along the longitudinal direction of the tank body 11. The electrolytic treatment device comprises the treatment tank 10 and an electrode plate immersed in the tank body 11.

Description

本発明は、円柱状の基材を電解液中で電解処理するための処理槽、および円柱状の基材を電解液中で電解処理する電解処理装置に関する。   The present invention relates to a treatment tank for electrolytically treating a cylindrical substrate in an electrolytic solution, and an electrolytic treatment apparatus for electrolytically treating a cylindrical substrate in an electrolytic solution.

基材の表面を処理する方法としては、めっき等の皮膜処理や、陽極酸化等の化成処理などがある。
基材の表面を処理する際は、例えば図12に示すように、直方体状の処理槽70の下部に設置された供給管71から電解液等の処理液L’を処理槽70に供給し、多孔板72によって処理槽70内の処理液L’の流動を調整しつつ、処理槽70の上部から処理液L’をオーバーフローさせながら、円柱状の基材Aを処理槽70内の処理液L’に浸漬させて表面処理を行うのが一般的である。
As a method for treating the surface of the substrate, there are a film treatment such as plating and a chemical conversion treatment such as anodization.
When processing the surface of the base material, for example, as shown in FIG. 12, a processing liquid L ′ such as an electrolytic solution is supplied to the processing tank 70 from a supply pipe 71 installed at a lower part of the rectangular parallelepiped processing tank 70, While adjusting the flow of the processing liquid L ′ in the processing tank 70 by the perforated plate 72 and overflowing the processing liquid L ′ from the upper part of the processing tank 70, the cylindrical substrate A is treated with the processing liquid L in the processing tank 70. In general, the surface treatment is performed by immersing the film in '.

また、特許文献1には、直方体状のめっき槽と、該めっき槽の四方を囲むオーバーフロー部と、該オーバーフロー部と連通するリザーブ槽と、該リザーブ槽からめっき槽へめっき液を補給するポンプとを備えためっき処理装置が開示されている。このめっき処理装置は、ポンプの液吐出部にU字状の多孔管が設けられ、該多孔管の上部にはめっき槽の内部を上下に仕切る多孔板が設置され、被めっき物(基材)は多孔板の上部に位置するように、めっき槽に収容される。
このめっき処理装置によれば、ポンプによってめっき液をめっき槽へ導入させ、多孔管の吐出口よりめっき槽上方へ吐出させることで、めっき槽内のめっき液に流動が与えられるとともに、多孔間の上部の多孔板によってめっき液の流動を均一化できるとしている。
Further, Patent Document 1 includes a rectangular parallelepiped plating tank, an overflow section surrounding the four sides of the plating tank, a reserve tank communicating with the overflow section, and a pump for replenishing a plating solution from the reserve tank to the plating tank. There is disclosed a plating apparatus comprising: In this plating apparatus, a U-shaped perforated pipe is provided in a liquid discharge portion of a pump, and a perforated plate for partitioning the inside of the plating tank up and down is installed on the upper part of the perforated pipe. Is accommodated in the plating tank so as to be positioned above the perforated plate.
According to this plating processing apparatus, the plating solution is introduced into the plating tank by a pump, and discharged from the discharge port of the perforated pipe to the upper side of the plating tank. It is said that the flow of the plating solution can be made uniform by the upper porous plate.

特開2009−242878号公報JP 2009-242878 A

しかしながら、図12に示すような処理槽70や特許文献1に記載のめっき槽を用いて基材の表面を処理する場合、多孔板72の下側において処理液L’の流動状態に斑が生じやすかった。その結果、処理槽70の下部から上部へと移動し、オーバーフローする処理液L’の流れが乱れ、部分的に処理液L’が滞留することがあった(滞留部の発生)。滞留部が発生すると、基材Aの表面を均一に処理することが困難となる。
このような傾向は、図12に示すように、基材Aが長尺な形状の場合に起こりやすく、長手方向の長さが長くなるほど顕著であった。かかる理由は以下のように考えられる。
However, when processing the surface of a base material using the processing tank 70 as shown in FIG. 12 or the plating tank described in Patent Document 1, spots occur in the flow state of the processing liquid L ′ below the perforated plate 72. It was easy. As a result, the processing tank 70 moves from the lower part to the upper part, the flow of the processing liquid L ′ overflowing is disturbed, and the processing liquid L ′ may partially stay (generation of a staying part). When the staying portion is generated, it becomes difficult to uniformly treat the surface of the base material A.
Such a tendency is likely to occur when the substrate A has a long shape as shown in FIG. 12, and becomes more prominent as the length in the longitudinal direction becomes longer. The reason for this is considered as follows.

通常、供給管71は、処理槽70の端面からこれに対向する端面に向かって奥まで伸びている。従って、基材Aが長尺になるほど、該基材Aを収容する処理槽70の形状も長尺になり、供給管71も処理槽70の長手方向の長さに合わせて長くなる。処理液L’はポンプ73によって供給管71から処理槽70に押出されるので、ポンプ73からの距離によって処理液L’が受ける圧力が異なりやすい。供給管71が長くなるほどポンプ73から遠ざかるため、ポンプ73に近い手前側とポンプ73から離れた奥側とでは圧力差が生じやすくなる。そのため、処理液L’の流動状態に斑がより生じやすくなり、滞留部が発生しやすくなると考えられる。   Usually, the supply pipe 71 extends from the end surface of the processing tank 70 to the back toward the end surface opposite to the end surface. Therefore, the longer the substrate A is, the longer the shape of the treatment tank 70 that accommodates the substrate A is, and the longer the supply pipe 71 is in accordance with the length of the treatment tank 70 in the longitudinal direction. Since the processing liquid L ′ is extruded from the supply pipe 71 to the processing tank 70 by the pump 73, the pressure received by the processing liquid L ′ tends to vary depending on the distance from the pump 73. The longer the supply pipe 71 is, the farther away from the pump 73, the easier the pressure difference between the near side near the pump 73 and the far side away from the pump 73. Therefore, it is considered that spots are more likely to occur in the flow state of the treatment liquid L ′, and a staying portion is likely to occur.

また、基材Aが長くなると、該基材Aを収容する処理槽70も大きくなるため、装置が大型化になり、処理液L’の使用量も増大する。   Further, when the base material A becomes longer, the processing tank 70 that accommodates the base material A also becomes larger, so that the apparatus becomes larger and the amount of the processing liquid L ′ used also increases.

ところで、近年、可視光の波長以下の周期の微細凹凸構造を表面に有する光学フィルムなどの物品は、反射防止効果、ロータス効果等を発現することから、その有用性が注目されている。特に、モスアイ構造と呼ばれる微細凹凸構造は、空気の屈折率から物品の材料の屈折率へと連続的に屈折率が増大していくことで有効な反射防止機能を発現することが知られている。   By the way, in recent years, articles such as an optical film having a fine concavo-convex structure with a period equal to or less than the wavelength of visible light on the surface exhibit an antireflection effect, a lotus effect, and the like, and thus its usefulness has attracted attention. In particular, a fine uneven structure called a moth-eye structure is known to exhibit an effective antireflection function by continuously increasing the refractive index from the refractive index of air to the refractive index of the material of the article. .

微細凹凸構造を表面に有する物品の製造方法としては、基材フィルム等の被転写体の表面に、モールドの表面に形成された微細凹凸構造を転写するインプリント法が挙げられる。
このインプリント法で用いるモールドを製造する方法としては、例えば円柱状のアルミニウム基材を電解液中で陽極酸化し、アルミニウム基材の周面に複数の細孔(凹部)を有する陽極酸化アルミナを形成する方法が知られている。
Examples of the method for producing an article having a fine concavo-convex structure on the surface include an imprint method in which the fine concavo-convex structure formed on the surface of the mold is transferred to the surface of a transfer target such as a base film.
As a method for producing a mold used in the imprint method, for example, a cylindrical aluminum base material is anodized in an electrolytic solution, and anodized alumina having a plurality of pores (recesses) on the peripheral surface of the aluminum base material is used. Methods of forming are known.

しかし、図12に示すような処理槽70を用いて円柱状のアルミニウム基材を電解液中で陽極酸化した場合、処理槽70内で滞留部が発生すると、特に多孔板72の上部において処理液(電解液)L’に温度斑が生じやすくなる。基材Aの表面温度は処理液L’の温度斑に影響を受けやすく、処理液L’に温度斑が生じると、基材Aの表面も温度斑が生じやすくなる。
陽極酸化によって基材表面に形成される細孔の深さは、処理中の温度に影響を受けやすい。従って、電解液や基材表面に温度斑が生じると、場所によって細孔の深さにバラツキがあるモールドが得られる場合がある。こうしたモールドを用い、該モールドの表面に形成された微細凹凸構造をインプリント法にて転写すると、場所によって凸部の高さにバラツキがある、すなわち、反射率にバラツキがある物品となってしまう。
However, when a cylindrical aluminum substrate is anodized in the electrolytic solution using the treatment tank 70 as shown in FIG. (Electrolytic solution) Temperature spots tend to occur in L ′. The surface temperature of the base material A is easily affected by the temperature spots of the processing liquid L ′, and when the temperature spots are generated in the processing liquid L ′, the surface of the base material A is also likely to have temperature spots.
The depth of pores formed on the substrate surface by anodization is susceptible to the temperature during processing. Therefore, when temperature spots occur on the electrolyte solution or the substrate surface, a mold having a variation in the depth of pores depending on the location may be obtained. When such a mold is used and the fine concavo-convex structure formed on the surface of the mold is transferred by the imprint method, the height of the convex portion varies depending on the location, that is, the article has a variation in reflectance. .

本発明は上記事情に鑑みてなされたもので、長尺な基材を処理する場合でも電解液の滞留を防止し、さらに電解液の使用量も抑制できる電解処理装置、およびこの電解処理装置に好適に用いられる処理槽の提供を目的とする。   The present invention has been made in view of the above circumstances, and an electrolytic treatment apparatus capable of preventing stagnation of an electrolytic solution even when a long substrate is processed and further suppressing the amount of the electrolytic solution used, and to the electrolytic treatment apparatus It aims at providing the processing tank used suitably.

本発明の処理槽は、円柱状の基材を電解液中で電解処理するための処理槽において、電解液を収容し、前記基材が浸漬する長尺な処理槽本体、処理槽本体に電解液を供給する電解液供給部、および処理槽本体から電解液を排出するオーバーフロー部を備え、前記処理槽本体の底部の内面は円弧状に湾曲し、前記電解液供給部は、処理槽本体の長手方向に沿うように、処理槽本体の一方の側面上方に設けられ、前記オーバーフロー部は、処理槽本体の長手方向に沿うように、処理槽本体の他方の側面上部に設けられていることを特徴とする。   The treatment tank of the present invention is a treatment tank for electrolytic treatment of a columnar base material in an electrolyte solution. A long treatment tank body in which the base material is immersed and the substrate is immersed, and the treatment tank body is electrolyzed. An electrolytic solution supply unit for supplying the solution, and an overflow unit for discharging the electrolytic solution from the processing tank body, the inner surface of the bottom of the processing tank body is curved in an arc shape, and the electrolytic solution supply unit It is provided above one side surface of the processing tank main body so as to be along the longitudinal direction, and the overflow part is provided on the other side upper portion of the processing tank main body so as to be along the longitudinal direction of the processing tank main body. Features.

また、本発明の電解処理装置は、円柱状の基材を電解液中で電解処理する電解処理装置において、電解液を収容し、前記基材が浸漬する長尺な処理槽本体、処理槽本体に電解液を供給する電解液供給部、および処理槽本体から電解液を排出するオーバーフロー部を備えた処理槽と、前記処理槽本体に浸漬された電極板とを具備し、前記処理槽本体の底部の内面は円弧状に湾曲し、前記電解液供給部は、処理槽本体の長手方向に沿うように、処理槽本体の一方の側面上方に設けられ、前記オーバーフロー部は、処理槽本体の長手方向に沿うように、処理槽本体の他方の側面上部に設けられていることを特徴とする。
ここで、前記電極板は、前記処理槽本体に浸漬された基材を挟むように配置され、かつ前記処理槽本体の底部の内面形状に沿うように湾曲していてもよい。
または、前記電極板は、前記処理槽本体に浸漬された基材を介して、前記オーバーフロー部に対向する位置にのみ配置されてもよく、該電極板の電解液に接触している面積と、前記基材の電解液に接触している面積との比が1:1以下であることが好ましい。
さらに、前記基材の中心軸を回転中心として、該基材を回転させる回転手段を具備することが好ましい。
また、前記回転手段は、電解液供給部から供給された電解液がオーバーフロー部へ流れる方向とは反対方向に、前記基材を回転させることが好ましい。
さらに、前記電解液を加熱または冷却して電解液の温度を調節し、電解処理直前および電解処理中には電解液を冷却する温度調節手段をさらに具備することが好ましい。
Moreover, the electrolytic treatment apparatus of the present invention is an electrolytic treatment apparatus that performs electrolytic treatment of a cylindrical substrate in an electrolytic solution. The long treatment tank main body, the treatment tank main body in which the electrolytic solution is stored and the base material is immersed An electrolytic solution supply unit for supplying the electrolytic solution to the substrate, a treatment tank provided with an overflow unit for discharging the electrolytic solution from the treatment tank body, and an electrode plate immersed in the treatment tank body, The inner surface of the bottom part is curved in an arc shape, the electrolyte supply part is provided above one side surface of the treatment tank body so as to be along the longitudinal direction of the treatment tank body, and the overflow part is the length of the treatment tank body. It is provided in the other side upper part of the processing tank main body so that it may follow a direction.
Here, the electrode plate may be arranged so as to sandwich the base material immersed in the processing tank body, and may be curved so as to follow the inner surface shape of the bottom of the processing tank body.
Alternatively, the electrode plate may be disposed only at a position facing the overflow portion via the base material immersed in the treatment tank body, and the area of the electrode plate in contact with the electrolyte solution; The ratio of the area of the base material in contact with the electrolytic solution is preferably 1: 1 or less.
Furthermore, it is preferable that a rotation means for rotating the base material about the central axis of the base material is provided.
Moreover, it is preferable that the said rotation means rotates the said base material in the direction opposite to the direction where the electrolyte solution supplied from the electrolyte solution supply part flows into an overflow part.
Furthermore, it is preferable to further comprise temperature adjusting means for adjusting the temperature of the electrolytic solution by heating or cooling the electrolytic solution and cooling the electrolytic solution immediately before and during the electrolytic treatment.

本発明の処理槽は、長尺な基材を処理する場合でも電解液の滞留を防止し、さらに電解液の使用量も抑制できる電解処理装置の処理槽として好適である。
また、本発明の電解処理装置は、長尺な基材を処理する場合でも電解液の滞留を防止し、さらに電解液の使用量も抑制できる。
The treatment tank of the present invention is suitable as a treatment tank of an electrolytic treatment apparatus that prevents the electrolytic solution from staying even when a long substrate is processed, and that can also suppress the amount of the electrolytic solution used.
In addition, the electrolytic treatment apparatus of the present invention can prevent stagnation of the electrolytic solution even when a long substrate is processed, and can also suppress the amount of electrolytic solution used.

本発明の処理槽の一例を示す側面図である。It is a side view which shows an example of the processing tank of this invention. 図1のI−I’線に沿う断面図である。It is sectional drawing which follows the I-I 'line of FIG. 処理槽の電解液供給部と基材の位置関係を説明する断面図である。It is sectional drawing explaining the positional relationship of the electrolyte solution supply part and base material of a processing tank. オーバーフロー部の他の例を示す側面図である。It is a side view which shows the other example of an overflow part. 本発明の処理槽の他の例を示す断面図である。It is sectional drawing which shows the other example of the processing tank of this invention. 本発明の電解処理装置の一例を示す断面図である。It is sectional drawing which shows an example of the electrolytic processing apparatus of this invention. (a)は図6のII−II’線に沿う断面図であり、(b)は図6示す電解処理装置に備わる処理槽と電極板の斜視図である。(A) is sectional drawing which follows the II-II 'line | wire of FIG. 6, (b) is a perspective view of the processing tank and electrode plate with which the electrolytic treatment apparatus shown in FIG. 6 is equipped. 電解処理装置に備わる電極版の他の例を示す断面図である。It is sectional drawing which shows the other example of the electrode plate with which an electrolytic treatment apparatus is equipped. 陽極酸化アルミナの細孔の形成過程を示す断面図である。It is sectional drawing which shows the formation process of the pore of an anodized alumina. 実施例1および比較例1において電解処理した時間と、処理槽壁面付近の数点での電解液の上昇温度との関係を示すグラフである。It is a graph which shows the relationship between the time which electrolyzed in Example 1 and Comparative Example 1, and the raise temperature of the electrolyte solution in several points near a processing tank wall surface. 実施例1および比較例1において電解処理した時間と、基材表面の長手方向の数点での電解液の最大温度差との関係を示すグラフである。It is a graph which shows the relationship between the time which electrolyzed in Example 1 and Comparative Example 1, and the maximum temperature difference of the electrolyte solution in several points of the longitudinal direction of a base-material surface. 従来の処理装置の一例を示す図であり、(a)側面図であり、(b)は(a)のIII−III’線に沿う断面図である。It is a figure which shows an example of the conventional processing apparatus, (a) It is a side view, (b) is sectional drawing which follows the III-III 'line | wire of (a).

以下、図面に基づいて本発明の実施の形態を詳細に説明する。
[処理槽]
本発明の処理槽は、円柱状の基材を電解液中で電解処理するためのものである。
図1は、本実施形態に係る処理槽10の一例を示す図であり、後述する電解液供給部側から見た側面図である。図2は、図1のI−I’線に沿う断面図である。
なお、図2には、図1に示す処理槽10を収容する外槽40を追加した。
また、本発明において、電解処理の対象となる基材の形状は円柱状であるが、図1,2に示すような中空状(円筒状)でもよいし、中空状でなくてもよい。本発明において、円柱状とは、円筒形状などの形状を含めて、全体としての形状が略円柱状のものをいう。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
[Treatment tank]
The treatment tank of the present invention is for electrolytic treatment of a cylindrical substrate in an electrolytic solution.
FIG. 1 is a view showing an example of a treatment tank 10 according to the present embodiment, and is a side view seen from the electrolyte solution supply unit side described later. 2 is a cross-sectional view taken along the line II ′ of FIG.
In addition, the outer tank 40 which accommodates the processing tank 10 shown in FIG. 1 was added to FIG.
In the present invention, the shape of the base material to be subjected to the electrolytic treatment is a columnar shape, but may be a hollow shape (cylindrical shape) as shown in FIGS. In the present invention, the term “columnar” means that the shape as a whole including a shape such as a cylindrical shape is substantially columnar.

図1,2に示す処理槽10は、電解液Lを収容し、中空円柱状の基材Aが浸漬する長尺な処理槽本体11と、処理槽本体11に電解液Lを供給する電解液供給部12と、処理槽本体11から電解液Lを排出するオーバーフロー部13とを備えて構成されている。なお、本発明において長尺とは、上面視にて処理槽本体の短辺方向の長さよりも、処理槽本体の長辺方向が長いような形状を指し、例えば上面視にて略矩形形状のものが挙げられる。
この処理槽10は、図2に示すように外槽40に収容されている。
The processing tank 10 shown in FIGS. 1 and 2 contains an electrolytic solution L, a long processing tank body 11 in which a hollow cylindrical substrate A is immersed, and an electrolytic solution that supplies the electrolytic solution L to the processing tank body 11. The supply part 12 and the overflow part 13 which discharges the electrolyte solution L from the processing tank main body 11 are provided and comprised. In the present invention, the long refers to a shape in which the long side direction of the treatment tank body is longer than the length of the treatment tank body in the top view, for example, a substantially rectangular shape in the top view. Things.
The processing tank 10 is accommodated in the outer tank 40 as shown in FIG.

<処理槽本体>
処理槽本体11は、電解液Lを収容するものであり、該電解液L中に基材Aが浸漬する。
この例の処理槽本体11の底部11aの内面11a’は、処理槽本体11に浸漬された基材Aの周面(外周面)A’に沿うように、円弧状に湾曲している。底部11aの内面11a’が円弧状に湾曲していることで、後述する電解液供給部12から供給された電解液Lがオーバーフロー部13へとスムーズに流動できる。
なお、本発明において「円弧状」は真円状に限定されない。また、本発明において「湾曲している」とは、処理槽本体の底部の内面が、該処理槽本体の外側に突出するように湾曲していることである。
<Treatment tank body>
The treatment tank main body 11 accommodates the electrolytic solution L, and the base material A is immersed in the electrolytic solution L.
The inner surface 11 a ′ of the bottom 11 a of the processing tank body 11 in this example is curved in an arc shape so as to follow the peripheral surface (outer peripheral surface) A ′ of the base material A immersed in the processing tank body 11. Since the inner surface 11a ′ of the bottom portion 11a is curved in an arc shape, the electrolytic solution L supplied from the electrolytic solution supply unit 12 described later can flow smoothly to the overflow unit 13.
In the present invention, the “arc shape” is not limited to a perfect circle. Further, in the present invention, “curved” means that the inner surface of the bottom of the processing tank main body is curved so as to protrude to the outside of the processing tank main body.

底部11aの内面11a’の形状としては、半円形状、半楕円形状など、屈曲点がなく滑らかに一方向に沿って曲げられた形状が好ましいが、中でも、半円形状がより好ましい。底部11aの内面11a’の形状が半円形状であれば、電解液供給部12から供給された電解液Lが底部11aの内面11a’をよりスムーズな流れを保ったままオーバーフロー部13へ流れる。   As the shape of the inner surface 11a 'of the bottom portion 11a, a shape such as a semicircular shape or a semielliptical shape that is smoothly bent along one direction without a bending point is preferable, but a semicircular shape is more preferable. If the shape of the inner surface 11a 'of the bottom part 11a is semicircular, the electrolyte L supplied from the electrolyte solution supply part 12 flows to the overflow part 13 while maintaining a smoother flow on the inner surface 11a' of the bottom part 11a.

処理槽本体11の材質については、電解液Lによって腐食しにくいものであれば特に制限されず、例えばステンレス、ポリ塩化ビニル(PVC)などが挙げられる。   About the material of the processing tank main body 11, if it is hard to corrode with the electrolyte solution L, it will not restrict | limit in particular, For example, stainless steel, polyvinyl chloride (PVC), etc. are mentioned.

処理槽本体11の大きさについては、基材Aを収容できる大きさであれば特に制限されないが、例えば図2に示すように基材Aを処理槽本体11内に配置したときに、基材Aの外周面A’と底部11aの内面11a’との間に空隙Sが形成される大きさである。具体的には、基材Aの中心軸Pから底部11aの内面11a’までの距離Dが、基材Aの半径(r)の1.25〜2倍であることが好ましい。
なお、底部11aの内面11a’の形状が半円形状の場合は、この半円の直径上の中心と基材Aの中心軸Pとが重なるように、基材Aを処理槽本体11内に配置するのが好ましい。
The size of the processing tank main body 11 is not particularly limited as long as it can accommodate the base material A. For example, when the base material A is disposed in the processing tank main body 11 as shown in FIG. The size of the gap S is formed between the outer peripheral surface A ′ of A and the inner surface 11a ′ of the bottom portion 11a. Specifically, the distance D from the central axis P of the substrate A to the inner surface 11a ′ of the bottom portion 11a is preferably 1.25 to 2 times the radius (r) of the substrate A.
When the shape of the inner surface 11a ′ of the bottom portion 11a is semicircular, the base A is placed in the treatment tank body 11 so that the center on the diameter of the semicircle and the central axis P of the base A overlap. It is preferable to arrange.

ところで、上述したように、基材を陽極酸化して周面に細孔を形成させる場合、細孔の深さは電解液や基材表面(外周面)の温度斑に影響を受けやすいため、温度斑を軽減する必要がある。
電解液や基材表面の温度斑は、主に電解液が処理槽内で滞留することで生じるが、基材と処理槽の内面の間隔が狭いと温度斑が生じる場合がある。これは、陽極酸化を行うと発熱により処理槽が加熱されやすく、この処理槽の熱によって処理槽近傍の基材表面が直接かつ不均一に温められ、温度斑が生じるものと考えられる。この傾向は、基材と処理槽の内面との距離が近いほど起こりやすいと考えられる。
By the way, as described above, when forming the pores on the peripheral surface by anodizing the base material, the depth of the pores is easily affected by temperature spots on the electrolyte solution and the base material surface (outer peripheral surface). Need to reduce temperature spots.
The temperature spots on the surface of the electrolytic solution and the base material are mainly caused by the electrolytic solution staying in the processing tank. However, if the distance between the base material and the inner surface of the processing tank is narrow, the temperature spots may occur. This is presumably because when the anodization is performed, the treatment tank is easily heated by heat generation, and the surface of the base material in the vicinity of the treatment tank is directly and non-uniformly heated by the heat of the treatment tank, resulting in temperature spots. This tendency is considered to occur more easily as the distance between the base material and the inner surface of the treatment tank is shorter.

しかし、基材Aの中心軸Pから底部11aの内面11a’までの距離Dが、基材Aの半径(r)の1.25倍以上であれば、基材Aの外周面A’と処理槽本体11の底部11aの内面11a’との間に十分な隙間が形成される。よって、基材Aと処理槽本体11の間に位置する電解液Lが緩衝材の役割を十分に果たすことができるので、陽極酸化時の発熱により処理槽本体11が加熱されても、基材Aが処理槽本体11によって直接温められるのを抑制できる。従って、基材Aの外周面A’の温度斑をより効果的に防止でき、深さのバラツキが抑えられた細孔を基材の外周面に形成できる。
なお、距離Dは、基材Aの半径(r)の2倍以下であることが好ましい。距離Dが基材Aの半径(r)の2倍を超えても、温度斑の防止効果は頭打ちとなるばかりか、処理槽本体11が大型となるため、電解液Lの使用量が多くなる。
However, if the distance D from the central axis P of the substrate A to the inner surface 11a ′ of the bottom 11a is 1.25 times or more the radius (r) of the substrate A, the outer peripheral surface A ′ of the substrate A and the treatment A sufficient gap is formed between the bottom 11a of the tank body 11 and the inner surface 11a ′. Therefore, since the electrolytic solution L positioned between the base material A and the processing tank body 11 can sufficiently serve as a buffer material, even if the processing tank body 11 is heated by heat generated during anodization, the base material It can suppress that A is heated by the processing tank main body 11 directly. Therefore, temperature spots on the outer peripheral surface A ′ of the substrate A can be more effectively prevented, and pores with reduced depth variation can be formed on the outer peripheral surface of the substrate.
The distance D is preferably not more than twice the radius (r) of the substrate A. Even if the distance D exceeds twice the radius (r) of the base material A, the effect of preventing temperature spots is not limited, and the treatment tank body 11 becomes large, so that the amount of the electrolyte L used is increased. .

<電解液供給部>
電解液供給部12は、処理槽本体11に電解液Lを供給するものであり、図1に示すように、処理槽本体11の長手方向に沿うように、処理槽本体11の一方の側面11b上方に設けられている。これにより、処理槽本体11の上方から供給された電解液Lは、この処理槽本体11の内面形状に沿って後述するオーバーフロー部13へとスムーズに移動できる。よって、電解液Lが部分的に滞留するのを防止できる。
<Electrolyte supply unit>
The electrolytic solution supply unit 12 supplies the electrolytic solution L to the processing tank main body 11, and as shown in FIG. 1, one side surface 11 b of the processing tank main body 11 extends along the longitudinal direction of the processing tank main body 11. It is provided above. Thereby, the electrolyte L supplied from the upper side of the process tank main body 11 can move smoothly to the overflow part 13 mentioned later along the inner surface shape of this process tank main body 11. FIG. Therefore, it is possible to prevent the electrolytic solution L from being partially retained.

図示例の電解液供給部12は、供給管12aと、該供給管12aに接続された、長尺な吐出部12bとで構成される。
供給管12a内には、ポンプ(図示略)等によって電解液が送り込まれる。そして、供給管12a内に充満した電解液が、供給管12aの吐出口121aから吐出部12bに供給される。
The electrolyte supply part 12 of the example of illustration is comprised by the supply pipe | tube 12a and the elongate discharge part 12b connected to this supply pipe | tube 12a.
The electrolyte is fed into the supply pipe 12a by a pump (not shown) or the like. And the electrolyte solution with which the supply pipe | tube 12a was filled is supplied to the discharge part 12b from the discharge outlet 121a of the supply pipe | tube 12a.

吐出口121aは、供給管12aの長手方向に沿って連続的(スリット状)に形成されていてもよいし、断続的に形成されていてもよい。   The discharge port 121a may be formed continuously (slit) along the longitudinal direction of the supply pipe 12a or may be formed intermittently.

吐出部12bの先端は処理槽本体11に収容された電解液Lに浸漬しており、吐出部12bの吐出口121bから電解液Lが処理槽本体11に供給される。
吐出口121bは、吐出部12bの長手方向に沿って連続的に形成されていてもよいし、断続的に形成されていてもよい。
The tip of the discharge part 12b is immersed in the electrolytic solution L accommodated in the processing tank body 11, and the electrolytic solution L is supplied to the processing tank body 11 from the discharge port 121b of the discharge part 12b.
The discharge port 121b may be formed continuously along the longitudinal direction of the discharge part 12b, or may be formed intermittently.

図1に示すように、吐出部12bの長手方向の長さ(幅)W12bは長尺な基材Aの長手方向の長さ(幅)Wによって選定され、吐出部12bの長さW12bは基材Aの長さWと同じか、基材Aの長さWの95%以上ほどの長さであることが好ましい。吐出部12bの長さW12bが基材Aの長さWに対して短すぎると、吐出部12bから供給された電解液Lの流れが基材Aの長手方向に対して不均一となり、流れが強い箇所と弱い箇所では電解処理時に基材Aの冷却斑に繋がり、温度斑が発生する原因になる。その結果、例えば基材Aを陽極酸化する場合には、基材Aの表面に形成される酸化皮膜に斑が生じることとなる。
なお、基材Aの長手方向における電解液の流れが均一であれば、吐出部12bの長さW12bは長くする必要はない。
As shown in FIG. 1, the longitudinal direction length (width) W 12b of the discharge portion 12b is selected by the longitudinal length (width) W A of elongated substrate A, the length W of the discharge portion 12b 12b is preferably the substrate equal to the length W a of a, the length W about 95% of the length of the a base material a. If the length W 12b of the discharge portion 12b is too short relative to the length W A of the base material A, flow of the supplied electrolytic solution L becomes uneven with respect to the longitudinal direction of the base material A from the discharge portion 12b, In places where the flow is strong and weak, it leads to cooling spots on the base material A during the electrolytic treatment and causes temperature spots. As a result, for example, when the base material A is anodized, spots are generated on the oxide film formed on the surface of the base material A.
Incidentally, if the uniform flow of the electrolyte in the longitudinal direction of the base A, the length W 12b of the discharge portion 12b need not be long.

電解液供給部12は、図3(a),(b)に示すように、吐出部12bの吐出口121bの延長線上に基材Aが位置しないように、処理槽本体11の一方の側面上方に設けられるのが好ましい。これにより、吐出部12bの吐出口121bから吐出された電解液Lが、吐出時の流速を保った状態で処理槽本体11の底部11aを通過し、効率よくオーバーフロー部13へと流れるため、循環効率が向上する。
なお、図3(c)に示すように、吐出部12bの吐出口121bの延長線上に基材Aが位置していると、吐出部12bから吐出された電解液Lが基材Aの表面に当たり、該基材Aの表面付近で滞留が発生してしまい、循環効率が低下し、処理槽内の温度斑が発生しやすくなる傾向にある。
ここで、図3においては外槽40を省略した。
As shown in FIGS. 3A and 3B, the electrolytic solution supply unit 12 is located above one side surface of the processing tank body 11 so that the base material A is not positioned on the extension line of the discharge port 121b of the discharge unit 12b. Is preferably provided. As a result, the electrolyte L discharged from the discharge port 121b of the discharge part 12b passes through the bottom part 11a of the treatment tank body 11 while maintaining the flow rate during discharge, and efficiently flows to the overflow part 13, so that the circulation Efficiency is improved.
As shown in FIG. 3C, when the base material A is positioned on the extended line of the discharge port 121b of the discharge portion 12b, the electrolyte L discharged from the discharge portion 12b hits the surface of the base material A. In the vicinity of the surface of the substrate A, stagnation occurs, the circulation efficiency is lowered, and temperature spots in the treatment tank tend to occur.
Here, the outer tub 40 is omitted in FIG.

吐出部12bから吐出された電解液Lが、処理槽本体11の長手方向に対して均一な流動状態を保つためには、電解液供給部12内の正圧を保てるような構造にすればよく、これにより処理槽本体11の長手方向に対して電解液Lの均一な流れが形成できる。正圧を保つには供給管12aの吐出口121aの開口面積が吐出部12bの吐出口121bの開口面積より大きくなるように設ければよい。   In order for the electrolyte L discharged from the discharge part 12b to maintain a uniform flow state with respect to the longitudinal direction of the processing tank body 11, a structure that can maintain a positive pressure in the electrolyte supply part 12 may be used. Thus, a uniform flow of the electrolyte L can be formed with respect to the longitudinal direction of the treatment tank body 11. In order to maintain the positive pressure, the supply pipe 12a may be provided so that the opening area of the discharge port 121a is larger than the opening area of the discharge port 121b of the discharge part 12b.

供給管12aおよび吐出部12bの材質については、電解液Lによって腐食しにくいものであれば特に制限されず、例えばステンレス、ポリ塩化ビニル(PVC)などが挙げられる。   The material of the supply pipe 12a and the discharge part 12b is not particularly limited as long as it is difficult to be corroded by the electrolytic solution L, and examples thereof include stainless steel and polyvinyl chloride (PVC).

<オーバーフロー部>
図2、3に示すオーバーフロー部13は、処理槽本体11から溢れる電解液Lを処理槽本体11の外へ排出するものであり、処理槽本体11の長手方向に沿うように、処理槽本体11の他方の側面11c上部に設けられている。
図示例のオーバーフロー部13は、処理槽本体11の一方の側面11bと他方の側面11cの高さを異ならせる、具体的には他方の側面11cを一方の側面11bよりも低くすることで形成されている。
<Overflow part>
The overflow part 13 shown in FIGS. 2 and 3 discharges the electrolyte L overflowing from the processing tank body 11 to the outside of the processing tank body 11, and extends along the longitudinal direction of the processing tank body 11. Of the other side surface 11c.
The overflow portion 13 in the illustrated example is formed by making the height of one side surface 11b and the other side surface 11c of the processing tank main body 11 different, specifically, making the other side surface 11c lower than the one side surface 11b. ing.

<作用効果>
以上説明した本発明の処理槽10は、電解液Lを処理槽本体11の一方の側面11b上方から供給し、他方の側面11cの上部から排出する。このとき、処理槽本体11の底部11aの内面11a’が円弧状に湾曲しているため、電解液Lが滞留することなくスムーズにオーバーフロー部13へと移動できる。
なお、電解液供給部12へ電解液Lを送り込む際はポンプ(図示略)等を用いるが、電解液Lは重力に従って電解液供給部12から送り出される。従って、本発明の処理槽10は、図12に示す従来の処理槽70のように、この処理槽70の下部に設けられた供給管71から、ポンプ73によって電解液L’を処理槽70の上方へ(すなわち、重力に逆らって)吐出させる場合に比べて、ポンプの圧力の影響を受けにくい。そのため、電解処理する基材Aが長くなり、処理槽本体11の長手方向の長さや電解液供給部12が長くなっても、電解液供給部12の両端において、ポンプから受ける電解液の圧力差が小さい。
<Effect>
The processing tank 10 of the present invention described above supplies the electrolytic solution L from above the one side surface 11b of the processing tank main body 11, and discharges it from the upper part of the other side surface 11c. At this time, since the inner surface 11a ′ of the bottom 11a of the treatment tank body 11 is curved in an arc shape, the electrolyte L can move smoothly to the overflow portion 13 without stagnation.
Note that a pump (not shown) or the like is used when the electrolytic solution L is sent to the electrolytic solution supply unit 12, but the electrolytic solution L is sent out from the electrolytic solution supply unit 12 according to gravity. Therefore, the treatment tank 10 of the present invention, like the conventional treatment tank 70 shown in FIG. 12, supplies the electrolytic solution L ′ from the supply pipe 71 provided at the lower portion of the treatment tank 70 by the pump 73. Compared with the case of discharging upward (that is, against gravity), it is less affected by the pressure of the pump. Therefore, even if the base material A to be subjected to electrolytic treatment becomes long and the length of the treatment tank body 11 in the longitudinal direction or the electrolytic solution supply unit 12 becomes long, the pressure difference between the electrolytic solutions received from the pumps at both ends of the electrolytic solution supply unit 12 Is small.

従って、本発明の処理槽10を用いれば、処理槽本体11内において電解液Lが部分的に滞留するのを防止できるので、基材Aの外周面A’を均一に電解処理できる。特に、吐出部12bの吐出口121bの延長線上に基材Aが位置しないように、電解液供給部12を処理槽本体11の一方の側面上方に設ければ循環効率が向上し、基材Aの外周面A’をより均一に電解処理できる。
特に、アルミニウム基材を陽極酸化処理する場合は、電解液や基材表面の温度斑を抑制することが重要となるが、本発明の処理槽10を用いれば、処理槽本体11内での電解液Lの滞留部が発生しにくいので、温度斑が生じにくい。よって、基材Aの外周面A’に形成される細孔の深さのバラツキが抑えられる。
Therefore, if the processing tank 10 of the present invention is used, it is possible to prevent the electrolytic solution L from partially staying in the processing tank main body 11, so that the outer peripheral surface A ′ of the substrate A can be uniformly subjected to electrolytic processing. In particular, if the electrolytic solution supply unit 12 is provided above one side surface of the treatment tank main body 11 so that the base material A is not located on the extended line of the discharge port 121b of the discharge unit 12b, the circulation efficiency is improved and the base material A is improved. The outer peripheral surface A ′ can be more uniformly electrolytically treated.
In particular, when anodizing an aluminum substrate, it is important to suppress temperature fluctuations on the electrolytic solution and the surface of the substrate. However, if the treatment tank 10 of the present invention is used, electrolysis in the treatment tank body 11 is performed. Since the stay part of the liquid L does not easily occur, temperature spots hardly occur. Therefore, variation in the depth of the pores formed on the outer peripheral surface A ′ of the substrate A is suppressed.

また、本発明の処理槽10は、処理槽本体11の底部11aの内面11a’が円弧状に湾曲しているので、図12に示すような直方体状の処理槽70に比べて容積を縮小できる。よって、電解液の使用量も抑制できる。
なお、本発明の処理槽10を用いれば、電解液Lがスムーズに処理槽本体11内を流動するので、多孔板などの流動を調整する部材を設ける必要がない。
Further, since the inner surface 11a ′ of the bottom 11a of the processing tank main body 11 is curved in an arc shape, the processing tank 10 of the present invention can be reduced in volume as compared with a rectangular parallelepiped processing tank 70 as shown in FIG. . Therefore, the usage-amount of electrolyte solution can also be suppressed.
In addition, if the processing tank 10 of this invention is used, since the electrolyte solution L will flow smoothly in the processing tank main body 11, it is not necessary to provide the member which adjusts flow, such as a perforated plate.

<他の実施形態>
本発明の処理槽は図1,2に示す処理槽10に限定されない。例えば図1,2に示す処理槽10の電解液供給部12は一重の供給管12aと吐出部12bから構成されているが、供給管12aは多重管でもよい。また、処理槽本体11の長手方向に均一に電解液Lを供給できる形状であれば、電解液供給部12は管状の構造であってもよい。
<Other embodiments>
The treatment tank of the present invention is not limited to the treatment tank 10 shown in FIGS. For example, although the electrolyte supply part 12 of the processing tank 10 shown in FIGS. 1 and 2 is composed of a single supply pipe 12a and a discharge part 12b, the supply pipe 12a may be a multiple pipe. Further, the electrolyte solution supply unit 12 may have a tubular structure as long as the electrolyte solution L can be supplied uniformly in the longitudinal direction of the treatment tank body 11.

また、図1,2の処理槽10は、オーバーフロー部13が処理槽本体11の他方の側面11cを一方の側面11bよりも低くすることで形成されているが、例えば図4に示すように、他方の側面11cに、処理槽本体11の長手方向に伸びる孔13’を設け、これをオーバーフロー部13としてもよい。ただし、この場合は、処理槽本体11に浸漬される基材Aよりも高い位置に孔13’を設けるのが好ましい。
孔13’は図4に示すように連続的でもよいし、断続的でもよい。
なお、図4においては処理槽本体11と孔13’と基材Aのみを示し、電解液供給部は省略した。
1 and 2, the overflow portion 13 is formed by making the other side surface 11c of the processing tank body 11 lower than the one side surface 11b. For example, as shown in FIG. A hole 13 ′ extending in the longitudinal direction of the processing tank main body 11 may be provided on the other side surface 11 c, and this may be used as the overflow portion 13. However, in this case, it is preferable to provide the hole 13 ′ at a position higher than the base material A immersed in the treatment tank body 11.
The holes 13 ′ may be continuous as shown in FIG. 4 or intermittent.
In FIG. 4, only the treatment tank main body 11, the hole 13 ′, and the base material A are shown, and the electrolytic solution supply unit is omitted.

ところで、電解液供給部12から供給された電解液Lは、処理槽本体11の底部11aを通過してオーバーフロー部13へと流れて処理槽本体11の外へ排出されるが、このとき、電解液Lの一部がオーバーフロー部13へと向わずに処理槽本体11の液面を流れて電解液供給部12側へと戻ることがあり、処理槽本体11内に滞留して温度斑が発生する場合がある。
そのような場合には、図5に示すように、電解液Lが電解液供給部12側へと戻る流れを抑制するための邪魔板15をオーバーフロー部13近傍に設置するのが好ましい。電解液Lが電解液供給部12側へと戻るときは、主に処理槽本体11の液面近傍を流れるため、邪魔板15は液面から20〜30mm程度浸漬させればよい。
邪魔板15の材質は電解液Lによって腐食しにくいもので、かつ電解液Lの流れで邪魔板が変形しないような多少の剛性を有することが好ましく、例えばステンレスやポリ塩化ビニル(PVC)などが挙げられる。
なお、図5においては外槽40を省略した。
By the way, the electrolytic solution L supplied from the electrolytic solution supply unit 12 passes through the bottom 11a of the processing tank body 11, flows to the overflow unit 13, and is discharged out of the processing tank body 11. A part of the liquid L may flow toward the electrolytic solution supply unit 12 through the liquid surface of the processing tank main body 11 without being directed to the overflow part 13, and may stay in the processing tank main body 11 to cause temperature spots. May occur.
In such a case, as shown in FIG. 5, it is preferable to install a baffle plate 15 in the vicinity of the overflow portion 13 for suppressing the flow of the electrolytic solution L back to the electrolytic solution supply unit 12 side. When the electrolytic solution L returns to the electrolytic solution supply unit 12 side, it mainly flows in the vicinity of the liquid level of the processing tank body 11, and therefore the baffle plate 15 may be immersed by about 20 to 30 mm from the liquid level.
The baffle plate 15 is preferably made of a material that is not easily corroded by the electrolytic solution L, and has some rigidity so that the baffle plate is not deformed by the flow of the electrolytic solution L, such as stainless steel or polyvinyl chloride (PVC). Can be mentioned.
In FIG. 5, the outer tank 40 is omitted.

[電解処理装置]
本発明の電解処理装置は、円柱状の基材を電解液中で電解処理する装置である。
図6は、本実施形態に係る電解処理装置1の一例を示す側断面図であり、図7(a)は図6のII−II’線に沿う断面図であり、図7(b)は図6示す電解処理装置に備わる処理槽10と電極板20の斜視図である。
[Electrolytic treatment equipment]
The electrolytic treatment apparatus of the present invention is an apparatus that performs electrolytic treatment on a cylindrical substrate in an electrolytic solution.
6 is a side sectional view showing an example of the electrolytic treatment apparatus 1 according to the present embodiment, FIG. 7A is a sectional view taken along the line II-II ′ in FIG. 6, and FIG. It is a perspective view of the processing tank 10 and the electrode plate 20 with which the electrolytic treatment apparatus shown in FIG. 6 is equipped.

この例の電解処理装置1は、電解液Lで満たされた処理槽10と、この処理槽10の処理槽本体11に浸漬された基材Aを挟むように配置された電極板20と、基材Aの中心軸を回転中心として、基材Aを回転させる回転手段30と、処理槽10を収容し、処理槽10からオーバーフローした電解液Lを受けるための外槽40と、電解液Lを一旦貯留する貯留槽50と、外槽40で受けた電解液Lを貯留槽50へ流下させる流下流路41と、貯留槽50の電解液Lを処理槽10の電解液供給部12へ返送する返送流路51と、返送流路51の途中に設けられたポンプ52とを備えている。   The electrolytic treatment apparatus 1 of this example includes a treatment tank 10 filled with an electrolytic solution L, an electrode plate 20 disposed so as to sandwich a substrate A immersed in the treatment tank body 11 of the treatment tank 10, and a base Rotating means 30 for rotating the base material A around the central axis of the material A, the processing tank 10, the outer tank 40 for receiving the electrolytic solution L overflowed from the processing tank 10, and the electrolytic solution L The storage tank 50 once stored, the flow channel 41 for flowing the electrolytic solution L received in the outer tank 40 to the storage tank 50, and the electrolytic solution L in the storage tank 50 are returned to the electrolytic solution supply unit 12 of the processing tank 10. A return passage 51 and a pump 52 provided in the middle of the return passage 51 are provided.

以下、本発明の電解処理装置1を陽極酸化処理装置として用いる場合を例にとり、具体的に説明する。
電解処理装置1には、上述した本発明の処理槽10が備えられており、図7(a),(b)に示すように、電極板20は、この処理槽10の処理槽本体11の底部11aの内面11a’形状に沿うように湾曲した形状となっている。電極板20が湾曲した形状であることにより、電解液Lの流動が妨げられにくくなるため、電解液Lが滞留することなく、よりスムーズにオーバーフロー部13へと移動できる。
なお、図7(a)においては外槽40を省略した。また、図7(b)においては処理槽10の処理槽本体11およびオーバーフロー部13と、電極板20と、基材Aのみを示し、これ以外の電解処理装置1の構成部材は省略した。
Hereinafter, the case where the electrolytic treatment apparatus 1 of the present invention is used as an anodizing apparatus will be described in detail.
The electrolytic treatment apparatus 1 is provided with the above-described treatment tank 10 of the present invention. As shown in FIGS. 7A and 7B, the electrode plate 20 is attached to the treatment tank body 11 of the treatment tank 10. It has a curved shape along the shape of the inner surface 11a ′ of the bottom 11a. Since the electrode plate 20 has a curved shape, the flow of the electrolytic solution L is less likely to be hindered, so that the electrolytic solution L can be moved to the overflow portion 13 more smoothly without stagnation.
In addition, the outer tank 40 was abbreviate | omitted in Fig.7 (a). Moreover, in FIG.7 (b), only the processing tank main body 11 and the overflow part 13, the electrode plate 20, and the base material A of the processing tank 10 were shown, and the other structural members of the electrolytic processing apparatus 1 were abbreviate | omitted.

処理槽本体11の端面11d,11eは、図7(b)に示すように、U字状になっている。従って、端面11d,11eから電解液が漏れないように、端面11d,11eにはその形状に合わせた封止材(図示略)が取り付けられる。
さらに、端面11d,11eの下部側には、図6,図7(a)に示すように、回転手段30として、水平方向に軸方向を沿わせて基材Aを支持する支持軸31が設けられている。
支持軸31は、図6,図7(a)に示すように処理槽本体11の端面11d,11eにそれぞれ水平方向に並んで一対設けられ、各支持軸31は、処理槽本体11の端面11d,11eを貫通し、これら処理槽本体11の端面11d,11eに対して回転可能に支持されている。
The end faces 11d and 11e of the processing tank main body 11 are U-shaped as shown in FIG. Therefore, a sealing material (not shown) matching the shape is attached to the end surfaces 11d and 11e so that the electrolyte does not leak from the end surfaces 11d and 11e.
Further, on the lower side of the end faces 11d and 11e, as shown in FIGS. 6 and 7A, a support shaft 31 for supporting the base material A along the axial direction in the horizontal direction is provided as the rotating means 30. It has been.
As shown in FIGS. 6 and 7A, a pair of support shafts 31 are provided in the horizontal direction on the end surfaces 11 d and 11 e of the processing tank body 11, and each support shaft 31 is an end surface 11 d of the processing tank body 11. , 11e, and is supported rotatably with respect to the end surfaces 11d, 11e of the processing tank body 11.

各支持軸31の処理槽本体11内の端部には、樹脂材料からなる円筒状の弾性部材32が挿通して設けられ、基材Aはその両端部外周面を各弾性部材32の上に載置されるようにして、支持軸31上に支持されている。各支持軸31は、例えばモータ等の回転駆動部(図示略)と接続されており、この回転駆動部によって各支持軸31が同一方向に回転されることで、この電解処理装置1では弾性部材32と接触した基材Aが回転するようになっている。
特に、回転手段30は、図7(a)に示すように、処理槽10の電解液供給部12から処理槽本体11へ供給された電解液Lが、オーバーフロー部13へ流れる方向とは反対方向に、基材Aを回転させるのが好ましい。電解液Lの流れる方向と基材Aの回転方向が反対になることで、基材Aに対する表面付近での電解液Lの流れは相対的に速くなり、電解処理時に基材Aから発生した熱の移動が効率よく行える。電解液Lの流れる方向と基材Aの回転方向が同じである場合、基材A表面付近での電解液Lの流れは相対的に遅く、速度が無い状態では熱の移動が悪いため、処理槽10全体での電解液Lの温度上昇に繋がってしまう。
A cylindrical elastic member 32 made of a resin material is inserted and provided at the end of each support shaft 31 in the treatment tank main body 11, and the base material A has outer peripheral surfaces at both ends on each elastic member 32. It is supported on the support shaft 31 so as to be placed. Each support shaft 31 is connected to a rotation drive unit (not shown) such as a motor, and the support shaft 31 is rotated in the same direction by the rotation drive unit. The base material A in contact with 32 rotates.
In particular, as shown in FIG. 7A, the rotating means 30 has a direction opposite to the direction in which the electrolyte L supplied from the electrolyte supply part 12 of the treatment tank 10 to the treatment tank body 11 flows to the overflow part 13. Further, it is preferable to rotate the substrate A. Since the flowing direction of the electrolyte L and the rotation direction of the substrate A are opposite, the flow of the electrolyte L near the surface with respect to the substrate A becomes relatively fast, and the heat generated from the substrate A during the electrolytic treatment Can be moved efficiently. When the flowing direction of the electrolytic solution L and the rotation direction of the base material A are the same, the flow of the electrolytic solution L in the vicinity of the surface of the base material A is relatively slow. It will lead to the temperature rise of the electrolyte solution L in the tank 10 whole.

支持軸31の上方には、水平方向に軸方向を沿わせた通電用シャフト33が、端面11d,11eに取り付けられた封止材14を貫通して設けられ、この通電用シャフト33は外槽40も貫通して外側に露出する。通電用シャフト33は導電性を有する材料からなり、端面11d,11eに取り付けられた封止材それぞれに回転可能に支持されている。なお、通電用シャフト33は全体が導電性を有する材料からなっていなくてもよく、後述の通電部材34を介して基材Aに電流を印加可能とされていればよい。具体的には、通電用シャフト33の外部が絶縁物質によりコーティングされた構成であってよく、端面11d,11eに取り付けられた封止材に接触する部位に耐摩耗性に優れるコーティング等が施されても構わない。   Above the support shaft 31, a current-carrying shaft 33 extending in the horizontal direction is provided through the sealing material 14 attached to the end surfaces 11d and 11e. 40 also penetrates and is exposed to the outside. The energizing shaft 33 is made of a conductive material, and is rotatably supported by the sealing materials attached to the end faces 11d and 11e. The energization shaft 33 does not have to be made entirely of a conductive material, and it is only necessary that a current can be applied to the base material A via an energization member 34 described later. Specifically, the outside of the current-carrying shaft 33 may be coated with an insulating material, and a portion having contact with the sealing material attached to the end faces 11d and 11e is coated with excellent wear resistance. It doesn't matter.

各通電用シャフト33の処理槽本体11内の端部には、円盤状の通電部材34が一体に設けられている。通電部材34は、中空円柱状の基材Aの両端面に面接触する。ここで、電極板20と、通電用シャフト33とには、電源21が電気的に接続され、電流が印可可能とされている。   A disc-shaped energizing member 34 is integrally provided at the end of each energizing shaft 33 in the processing tank body 11. The energization member 34 is in surface contact with both end surfaces of the hollow cylindrical base material A. Here, a power source 21 is electrically connected to the electrode plate 20 and the energization shaft 33 so that a current can be applied.

通電部材34は、通電用シャフト33あるいは基材Aの軸方向にエアシリンダ等の進退動を行う駆動部(図示略)によって、進退動ができるように設置されている。基材Aを支持軸31に設置した後、基材Aの軸方向の両側から、通電部材34を基材Aの両端面に接触させることで通電可能となる。なお、図6に示した例においては、基材Aの両端面に通電部材34を設けたが、通電部材34を基材Aの一方の端面にだけ設け、他方を押さえ部材としてもよい。また、通電部材34は、厳密に基材Aの端面において基材Aと接触する必要はなく、基材Aの内周面等他の位置において基材Aと接触する構成であっても構わない。   The energizing member 34 is installed so that it can be moved forward and backward by a drive unit (not shown) that moves forward and backward such as an air cylinder in the axial direction of the energizing shaft 33 or the base material A. After the base material A is installed on the support shaft 31, the energization member 34 is brought into contact with both end faces of the base material A from both sides in the axial direction of the base material A, thereby enabling energization. In the example shown in FIG. 6, the current-carrying members 34 are provided on both end faces of the base material A. However, the current-carrying members 34 may be provided only on one end face of the base material A, and the other may be used as a pressing member. In addition, the energization member 34 does not have to be strictly in contact with the base material A at the end surface of the base material A, and may be configured to be in contact with the base material A at other positions such as the inner peripheral surface of the base material A. .

通電用シャフト33は処理槽10および外槽40を貫通して進退動を行うため、通電用シャフト33と処理槽10および外槽40との間には、通電用シャフト33を回転可能及び軸方に移動可能に支持する滑り軸受け35が設けられている。   Since the energizing shaft 33 moves forward and backward through the processing tank 10 and the outer tank 40, the energizing shaft 33 can be rotated between the energizing shaft 33 and the processing tank 10 and the outer tank 40. A sliding bearing 35 that is movably supported is provided.

図示例の基材Aの両端部の内径側角部は面取りされ、基材Aの両端面の一部には、テーパ面aが形成される一方、通電部材34の外径側角部は面取りされ、基材Aのテーパ面aに面接触するテーパ面34aが形成され、両者の傾斜は同一勾配を設定されていることが好ましい。基材Aのテーパ面aと、通電部材34のテーパ面34aとを面接触させることにより、両者は電気的に緊密に接触することができ、かつ基材A若しくは通電部材34側が回転した場合に、接触させた抵抗により回転を伝達することができ、同期させて回転させることができる。
このような構造とすることにより、接触面積が大きく、また、回転した際の滑りの影響や摩耗の影響も軽減されるため、安定した電流供給が可能となる。
The inner diameter side corners of both ends of the base material A in the illustrated example are chamfered, and tapered surfaces a are formed on a part of both end faces of the base material A, while the outer diameter side corners of the energizing member 34 are chamfered. In addition, it is preferable that a tapered surface 34a that is in surface contact with the tapered surface a of the substrate A is formed, and the inclination of both is set to the same gradient. When the taper surface a of the substrate A and the taper surface 34a of the energization member 34 are brought into surface contact with each other, they can be brought into electrical close contact with each other, and the substrate A or the energization member 34 side rotates. The rotation can be transmitted by the contacted resistance and can be rotated in synchronization.
With such a structure, the contact area is large, and the effects of slipping and wear when rotating are reduced, so that stable current supply is possible.

また、通電部材34が接続された通電用シャフト33は、基材Aと同期して回転するため、通電用シャフト33と電源21は回転給電可能なコネクタ(図示略)にて電気的に接触(接続)されている。回転給電可能なコネクタとしてロータリーコネクタ、スリップリング等があるが、ロータリーコネクタが回転時の電流安定性がよく好ましい。また、通電部材34を基材Aの一端面にのみ面接触させて、通電を行うようにしてもよい。   In addition, the energization shaft 33 to which the energization member 34 is connected rotates in synchronization with the base material A, so that the energization shaft 33 and the power source 21 are in electrical contact with a connector (not shown) capable of rotational power feeding (not shown). It is connected. There are a rotary connector, a slip ring, and the like as a connector capable of rotating power supply. However, the rotary connector is preferable because of good current stability during rotation. Further, the energization member 34 may be energized by bringing it into surface contact with only one end surface of the substrate A.

外槽40は処理槽10を収容するものであり、図2,6に示すように、処理槽10内の電解液Lはオーバーフロー部13から排出され、外槽40へと流れる。外槽40で受けた電解液Lは、流下流路41を通って貯留槽50へ流下する。
貯留槽50には電解液Lを加熱または冷却して電解液Lの温度を調節し、電解処理直前および電解処理中には電解液Lを冷却する温度調節手段53が設けられている。この例の温度調節手段53は、電解液Lを冷却する熱交換器53aと、電解液Lを加熱するヒータ53bとからなり、貯留槽50内で調温された電解液Lは、ポンプ52によって返送流路51を通って処理槽10の電解液供給部12から、処理槽本体11へ返送される。
なお、熱交換器53aとしては水、オイル等を熱媒とした熱交換器等が挙げられ、ヒータ53bとしては電気ヒータ等が挙げられる。どちらも電解液Lに浸漬させていても腐食などの問題が生じないよう、コーティングされたものが好ましい。
The outer tank 40 accommodates the processing tank 10, and as shown in FIGS. 2 and 6, the electrolytic solution L in the processing tank 10 is discharged from the overflow portion 13 and flows to the outer tank 40. The electrolyte L received in the outer tank 40 flows down to the storage tank 50 through the flow-down channel 41.
The storage tank 50 is provided with temperature adjusting means 53 for adjusting the temperature of the electrolytic solution L by heating or cooling the electrolytic solution L, and cooling the electrolytic solution L immediately before and during the electrolytic process. The temperature adjusting means 53 in this example includes a heat exchanger 53 a that cools the electrolytic solution L and a heater 53 b that heats the electrolytic solution L, and the electrolytic solution L adjusted in the storage tank 50 is supplied by the pump 52. It returns to the processing tank main body 11 from the electrolyte solution supply part 12 of the processing tank 10 through the return flow path 51.
The heat exchanger 53a includes a heat exchanger using water, oil, or the like as a heat medium, and the heater 53b includes an electric heater. Both are preferably coated so that problems such as corrosion do not occur even when immersed in the electrolyte L.

<作用効果>
以上説明した本発明の電解処理装置1は、本発明の処理槽10を備える。よって、処理槽10の処理槽本体11内で電解液Lが滞留しにくい。
なお、貯留槽50から電解液Lを電解液供給部12へ返送する際はポンプ52を用いるが、電解液Lは重力に従って電解液供給部12から処理槽本体11へ送り出される。従って、本発明の電解処理装置1は、図12に示す従来の処理槽70のように、この処理槽70の下部に設けられた供給管71から、ポンプ73によって電解液L’を処理槽70の上方へ(すなわち、重力に逆らって)吐出させる場合に比べて、ポンプの圧力の影響を受けにくい。そのため、電解処理する基材Aが長くなり、処理槽本体11の長手方向の長さや電解液供給部12が長くなっても、電解液供給部12の両端において、ポンプから受ける電解液の圧力差が小さい。
<Effect>
The electrolytic treatment apparatus 1 of the present invention described above includes the treatment tank 10 of the present invention. Therefore, the electrolytic solution L is less likely to stay in the processing tank body 11 of the processing tank 10.
In addition, when returning the electrolyte solution L from the storage tank 50 to the electrolyte solution supply part 12, the pump 52 is used, but the electrolyte solution L is sent out from the electrolyte solution supply part 12 to the process tank main body 11 according to gravity. Accordingly, the electrolytic treatment apparatus 1 of the present invention is configured to remove the electrolytic solution L ′ from the supply pipe 71 provided at the lower portion of the treatment tank 70 by the pump 73 like the conventional treatment tank 70 shown in FIG. Compared with the case of discharging upward (that is, against gravity), it is less affected by the pressure of the pump. Therefore, even if the base material A to be subjected to electrolytic treatment becomes long and the length of the treatment tank body 11 in the longitudinal direction or the electrolytic solution supply unit 12 becomes long, the pressure difference between the electrolytic solutions received from the pumps at both ends of the electrolytic solution supply unit 12 Is small.

従って、本発明の電解処理装置1であれば、処理槽10の処理槽本体11内において電解液Lが部分的に滞留するのを防止できるので、基材Aの外周面を均一に電解処理できる。
特に、アルミニウム基材を陽極酸化処理する場合は、電解液や基材表面の温度斑を抑制することが重要となるが、本発明の電解処理装置1であれば、処理槽本体11内での電解液Lの滞留部が発生しにくいので、温度斑が生じにくい。よって、基材Aの外周面に形成される細孔の深さのバラツキが抑えられる。
Therefore, the electrolytic treatment apparatus 1 of the present invention can prevent the electrolytic solution L from partially staying in the treatment tank body 11 of the treatment tank 10, so that the outer peripheral surface of the substrate A can be subjected to uniform electrolytic treatment. .
In particular, when anodizing an aluminum base material, it is important to suppress temperature fluctuations on the electrolyte solution and the surface of the base material. Since the retention part of the electrolyte solution L hardly occurs, temperature spots are hardly generated. Therefore, variation in the depth of the pores formed on the outer peripheral surface of the substrate A is suppressed.

また、本発明の電解処理装置1は、処理槽本体11の底部が円弧状に湾曲しているので、図12に示すような直方体状の処理槽70に比べて容積を縮小できる。よって、電解液の使用量も抑制できる。
なお、本発明の電解処理装置1であれば、電解液Lがスムーズに処理槽本体11内を流動するので、多孔板などの流動を調整する部材を処理槽10内に設ける必要がない。
Moreover, since the bottom part of the processing tank main body 11 is curving in circular arc shape, the electrolytic processing apparatus 1 of this invention can reduce a volume compared with the rectangular parallelepiped processing tank 70 as shown in FIG. Therefore, the usage-amount of electrolyte solution can also be suppressed.
In the electrolytic treatment apparatus 1 of the present invention, the electrolytic solution L smoothly flows in the treatment tank main body 11, so that it is not necessary to provide a member for adjusting the flow such as a perforated plate in the treatment tank 10.

<他の実施形態>
本発明の電解処理装置は図6,7に示す電解処理装置1に限定されない。例えば図6,7に示す電解処理装置1では、電極板20が基材Aを挟むように配置され、かつ処理槽本体11の底部11aの内面形状に沿うように湾曲しているが、例えば図8に示すように、電極板20は前記処理槽本体11に浸漬された基材Aを介して、オーバーフロー部13に対向する位置にのみ配置されていてもよい。このとき、電極板20の電解液Lに接触している面積(接触面積)と、基材Aの電解液Lに接触している面積(処理面積)との比(接触面積:処理面積)が1:1以下となるように、電極板20が処理槽本体11中の電解液Lに浸漬されるのが好ましい。
電解処理時に基材Aと電極板20に流れる電流値は、基材Aの処理面積と電極板20の接触面積の比に比例する。電極板20の接触面積が基材Aの処理面積より大きいほど電流がより流れる。電流が多く流れると処理槽10内に発生するジュール熱(電流×電圧)が大きくなり、発熱量が増えてしまう。そのため、除熱するための装置の冷却能力が増大する。処理槽10内を均一な温度に保つのであれば、発生するジュール熱は低い方が好ましい。
電極板20の接触面積は基材Aの処理面積より小さくても問題ないが、小さくしすぎても最終的な電流値は基材Aの処理面積によって決まるため、電極板20を小さくしても電流値抑制の効果は頭打ちになる。そのため、流れる電流量を抑えるためには電極板20の接触面積と基材Aの処理面積との比は1:1以下が好ましい。
<Other embodiments>
The electrolytic treatment apparatus of the present invention is not limited to the electrolytic treatment apparatus 1 shown in FIGS. For example, in the electrolytic treatment apparatus 1 shown in FIGS. 6 and 7, the electrode plate 20 is disposed so as to sandwich the base material A, and is curved so as to follow the inner surface shape of the bottom portion 11 a of the treatment tank body 11. As shown in FIG. 8, the electrode plate 20 may be disposed only at a position facing the overflow portion 13 through the base material A immersed in the processing tank body 11. At this time, the ratio (contact area: treatment area) of the area (contact area) in contact with the electrolyte solution L of the electrode plate 20 and the area (treatment area) in contact with the electrolyte solution L of the substrate A is It is preferable that the electrode plate 20 is immersed in the electrolytic solution L in the treatment tank body 11 so as to be 1: 1 or less.
The value of current flowing through the base material A and the electrode plate 20 during the electrolytic treatment is proportional to the ratio of the processing area of the base material A and the contact area of the electrode plate 20. As the contact area of the electrode plate 20 is larger than the processing area of the substrate A, current flows more. When a large amount of current flows, Joule heat (current × voltage) generated in the treatment tank 10 increases, and the amount of heat generation increases. Therefore, the cooling capacity of the apparatus for removing heat increases. If the inside of the treatment tank 10 is kept at a uniform temperature, the generated Joule heat is preferably low.
There is no problem even if the contact area of the electrode plate 20 is smaller than the processing area of the substrate A, but even if it is too small, the final current value is determined by the processing area of the substrate A. The effect of suppressing the current value reaches its peak. Therefore, in order to suppress the amount of flowing current, the ratio of the contact area of the electrode plate 20 and the processing area of the base material A is preferably 1: 1 or less.

また、図8に示す電極板20のような形状であると、図6,7に示す電極板20のように湾曲させる必要がないため、加工性が格段に良くなる。加えて、処理槽本体11の底部11aにおいて電解液Lがより流れやすくなるため、電解液Lの更新性がより高まる。
なお、図8においては外槽40を省略した。
Further, when the shape is like the electrode plate 20 shown in FIG. 8, it is not necessary to bend like the electrode plate 20 shown in FIGS. 6 and 7, so that the workability is remarkably improved. In addition, since the electrolyte solution L more easily flows at the bottom 11a of the treatment tank body 11, the renewability of the electrolyte solution L is further improved.
In addition, the outer tank 40 was abbreviate | omitted in FIG.

また、図6,7に示す電解処理装置1は、基材Aを回転させる回転手段30として支持軸31を備えているが、通電部材34に接続された通電用シャフト33を回転手段としてもよい。その場合、支持軸31は上記で説明した回転駆動部に接続せず、基材Aと同期して回転できるような構造になっていればよい。   Moreover, although the electrolytic treatment apparatus 1 shown in FIGS. 6 and 7 includes the support shaft 31 as the rotating means 30 for rotating the base material A, the energizing shaft 33 connected to the energizing member 34 may be used as the rotating means. . In that case, the support shaft 31 is not connected to the rotation driving unit described above, and may be configured to be able to rotate in synchronization with the base material A.

さらに、通電部材34は、上述したように全体が導電性を有する材料から構成されている必要はなく、基材Aと通電用シャフト33とを電気的に接続可能な構成とされていればよい。具体的には、通電部材34のテーパ面34aと、通電用シャフト33とを電気的に接続する部分以外が絶縁物質によりコーティングされた構成であっても構わない。また、テーパ面34aについても、安定的に基材Aと通電部材34とを電気的に接続可能であれば、その表面の一部が導電性物質以外からなっても構わない。
また、上述した実施形態では、基材Aの両端部の内径側角部を面取りして、テーパ面aを形成し、通電部材34の外径側角部を面取りして、テーパ面34aを形成したが、基材Aの両端部の外径側角部を面取りし、通電部材34の内径側角部を面取りしてテーパ面を形成してもよい。
さらに、それぞれの通電部材34に形成されるテーパ面34aは、同一の形状である必要はなく、異なる形状であっても構わない。また、テーパ面34aは、通電部材34の少なくとも一方に形成される構成であっても構わない。
Furthermore, the energization member 34 does not need to be entirely composed of a conductive material as described above, and may be configured to be able to electrically connect the base material A and the energization shaft 33. . Specifically, the configuration may be such that a portion other than the portion that electrically connects the tapered surface 34a of the energization member 34 and the energization shaft 33 is coated with an insulating material. As for the tapered surface 34a, as long as the base material A and the energizing member 34 can be stably electrically connected, a part of the surface may be made of a material other than the conductive material.
In the above-described embodiment, the inner diameter side corners of both ends of the substrate A are chamfered to form the tapered surface a, and the outer diameter side corner of the energizing member 34 is chamfered to form the tapered surface 34a. However, the outer diameter side corners of both ends of the substrate A may be chamfered, and the inner diameter side corners of the energizing member 34 may be chamfered to form a tapered surface.
Further, the tapered surfaces 34a formed on the respective energizing members 34 need not have the same shape, and may have different shapes. Further, the tapered surface 34 a may be configured to be formed on at least one of the energization members 34.

<用途>
本発明の電解処理装置は、陽極酸化等の化成処理や、めっき等の皮膜処理など、基材の表面を電解処理する装置として用いることができるが、特にアルミニウム基材を陽極酸化する陽極酸化処理装置として好適である。
以下、本発明の電解処理装置を用い、アルミニウム基材を陽極酸化してモールドを製造する方法の一例について説明する。
<Application>
The electrolytic treatment apparatus of the present invention can be used as an apparatus for electrolytically treating the surface of a substrate such as chemical conversion treatment such as anodization or coating treatment such as plating. In particular, an anodization treatment for anodizing an aluminum substrate. It is suitable as a device.
Hereinafter, an example of a method for producing a mold by anodizing an aluminum substrate using the electrolytic treatment apparatus of the present invention will be described.

まず、図6,7に示すように、基材Aとしてアルミニウム基材を支持軸31の上に設置する。この際、図2に示すように、基材Aの外周面A’と処理槽本体11の底部11aの内面11a’との間に空隙Sが形成されるように、基材Aを支持軸31上に設置する。具体的には、基材Aの中心軸Pから底部11aの内面11a’までの距離Dが、基材Aの半径(r)の1.25〜2倍となるように、基材Aを設置するのが好ましい。
なお、底部11aの内面11a’の形状が半円形状の場合は、この半円の直径上の中心と基材Aの中心軸Pとが重なるように、基材Aを設置するのが好ましい。
First, as shown in FIGS. 6 and 7, an aluminum base material is installed on the support shaft 31 as the base material A. At this time, as shown in FIG. 2, the base A is supported by the support shaft 31 so that a gap S is formed between the outer peripheral surface A ′ of the base A and the inner surface 11 a ′ of the bottom 11 a of the treatment tank body 11. Install on top. Specifically, the base material A is installed so that the distance D from the central axis P of the base material A to the inner surface 11a ′ of the bottom portion 11a is 1.25 to 2 times the radius (r) of the base material A. It is preferable to do this.
In addition, when the shape of inner surface 11a 'of the bottom part 11a is a semicircle shape, it is preferable to install the base material A so that the center on the diameter of this semicircle and the central axis P of the base material A may overlap.

その後、前後移動を行う上記駆動部(図示略)を用いて通電用シャフト33を両側から同時に動かして、通電部材34を基材Aに接触させる。なお、通電部材34に基材Aを接触させてから電解液Lを処理槽本体11に供給してもよいし、処理槽本体11に電解液Lが入っている状態で、通電部材34を基材Aに接触させても構わない。通電部材34と基材Aが接触した状態で上記回転駆動部(図示略)を駆動させて、支持軸31を回転させて基材Aを回転させる。
基材Aを回転させながら通電用シャフト33、通電部材34を介して、陽極となる基材Aと陰極となる電極板20に電圧を印加し、基材Aの陽極酸化を行う。
Thereafter, the energizing shaft 33 is moved simultaneously from both sides by using the drive unit (not shown) that moves back and forth to bring the energizing member 34 into contact with the substrate A. The electrolytic solution L may be supplied to the treatment tank main body 11 after the substrate A is brought into contact with the conductive member 34, or the conductive member 34 is used in a state where the electrolytic solution L is contained in the treatment tank main body 11. You may make it contact the material A. The rotation drive unit (not shown) is driven in a state where the energization member 34 and the substrate A are in contact with each other, and the support shaft 31 is rotated to rotate the substrate A.
A voltage is applied to the base material A serving as the anode and the electrode plate 20 serving as the cathode through the current-carrying shaft 33 and the current-carrying member 34 while rotating the base material A, so that the base material A is anodized.

基材Aに通電部材34を接触させる際、接触させる為の押し圧は0.2MPa以上が好ましい。回転時に接触させたテーパ面で滑りが発生することや、緊密に接触しきれていないために安定した電流供給に影響がある。しかし、押し圧があまりに大きいと基材Aの歪の原因になったり、回転が伝達できず止まったりすることもあるため、ワーク形状と回転駆動源の仕様により適宜選択を行う必要がある。   When the current-carrying member 34 is brought into contact with the substrate A, the pressing pressure for bringing it into contact is preferably 0.2 MPa or more. Slip occurs on the tapered surface that is contacted during rotation, and there is an influence on stable current supply due to insufficient contact. However, if the pressing pressure is too large, it may cause distortion of the base material A, or the rotation cannot be transmitted and may stop, so that it is necessary to make an appropriate selection depending on the workpiece shape and the specification of the rotation drive source.

基材Aの陽極酸化を行う間は、基材Aを回転させながら、処理槽本体11から電解液Lの一部を排出しつつ、処理槽本体11に同量の電解液を供給する。具体的には、処理槽10のオーバーフロー部13において処理槽本体11から外槽40へと電解液Lを排出させ、排出した電解液Lを外槽40から貯留槽50に流下させ、電解液Lの温度を貯留槽50で調節した後、該電解液Lを、処理槽本体11の長手方向に沿うように、一方の側面上方に設けられた電解液供給部12に返送し、この電解液供給部12から処理槽本体11内に供給する。
このとき、処理槽本体11の底部11aの内面11a’が円弧状に湾曲しているため、電解液Lのほぼ均一な流れが形成され、電解液Lが滞留することなくスムーズにオーバーフロー部13へと移動できる。
なお、電界液Lの流れる方向とは反対方向に基材Aを回転させるのが好ましい。
While the base material A is anodized, the same amount of electrolytic solution is supplied to the processing tank body 11 while discharging the part of the electrolytic solution L from the processing tank body 11 while rotating the base material A. Specifically, the electrolytic solution L is discharged from the processing tank body 11 to the outer tank 40 in the overflow portion 13 of the processing tank 10, and the discharged electrolytic solution L is caused to flow down from the outer tank 40 to the storage tank 50. After the temperature of the storage tank 50 is adjusted, the electrolytic solution L is returned to the electrolytic solution supply unit 12 provided above one side surface along the longitudinal direction of the processing tank main body 11 to supply the electrolytic solution. It supplies from the part 12 in the processing tank main body 11. FIG.
At this time, since the inner surface 11a ′ of the bottom 11a of the treatment tank body 11 is curved in an arc shape, a substantially uniform flow of the electrolytic solution L is formed, and the electrolytic solution L smoothly flows to the overflow portion 13 without stagnation. And move.
In addition, it is preferable to rotate the base material A in the direction opposite to the direction in which the electrolysis liquid L flows.

電解液供給部12から処理槽本体11への電解液Lの供給量は、処理槽本体11の容積に対して、循環回数が3分に1回以上が好ましい。そうすることで、処理槽本体11は頻繁な液更新を行うことができ、除熱、発生した水素除去を効率よく行える。   The supply amount of the electrolytic solution L from the electrolytic solution supply unit 12 to the processing tank main body 11 is preferably such that the number of circulations is at least once every three minutes with respect to the volume of the processing tank main body 11. By doing so, the processing tank main body 11 can perform frequent liquid renewal, and can efficiently remove heat and remove generated hydrogen.

基材Aの回転数は、3rpm以上が好ましい。基材Aの回転数が3rpm以上であれば、基材Aの周囲における電解液Lの濃度や温度のムラがより効果的に抑えられる。駆動装置の能力の点から、基材Aの回転数は、10rpm以下が好ましい。   The rotation speed of the substrate A is preferably 3 rpm or more. If the rotation speed of the base material A is 3 rpm or more, unevenness of the concentration and temperature of the electrolyte L around the base material A can be more effectively suppressed. In view of the capability of the driving device, the rotation speed of the substrate A is preferably 10 rpm or less.

なお、電解液Lの温度調節は上述したように貯留槽50内で行われるが、具体的には、電解液Lを冷却する熱交換器53aと電解液Lを加熱するヒータ53bをそれぞれ制御することで、電解液Lを温度調節している。制御の方法としてはフィードバック型のPID制御などがある。
ここで、「PID制御」とは、制御対象の出力値と目標との偏差量を用い、比例制御、積分制御、微分制御の3つの制御を組み合わせることにより、出力値が短時間で目標値に到達するように調整する方法のことである。
The temperature adjustment of the electrolytic solution L is performed in the storage tank 50 as described above. Specifically, the heat exchanger 53a for cooling the electrolytic solution L and the heater 53b for heating the electrolytic solution L are controlled. Thus, the temperature of the electrolytic solution L is adjusted. As a control method, there is a feedback type PID control.
Here, “PID control” uses the amount of deviation between the output value of the controlled object and the target, and combines the three controls of proportional control, integral control, and differential control, so that the output value becomes the target value in a short time. It is a method of adjusting to reach.

基材Aを処理槽10に投入する前の電解液Lの温度調節は、冷却と加熱の両方を制御して行えばよいが、電解処理が始まると、処理槽本体11内に流れた電流によるジュール熱や電解処理による反応熱によって電解液Lは発熱する。その際、処理槽本体11内の温度上昇、若しくは処理槽本体11から送られた電解液Lによる貯留槽50の温度上昇を確認して、貯留槽50内ではPID制御を行い、電解液Lを冷却して所望の温度に保とうとする。
しかし、処理槽本体11内が発熱し、貯留槽50で調温された電解液Lが処理槽本体11に届くまではタイムラグが発生してしまい、その間に処理槽本体11内では不要な温度上昇が発生し、基材Aの表面に形成する酸化皮膜の生成速度が変わり、均一な電解処理が行えなくなる場合がある。
The temperature adjustment of the electrolytic solution L before the base material A is put into the treatment tank 10 may be performed by controlling both cooling and heating. However, when the electrolytic treatment starts, the current flows in the treatment tank main body 11. The electrolyte solution L generates heat due to Joule heat or reaction heat generated by electrolytic treatment. In that case, the temperature rise in the processing tank main body 11 or the temperature rise of the storage tank 50 by the electrolytic solution L sent from the processing tank main body 11 is confirmed, PID control is performed in the storage tank 50, and the electrolytic solution L is used. Try to cool and keep at the desired temperature.
However, a time lag occurs until the inside of the processing tank main body 11 generates heat and the electrolyte L adjusted in the storage tank 50 reaches the processing tank main body 11, during which an unnecessary temperature rise occurs in the processing tank main body 11. May occur, the generation rate of the oxide film formed on the surface of the substrate A may change, and uniform electrolytic treatment may not be performed.

そこで、不要な温度上昇を避けるには、電解液処理中に電解液Lを冷却するのはもちろんのこと、電解処理直前に貯留槽50内を制御したい温度よりわずかに冷却しておくことが好ましい。すなわち、基材Aを処理槽10に投入する前は冷却と加熱で制御を行っているところ、基材Aを処理槽10に投入して電解処理を開始する直前は冷却のみで制御を行い、低めに電解液を保っておく。そうすることで、電解処理が開始することで発生した発熱した電解液も瞬時に冷却することが可能となる。   Therefore, in order to avoid an unnecessary temperature rise, it is preferable to cool the electrolyte solution L slightly during the electrolytic solution treatment, and slightly cooler than the temperature at which the inside of the storage tank 50 is desired to be controlled immediately before the electrolytic treatment. . That is, the control is performed by cooling and heating before the base material A is put into the treatment tank 10, and the control is performed only by cooling just before the base material A is put into the treatment tank 10 and the electrolytic treatment is started. Keep electrolyte low. By doing so, it is also possible to instantaneously cool the electrolyte solution that has generated heat when the electrolytic treatment starts.

上述のようにして基材Aを陽極酸化すると、図9(a)に示す状態から図9(b)に示すように細孔61を有する酸化皮膜62が形成される。
基材Aとして用いられるアルミニウムの純度は、99%以上が好ましく、99.5%以上がより好ましく、99.8%以上がさらに好ましい。アルミニウムの純度が低いと、陽極酸化した際に、不純物の偏析により可視光線を散乱する大きさの凹凸構造が形成されたり、陽極酸化で形成される細孔61の規則性が低下したりする。電解液としては、シュウ酸、硫酸等が挙げられる。
When the base material A is anodized as described above, an oxide film 62 having pores 61 is formed as shown in FIG. 9B from the state shown in FIG.
The purity of aluminum used as the substrate A is preferably 99% or more, more preferably 99.5% or more, and further preferably 99.8% or more. When the purity of aluminum is low, when anodization is performed, an uneven structure having a size that scatters visible light due to segregation of impurities is formed, or the regularity of the pores 61 formed by anodization is reduced. Examples of the electrolytic solution include oxalic acid and sulfuric acid.

シュウ酸を電解液として用いる場合:
シュウ酸の濃度は、0.7M以下が好ましい。シュウ酸の濃度が0.7Mを超えると、電流値が高くなりすぎて酸化皮膜の表面が粗くなることがある。
ある所定の周期で規則性の高い細孔を有する陽極酸化アルミナを得るには、所定の周期に合った化成電圧をかける必要がある。例えば周期が100nmの陽極酸化アルミナの場合、化成電圧は30〜60Vが好ましい。所定の周期に合った化成電圧をかけない場合、規則性が低下する傾向にある。
電解液の温度は、60℃以下が好ましく、45℃以下がより好ましい。電解液の温度が60℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
When using oxalic acid as electrolyte:
The concentration of oxalic acid is preferably 0.7 M or less. When the concentration of oxalic acid exceeds 0.7M, the current value becomes too high, and the surface of the oxide film may become rough.
In order to obtain anodized alumina having fine pores with high regularity at a predetermined cycle, it is necessary to apply a conversion voltage suitable for the predetermined cycle. For example, in the case of anodized alumina having a period of 100 nm, the formation voltage is preferably 30 to 60V. When the formation voltage suitable for the predetermined cycle is not applied, the regularity tends to be lowered.
The temperature of the electrolytic solution is preferably 60 ° C. or lower, and more preferably 45 ° C. or lower. When the temperature of the electrolytic solution exceeds 60 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken, or the surface may melt and the regularity of the pores may be disturbed.

硫酸を電解液として用いる場合:
硫酸の濃度は0.7M以下が好ましい。硫酸の濃度が0.7Mを超えると、電流値が高くなりすぎて定電圧を維持できなくなることがある。
ある所定の周期で規則性の高い細孔を有する陽極酸化アルミナを得るには、所定の周期に合った化成電圧をかける必要がある。例えば周期が63nmの陽極酸化アルミナの場合、化成電圧は25〜30Vが好ましい。所定の周期に合った化成電圧をかけない場合、規則性が低下する傾向にある。
電解液の温度は、30℃以下が好ましく、20℃以下がよりに好ましい。電解液の温度が30℃を超えると、いわゆる「ヤケ」といわれる現象がおこり、細孔が壊れたり、表面が溶けて細孔の規則性が乱れたりすることがある。
When using sulfuric acid as the electrolyte:
The concentration of sulfuric acid is preferably 0.7M or less. If the concentration of sulfuric acid exceeds 0.7M, the current value may become too high to maintain a constant voltage.
In order to obtain anodized alumina having fine pores with high regularity at a predetermined cycle, it is necessary to apply a conversion voltage suitable for the predetermined cycle. For example, in the case of anodized alumina having a period of 63 nm, the formation voltage is preferably 25 to 30V. When the formation voltage suitable for the predetermined cycle is not applied, the regularity tends to be lowered.
The temperature of the electrolytic solution is preferably 30 ° C. or lower, and more preferably 20 ° C. or lower. When the temperature of the electrolytic solution exceeds 30 ° C., a so-called “burn” phenomenon occurs, and the pores may be broken or the surface may melt and the regularity of the pores may be disturbed.

そして、図9(b)に示すように細孔61を有する酸化皮膜62を形成した後は、本発明の電解処理装置1を用いて陽極酸化することにより複数の細孔を有する陽極酸化アルミナを形成する工程(陽極酸化処理)と、該細孔の径を拡大させる工程(細孔径拡大処理)とを繰り返すことで、ロール状モールドが製造される。   And after forming the oxide film 62 which has the pore 61 as shown in FIG.9 (b), the anodic oxidation alumina which has a several pore is carried out by anodizing using the electrolytic treatment apparatus 1 of this invention. A roll-shaped mold is manufactured by repeating the step of forming (anodizing treatment) and the step of expanding the diameter of the pores (pore diameter expanding treatment).

陽極酸化処理工程と、細孔径拡大処理とを繰り返す場合は、先ず、図9(c)に示すように、酸化皮膜62を一旦除去する。ここで、これを陽極酸化の細孔発生点63にすることで細孔の規則性を向上することができる。
酸化皮膜を除去する方法としては、アルミニウムを溶解せず、酸化皮膜を選択的に溶解する溶液に溶解させて除去する方法が挙げられる。このような溶液としては、例えば、クロム酸/リン酸混合液等が挙げられる。
When the anodizing process and the pore diameter expanding process are repeated, first, the oxide film 62 is temporarily removed as shown in FIG. Here, the regularity of the pores can be improved by making this the pore generation point 63 of anodic oxidation.
Examples of the method for removing the oxide film include a method in which aluminum is not dissolved but is dissolved in a solution that selectively dissolves the oxide film and removed. Examples of such a solution include a chromic acid / phosphoric acid mixed solution.

そして、酸化皮膜を除去した基材Aを再度、陽極酸化すると、図9(d)に示すように、円柱状の細孔61を有する酸化皮膜62が形成される。
陽極酸化は、上述した電解処理装置1を用いて行う。条件は、図9(b)に示した酸化皮膜62を形成した際と同様な条件であればよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
Then, when the base material A from which the oxide film has been removed is anodized again, an oxide film 62 having columnar pores 61 is formed as shown in FIG.
Anodization is performed using the above-described electrolytic treatment apparatus 1. The conditions may be the same as those when the oxide film 62 shown in FIG. 9B is formed. Deeper pores can be obtained as the anodic oxidation time is lengthened.

そして、図9(e)に示すように、細孔61の径を拡大させる処理を行う。細孔径拡大処理は、酸化皮膜を溶解する溶液に浸漬して陽極酸化で得られた細孔の径を拡大させる処理である。このような溶液としては、例えば、5質量%程度のリン酸水溶液等が挙げられる。
細孔径拡大処理の時間を長くするほど、細孔径は大きくなる。
Then, as shown in FIG. 9E, a process for enlarging the diameter of the pore 61 is performed. The pore diameter expansion treatment is a treatment for expanding the diameter of the pores obtained by anodic oxidation by immersing in a solution dissolving the oxide film. Examples of such a solution include a phosphoric acid aqueous solution of about 5% by mass.
The longer the pore diameter expansion processing time, the larger the pore diameter.

そして、再度、陽極酸化すると、図9(f)に示すように、円柱状の細孔61の底部から下に延びる、直径の小さい円柱状の細孔61がさらに形成される。
陽極酸化は、上述した電解処理装置1を用いて行う。条件は、上述と同様な条件であればよい。陽極酸化の時間を長くするほど深い細孔を得ることができる。
Then, when anodized again, as shown in FIG. 9 (f), cylindrical pores 61 having a small diameter that extend downward from the bottom of the cylindrical pores 61 are further formed.
Anodization is performed using the above-described electrolytic treatment apparatus 1. The conditions may be the same conditions as described above. Deeper pores can be obtained as the anodic oxidation time is lengthened.

そして、上述したような、細孔径拡大処理と、陽極酸化処理を繰り返すと、直径が開口部から深さ方向に連続的に減少する形状の細孔61を有する陽極酸化アルミナ(アルミニウムの多孔質の酸化皮膜(アルマイト))が形成された、図9(g)に示すようなロール状モールド60が得られる。最後は細孔径拡大処理で終わることが好ましい。
繰り返し回数は、合計で3回以上が好ましく、5回以上がより好ましい。繰り返し回数が2回以下では、非連続的に細孔の直径が減少するため、このような細孔を転写して製造され光学フィルムの反射率低減効果は不十分である。
Then, when the pore diameter enlargement process and the anodizing process as described above are repeated, the anodized alumina having pores 61 having a shape in which the diameter continuously decreases in the depth direction from the opening (a porous aluminum material). A roll-shaped mold 60 as shown in FIG. 9G on which an oxide film (alumite) is formed is obtained. It is preferable that the last end is a pore diameter expansion process.
The total number of repetitions is preferably 3 times or more, and more preferably 5 times or more. When the number of repetitions is 2 or less, the diameter of the pores decreases discontinuously, and thus the effect of reducing the reflectance of the optical film produced by transferring such pores is insufficient.

細孔61の形状としては、略円錐形状、角錐形状等が挙げられる。細孔61間の平均周期は、可視光線の波長以下、すなわち400nm以下である。細孔61間の平均周期は、25nm以上が好ましい。   Examples of the shape of the pore 61 include a substantially conical shape and a pyramid shape. The average period between the pores 61 is not more than the wavelength of visible light, that is, not more than 400 nm. The average period between the pores 61 is preferably 25 nm or more.

細孔61のアスペクト比(細孔の深さ/細孔の開口部の幅)は、1.5以上が好ましく、2.0以上がより好ましい。   The aspect ratio (depth of the pore / width of the opening of the pore) of the pore 61 is preferably 1.5 or more, and more preferably 2.0 or more.

以上に記載した本実施形態に係る電解処理装置1では、基材Aとしてロール状のアルミニウム基材を処理槽本体11の電解液L中で陽極酸化する際に、電解液Lを処理槽本体11の一方の側面上方から供給し、他方の側面の上部から排出する。このとき、処理槽本体11の底部の内面が円弧状に湾曲しているため、電解液Lが滞留することなくスムーズにオーバーフロー部へと移動できる。従って、電解液や基材表面の温度斑が抑制されるので、基材Aの外周面全体にわたってほぼ均一に陽極酸化が行われ、その結果、細孔の深さのバラツキが抑えられたロール状のモールドを製造できる。   In the electrolytic processing apparatus 1 according to the present embodiment described above, when the roll-shaped aluminum base material is anodized in the electrolytic solution L of the processing tank body 11 as the base material A, the electrolytic solution L is used as the processing tank body 11. Is supplied from above one side and discharged from the upper part of the other side. At this time, since the inner surface of the bottom of the treatment tank main body 11 is curved in an arc shape, the electrolytic solution L can smoothly move to the overflow portion without stagnation. Accordingly, since temperature fluctuations on the electrolyte solution and the substrate surface are suppressed, anodization is performed almost uniformly over the entire outer peripheral surface of the substrate A, and as a result, a roll shape in which variations in the depth of the pores are suppressed. Can be manufactured.

特に、基材Aの中心軸を回転軸として基材Aを回転させれば、基材の周囲における電解液の濃度や温度の斑が抑えられるので、より均一に基材Aを陽極酸化でき、細孔の深さのバラツキがより抑えられたロール状のモールドを製造できる。
さらに、基材Aの外周面と処理槽本体の底部の内面との間に特定の大きさの空隙が形成されるように基材Aを処理槽本体11内に設置すれば、基材Aと処理槽本体11の間に位置する電解液Lが緩衝材の役割を十分に果たすことができる。その結果、陽極酸化時の発熱により処理槽本体11が加熱されても、基材Aが処理槽本体11によって直接温められるのを抑制できる。従って、基材の外周面の温度斑をより効果的に防止でき、深さのバラツキがより抑えられたロール状のモールドを製造できる。
In particular, if the substrate A is rotated with the central axis of the substrate A as the rotation axis, the concentration of the electrolyte solution and temperature spots around the substrate can be suppressed, so that the substrate A can be anodized more uniformly. It is possible to manufacture a roll-shaped mold in which the variation in the depth of the pores is further suppressed.
Furthermore, if the base material A is installed in the processing tank body 11 such that a gap of a specific size is formed between the outer peripheral surface of the base material A and the inner surface of the bottom of the processing tank body, the base material A and The electrolyte L located between the processing tank main bodies 11 can fully fulfill the role of a buffer material. As a result, even if the treatment tank main body 11 is heated by the heat generated during the anodic oxidation, the substrate A can be prevented from being directly warmed by the treatment tank main body 11. Accordingly, temperature variations on the outer peripheral surface of the base material can be more effectively prevented, and a roll-shaped mold in which variation in depth is further suppressed can be manufactured.

以下、実施例により本発明を具体的に説明するが、本発明は以下の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention concretely, this invention is not limited to a following example.

[実施例1]
図6に示す電解処理装置1を用い、中空円柱状のアルミニウム基材(純度:99.99%、長さ:1000mm、外径:200mm、内径:155mm)を陽極酸化処理した。
なお、電解処理装置1には、図2に示す処理槽10が備わり、中心軸Pから底部11aの内面11a’までの距離Dは400mmであった。
また、電解液Lの循環回数が3分に1回となる流量、かつ16℃に温度調節した電解液Lを処理槽10の処理槽本体11に供給した。
[Example 1]
A hollow cylindrical aluminum substrate (purity: 99.99%, length: 1000 mm, outer diameter: 200 mm, inner diameter: 155 mm) was anodized using the electrolytic treatment apparatus 1 shown in FIG.
The electrolytic treatment apparatus 1 is provided with the treatment tank 10 shown in FIG. 2, and the distance D from the central axis P to the inner surface 11a ′ of the bottom portion 11a was 400 mm.
Further, the electrolytic solution L whose temperature was adjusted to 16 ° C. at a flow rate at which the electrolytic solution L was circulated once every 3 minutes was supplied to the processing tank body 11 of the processing tank 10.

図10,11に、陽極酸化処理した際の電解液温度を示す。
図10のグラフには、処理槽壁面から50mm離れた箇所の電解液温度を処理槽全域にて数点測定したときの、電解処理した時間(処理時間)と上昇温度との関係を示す。
一方、図11のグラフには、基材表面付近の電解液温度を基材の長手方向の数点にて測定したときの、温度差の最大値(最大温度差)と電解処理した時間(処理時間)との関係を示す。
10 and 11 show the electrolyte temperature when anodizing is performed.
The graph of FIG. 10 shows the relationship between the time of electrolytic treatment (treatment time) and the rising temperature when the electrolyte solution temperature at a location 50 mm away from the treatment vessel wall surface is measured at several points throughout the treatment vessel.
On the other hand, the graph of FIG. 11 shows the maximum value of the temperature difference (maximum temperature difference) and the time of electrolytic treatment (treatment) when the electrolyte solution temperature near the substrate surface is measured at several points in the longitudinal direction of the substrate. Time).

[比較例1]
図2に示す処理槽10の代わりに、図12に示す直方体状の処理槽70を用いた以外は、実施例1と同様にして中空円柱状のアルミニウム基材を陽極酸化処理した。図10,11に陽極酸化処理した際の電解液温度を示す。
[Comparative Example 1]
A hollow cylindrical aluminum base material was anodized in the same manner as in Example 1 except that the rectangular parallelepiped processing tank 70 shown in FIG. 12 was used instead of the processing tank 10 shown in FIG. 10 and 11 show the electrolyte temperature when anodizing is performed.

図10から明らかなように、陽極酸化処理を行うことで、処理槽本体内の電解液の温度は、通電による発熱、酸化反応の熱などの影響で上昇するが、実施例1の場合は比較例1の場合に比べて上昇温度が小さかった。これは、図12に示すように処理槽70の底部が湾曲しておらず、直方体状の処理槽では循環効率が悪く電解液の滞留部が発生しやすく、発熱した際の熱が滞留部に溜まり、滞留部以外の箇所と比べると電解液の温度が高くなってしまうことによるものと考えられる。
しかし、本発明の処理槽および電解処理装置であれば、処理槽本体の底部の内面が基材の周面に沿うように円弧状に湾曲しているので、電解液の滞留部が発生しにくく、温度斑が生じにくい。
As is clear from FIG. 10, the temperature of the electrolytic solution in the main body of the treatment tank rises due to the influence of heat generated by energization, the heat of the oxidation reaction, etc. by performing the anodizing treatment. Compared with the case of Example 1, the temperature rise was small. This is because, as shown in FIG. 12, the bottom of the processing tank 70 is not curved, and in the rectangular parallelepiped processing tank, the circulation efficiency is poor and an electrolytic solution retention portion is likely to be generated, and the heat generated when the heat is generated becomes in the retention portion. It is considered that the temperature of the electrolytic solution is higher than that of the accumulated portion other than the accumulated portion.
However, in the treatment tank and the electrolytic treatment apparatus of the present invention, the inner surface of the bottom of the treatment tank main body is curved in an arc shape so as to be along the peripheral surface of the base material, so that a retention portion of the electrolytic solution is hardly generated. , Temperature spots are less likely to occur.

また、図11から明らかなように、実施例1の場合は比較例1の場合に比べて基材表面付近の電解液の最大温度差が小さかった。基材表面付近の電解液の温度差が大きいほど基材表面の温度斑が大きいことを意味するため、陽極酸化処理を行った際には細孔の深さのバラつきに影響する。比較例1の場合は基材表面付近の電解液の最大温度差が大きいため、基材表面の温度斑も大きい。これは、直方体状の処理槽では循環効率が悪く電解液の滞留部が発生しやすく、その結果、滞留部付近における基材表面の電解液温度が高くなることによるものと考えられる。
しかし、本発明の処理槽および電解処理装置であれば、処理槽本体の底部の内面が基材の周面に沿うように円弧状に湾曲しているので、電解液の滞留部が発生しにくく、基材表面の電解液温度が高くなるのを抑制できる。
Further, as apparent from FIG. 11, in the case of Example 1, the maximum temperature difference of the electrolyte solution in the vicinity of the substrate surface was smaller than in the case of Comparative Example 1. The larger the temperature difference of the electrolyte solution in the vicinity of the substrate surface, the greater the temperature variation on the substrate surface. Therefore, when the anodizing treatment is performed, the variation in the pore depth is affected. In the case of the comparative example 1, since the maximum temperature difference of the electrolyte solution in the vicinity of the substrate surface is large, the temperature unevenness on the substrate surface is also large. This is considered to be due to the fact that the cuboid treatment tank has poor circulation efficiency and is likely to generate a retention portion of the electrolyte, and as a result, the electrolyte temperature on the surface of the base material in the vicinity of the retention portion increases.
However, in the treatment tank and the electrolytic treatment apparatus of the present invention, the inner surface of the bottom of the treatment tank main body is curved in an arc shape so as to be along the peripheral surface of the base material, so that a retention portion of the electrolytic solution is hardly generated. It can suppress that the electrolyte solution temperature of a base-material surface becomes high.

また、実施例1で用いた処理槽は容積が130Lであったのに対し、比較例1で用いた処理槽は容積が250Lであった。
このように、本発明の処理槽であれば、電解液の滞留を防止できるばかりか、電解液の使用量をも抑制できることが確認できた。
Further, the volume of the treatment tank used in Example 1 was 130 L, whereas the volume of the treatment tank used in Comparative Example 1 was 250 L.
Thus, with the treatment tank of the present invention, it was confirmed that not only the retention of the electrolyte solution can be prevented, but also the amount of the electrolyte solution used can be suppressed.

1 電解処理装置
10 処理槽
11 処理槽本体
11a 底部
11a’ 内面
11b,11c 側面
12 電界液供給部
13 オーバーフロー部
20 電極板
30 回転手段
53 温度調節手段
A 基材
A’ 周面(外周面)
L 電解液
DESCRIPTION OF SYMBOLS 1 Electrolytic processing apparatus 10 Processing tank 11 Processing tank main body 11a Bottom part 11a 'Inner surface 11b, 11c Side surface 12 Electrolyte supply part 13 Overflow part 20 Electrode plate 30 Rotating means 53 Temperature adjusting means A Base material A' Peripheral surface (outer peripheral surface)
L electrolyte

Claims (8)

円柱状の基材を電解液中で電解処理するための処理槽において、
電解液を収容し、前記基材が浸漬する長尺な処理槽本体、処理槽本体に電解液を供給する電解液供給部、および処理槽本体から電解液を排出するオーバーフロー部を備え、
前記処理槽本体の底部の内面は円弧状に湾曲し、
前記電解液供給部は、処理槽本体の長手方向に沿うように、処理槽本体の一方の側面上方に設けられ、
前記オーバーフロー部は、処理槽本体の長手方向に沿うように、処理槽本体の他方の側面上部に設けられていることを特徴とする処理槽。
In a treatment tank for electrolytic treatment of a cylindrical substrate in an electrolytic solution,
A long processing tank main body in which the electrolytic solution is accommodated and the base material is immersed, an electrolytic solution supply part that supplies the electrolytic solution to the processing tank main body, and an overflow part that discharges the electrolytic solution from the processing tank main body,
The inner surface of the bottom of the treatment tank body is curved in an arc shape,
The electrolyte supply unit is provided above one side surface of the processing tank main body so as to be along the longitudinal direction of the processing tank main body,
The said overflow part is provided in the other side upper part of the processing tank main body so that the longitudinal direction of a processing tank main body may be followed.
円柱状の基材を電解液中で電解処理する電解処理装置において、
電解液を収容し、前記基材が浸漬する長尺な処理槽本体、処理槽本体に電解液を供給する電解液供給部、および処理槽本体から電解液を排出するオーバーフロー部を備えた処理槽と、前記処理槽本体に浸漬された電極板とを具備し、
前記処理槽本体の底部の内面は円弧状に湾曲し、
前記電解液供給部は、処理槽本体の長手方向に沿うように、処理槽本体の一方の側面上方に設けられ、
前記オーバーフロー部は、処理槽本体の長手方向に沿うように、処理槽本体の他方の側面上部に設けられていることを特徴とする電解処理装置。
In an electrolytic processing apparatus for electrolytically processing a cylindrical base material in an electrolytic solution,
A treatment tank provided with a long processing tank main body in which the electrolytic solution is accommodated and the substrate is immersed, an electrolyte supply part for supplying the electrolytic solution to the processing tank main body, and an overflow part for discharging the electrolytic solution from the processing tank main body And an electrode plate immersed in the treatment tank body,
The inner surface of the bottom of the treatment tank body is curved in an arc shape,
The electrolyte supply unit is provided above one side surface of the processing tank main body so as to be along the longitudinal direction of the processing tank main body,
The said overflow part is provided in the other side upper part of the processing tank main body so that the longitudinal direction of a processing tank main body may be followed, The electrolytic processing apparatus characterized by the above-mentioned.
前記電極板は、前記処理槽本体に浸漬された基材を挟むように配置され、かつ前記処理槽本体の底部の内面形状に沿うように湾曲していることを特徴とする請求項2に記載の電解処理装置。   The said electrode plate is arrange | positioned so that the base material immersed in the said processing tank main body may be pinched | interposed, and it curves so that the inner surface shape of the bottom part of the said processing tank main body may be followed. Electrolytic treatment equipment. 前記電極板は、前記処理槽本体に浸漬された基材を介して、前記オーバーフロー部に対向する位置にのみ配置されていることを特徴とする請求項2に記載の電解処理装置。   The electrolytic processing apparatus according to claim 2, wherein the electrode plate is disposed only at a position facing the overflow portion through a base material immersed in the processing tank main body. 前記電極板の電解液に接触している面積と、前記基材の電解液に接触している面積との比が1:1以下であることを特徴とする請求項4に記載の電解処理装置。   5. The electrolytic processing apparatus according to claim 4, wherein a ratio of an area of the electrode plate in contact with the electrolytic solution to an area of the base material in contact with the electrolytic solution is 1: 1 or less. . 前記基材の中心軸を回転中心として、該基材を回転させる回転手段を具備することを特徴とする請求項2〜5のいずれか一項に記載の電解処理装置。   6. The electrolytic processing apparatus according to claim 2, further comprising a rotating unit that rotates the base material about the central axis of the base material. 前記回転手段は、電解液供給部から供給された電解液がオーバーフロー部へ流れる方向とは反対方向に、前記基材を回転させることを特徴とする請求項6に記載の電解処理装置。   The electrolytic processing apparatus according to claim 6, wherein the rotating unit rotates the base material in a direction opposite to a direction in which the electrolytic solution supplied from the electrolytic solution supply unit flows to the overflow unit. 前記電解液を加熱または冷却して電解液の温度を調節し、電解処理直前および電解処理中には電解液を冷却する温度調節手段をさらに具備することを特徴とする請求項2〜7のいずれか一項に記載の電解処理装置。   8. The method according to claim 2, further comprising temperature adjusting means for adjusting the temperature of the electrolytic solution by heating or cooling the electrolytic solution, and cooling the electrolytic solution immediately before and during the electrolytic treatment. The electrolytic treatment apparatus according to claim 1.
JP2011261913A 2011-01-31 2011-11-30 Electrolytic treatment apparatus and mold manufacturing method using the treatment apparatus Active JP5742689B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011261913A JP5742689B2 (en) 2011-01-31 2011-11-30 Electrolytic treatment apparatus and mold manufacturing method using the treatment apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2011018226 2011-01-31
JP2011018226 2011-01-31
JP2011261913A JP5742689B2 (en) 2011-01-31 2011-11-30 Electrolytic treatment apparatus and mold manufacturing method using the treatment apparatus

Publications (3)

Publication Number Publication Date
JP2012177189A true JP2012177189A (en) 2012-09-13
JP2012177189A5 JP2012177189A5 (en) 2014-07-24
JP5742689B2 JP5742689B2 (en) 2015-07-01

Family

ID=44987476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011261913A Active JP5742689B2 (en) 2011-01-31 2011-11-30 Electrolytic treatment apparatus and mold manufacturing method using the treatment apparatus

Country Status (2)

Country Link
JP (1) JP5742689B2 (en)
CN (1) CN202047159U (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086402A (en) * 2013-10-28 2015-05-07 三菱レイヨン株式会社 Method for producing roll-shaped die for imprint
CN107931992A (en) * 2017-11-27 2018-04-20 盐城耀强模塑科技有限公司 A kind of processing technology of thermoprinting die

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102012012990B4 (en) * 2011-06-30 2014-09-04 Almex Pe Inc. Surface treatment system and workpiece support support

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026689A (en) * 1983-07-26 1985-02-09 Sumitomo Metal Ind Ltd Method and device for producing metallic foil by electrodeposition
JPH10121291A (en) * 1996-09-13 1998-05-12 Mdc Max Daetwyler Bleienbach Ag Method and device for adhering chromium layer to gravure drum
JPH1161488A (en) * 1997-08-07 1999-03-05 Think Lab Kk Plating device for roll to be engraved
WO2009054513A1 (en) * 2007-10-25 2009-04-30 Mitsubishi Rayon Co., Ltd. Stamper, process for producing the same, process for producing molding, and aluminum base die for stamper
JP4913925B2 (en) * 2010-03-25 2012-04-11 三菱レイヨン株式会社 Method for producing imprint roll mold

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6026689A (en) * 1983-07-26 1985-02-09 Sumitomo Metal Ind Ltd Method and device for producing metallic foil by electrodeposition
JPH10121291A (en) * 1996-09-13 1998-05-12 Mdc Max Daetwyler Bleienbach Ag Method and device for adhering chromium layer to gravure drum
JPH1161488A (en) * 1997-08-07 1999-03-05 Think Lab Kk Plating device for roll to be engraved
WO2009054513A1 (en) * 2007-10-25 2009-04-30 Mitsubishi Rayon Co., Ltd. Stamper, process for producing the same, process for producing molding, and aluminum base die for stamper
JP4913925B2 (en) * 2010-03-25 2012-04-11 三菱レイヨン株式会社 Method for producing imprint roll mold

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015086402A (en) * 2013-10-28 2015-05-07 三菱レイヨン株式会社 Method for producing roll-shaped die for imprint
CN107931992A (en) * 2017-11-27 2018-04-20 盐城耀强模塑科技有限公司 A kind of processing technology of thermoprinting die

Also Published As

Publication number Publication date
CN202047159U (en) 2011-11-23
JP5742689B2 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP4913925B2 (en) Method for producing imprint roll mold
JP6023323B2 (en) Superconducting high-frequency cavity electrochemical system and electropolishing method
US8691403B2 (en) Method for anodizing aluminum and anodized aluminum
JP5742689B2 (en) Electrolytic treatment apparatus and mold manufacturing method using the treatment apparatus
JP2013533381A (en) Strongly passivated metal electrolysis system and processing method
JP5250700B2 (en) High electric field anodizing equipment
CN105714367A (en) Electrolytic polishing device
JP4595830B2 (en) Anodized processing method and apparatus, and anodized processing system
CN108971677B (en) Auxiliary electrolytic cutting machining method for interelectrode temperature gradient difference
KR101172813B1 (en) apparatus for tubular type high-field fabrication of anodic nanostructures
KR20060126009A (en) All-precipitation roller plating apparatus
JP2004043873A (en) Method for surface treatment of aluminum alloy
CN103842152A (en) Transfer roll, method for producing transfer roll, and method for producing article
US20130153410A1 (en) Apparatus for plating cylinder
JP2012240303A (en) Mold and method of manufacturing the same
CN202022989U (en) Anodic oxidation treatment device
JP2004059936A (en) Surface treatment apparatus for aluminum alloy
KR101695456B1 (en) Anodic aluminum oxidation apparatus using rotating electrode
KR200381299Y1 (en) Electro-polishing apparatus
RU2087219C1 (en) Method of knurling working rolls of rolling mill
CN104419973A (en) Electronickelling assembly line workpiece polishing device
KR100470750B1 (en) Electro polishing combined electric plating apparatus and electroless plating apparatus using the same
KR20130060719A (en) Anodic aluminum oxidation apparayus and process using rotating electrode
TWI434961B (en) Surface treatment system and the use thereof
CN116397292A (en) Method and device for preparing coating on inner wall of metal pipeline

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140611

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140611

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150327

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150407

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150420

R151 Written notification of patent or utility model registration

Ref document number: 5742689

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250