JP2012173594A5 - - Google Patents

Download PDF

Info

Publication number
JP2012173594A5
JP2012173594A5 JP2011036808A JP2011036808A JP2012173594A5 JP 2012173594 A5 JP2012173594 A5 JP 2012173594A5 JP 2011036808 A JP2011036808 A JP 2011036808A JP 2011036808 A JP2011036808 A JP 2011036808A JP 2012173594 A5 JP2012173594 A5 JP 2012173594A5
Authority
JP
Japan
Prior art keywords
lens
progressive
power
distribution
shows
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011036808A
Other languages
Japanese (ja)
Other versions
JP2012173594A (en
JP5822482B2 (en
Filing date
Publication date
Application filed filed Critical
Priority to JP2011036808A priority Critical patent/JP5822482B2/en
Priority claimed from JP2011036808A external-priority patent/JP5822482B2/en
Priority to US14/000,705 priority patent/US9010932B2/en
Priority to EP12725530.5A priority patent/EP2678732B1/en
Priority to PCT/JP2012/054684 priority patent/WO2012115258A1/en
Publication of JP2012173594A publication Critical patent/JP2012173594A/en
Publication of JP2012173594A5 publication Critical patent/JP2012173594A5/ja
Application granted granted Critical
Publication of JP5822482B2 publication Critical patent/JP5822482B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

眼鏡の一例を示す斜視図。The perspective view which shows an example of spectacles. 図2(a)は累進屈折力レンズの一方のレンズを模式的に示す平面図、図2(b)はその断面図。FIG. 2A is a plan view schematically showing one of the progressive-power lenses, and FIG. 2B is a cross-sectional view thereof. 図3(a)は眼鏡用レンズの等価球面度数分布を示す図、図3(b)は眼鏡用レンズの非点収差分布を示す図、図3(c)は正方格子を見たときの歪曲の状態を示す図。3A is a diagram showing an equivalent spherical power distribution of a spectacle lens, FIG. 3B is a diagram showing an astigmatism distribution of the spectacle lens, and FIG. 3C is a distortion when a square lattice is viewed. FIG. 前庭動眼反射を示す図。The figure which shows a vestibule movement reflex. 前庭動眼反射の最大角度を示す図。The figure which shows the maximum angle of vestibulo-oculomotor reflex. 矩形模様を設定する様子を示す図。The figure which shows a mode that a rectangular pattern is set. 矩形模様の幾何学的なずれを重ね合わせて示す図。The figure which overlaps and shows the geometric shift | offset | difference of a rectangular pattern. 矩形模様の格子線の傾きの変化を示す図。The figure which shows the change of the inclination of the grid line of a rectangular pattern. 矩形模様の格子線の水平方向の格子線の変化量を示す図。The figure which shows the variation | change_quantity of the grid line of the horizontal direction of the grid line of a rectangular pattern. 矩形模様の格子線の垂直方向の格子線の変化量を示す図。The figure which shows the variation | change_quantity of the grid line of the perpendicular direction of the grid line of a rectangular pattern. 図11(a)は実施例1の累進屈折力レンズの外面の主注視線上の面屈折力を示す図、図11(b)は実施例1の累進屈折力レンズの内面の主注視線上の面屈折力を示す図。11A is a diagram showing the surface refractive power on the main gaze line of the outer surface of the progressive-power lens of Example 1, and FIG. 11B is the surface on the main gaze line of the inner surface of the progressive-power lens of Example 1. FIG. The figure which shows refractive power. 図12(a)は比較例1の累進屈折力レンズの外面の主注視線上の面屈折力を示す図、図12(b)は比較例1の累進屈折力レンズの内面の主注視線上の面屈折力を示す図。12A is a diagram showing the surface refractive power on the main gaze line of the outer surface of the progressive-power lens of Comparative Example 1, and FIG. 12B is the surface of the inner surface of the progressive-power lens of Comparative Example 1 on the main gaze line. The figure which shows refractive power. 図13(a)は実施例1の累進屈折力レンズの外面の面非点収差分布を示す図、図13(b)は比較例1の累進屈折力レンズの外面の面非点収差分布を示す図。13A shows the surface astigmatism distribution on the outer surface of the progressive-power lens of Example 1, and FIG. 13B shows the surface astigmatism distribution on the outer surface of the progressive-power lens of Comparative Example 1. Figure. 図14(a)は実施例1の累進屈折力レンズの外面の等価球面屈折力分布を示す図、図14(b)は比較例1の累進屈折力レンズの外面の等価球面屈折力分布を示す図。FIG. 14 (a) shows a spherical equivalent surface power distribution of the outer surface of the progressive addition lens of Example 1, FIG. 14 (b) spherical equivalent surface power distribution of the outer surface of the progressive addition lens of Comparative Example 1 FIG. 図15(a)は実施例1の累進屈折力レンズの内面の面非点収差分布を示す図、図15(b)は比較例1の累進屈折力レンズの内面の面非点収差分布を示す図。FIG. 15A is a diagram showing the surface astigmatism distribution on the inner surface of the progressive addition lens of Example 1, and FIG. 15B is the surface astigmatism distribution on the inner surface of the progressive addition lens of Comparative Example 1. Figure. 図16(a)は実施例1の累進屈折力レンズの内面の等価球面屈折力分布を示す図、図16(b)は比較例1の累進屈折力レンズの内面の等価球面屈折力分布を示す図。FIG. 16 (a) shows a spherical equivalent surface power distribution of the inner surface of the progressive addition lens of Example 1, FIG. 16 (b) spherical equivalent surface power distribution of the inner surface of the progressive addition lens of Comparative Example 1 FIG. 図17(a)は実施例1の累進屈折力レンズの非点収差分布を示す図、図17(b)は比較例1の累進屈折力レンズの非点収差分布を示す図。FIG. 17A is a diagram showing the astigmatism distribution of the progressive-power lens of Example 1, and FIG. 17B is a diagram showing the astigmatism distribution of the progressive-power lens of Comparative Example 1. 図18(a)は実施例1の累進屈折力レンズの等価球面度数分布を示す図、図18(b)は比較例1の累進屈折力レンズの等価球面度数分布を示す図。18A is a diagram showing an equivalent spherical power distribution of the progressive-power lens of Example 1, and FIG. 18B is a diagram showing an equivalent spherical power distribution of the progressive-power lens of Comparative Example 1. 振動(ゆれ指標IDd)を示す図。The figure which shows a vibration (vibration parameter | index IDd). 変形量(ゆれ指標IDs)を示す図。The figure which shows deformation | transformation amount (vibration index IDs). 図21(a)は実施例2の累進屈折力レンズの外面の主注視線上の面屈折力を示す図、図21(b)は実施例2の累進屈折力レンズの内面の主注視線上の面屈折力を示す図。21A is a diagram showing the surface refractive power on the main gaze line of the outer surface of the progressive-power lens of Example 2, and FIG. 21B is the surface on the main gaze line of the inner surface of the progressive-power lens of Example 2. FIG. The figure which shows refractive power. 図22(a)は比較例2の累進屈折力レンズの外面の主注視線上の面屈折力を示す図、図22(b)は比較例2の累進屈折力レンズの内面の主注視線上の面屈折力を示す図。22A is a diagram showing the surface refractive power on the main gaze line of the outer surface of the progressive-power lens of Comparative Example 2, and FIG. 22B is the surface of the inner surface of the progressive-power lens of Comparative Example 2 on the main gaze line. The figure which shows refractive power. 図23(a)は実施例2の累進屈折力レンズの外面の面非点収差分布を示す図、図23(b)は比較例2の累進屈折力レンズの外面の面非点収差分布を示す図。FIG. 23A is a diagram showing the surface astigmatism distribution on the outer surface of the progressive-power lens of Example 2, and FIG. 23B is the surface astigmatism distribution on the outer surface of the progressive-power lens of Comparative Example 2. Figure. 図24(a)は実施例2の累進屈折力レンズの外面の等価球面屈折力分布を示す図、図24(b)は比較例2の累進屈折力レンズの外面の等価球面屈折力分布を示す図。Figure 24 (a) is a view showing an equivalent spherical surface power distribution of the outer surface of the progressive addition lens of example 2, FIG. 24 (b) is an equivalent spherical surface power distribution of the outer surface of the progressive addition lens of Comparative Example 2 FIG. 図25(a)は実施例2の累進屈折力レンズの内面の面非点収差分布を示す図、図25(b)は比較例2の累進屈折力レンズの内面の面非点収差分布を示す図。FIG. 25A is a diagram showing the surface astigmatism distribution on the inner surface of the progressive-power lens of Example 2, and FIG. 25B is the surface astigmatism distribution on the inner surface of the progressive-power lens of Comparative Example 2. Figure. 図26(a)は実施例2の累進屈折力レンズの内面の等価球面屈折力分布を示す図、図26(b)は比較例2の累進屈折力レンズの内面の等価球面屈折力分布を示す図。Figure 26 (a) is a view showing an equivalent spherical surface power distribution of the inner surface of the progressive addition lens of example 2, FIG. 26 (b) is an equivalent spherical surface power distribution of the inner surface of the progressive addition lens of Comparative Example 2 FIG. 図27(a)は実施例2の累進屈折力レンズの非点収差分布を示す図、図27(b)は比較例2の累進屈折力レンズの非点収差分布を示す図。FIG. 27A is a diagram showing the astigmatism distribution of the progressive addition lens of Example 2, and FIG. 27B is a diagram showing the astigmatism distribution of the progressive addition lens of Comparative Example 2. 図28(a)は実施例2の累進屈折力レンズの等価球面度数分布を示す図、図28(b)は比較例2の累進屈折力レンズの等価球面度数分布を示す図。FIG. 28A is a diagram showing an equivalent spherical power distribution of the progressive-power lens of Example 2, and FIG. 28B is a diagram showing an equivalent spherical power distribution of the progressive-power lens of Comparative Example 2. 振動(ゆれ指標IDd)を示す図。The figure which shows a vibration (vibration parameter | index IDd). 変形量(ゆれ指標IDs)を示す図。The figure which shows deformation | transformation amount (vibration index IDs). 累進屈折力レンズの設計および製造の過程を示すフローチャート。The flowchart which shows the process of design and manufacture of a progressive-power lens.

累進屈折力レンズ10の光学性能のうち視野の広さについては、非点収差分布図や等価球面度数分布図により知ることができる。累進屈折力レンズ10の性能の1つは、累進屈折力レンズ10を着用して頭を動かしたときに感じるゆれ(ユレ、揺れ)も重要であり、非点収差分布や等価球面度数分布がほとんど同じであっても、ゆれに関して差が発生することがある。以下においては、まず、ゆれの評価方法について説明し、その評価方法を用いて、本願の実施形態と、従来例とを比較した結果を示す。
Of the optical performance of the progressive power lens 10, the width of the field of view can be known from an astigmatism distribution diagram and an equivalent spherical power distribution diagram. One of the performances of the progressive-power lens 10 is that the vibration (sway) that is felt when the head is moved while wearing the progressive-power lens 10 is important, and astigmatism distribution and equivalent spherical power distribution are almost all. Even if they are the same, a difference may occur with respect to the wobble. In the following, first, an evaluation method for fluctuation will be described, and the results of comparison between the embodiment of the present application and a conventional example will be shown using the evaluation method.

1. ゆれの評価方法
図3(a)に、典型的な累進屈折力レンズ10の等価球面度数分布(単位はディオプター(D))を示し、図3(b)に、非点収差分布(単位はディオプター(D))を示し、図3(c)に、このレンズ10により正方格子を見たときの歪曲の状態を示している。累進屈折力レンズ10においては、主注視線14に沿って所定の度数が加入される。したがって、度数の加入により、中間領域(中間部、累進領域)13の側方には大きな非点収差が発生し、そこの部分では物がぼやけて見えてしまう。等価球面度数分布は近用部12では所定の量だけ度数がアップし、中間部13、遠用部11へと順次度数が減少する。この累進屈折力レンズ10においては、遠用部11の度数(遠用度数、Sph)は3.00D(ディオプトリー)であり、加入度数(ADD)は2.00Dである。
1. FIG. 3A shows an equivalent spherical power distribution (unit: diopter (D)) of a typical progressive-power lens 10, and FIG. 3B shows an astigmatism distribution (unit: diopter). (D)) is shown, and FIG. 3C shows a state of distortion when the square lattice is viewed by the lens 10. In the progressive-power lens 10, a predetermined power is added along the main gaze line 14. Therefore, due to the addition of the power, a large astigmatism is generated on the side of the intermediate region (intermediate portion, progressive region) 13, and the object appears blurred in that portion. In the equivalent spherical power distribution, the power is increased by a predetermined amount in the near portion 12, and the power is sequentially decreased to the intermediate portion 13 and the distance portion 11. In the progressive-power lens 10, the power of the distance portion 11 (distance power, Sph) is 3.00D (diopter), and the addition power (ADD) is 2.00D.

図13(a)に実施例1の累進屈折力レンズ10aの外面19Aの面非点収差分布を示し、図13(b)に比較例1の累進屈折力レンズ10bの外面19Aの面非点収差分布を示している。また、図14(a)に実施例1の累進屈折力レンズ10aの外面19Aの等価球面屈折力分布を示し、図14(b)に比較例1の累進屈折力レンズ10bの外面19Aの等価球面屈折力分布を示している。等価球面屈折力ESPは以下の式(14)で得られる。
ESP=(OHP+OVP)/2・・・(14)
FIG. 13A shows the surface astigmatism distribution of the outer surface 19A of the progressive addition lens 10a of Example 1, and FIG. 13B shows the surface astigmatism of the outer surface 19A of the progressive addition lens 10b of Comparative Example 1. Distribution is shown. FIG. 14A shows an equivalent spherical surface refractive power distribution of the outer surface 19A of the progressive addition lens 10a of Example 1, and FIG. 14B shows an equivalent of the outer surface 19A of the progressive addition lens 10b of Comparative Example 1. The spherical surface refractive power distribution is shown. The equivalent spherical surface refractive power ESP is obtained by the following expression (14).
ESP = (OHP + OVP) / 2 (14)

図13(a)に示すように、実施例1の累進屈折力レンズ10aの外面19Aは一律3.0(D)の面非点収差を含むが、一律なので等量線は表れない。また、図14(a)に示すように、外面19Aの等価球面屈折力は一律7.5(D)であり、一律なので等量線は表れない。一方、図13(b)に示すように、比較例1の累進屈折力レンズ10bの外面19Aは面非点収差が0.0(D)であり、図14(b)に示すように、外面19Aの等価球面屈折力は一律6.0(D)である。
As shown in FIG. 13 (a), the outer surface 19A of the progressive-power lens 10a of Example 1 includes uniform 3.0 (D) surface astigmatism, but does not show an equivalence line because it is uniform. Further, as shown in FIG. 14 (a), the equivalent spherical surface refractive power of the outer surface 19A is uniform 7.5 (D), and since it is uniform, no equivalence line appears. On the other hand, as shown in FIG. 13B, the outer surface 19A of the progressive addition lens 10b of Comparative Example 1 has a surface astigmatism of 0.0 (D), and as shown in FIG. The equivalent spherical surface power of 19A is uniformly 6.0 (D).

図15(a)に実施例1の累進屈折力レンズ10aの内面19Bの面非点収差分布を示し、図15(b)に比較例1の累進屈折力レンズ10bの内面19Bの面非点収差分布を示している。また、図16(a)に実施例1の累進屈折力レンズ10aの内面19Bの等価球面屈折力分布を示し、図16(b)に比較例1の累進屈折力レンズ10bの内面19Bの等価球面屈折力分布を示している。
15A shows the surface astigmatism distribution of the inner surface 19B of the progressive addition lens 10a of Example 1, and FIG. 15B shows the surface astigmatism of the inner surface 19B of the progressive addition lens 10b of Comparative Example 1. Distribution is shown. FIG. 16A shows an equivalent spherical surface refractive power distribution of the inner surface 19B of the progressive addition lens 10a of Example 1, and FIG. 16B shows an equivalent of the inner surface 19B of the progressive addition lens 10b of Comparative Example 1. The spherical surface refractive power distribution is shown.

図16(a)に示した実施例1の累進屈折力レンズ10aの等価球面屈折力分布では基本的に+1.5(D)の等価球面屈折力が、図16(b)に示した比較例1の累進屈折力レンズ10bの等価球面屈折力分布に対して一律に付加される。しかしながら、非球面補正の影響により、これも単純な合成にはなっていないことがわかる。
Spherical equivalent surface power shown in FIG. 16 (a) essentially +1.5 (D) is a spherical equivalent surface power distribution of the progressive addition lens 10a of the first embodiment shown in is shown in FIG. 16 (b) It is uniformly added to the equivalent spherical surface refractive power distribution of the progressive addition lens 10b of Comparative Example 1. However, it can be seen that this is not a simple composition due to the effect of aspherical correction.

図17(a)に実施例1の累進屈折力レンズ10aのレンズ上の各位置を透して観察したときの非点収差分布を示し、図17(b)に比較例1の累進屈折力レンズ10bのレンズ上の各位置を透して観察したときの非点収差分布を示している。また、図18(a)に実施例1の累進屈折力レンズ10aのレンズ上の各位置を透して観察したときの等価球面度数分布を示し、図18(b)に比較例1の累進屈折力レンズ10bのレンズ上の各位置を透して観察したときの等価球面度数分布を示している。
FIG. 17A shows an astigmatism distribution observed through each position on the progressive-power lens 10a of Example 1, and FIG. 17B shows the progressive-power lens of Comparative Example 1. The astigmatism distribution when observed through each position on the lens 10b is shown. FIG. 18A shows the equivalent spherical power distribution observed through each position on the lens of the progressive addition lens 10a of Example 1, and FIG. 18B shows the progressive refraction of Comparative Example 1. The equivalent spherical power distribution when observing through each position on the lens of the force lens 10b is shown.

図17(a)に示した実施例1の累進屈折力レンズ10aの非点収差分布は、図17(b)に示した比較例1の累進屈折力レンズ10bの非点収差分布とほぼ同等である。また、図18(a)に示した実施例1の累進屈折力レンズ10aの等価球面度数分布は、図18(b)に示した比較例1の累進屈折力レンズ10bの等価球面度数分布とほぼ同等である。したがって、実施例1の累進屈折力レンズ10aとして、非球面補正を効果的に使用することにより、非点収差分布および等価球面度数分布において比較例1の累進屈折力レンズ10bとほとんど同じ性能の累進屈折力レンズが得られることがわかる。
The astigmatism distribution of the progressive addition lens 10a of Example 1 shown in FIG. 17A is almost the same as the astigmatism distribution of the progressive addition lens 10b of Comparative Example 1 shown in FIG. is there. Also, the equivalent spherical power distribution of the progressive addition lens 10a of Example 1 shown in FIG. 18A is almost the same as the equivalent spherical power distribution of the progressive addition lens 10b of Comparative Example 1 shown in FIG. It is equivalent. Therefore, as the progressive addition lens 10a of the first embodiment, by effectively using the aspheric correction, the progressive power lens 10b of the comparative example 1 has almost the same performance in the astigmatism distribution and the equivalent spherical power distribution. It turns out that a refractive power lens is obtained.

このように、外面19Aおよび内面19Bにトーリック面の要素を導入した実施例1の累進屈折力レンズ10aは、眼鏡レンズとしての一般的な性能である非点収差分布および等価球面度数分布は、トーリック面の要素を含まない(乱視矯正を対象としてない眼鏡レンズとして)球面の比較例1の累進屈折力レンズ10bと同等の性能を備えている。さらに、実施例1の累進屈折力レンズ10aは、比較例1の累進屈折力レンズ10bに対し、前庭動眼反射により視線2(眼球3)が動くような場合の像のゆれを小さくできることがわかった。これは、内外面にトーリック面の要素を入れることにより、特に、主注視線14に沿った領域の内外面にトーリック面の要素を導入することにより、視線2が前庭動眼反射により動いたときに、視線2が眼鏡レンズ10aに対して入射および出射する角度変化を抑制でき、視線2が前庭動眼反射により動いたときの諸収差の変動を抑制できることが1つの要因であると考えられる。
As described above, the progressive addition lens 10a of Example 1 in which the elements of the toric surface are introduced into the outer surface 19A and the inner surface 19B has an astigmatism distribution and an equivalent spherical power distribution, which are general performances as a spectacle lens, toric. It has the same performance as that of the progressive addition lens 10b of Comparative Example 1 that is a spherical surface that does not include surface elements (as a spectacle lens that does not target astigmatism correction). Furthermore, it was found that the progressive-power lens 10a of Example 1 can reduce the fluctuation of the image when the line of sight 2 (eyeball 3) moves due to vestibulo-oculomotor reflection compared to the progressive-power lens 10b of Comparative Example 1. . This is because the toric surface element is inserted into the inner and outer surfaces, and particularly when the toric surface element is introduced into the inner and outer surfaces of the region along the main gazing line 14, the line of sight 2 is moved by the vestibulo-oculomotor reflex. It is considered that one of the factors is that the change of the angle at which the line of sight 2 enters and exits the spectacle lens 10a can be suppressed, and the fluctuation of various aberrations when the line of sight 2 moves due to the vestibulo-oculomotor reflection.

図23(a)に実施例2の累進屈折力レンズ10cの外面19Aの面非点収差分布を示し、図23(b)に比較例2の累進屈折力レンズ10dの外面19Aの面非点収差分布を示している。また、図24(a)に実施例2の累進屈折力レンズ10cの外面19Aの等価球面屈折力分布を示し、図24(b)に比較例2の累進屈折力レンズ10dの外面19Aの等価球面屈折力分布を示している。
FIG. 23A shows the surface astigmatism distribution of the outer surface 19A of the progressive addition lens 10c of Example 2, and FIG. 23B shows the surface astigmatism of the outer surface 19A of the progressive addition lens 10d of Comparative Example 2. Distribution is shown. FIG. 24A shows an equivalent spherical surface refractive power distribution of the outer surface 19A of the progressive addition lens 10c of Example 2, and FIG. 24B shows an equivalent of the outer surface 19A of the progressive addition lens 10d of Comparative Example 2. The spherical surface refractive power distribution is shown.

実施形態1と同様に、実施例2の累進屈折力レンズ10cの外面19Aは一律3.0(D)の面非点収差を含むが、一律なので等量線は表れない。また、外面19Aの等価球面屈折力は一律4.0(D)であり、一律なので等量線は表れない。一方、比較例2の累進屈折力レンズ10dの外面19Aは面非点収差が0.0(D)であり、外面19Aの等価球面屈折力は一律2.5(D)である。
Similar to the first embodiment, the outer surface 19A of the progressive-power lens 10c of the second embodiment includes a uniform 3.0 (D) surface astigmatism, but does not show an equivalence line because it is uniform. Further, the equivalent spherical surface refractive power of the outer surface 19A is uniformly 4.0 (D), and since it is uniform, no equivalence line appears. On the other hand, the outer surface 19A of the progressive-power lens 10d of Comparative Example 2 has a surface astigmatism of 0.0 (D), and the equivalent spherical surface power of the outer surface 19A is uniformly 2.5 (D).

図25(a)に実施例2の累進屈折力レンズ10cの内面19Bの面非点収差分布を示し、図25(b)に比較例2の累進屈折力レンズ10dの内面19Bの面非点収差分布を示している。また、図26(a)に実施例2の累進屈折力レンズ10cの内面19Bの等価球面屈折力分布を示し、図26(b)に比較例2の累進屈折力レンズ10dの内面19Bの等価球面屈折力分布を示している。
FIG. 25A shows the surface astigmatism distribution of the inner surface 19B of the progressive addition lens 10c of Example 2, and FIG. 25B shows the surface astigmatism of the inner surface 19B of the progressive addition lens 10d of Comparative Example 2. Distribution is shown. FIG. 26A shows the equivalent spherical surface refractive power distribution of the inner surface 19B of the progressive addition lens 10c of Example 2, and FIG. 26B shows the equivalent inner surface 19B of the progressive addition lens 10d of Comparative Example 2. The spherical surface refractive power distribution is shown.

実施形態1と同様に、実施例2の累進屈折力レンズ10cの面非点収差は、基本的に水平方向に強主経線をもつ3.0(D)の面非点収差が比較例2の累進屈折力レンズ10dの面非点収差に加わる。しかしながら、収差を調整するための非球面補正も加わっているために単純な合成とはなっていない。また、実施例2の累進屈折力レンズ10cの等価球面屈折力分布では基本的に+1.5(D)の等価球面屈折力が比較例2の累進屈折力レンズ10dの等価球面屈折力分布に対して一律に付加される。しかしながら、非球面補正の影響により、これも単純な合成にはなっていない。
Similar to the first embodiment, the surface astigmatism of the progressive-power lens 10c of the second embodiment is basically 3.0 (D) with the main principal meridian in the horizontal direction. In addition to the surface astigmatism of the progressive-power lens 10d. However, since aspherical correction for adjusting aberration is added, it is not a simple composition. Further, spherical equivalent surface power of the progressive addition lens 10d of the spherical equivalent surface power is Comparative Example 2 essentially +1.5 (D) is a spherical equivalent surface power distribution of the progressive addition lens 10c of Example 2 A uniform addition to the distribution. However, due to the effect of aspherical correction, this is not a simple composition.

図27(a)に実施例2の累進屈折力レンズ10cのレンズ上の各位置を透して観察したときの非点収差分布を示し、図27(b)に比較例2の累進屈折力レンズ10dのレンズ上の各位置を透して観察したときの非点収差分布を示している。また、図28(a)に実施例2の累進屈折力レンズ10cのレンズ上の各位置を透して観察したときの等価球面度数分布を示し、図28(b)に比較例2の累進屈折力レンズ10dのレンズ上の各位置を透して観察したときの等価球面度数分布を示している。
FIG. 27A shows an astigmatism distribution when observed through each position on the progressive-power lens 10c of Example 2, and FIG. 27B shows the progressive-power lens of Comparative Example 2. Astigmatism distribution when observed through each position on the lens of 10d is shown. FIG. 28A shows an equivalent spherical power distribution observed through each position on the lens of the progressive addition lens 10c of Example 2, and FIG. 28B shows the progressive refraction of Comparative Example 2. An equivalent spherical power distribution when viewed through each position on the lens of the force lens 10d is shown.

図27(a)に示した実施例2の累進屈折力レンズ10cの非点収差分布は、図27(b)に示した比較例2の累進屈折力レンズ10dの非点収差分布とほぼ同等である。また、図28(a)に示した実施例2の累進屈折力レンズ10cの等価球面度数分布は、図28(b)に示した比較例2の累進屈折力レンズ10dの等価球面度数分布とほぼ同等である。したがって、実施例2の累進屈折力レンズ10cとして、非球面補正を効果的に使用することにより、非点収差分布および等価球面度数分布において比較例2の累進屈折力レンズ10dとほとんど同じ性能の累進屈折力レンズが得られることがわかる。 The astigmatism distribution of the progressive addition lens 10c of Example 2 shown in FIG. 27A is almost equal to the astigmatism distribution of the progressive addition lens 10d of Comparative Example 2 shown in FIG. is there. Further, the equivalent spherical power distribution of the progressive addition lens 10c of Example 2 shown in FIG. 28A is almost the same as the equivalent spherical power distribution of the progressive addition lens 10d of Comparative Example 2 shown in FIG. It is equivalent. Therefore, by effectively using the aspherical correction as the progressive addition lens 10c of the second embodiment, the progressive power lens 10c of the comparative example 2 has almost the same performance in the astigmatism distribution and the equivalent spherical power distribution. It turns out that a refractive power lens is obtained.

JP2011036808A 2011-02-23 2011-02-23 Eyeglass lenses Active JP5822482B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011036808A JP5822482B2 (en) 2011-02-23 2011-02-23 Eyeglass lenses
US14/000,705 US9010932B2 (en) 2011-02-23 2012-02-20 Spectacle lens
EP12725530.5A EP2678732B1 (en) 2011-02-23 2012-02-20 Spectacle lens
PCT/JP2012/054684 WO2012115258A1 (en) 2011-02-23 2012-02-20 Spectacle lens

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011036808A JP5822482B2 (en) 2011-02-23 2011-02-23 Eyeglass lenses

Publications (3)

Publication Number Publication Date
JP2012173594A JP2012173594A (en) 2012-09-10
JP2012173594A5 true JP2012173594A5 (en) 2012-11-22
JP5822482B2 JP5822482B2 (en) 2015-11-24

Family

ID=46976525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011036808A Active JP5822482B2 (en) 2011-02-23 2011-02-23 Eyeglass lenses

Country Status (1)

Country Link
JP (1) JP5822482B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5872785B2 (en) * 2011-04-07 2016-03-01 イーエイチエス レンズ フィリピン インク Progressive power lens design method
EP2937728B1 (en) * 2012-12-19 2023-03-08 HOYA Corporation Manufacturing apparatus and manufacturing method for spectacle lens
ES2963720T3 (en) 2012-12-19 2024-04-01 Hoya Corp glasses lenses
US9581835B2 (en) * 2014-05-30 2017-02-28 Johnson & Johnson Vision Care, Inc. Patient interactive fit tool and methodology for contact lens fitting

Similar Documents

Publication Publication Date Title
JP2012173595A5 (en)
JP5969631B2 (en) Eyeglass lenses
JP5952541B2 (en) Optical lens, optical lens design method, and optical lens manufacturing apparatus
CN101114061A (en) Design method for spectacle lens, spectacle lens, and spectacles
WO2015041327A1 (en) Eyeglass lens and eyeglass lens manufacturing method
JP5976366B2 (en) Progressive power lens and progressive power lens design method
JP2008058576A (en) Spectacle lens design method
JP2012173594A5 (en)
JP5897260B2 (en) Progressive power lens and design method thereof
JP5822483B2 (en) Eyeglass lenses
JP2012173596A5 (en)
JP6515098B2 (en) Progressive power lens
JP2012185448A (en) Progressive refractive power lens
JP2006337516A (en) Spectacle lens and spectacles
US20130100398A1 (en) Progressive addition lens
JP5822484B2 (en) Eyeglass lenses
WO2013137179A1 (en) Eyeglass lens and bifocal eyeglasses
JP5948150B2 (en) Manufacturing method of progressive power lens
JP5822482B2 (en) Eyeglass lenses
JP5789108B2 (en) Progressive power lens and design method thereof
JP2014106385A (en) Progressive power lens and method of designing progressive power lens
JP6163697B2 (en) Progressive power lens design method
JP5017545B2 (en) Progressive power lens and manufacturing method thereof
JP2008249828A (en) Eyeglass lens and design method thereof
JP5832765B2 (en) Progressive power lens and design method thereof