JP5832765B2 - Progressive power lens and design method thereof - Google Patents

Progressive power lens and design method thereof Download PDF

Info

Publication number
JP5832765B2
JP5832765B2 JP2011060471A JP2011060471A JP5832765B2 JP 5832765 B2 JP5832765 B2 JP 5832765B2 JP 2011060471 A JP2011060471 A JP 2011060471A JP 2011060471 A JP2011060471 A JP 2011060471A JP 5832765 B2 JP5832765 B2 JP 5832765B2
Authority
JP
Japan
Prior art keywords
progressive
power
visual
lens
coordinate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011060471A
Other languages
Japanese (ja)
Other versions
JP2012198256A (en
Inventor
貴照 森
貴照 森
Original Assignee
イーエイチエス レンズ フィリピン インク
イーエイチエス レンズ フィリピン インク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イーエイチエス レンズ フィリピン インク, イーエイチエス レンズ フィリピン インク filed Critical イーエイチエス レンズ フィリピン インク
Priority to JP2011060471A priority Critical patent/JP5832765B2/en
Publication of JP2012198256A publication Critical patent/JP2012198256A/en
Application granted granted Critical
Publication of JP5832765B2 publication Critical patent/JP5832765B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Eyeglasses (AREA)

Description

本発明は、眼鏡用の累進屈折力レンズおよびその設計方法に関するものである。   The present invention relates to a progressive power lens for spectacles and a design method thereof.

特許文献1には、累進多焦点レンズにおいて、累進多焦点レンズの中央基準線に沿っての加入度数の勾配を充分に緩やかにし、かつその線上での非点収差も小さく抑え、さらに遠用部領域内の明視域(非点収差0.5デイオプトリー以下の部分)の幅を従来より大幅に小さくすることにより、中間部領域に広く良好な視野をもち、像の揺れも少ない累進多焦点レンズを実現することが記載されている。また、そのレンズを使用した眼鏡において枠入加工時のアイポイントを中央基準線上の遠用中心より近用中心の方向に5mmないし15mm離れた位置に定めることにより、中・近距離での視作業に適した眼鏡を実現することが記載されている。   In Patent Document 1, in a progressive multifocal lens, the gradient of the addition power along the central reference line of the progressive multifocal lens is made sufficiently gentle, and astigmatism on the line is kept small. A progressive multifocal lens with a wide and good field of view in the middle area and less image fluctuations by making the width of the clear vision area (part of astigmatism less than 0.5 diopters) significantly smaller than before. It is described to realize. In eyeglasses using the lens, the eye point at the time of frame insertion processing is set at a position 5 mm to 15 mm away from the distance center on the central reference line in the direction of the near vision center, thereby allowing visual work at medium and near distances. It is described that glasses suitable for the above are realized.

特許文献2には、広い中間部と近用部を確保し、全体に揺れの少ない近用視、中間視を重視した累進多焦点レンズを提供することが記載されている。そのため、レンズの幾何中心Oの上方14mmの位置に遠用度数測定位置F、レンズの幾何中心Oの下方17.5mmかつ鼻側内方2.5mmの位置に近用度数測定位置N、レンズの幾何中心Oの水平方向鼻側1.0mmの位置にレンズの装用者が正面視をしたときに視線の通過する位置であるアイポイント位置Eを設け、レンズ上の遠用度数測定位置Fの位置を中心として水平右側を0°の基準方向としたとき、30°方向から150°方向に至る略扇形の領域Dfを遠用明視域とし、この領域における非点収差を0.50ジオプター以下にすることが記載されている。さらに、遠用度数測定位置Fとアイポイント位置E及び近用度数測定位置Nの3点を通ってレンズを「鼻側部分」と「耳側部分」に分割する主注視線は、該主注視線によって分割された2つの面部分が該主注視線を挾んで水平方向に非対称となるように構成されることが記載されている。   Patent Document 2 describes that a progressive multifocal lens that secures a wide intermediate portion and a near vision portion and places little emphasis on near vision and intermediate vision is provided. Therefore, the distance power measurement position F is 14 mm above the geometric center O of the lens, the near power measurement position N is 17.5 mm below the geometric center O of the lens, and 2.5 mm on the inner side of the nose. An eye point position E, which is a position through which the line of sight passes when the lens wearer looks in front, is provided at a position 1.0 mm in the horizontal nose side of the geometric center O, and the position of the distance power measurement position F on the lens. When the horizontal right side is set to 0 ° as the reference direction, a substantially fan-shaped region Df extending from the 30 ° direction to the 150 ° direction is defined as the far vision region, and astigmatism in this region is 0.50 diopter or less. It is described to do. Further, the main gaze line that divides the lens into the “nose side portion” and the “ear side portion” through the three points of the distance power measurement position F, the eye point position E, and the near power measurement position N is the main focus line. It is described that two surface portions divided by the line of sight are configured to be asymmetric in the horizontal direction with respect to the main line of sight.

特許文献3には、中間視力領域及び近用視力領域に渡る距離及び溝幅の機能的損失なしに不必要なレンズ非点収差を減少させる累進多焦点レンズおよびその製造方法を提供することが記載されている。そのため、特許文献3の累進多焦点レンズは、最大、かつ局在化した不要な非点収差からなる少なくとも一つの領域と第1の屈折付加力とを持つ第1の累進屈折面と、最大、かつ局在化した不要な非点収差からなる少なくとも一つの領域と第2の屈折付加力とを持つ第2の累進屈折面とを有する。また、この累進多焦点レンズは、不必要な非点収差の一部分あるいはすべてが位置ずれするように、第1の累進屈折面及び第2の累進屈折面は相互に関係した形で配置され、さらにレンズの屈折付加力は前記第1の屈折付加力及び前記第2の屈折付加力の合計となっている。   Patent Document 3 describes that a progressive multifocal lens that reduces unnecessary lens astigmatism without a functional loss of distance and groove width over the intermediate vision region and the near vision region and a method for manufacturing the same are described. Has been. Therefore, the progressive multifocal lens of Patent Document 3 includes a first progressive refraction surface having a maximum and localized at least one region of unnecessary astigmatism and a first refractive addition force, a maximum, And having at least one region consisting of localized unwanted astigmatism and a second progressive refractive surface having a second refractive addition force. In this progressive multifocal lens, the first progressive refractive surface and the second progressive refractive surface are arranged in relation to each other so that a part or all of unnecessary astigmatism is displaced. The refractive addition power of the lens is the sum of the first refractive addition power and the second refractive addition power.

特開昭62−10617号公報JP-A-62-1617 特開平08−286156号公報JP-A-08-286156 特開2000−155294号公報JP 2000-155294 A

近年、パーソナルコンピュータのディスプレイを注視しながら仕事をする機会が増加している。眼球からディスプレイまでの距離は60cm〜80cmで遠用視と近用視との中間であり、遠用部および近用部に限らず、それらの間でも物体が見やすい眼鏡レンズが要望されている。   In recent years, opportunities to work while gazing at the display of a personal computer are increasing. The distance from the eyeball to the display is 60 cm to 80 cm, which is intermediate between distance vision and near vision, and there is a demand for a spectacle lens that is easy to see objects not only in the distance and near vision areas.

本発明の一態様は、目視度数の異なる遠用部および近用部と、遠用部および近用部の間に位置する中間部とを有する眼鏡用の累進屈折力レンズであって、中間部が、遠用部に繋がり、第1の目視度数勾配D1を備えた第1の領域と、近用部に繋がり、第2の目視度数勾配D2を備えた第2の領域と、第1の領域および第2の領域の間に位置する第3の領域であって、第3の目視度数勾配D3を備えた第3の領域とを含み、第1の目視度数勾配D1、第2の目視度数勾配D2および第3の目視度数勾配D3は以下の条件を満たす、累進屈折力レンズである。
|D3|<MIN(|D1|、|D2|)・・・(1)
ただし、MINは最小値を示す関数である。
One aspect of the present invention is a progressive power lens for spectacles having a distance portion and a near portion having different visual powers, and an intermediate portion located between the distance portion and the near portion, wherein the intermediate portion Is connected to the distance portion, the first region having the first visual power gradient D1, the second region having the second visual power gradient D2, which is connected to the near portion, and the first region And a third region located between the second region and a third region having a third visual power gradient D3, the first visual power gradient D1, the second visual power gradient D2 and the third visual power gradient D3 are progressive power lenses that satisfy the following conditions.
| D3 | <MIN (| D1 |, | D2 |) (1)
However, MIN is a function indicating a minimum value.

この累進屈折力レンズは、目視度数の異なる遠用部と近用部とを接続する中間部に、目視度数勾配D3が上下の第1の領域および第2の領域の目視度数勾配D1およびD2より小さい第3の領域を含む。したがって、第3の領域を介して物体を見ることにより目視度数の変化による倍率変化やゆれなどが少ない像を得ることができ、物体を中間距離でも見やすい累進屈折力レンズを提供できる。   In this progressive-power lens, the visual power gradient D3 is higher than the visual power gradients D1 and D2 of the upper and lower first regions and the second region at the intermediate portion connecting the distance portion and the near portion having different visual powers. Includes a small third region. Therefore, by viewing the object through the third region, it is possible to obtain an image with little change in magnification or fluctuation due to a change in the visual power, and it is possible to provide a progressive power lens that allows easy viewing of the object even at an intermediate distance.

第3の領域はフィッティングポイントを含むことが好ましい。物体を中間距離で注視することの多いユーザーに対しては、使用頻度の高い中間視の部分にフィッティングポイントを選択することができる。   The third region preferably includes a fitting point. For users who often watch an object at an intermediate distance, it is possible to select a fitting point for the frequently used intermediate vision portion.

第1から第3の領域は、物体側の面または眼球側の面のいずれか一方の面の累進面を適切に設計することにより設けることができる。また、中間部の物体側の面が主注視線に沿った座標P1から座標P2の間で面屈折力が変化する第1の累進面を含み、中間部の眼球側の面が主注視線に沿った座標P3から座標P4の間で面屈折力が変化する第2の累進面を含み、座標P1、P2、P3およびP4はそれぞれ異なり、以下の条件を満たす累進屈折力レンズは有効である。
P1>P2・・・(2)
P3>P4・・・(3)
The first to third regions can be provided by appropriately designing the progressive surface of either the object side surface or the eyeball side surface. The intermediate object side surface includes a first progressive surface whose surface refractive power changes between coordinates P1 and P2 along the main gaze line, and the intermediate eyeball side surface is the main gaze line. A progressive power lens that includes a second progressive surface whose surface refractive power varies between the coordinate P3 and the coordinate P4 along which the coordinates P1, P2, P3, and P4 are different from each other and satisfies the following conditions is effective.
P1> P2 (2)
P3> P4 (3)

ここで、主注視線に沿った座標が大きいとは、その座標の位置が前記遠用部に近いことを意味する。そして、主注視線に沿った座標が小さいとは、その座標の位置が前記近用部に近いことを意味する。   Here, a large coordinate along the main gazing line means that the position of the coordinate is close to the distance portion. And that the coordinate along the main gaze line is small means that the position of the coordinate is close to the near-use part.

物体側の面と眼球側の面とに、主注視線に沿った異なる範囲に面屈折力が変化する累進面、すなわち、第1の累進面および第2の累進面をそれぞれ設けることにより、第1から第3の領域を含む中間部を備えた累進屈折力レンズを設計し易く、諸収差の補正も行いやすい。   By providing progressive surfaces whose surface refractive power changes in different ranges along the main gaze line on the object side surface and the eyeball side surface, that is, the first progressive surface and the second progressive surface, respectively. It is easy to design a progressive-power lens having an intermediate portion including the first to third regions, and to easily correct various aberrations.

第1の累進面および第2の累進面は同傾向の目視度数勾配を付与する面であってもよい。この場合、座標P1、P2、P3およびP4は、さらに、以下の条件(4)および(5)のいずれかを満たし、第1の累進面および第2の累進面との間の領域に第3の領域を設けることができる。
P2>P3・・・(4)
P1<P4・・・(5)
The first progressive surface and the second progressive surface may be surfaces that impart a visual power gradient having the same tendency. In this case, the coordinates P1, P2, P3, and P4 further satisfy any one of the following conditions (4) and (5), and the third coordinate is in the region between the first progressive surface and the second progressive surface. Can be provided.
P2> P3 (4)
P1 <P4 (5)

条件(4)および(5)のいずれかを選択することにより、物体側の面と眼球側の面とは主注視線に沿った異なる位置に同傾向の目視度数勾配を付与するように面屈折力が変化する累進面を含む。そして、条件(4)を採用した場合は、座標P2と座標P3との間に第3の領域を設けることができる。条件(5)を採用した場合は、座標P4と座標P1との間に第3の領域を設けることができる。   By selecting one of the conditions (4) and (5), the object-side surface and the eyeball-side surface are surface-refracted so as to give the same visual power gradient to different positions along the main line of sight. Includes progressive surfaces with varying forces. When the condition (4) is adopted, a third region can be provided between the coordinates P2 and the coordinates P3. When the condition (5) is employed, a third region can be provided between the coordinates P4 and the coordinates P1.

第1の累進面および第2の累進面が逆傾向の目視度数勾配を付与した逆累進面であってもよい。この場合、座標P1、P2、P3およびP4は、さらに、以下の条件のいずれかを満たし、第2の累進面または第1の累進面が第1の累進面または第2の累進面の面屈折力勾配をキャンセルすることにより第3の領域を設けることができる。
P1>P3かつP2<P4・・・(6)
P1<P3かつP2>P4・・・(7)
The first progressive surface and the second progressive surface may be reverse progressive surfaces provided with a visual power gradient having a reverse tendency. In this case, the coordinates P1, P2, P3, and P4 further satisfy any of the following conditions, and the second progressive surface or the first progressive surface is the surface refraction of the first progressive surface or the second progressive surface. The third region can be provided by canceling the force gradient.
P1> P3 and P2 <P4 (6)
P1 <P3 and P2> P4 (7)

本発明の他の態様の1つは、上記の累進屈折力レンズと、累進屈折力レンズが取り付けられた眼鏡フレームとを有する眼鏡である。   Another aspect of the present invention is a pair of spectacles having the progressive-power lens described above and a spectacle frame to which the progressive-power lens is attached.

さらに、本発明の他の異なる態様の1つは、目視度数の異なる遠用部および近用部と、遠用部および近用部の間に位置する中間部とを有する眼鏡用の累進屈折力レンズの設計方法である。この設計方法は、中間部に、遠用部に繋がり、第1の目視度数勾配D1を備えた第1の領域と、近用部に繋がり、第2の目視度数勾配D2を備えた第2の領域と、第1の領域および第2の領域の間に位置する第3の領域であって、第3の目視度数勾配D3を備えた第3の領域とを設けることを有し、第1の目視度数勾配D1、第2の目視度数勾配D2および第3の目視度数勾配D3は上記条件(1)を満たす。   Furthermore, another different aspect of the present invention is a progressive power for glasses having a distance portion and a near portion having different visual powers, and an intermediate portion located between the distance portion and the near portion. This is a lens design method. In this design method, the intermediate portion is connected to the distance portion, the first region having the first visual power gradient D1, and the second region is connected to the near portion and has the second visual power gradient D2. Providing a region and a third region located between the first region and the second region, the third region having a third visual power gradient G3, The visual power gradient G1, the second visual power gradient D2, and the third visual power gradient D3 satisfy the above condition (1).

本発明のさらに異なる他の態様の1つは、物体側の面を設計することと、物体側の面を設計することと前後してあるいは同時に眼球側の面を設計することとを有する累進屈折力レンズの設計方法である。物体側の面を設計することは、中間部に含まれる第1の累進面であって、主注視線に沿った座標P1から前記座標P1より小さい座標P2の間で面屈折力が変化する第1の累進面を設計することを含み、眼球側の面を設計することは、中間部に含まれる第2の累進面であって、主注視線に沿った座標P3から座標P3より小さい座標P4の間で第1の累進面と同傾向の目視度数勾配を付与するように面屈折力が変化する第2の累進面を設計することを含み、座標P1、P2、P3およびP4が上記条件(4)および(5)のいずれかを満たす。   One of the other different aspects of the present invention is that progressive refraction includes designing an object-side surface, designing an object-side surface, and designing an eyeball-side surface before or after or simultaneously. This is a design method for a force lens. Designing the object-side surface is the first progressive surface included in the intermediate portion, and the surface refractive power changes between the coordinate P1 along the main gazing line and the coordinate P2 smaller than the coordinate P1. Designing one progressive surface, and designing the eyeball-side surface is a second progressive surface included in the intermediate portion, and is a coordinate P4 smaller than the coordinate P3 from the coordinate P3 along the main line of sight Design a second progressive surface whose surface refractive power varies so as to give a visual power gradient having the same tendency as the first progressive surface, and coordinates P1, P2, P3 and P4 satisfy the above condition ( Either 4) or (5) is satisfied.

本発明のさらに異なる他の態様の1つは、物体側の面を設計することと、物体側の面を設計することと前後してあるいは同時に眼球側の面を設計することとを有する累進屈折力レンズの設計方法であり、物体側の面を設計することは、中間部に含まれる第1の累進面であって、主注視線に沿った座標P1から座標P1より小さい座標P2の間で面屈折力が変化する第1の累進面を設計することを含み、眼球側の面を設計することは、中間部に含まれる第2の累進面であって、主注視線に沿った座標P3から座標P3より小さい座標P4の間で第1の累進面と逆傾向の目視度数勾配を付与するように面屈折力が変化する第2の累進面を設計することを含み、座標P1、P2、P3およびP4が上記条件(6)および(7)のいずれかを満たす。   One of the other different aspects of the present invention is that progressive refraction includes designing an object-side surface, designing an object-side surface, and designing an eyeball-side surface before or after or simultaneously. The force lens design method is to design the object side surface between the coordinates P1 along the main gaze line and coordinates P2 smaller than the coordinates P1. Designing the first progressive surface whose surface refractive power changes includes designing the eyeball-side surface as a second progressive surface included in the intermediate portion, and coordinates P3 along the main line of sight To design a second progressive surface whose surface refractive power changes so as to give a visual power gradient opposite to the first progressive surface between coordinates P4 smaller than coordinate P3, and coordinates P1, P2, P3 and P4 satisfy either of the above conditions (6) and (7).

本発明のさらに異なる他の態様の1つは、上記の設計方法により設計された累進屈折力レンズを製造することを含む、累進屈折力レンズの製造方法である。   Still another aspect of the present invention is a method for manufacturing a progressive-power lens, which includes manufacturing a progressive-power lens designed by the above-described design method.

眼鏡の一例を示す斜視図。The perspective view which shows an example of spectacles. 図2(a)は累進屈折力レンズの一方のレンズを模式的に示す平面図、図2(b)はその断面図。FIG. 2A is a plan view schematically showing one of the progressive-power lenses, and FIG. 2B is a cross-sectional view thereof. 実施例1の累進屈折力レンズの外面、内面および目視の主注視線に沿った度数分布を示す図。The figure which shows the power distribution along the outer surface of the progressive-power lens of Example 1, an inner surface, and the visual main gaze line. 実施例1の累進屈折力レンズの外面(図4(a))、内面(図4(b))および目視(図4(c))の非点収差分布を示す図。The figure which shows astigmatism distribution of the outer surface (FIG. 4 (a)), inner surface (FIG. 4 (b)), and visual observation (FIG. 4 (c)) of the progressive-power lens of Example 1. FIG. 実施例1の累進屈折力レンズの外面(図5(a))、内面(図5(b))および目視(図5(c))の平均度数分布を示す図。The figure which shows the average frequency distribution of the outer surface (FIG. 5 (a)), inner surface (FIG. 5 (b)), and visual observation (FIG. 5 (c)) of the progressive-power lens of Example 1. FIG. 図6(a)は度数勾配が連続した中間部を含む累進屈折力レンズの概要を示す図、図6(b)は度数勾配が不連続な中間部を含む累進屈折力レンズの概要を示す図。6A is a diagram showing an outline of a progressive-power lens including an intermediate portion having a continuous power gradient, and FIG. 6B is a diagram showing an overview of a progressive-power lens including an intermediate portion having a discontinuous power gradient. . 実施例2の累進屈折力レンズの外面、内面および目視の主注視線に沿った度数分布を示す図。The figure which shows the frequency distribution along the outer surface of the progressive-power lens of Example 2, an inner surface, and the visual main gaze line of visual observation. 実施例3の累進屈折力レンズの外面、内面および目視の主注視線に沿った度数分布を示す図。The figure which shows the power distribution along the outer surface of the progressive-power lens of Example 3, an inner surface, and the visual main gaze line. 実施例4の累進屈折力レンズの外面、内面および目視の主注視線に沿った度数分布を示す図。The figure which shows the power distribution along the outer surface of the progressive-power lens of Example 4, an inner surface, and the visual main gaze line. 実施例5の累進屈折力レンズの外面、内面および目視の主注視線に沿った度数分布を示す図。The figure which shows the frequency distribution along the outer surface of the progressive-power lens of Example 5, an inner surface, and the visual main gaze line of visual observation. 設計および製造過程の概要を示すフローチャート。The flowchart which shows the outline | summary of a design and manufacturing process.

図1は、眼鏡の一例を斜視図にて示している。図2(a)は、本発明の実施形態の1つの累進屈折力レンズの一方のレンズを平面図にて模式的に示している。図2(b)は、その累進屈折力レンズの一方のレンズを断面図にて模式的に示している。   FIG. 1 is a perspective view showing an example of eyeglasses. FIG. 2A schematically shows one lens of one progressive-power lens according to the embodiment of the present invention in a plan view. FIG. 2B schematically shows one of the progressive-power lenses in a cross-sectional view.

本例では、使用者側(ユーザー側、着用者側、眼球側)からみて、左側を左、右側を右として説明する。この眼鏡1は、左眼用および右眼用の左右一対の眼鏡用レンズ10Lおよび10Rと、レンズ10Lおよび10Rをそれぞれ装着した眼鏡フレーム20とを有する。眼鏡用レンズ10Lおよび10Rは、それぞれ、累進多焦点レンズ(累進屈折力レンズ)である。レンズ10Lおよび10Rの基本的な形状は物体側に凸のメニスカスレンズである。したがって、レンズ10Lおよび10Rは、それぞれ、物体側の面(凸面、以下外面ともいう)19Aと、眼球側(使用者側)の面(凹面、以下内面ともいう)19Bとを含む。   In this example, as viewed from the user side (user side, wearer side, eyeball side), the left side is described as left and the right side is described as right. The spectacles 1 includes a pair of left and right spectacle lenses 10L and 10R for the left eye and right eye, and a spectacle frame 20 on which the lenses 10L and 10R are respectively mounted. The spectacle lenses 10L and 10R are progressive multifocal lenses (progressive power lenses), respectively. The basic shape of the lenses 10L and 10R is a meniscus lens convex on the object side. Therefore, each of the lenses 10L and 10R includes an object side surface (convex surface, also referred to as an outer surface) 19A and an eyeball side (user side) surface (a concave surface, also referred to as an inner surface) 19B.

図2(a)は右眼用レンズ10Rを示している。このレンズ10Rは、上方(主注視線に沿った座標が大きい方向に、主注視線に沿った遠用部の方向)の場所に遠距離の物を見る(遠方視の)ための視野部である遠用部11を含み、下方(主注視線に沿った座標が小さい方向に、主注視線に沿った近用部の方向)の場所に遠用部11と異なる度数(目視度数、屈折力)の近距離の物を見る(近方視の)ための視野部である近用部12を含む。さらに、レンズ10Rは、これら遠用部11と近用部12とを目視度数(屈折力)が変化するように連結する中間部(中間視のための部分、累進部、累進帯)13を含む。また、レンズ10Rは、遠方視・中間視・近方視をするときに視野の中心となるレンズ上の位置を結んだ主注視線14を含む。この眼鏡用レンズ10Rにおいては、フレーム枠に合わせて外周を成形し枠入れする際のレンズ上の基準点であるフィッティングポイントFPは中間部13に位置する。   FIG. 2A shows the right-eye lens 10R. This lens 10 </ b> R is a visual field part for viewing an object at a long distance (for far vision) at a location above (in the direction where the coordinates along the main gazing line are large, the direction of the distance portion along the main gazing line). A certain distance portion 11 is included and is located at a lower position (in the direction of the near portion along the main gazing line in the direction in which the coordinates along the main gazing line are smaller) than the distance portion 11 (visual power and refractive power). ) Includes a near portion 12 that is a visual field portion for viewing an object at a short distance (for near vision). Furthermore, the lens 10R includes an intermediate portion (a portion for intermediate vision, a progressive portion, a progressive zone) 13 that connects the distance portion 11 and the near portion 12 so that the visual power (refractive power) changes. . The lens 10 </ b> R includes a main gaze line 14 that connects a position on the lens that is the center of the field of view when performing far vision, intermediate vision, and near vision. In the spectacle lens 10 </ b> R, the fitting point FP, which is a reference point on the lens when the outer periphery is shaped and framed in accordance with the frame, is located at the intermediate portion 13.

以下において、このフィッティングポイントFPをレンズの座標原点とし、フィッティングポイントFPを通る水平基準線Xの水平方向の座標をx座標、主注視線14上の座標をy座標とする。主注視線14は、フィッティングポイントFPを通る垂直基準線(主子午線)Yに対してフィッティングポイントFPを過ぎたあたりから鼻側に曲がる。主注視線14と垂直基準線Yとの間隔を内寄せと称する。   Hereinafter, the fitting point FP is set as the coordinate origin of the lens, the horizontal coordinate of the horizontal reference line X passing through the fitting point FP is set as the x coordinate, and the coordinate on the main gazing line 14 is set as the y coordinate. The main gaze line 14 bends to the nose side after passing the fitting point FP with respect to the vertical reference line (main meridian) Y passing through the fitting point FP. The interval between the main gaze line 14 and the vertical reference line Y is referred to as inward alignment.

なお、以下において眼鏡用レンズとして右眼用の眼鏡用レンズ10Rを中心に説明するが、眼鏡用レンズ、眼鏡レンズまたはレンズは左眼用の眼鏡用レンズ10Lであってもよく、左眼用の眼鏡用レンズ10Lは、左右の眼の眼鏡仕様の差を除けば基本的には右眼用の眼鏡用レンズ10Rと左右対称の構成となる。また、以下においては、右眼用および左眼用の眼鏡用レンズ10Rおよび10Lを共通して眼鏡用レンズ(またはレンズ)10と称する。   In the following description, the spectacle lens 10R for the right eye is mainly described as the spectacle lens. However, the spectacle lens, the spectacle lens, or the lens may be the spectacle lens 10L for the left eye. The eyeglass lens 10L is basically symmetrical to the right eyeglass lens 10R except for the difference in spectacle specifications between the left and right eyes. In the following description, the right-eye and left-eye spectacle lenses 10R and 10L are commonly referred to as spectacle lenses (or lenses) 10.

(実施例1)
図3に、実施例1の累進屈折力レンズ10の物体側の面(外面)19Aの主注視線14に沿った面屈折力OPの変化と、眼球側の面(内面)19Bの主注視線14に沿った面屈折力IPの変化と、外面19Aおよび内面19Bの面屈折力により得られる目視度数(平均度数)APの変化とを模式的に示している。
Example 1
3 shows changes in the surface refractive power OP along the main gaze line 14 of the object-side surface (outer surface) 19A of the progressive-power lens 10 of Example 1, and the main gaze line of the eyeball-side surface (inner surface) 19B. 14 schematically shows a change in the surface refractive power IP along 14 and a change in the visual power (average power) AP obtained by the surface refractive power of the outer surface 19A and the inner surface 19B.

なお、この明細書において面屈折力および度数はディオプトリ(D)を単位として示し、内面19Bの面屈折力IPは絶対値で示す。主注視線14に沿った目視度数APと、外面19Aの面屈折力OPと、内面19Bの面屈折力IPとは近似的に以下の式により得られる。
AP=OP−IP・・・(8)
In this specification, the surface refractive power and power are shown in units of diopter (D), and the surface refractive power IP of the inner surface 19B is shown as an absolute value. The visual power AP along the main gazing line 14, the surface refractive power OP of the outer surface 19A, and the surface refractive power IP of the inner surface 19B are approximately obtained by the following equations.
AP = OP-IP (8)

実施例1の累進屈折力レンズ10は、累進帯長24mm、処方度数(遠用度数、Sph)が0.00(D)、加入度数(Add)が2.00(D)で設計したものである。なお、レンズ10の直径は65mmであり、乱視度数は含まれていない。   The progressive-power lens 10 of Example 1 is designed with a progressive zone length of 24 mm, a prescription power (distance power, Sph) of 0.00 (D), and an addition power (Add) of 2.00 (D). is there. The lens 10 has a diameter of 65 mm and does not include astigmatism power.

外面19Aは、遠用部11の面屈折力OPが4.00(D)で、累進帯長がフィッティングポイントFPの上10mmから始まり、フィッティングポイントFPで終了しており、面屈折力OPの変化分ΔOPは0.75(D)である。すなわち、外面19Aは、面屈折力OPが変化する第1の累進面18Aを含み、第1の累進面18Aの開始座標P1は遠用部11と中間部13との境界PFであり、終了座標P2はフィッティングポイントFPとなっており、面屈折力OPによる度数変化DOPは0.075(D/mm)である。   The outer surface 19A has a surface refractive power OP of 4.00 (D) for the distance portion 11 and a progressive zone length starting from 10 mm above the fitting point FP and ending at the fitting point FP. The minute ΔOP is 0.75 (D). That is, the outer surface 19A includes the first progressive surface 18A in which the surface refractive power OP changes, the start coordinate P1 of the first progressive surface 18A is the boundary PF between the distance portion 11 and the intermediate portion 13, and the end coordinate P2 is the fitting point FP, and the power change DOP due to the surface refractive power OP is 0.075 (D / mm).

一方、内面19Bは、遠用部11の面屈折力IPが4.00(D)で、累進帯長がフィッティングポイントFPの4mm下(座標の小さい方、マイナス側)から始まり、フィッティングポイントFPの14mm下で終わり、面屈折力IPの変化分ΔIPは−1.25(D)である。すなわち、内面19Bは、面屈折力IPが変化する第2の累進面18Bを含み、第2の累進面18Bの開始座標P3はフィッティングポイントFPの下側4mmであり、終了座標P4は中間部13と近用部12との境界PNとなっており、面屈折力IPによる度数変化DIP(絶対値)は0.089(D/mm)である。   On the other hand, the inner surface 19B has a surface refractive power IP of 4.00 (D) of the distance portion 11 and a progressive zone length starting from 4 mm below the fitting point FP (smaller coordinate, minus side). It ends below 14 mm, and the change ΔIP of the surface refractive power IP is −1.25 (D). That is, the inner surface 19B includes the second progressive surface 18B in which the surface refractive power IP changes, the start coordinate P3 of the second progressive surface 18B is 4 mm below the fitting point FP, and the end coordinate P4 is the intermediate portion 13. And the near portion 12 is a boundary PN, and the power change DIP (absolute value) due to the surface refractive power IP is 0.089 (D / mm).

したがって、第1の累進面18Aの座標P1は座標P2よりも大きく、第2の累進面18Bの座標P3は座標P4よりも大きく、さらに、座標P2は座標P3よりも大きい。したがって、座標P1、P2、P3およびP4は、上記条件(2)、(3)および(4)を満足する。   Accordingly, the coordinate P1 of the first progressive surface 18A is larger than the coordinate P2, the coordinate P3 of the second progressive surface 18B is larger than the coordinate P4, and the coordinate P2 is larger than the coordinate P3. Therefore, the coordinates P1, P2, P3 and P4 satisfy the above conditions (2), (3) and (4).

累進屈折力レンズ10の外面19Aおよび内面19Bにより得られる目視度数APは、目視度数APが0.00(D)の遠用部11と、目視度数APが2.00(D)の近用部12と、遠用部11と近用部12との間で目視度数APが変化する中間部13とを含む。さらに、中間部13は、遠用部11に繋がり、第1の目視度数勾配D1を備えた第1の領域131と、近用部12に繋がり、第2の目視度数勾配D2を備えた第2の領域132と、第1の領域131および第2の領域132の間に位置する第3の領域133であって、第3の目視度数勾配D3を備えた第3の領域133とを含む。   The visual power AP obtained by the outer surface 19A and the inner surface 19B of the progressive-power lens 10 includes a distance portion 11 having a visual power AP of 0.00 (D) and a near portion having a visual power AP of 2.00 (D). 12 and an intermediate portion 13 in which the visual power AP changes between the distance portion 11 and the near portion 12. Further, the intermediate portion 13 is connected to the distance portion 11 and is connected to the first region 131 having the first visual power gradient D1 and the near portion 12 and is provided with the second visual power gradient D2. Region 132 and a third region 133 located between the first region 131 and the second region 132, and a third region 133 having a third visual power gradient D3.

第1の領域131の第1の目視度数勾配D1は第1の累進面18Aにより付与され、第1の目視度数勾配D1の近似的な値は0.075(D/mm)である。第2の領域132の第2の目視度数勾配D2は第2の累進面18Bにより付与され、第1の目視度数勾配D2の近似的な値は0.089(D/mm)である。第3の領域133の第3の目視度数勾配D3は、外面19Aの第1の累進面18Aが終了した後の面と、内面19Bの第2の累進面18Bが開始する前の面とにより与えられ、第3の目視度数勾配D3の近似的な値は0.00(D/mm)である。したがって、第3の目視度数勾配D3は、第1の目視度数勾配D1および第2の目視度数勾配D2の最小値より小さく、第1の目視度数勾配D1、第2の目視度数勾配D2および第3の目視度数勾配D3は上記条件(1)を満たす。   The first visual power gradient D1 of the first region 131 is given by the first progressive surface 18A, and the approximate value of the first visual power gradient D1 is 0.075 (D / mm). The second visual power gradient D2 of the second region 132 is given by the second progressive surface 18B, and the approximate value of the first visual power gradient D2 is 0.089 (D / mm). The third visual power gradient D3 of the third region 133 is given by the surface after the first progressive surface 18A of the outer surface 19A ends and the surface of the inner surface 19B before the second progressive surface 18B starts. The approximate value of the third visual power gradient D3 is 0.00 (D / mm). Accordingly, the third visual power gradient D3 is smaller than the minimum value of the first visual power gradient D1 and the second visual power gradient D2, and the first visual power gradient D1, the second visual power gradient D2, and the third visual power gradient D2. The visual power gradient D3 satisfies the above condition (1).

図4(a)に外面19Aの非点収差分布を示し、図4(b)に内面19Bの非点収差分布を示し、図4(c)に目視時の非点収差分布を示す。また、図5(a)に外面19Aの平均度数分布を示し、図5(b)に内面19Bの平均度数分布を示し、図5(c)に目視時の平均度数分布を示す。図の縦横の直線は円形のレンズの幾何学中心を通る基準線(垂直基準線yおよび水平基準線x)を示し、その交点である幾何学中心をフィッティングポイントとした眼鏡フレームへの枠入れ時の形状イメージも示されている。以下に示す図においても同様である。   4A shows the astigmatism distribution on the outer surface 19A, FIG. 4B shows the astigmatism distribution on the inner surface 19B, and FIG. 4C shows the astigmatism distribution when viewed. 5A shows an average frequency distribution of the outer surface 19A, FIG. 5B shows an average frequency distribution of the inner surface 19B, and FIG. 5C shows an average frequency distribution at the time of visual observation. The vertical and horizontal straight lines in the figure indicate the reference lines (vertical reference line y and horizontal reference line x) that pass through the geometric center of the circular lens, and the frame is put into the spectacle frame with the geometric center that is the intersection as the fitting point. The shape image is also shown. The same applies to the following drawings.

主注視線14上において、フィッティングポイントFPから4mm下の間の第3の領域133の平均度数の度数勾配(第3の目視度数勾配D3)を計算した結果、第3の目視度数勾配D3は0.022(D/mm)であり、第1の目視度数勾配D1および第2の目視度数勾配D2よりも小さい値になることが分かった。このように、この累進屈折力レンズ10においては、中間部13の中で、外面19Aの第1の累進面18Aと、内面19Bの第2の累進面18Bの重なっていない第3の領域133は度数勾配D3が中間部13の他の領域131および132の度数勾配D1およびD2よりも小さい。したがって、度数勾配の少ない領域133を中間部13に備えた累進屈折力レンズ10を提供できる。   As a result of calculating a power gradient of the average power (third visual power gradient D3) of the third region 133 between the fitting point FP and 4 mm below the main gaze line 14, the third visual power gradient D3 is 0. 0.02 (D / mm), which was found to be smaller than the first visual power gradient D1 and the second visual power gradient D2. Thus, in the progressive-power lens 10, in the intermediate portion 13, the third region 133 where the first progressive surface 18A of the outer surface 19A and the second progressive surface 18B of the inner surface 19B do not overlap is formed. The power gradient D3 is smaller than the power gradients D1 and D2 of the other regions 131 and 132 of the intermediate portion 13. Therefore, it is possible to provide the progressive addition lens 10 having the region 133 with a small power gradient in the intermediate portion 13.

図6(a)に度数勾配が均等あるいは連続した中間部13を備えた累進屈折力レンズ10xの遠用部11と、近用部12と、中間部13とを模式的に示している。また、図6(b)に度数勾配が不連続な中間部13を備えた累進屈折力レンズ10の遠用部11と、近用部12と、中間部13とを模式的に示している。   FIG. 6A schematically shows the distance portion 11, the near portion 12, and the intermediate portion 13 of the progressive addition lens 10 x provided with the intermediate portion 13 having a uniform or continuous power gradient. FIG. 6B schematically shows the distance portion 11, the near portion 12, and the intermediate portion 13 of the progressive addition lens 10 having the intermediate portion 13 having a discontinuous power gradient.

図6(a)に示すように、累進開始点PFから累進終了点PNまでの間の中間部13で目視度数(平均度数)APが連続して、あるいは均一な勾配で変化している累進屈折力レンズ10xにおいては、使用頻度の高い中間距離、たとえば、パーソナルコンピュータ(PC)のディスプレイや大型TVまでの距離などで使用する場合において、度数が連続して、あるいは継続して変化している部分(中間部)13を使用していた。したがって、像の倍率が変化したり、像がゆれたりすることが多く、中間距離で快適な視野が得にくかった。   As shown in FIG. 6A, the progressive refraction in which the visual power (average power) AP changes continuously or at a uniform gradient in the intermediate portion 13 between the progressive start point PF and the progressive end point PN. In the power lens 10x, when the lens is used at a frequently used intermediate distance, for example, a distance to a display of a personal computer (PC) or a large TV, the frequency is continuously or continuously changed. (Intermediate part) 13 was used. Therefore, the magnification of the image often changes or the image is swayed, and it is difficult to obtain a comfortable visual field at an intermediate distance.

本件の累進屈折力レンズ10では、図6(b)に示すように、累進開始点PFから累進終了点PNまでの間の中間部13に、度数の変化が他の中間部13よりも小さく、実質的に度数変化がない第3の領域133が設けられている。したがって、使用頻度の高い中間距離で像を得る際に第3の領域133を用いることにより、像の倍率変化やゆがみを低減ができる。したがって、中間距離で快適な視野を備えた、中間距離の使用頻度の高いユーザーに適した累進屈折力レンズ10を提供できる。また、度数変化の少ないあるいはない第3の領域133においては、主注視線14も垂直基準線Yに対して平行に設定し、内寄せ量を変化させないようにしている。   In the progressive-power lens 10 of the present case, as shown in FIG. 6B, the change in the frequency is smaller in the intermediate portion 13 between the progressive start point PF and the progressive end point PN than in the other intermediate portions 13. A third region 133 having substantially no frequency change is provided. Therefore, by using the third region 133 when an image is obtained at an intermediate distance that is frequently used, a change in image magnification and distortion can be reduced. Therefore, it is possible to provide a progressive power lens 10 having a comfortable visual field at an intermediate distance and suitable for a user who frequently uses the intermediate distance. In the third region 133 with little or no frequency change, the main gazing line 14 is also set parallel to the vertical reference line Y so that the amount of inset is not changed.

さらに、実施例1の累進屈折力レンズ10においては、外面19Aおよび内面19Bの両面に累進部(第1の累進面18Aおよび第2の累進面18B)を分けて設けている。したがって、中間視野領域の光学性能を維持したままレンズ製造ができる。また、中間部(累進部)13の平滑化の影響を両面19Aおよび19Bに分散することで、中間視野領域への影響を軽減できる。さらに、外面19Aと内面19Bとでそれぞれ、必要とする加入度を与えることができるため、中間視野領域に必要とする中間距離用の加入度数を片面で制御するより安定した累進屈折力レンズ10を製造できる。   Further, in the progressive addition lens 10 of the first embodiment, the progressive portions (the first progressive surface 18A and the second progressive surface 18B) are provided separately on both the outer surface 19A and the inner surface 19B. Therefore, the lens can be manufactured while maintaining the optical performance of the intermediate visual field region. Further, by dispersing the influence of smoothing of the intermediate portion (progressive portion) 13 on both surfaces 19A and 19B, the influence on the intermediate visual field region can be reduced. Furthermore, since the required addition can be given to each of the outer surface 19A and the inner surface 19B, the more stable progressive addition lens 10 that controls the addition power for the intermediate distance required for the intermediate visual field region on one side can be provided. Can be manufactured.

このように、外面19Aに第1の累進面18Aを設け、内面19Bに第2の累進面18Bを設けた両面設計を行うことで、中間視野領域の物体倍率を内面累進設計よりも大きくした累進屈折力レンズを提供できる。物体倍率が大きくなることで、中間、近用距離の物体を大きく見せ、中間、近距離の物体を視やすくすることができる。   In this way, by carrying out a double-sided design in which the first progressive surface 18A is provided on the outer surface 19A and the second progressive surface 18B is provided on the inner surface 19B, the intermediate magnification is made larger in object magnification than the inner surface progressive design. A refractive lens can be provided. By increasing the object magnification, it is possible to make the intermediate and near-distance objects appear larger and make it easier to see the intermediate and short-distance objects.

さらに、内面19Bにおける累進部(第2の累進面)18Bの位置を上下に移動させ、外面19Aの累進部(第1の累進面)18Aとのズレ量のコントロールが容易であり、中間視野領域の広さを装用者に合わせた設計が容易に行える累進屈折力レンズ10を提供できる。   Further, the position of the progressive portion (second progressive surface) 18B on the inner surface 19B is moved up and down to easily control the amount of deviation from the progressive portion (first progressive surface) 18A of the outer surface 19A, and the intermediate visual field region It is possible to provide a progressive power lens 10 that can be easily designed in accordance with the size of the wearer.

すなわち、累進屈折力レンズの倍率Mは近似的に以下の式で表わされる。
M=Ms×Mp・・・(9)
ここで、Msはシェープ・ファクター、Mpはパワー・ファクターと呼ばれる。レンズ基材の屈折率をn、レンズの物体側の面のベースカーブ(面屈折力)をD(ディオプトリ)、レンズの眼球側の面の頂点(内側頂点)から眼球までの距離をL、内側頂点の屈折力(内側頂点屈折力)をP(度数S)、レンズ中心の厚みをtとすると、MpおよびMsは、以下のように表される。
Ms=1/(1−D×t/n)・・・(10)
Mp=1/(1−L×P)・・・・・(11)
That is, the magnification M of the progressive power lens is approximately expressed by the following equation.
M = Ms × Mp (9)
Here, Ms is called a shape factor, and Mp is called a power factor. The refractive index of the lens substrate is n, the base curve (surface refractive power) of the object side surface of the lens is D (diopter), the distance from the apex (inner apex) of the lens eyeball side surface to the eyeball is L, the inner side When the refractive power at the apex (inner apex refractive power) is P (frequency S) and the thickness of the lens center is t, Mp and Ms are expressed as follows.
Ms = 1 / (1-D × t / n) (10)
Mp = 1 / (1-L × P) (11)

なお、式(10)および(11)の計算にあたっては、ベースカーブDおよび内側頂点屈折力Pについてはディオプトリ(D)を、また、厚みtおよび距離Lについてはメートル(m)を用いる。   In calculating the expressions (10) and (11), diopter (D) is used for the base curve D and the inner vertex power P, and meters (m) are used for the thickness t and the distance L.

したがって、式(9)は、以下のようになる。
M={1/(1−D×t/n)}×{1/(1−L×P)}・・・(12)
この式(12)からわかるように、屈折力Pが大きくなると倍率Mも大きくなり、遠用部11に対して中間部13および近用部12の方が像の倍率Mが大きくなる。したがって、外面19Aに第1の累進面18Aを設け、内面19Bに第2の累進面18Bを設けた両面設計を行うことで、中間視野領域、特に、第3の領域133の物体倍率Mの変化を内面累進設計よりも小さくした累進屈折力レンズを提供できる。
Therefore, Formula (9) becomes as follows.
M = {1 / (1-D × t / n)} × {1 / (1-L × P)} (12)
As can be seen from the equation (12), as the refractive power P increases, the magnification M also increases, and the intermediate portion 13 and the near portion 12 have a larger image magnification M than the distance portion 11. Accordingly, by performing a double-sided design in which the first progressive surface 18A is provided on the outer surface 19A and the second progressive surface 18B is provided on the inner surface 19B, the change of the object magnification M in the intermediate visual field region, particularly the third region 133 It is possible to provide a progressive-power lens that is smaller than the inner surface progressive design.

(実施例2)
図7に、実施例2の累進屈折力レンズ10の物体側の面(外面)19Aの主注視線14に沿った面屈折力OPの変化と、眼球側の面(内面)19Bの主注視線14に沿った面屈折力IPの変化と、外面19Aおよび内面19Bの面屈折力により得られる目視度数(平均度数)APの変化とを模式的に示している。
(Example 2)
FIG. 7 shows changes in the surface refractive power OP along the main gaze line 14 of the object side surface (outer surface) 19A of the progressive-power lens 10 of Example 2, and the main gaze line of the eyeball side surface (inner surface) 19B. 14 schematically shows a change in the surface refractive power IP along 14 and a change in the visual power (average power) AP obtained by the surface refractive power of the outer surface 19A and the inner surface 19B.

実施例2の累進屈折力レンズ10は、累進帯長が24mm、処方度数(遠用度数、Sph)が0.00(D)、加入度数(Add)が2.00(D)という条件で設計したものである。なお、レンズ10の直径は65mmであり、乱視度数は含まれていない。   The progressive-power lens 10 of Example 2 is designed on the condition that the progressive zone length is 24 mm, the prescription power (distance power, Sph) is 0.00 (D), and the addition power (Add) is 2.00 (D). It is a thing. The lens 10 has a diameter of 65 mm and does not include astigmatism power.

実施例2の累進屈折力レンズの内面19Bは、遠用部11の面屈折力IPが4.00(D)で、累進帯長がフィッティングポイントFPの上10mmから始まり、フィッティングポイントFPで終了しており、面屈折力IPの変化分ΔIPは−0.75(D)である。すなわち、内面19Bは、面屈折力IPが変化する第2の累進面18Bを含み、第2の累進面18Bの開始座標P3は遠用部11と中間部13との境界PFであり、終了座標P4はフィッティングポイントFPとなっており、面屈折力IPによる度数変化DIP(絶対値)は0.075(D/mm)である。   The inner surface 19B of the progressive-power lens of Example 2 has a surface refractive power IP of 4.00 (D) for the distance portion 11, and the progressive zone length starts from 10 mm above the fitting point FP and ends at the fitting point FP. The change ΔIP in the surface refractive power IP is −0.75 (D). That is, the inner surface 19B includes the second progressive surface 18B in which the surface refractive power IP changes, the start coordinate P3 of the second progressive surface 18B is the boundary PF between the distance portion 11 and the intermediate portion 13, and the end coordinate. P4 is a fitting point FP, and the power change DIP (absolute value) due to the surface refractive power IP is 0.075 (D / mm).

一方、外面19Aは、遠用部11の面屈折力OPが4.00(D)で、累進帯長がフィッティングポイントFPの4mm下から始まり、フィッティングポイントFPの14mm下で終わり、面屈折力OPの変化分ΔOPは1.25(D)である。すなわち、外面19Aは、面屈折力OPが変化する第1の累進面18Aを含み、第1の累進面18Aの開始座標P1はフィッティングポイントFPの下側4mmであり、終了座標P2は中間部13と近用部12との境界PNとなっており、面屈折力OPによる度数変化DOPは0.089(D/mm)である。   On the other hand, the outer surface 19A has a surface refractive power OP of 4.00 (D) of the distance portion 11 and a progressive zone length starting from 4 mm below the fitting point FP and ending at 14 mm below the fitting point FP. The change ΔOP of is 1.25 (D). That is, the outer surface 19A includes the first progressive surface 18A in which the surface refractive power OP changes, the start coordinate P1 of the first progressive surface 18A is 4 mm below the fitting point FP, and the end coordinate P2 is the intermediate portion 13. And the near portion 12, and the power change DOP due to the surface refractive power OP is 0.089 (D / mm).

したがって、第1の累進面18Aの座標P1は座標P2よりも大きく、第2の累進面18Bの座標P3は座標P4よりも大きく、さらに、座標P4は座標P1よりも大きい。したがって、座標P1、P2、P3およびP4は、上記条件(2)、(3)および(5)を満足する。   Therefore, the coordinate P1 of the first progressive surface 18A is larger than the coordinate P2, the coordinate P3 of the second progressive surface 18B is larger than the coordinate P4, and the coordinate P4 is larger than the coordinate P1. Therefore, the coordinates P1, P2, P3 and P4 satisfy the above conditions (2), (3) and (5).

累進屈折力レンズ10の外面19Aおよび内面19Bにより得られる目視度数APは、図7に示すように、実施例1の累進屈折力レンズ10の目視度数APと近似的には同一である。したがって、第3の目視度数勾配D3は、第1の目視度数勾配D1および第2の目視度数勾配D2の最小値より小さく、第1の目視度数勾配D1、第2の目視度数勾配D2および第3の目視度数勾配D3は上記条件(1)を満たす。   The visual power AP obtained by the outer surface 19A and the inner surface 19B of the progressive-power lens 10 is approximately the same as the visual power AP of the progressive-power lens 10 of Example 1, as shown in FIG. Accordingly, the third visual power gradient D3 is smaller than the minimum value of the first visual power gradient D1 and the second visual power gradient D2, and the first visual power gradient D1, the second visual power gradient D2, and the third visual power gradient D2. The visual power gradient D3 satisfies the above condition (1).

実施例2の累進屈折力レンズ10も、実施例1の累進屈折力レンズ10と同様に、外面(物体側の面)19Aと内面(眼球側の面)19Bとが主注視線14に沿った異なる範囲に面屈折力が変化する累進面、すなわち、第1の累進面18Aおよび第2の累進面18Bとを含む。さらに、外面(物体側の面)19Aと内面(眼球側の面)19Bとは、主注視線14に沿った異なる位置に同傾向の目視度数勾配を付与するように面屈折力が変化する累進面、すなわち、第1の累進面18Aおよび第2の累進面18Bを含む。そして、相互に重複しない累進面18Aおよび18Bにより、中間部13の第1の領域131、第2の領域132および第3の領域133が形成され、目視度数勾配の少ない第3の領域133を中間部13に含む累進屈折力レンズ10を提供できる。   Similarly to the progressive-power lens 10 of Example 1, the progressive-power lens 10 of Example 2 also has an outer surface (object side surface) 19A and an inner surface (eyeball side surface) 19B along the main line of sight 14. It includes a progressive surface whose surface refractive power varies in different ranges, that is, a first progressive surface 18A and a second progressive surface 18B. Further, the outer surface (object side surface) 19A and the inner surface (eyeball side surface) 19B are progressively changed in surface refractive power so as to give the same visual power gradient to different positions along the main gazing line 14. A plane, ie, a first progressive surface 18A and a second progressive surface 18B are included. Then, the first area 131, the second area 132, and the third area 133 of the intermediate portion 13 are formed by the progressive surfaces 18A and 18B that do not overlap with each other, and the third area 133 with a small visual power gradient is intermediate. The progressive power lens 10 included in the portion 13 can be provided.

(実施例3)
図8に、実施例3の累進屈折力レンズ10の物体側の面(外面)19Aの主注視線14に沿った面屈折力OPの変化と、眼球側の面(内面)19Bの主注視線14に沿った面屈折力IPの変化と、外面19Aおよび内面19Bの面屈折力により得られる目視度数(平均度数)APの変化とを模式的に示している。
(Example 3)
FIG. 8 shows changes in the surface refractive power OP along the main gaze line 14 of the object-side surface (outer surface) 19A of the progressive-power lens 10 of Example 3, and the main gaze line of the eyeball-side surface (inner surface) 19B. 14 schematically shows a change in the surface refractive power IP along 14 and a change in the visual power (average power) AP obtained by the surface refractive power of the outer surface 19A and the inner surface 19B.

実施例3の累進屈折力レンズ10は、累進帯長が24mm、処方度数(遠用度数、Sph)が0.00(D)、加入度数(Add)が2.00(D)という条件で設計したものである。なお、レンズ10の直径は65mmであり、乱視度数は含まれていない。   The progressive-power lens 10 of Example 3 is designed under the conditions that the progressive zone length is 24 mm, the prescription power (distance power, Sph) is 0.00 (D), and the addition power (Add) is 2.00 (D). It is a thing. The lens 10 has a diameter of 65 mm and does not include astigmatism power.

実施例3の累進屈折力レンズの内面19Bは、遠用部11の面屈折力IPが4.00(D)で、累進帯長がフィッティングポイントFPの上10mmから始まり、フィッティングポイントFPの14mm下で終わり、面屈折力IPの変化分ΔIPは−2.40(D)である。すなわち、内面19Bは、面屈折力IPが変化する第2の累進面18Bを含み、第2の累進面18Bの開始座標P3は遠用部11と中間部13との境界PFであり、終了座標P4は近用部12と中間部13との境界PNとなっており、面屈折力IPによる度数変化DIP(絶対値)は0.100(D/mm)である。   The inner surface 19B of the progressive-power lens of Example 3 has a surface refractive power IP of 4.00 (D) of the distance portion 11 and a progressive zone length starting from 10 mm above the fitting point FP and 14 mm below the fitting point FP. The change ΔIP of the surface power IP is −2.40 (D). That is, the inner surface 19B includes the second progressive surface 18B in which the surface refractive power IP changes, the start coordinate P3 of the second progressive surface 18B is the boundary PF between the distance portion 11 and the intermediate portion 13, and the end coordinate. P4 is a boundary PN between the near portion 12 and the intermediate portion 13, and the power change DIP (absolute value) due to the surface refractive power IP is 0.100 (D / mm).

一方、外面19Aは、遠用部11の面屈折力OPが4.00(D)で、累進帯長がフィッティングポイントFPから始まり、フィッティングポイントFPの4mm下で終わり、面屈折力OPの変化分ΔOPは−0.4(D)である。すなわち、外面19Aは、面屈折力OPが逆傾向に変化する第1の累進面(逆累進面)18Aを含み、第1の累進面18Aの開始座標P1はフィッティングポイントFPであり、終了座標P2はフィッティングポイントFPの下側4mmであり、面屈折力OPによる度数変化DOP(絶対値)は0.100(D/mm)である。   On the other hand, on the outer surface 19A, the distance power 11 of the distance portion 11 is 4.00 (D), the progressive zone length starts from the fitting point FP, ends at 4 mm below the fitting point FP, and the amount of change in the surface refractive power OP. ΔOP is −0.4 (D). That is, the outer surface 19A includes a first progressive surface (reverse progressive surface) 18A in which the surface refractive power OP changes in a reverse tendency, the start coordinate P1 of the first progressive surface 18A is the fitting point FP, and the end coordinate P2 Is 4 mm below the fitting point FP, and the power change DOP (absolute value) due to the surface refractive power OP is 0.100 (D / mm).

したがって、第1の累進面18Aの座標P1は座標P2よりも大きく、第2の累進面18Bの座標P3は座標P4よりも大きく、さらに、第1の累進面18Aの開始座標P1は第2の累進面18Bの開始座標P3より小さく、第1の累進面18Aの終了座標P2は第2の累進面18Bの終了座標P4よりも大きい。したがって、座標P1、P2、P3およびP4は、上記条件(2)、(3)および(7)を満足する。   Therefore, the coordinate P1 of the first progressive surface 18A is larger than the coordinate P2, the coordinate P3 of the second progressive surface 18B is larger than the coordinate P4, and the start coordinate P1 of the first progressive surface 18A is the second coordinate. It is smaller than the start coordinate P3 of the progressive surface 18B, and the end coordinate P2 of the first progressive surface 18A is larger than the end coordinate P4 of the second progressive surface 18B. Therefore, the coordinates P1, P2, P3 and P4 satisfy the above conditions (2), (3) and (7).

累進屈折力レンズ10の外面19Aおよび内面19Bにより得られる目視度数APは、図8に示すように、実施例1の累進屈折力レンズ10の目視度数APとほぼ同一であり、第3の領域133の目視度数は近似的に1.00(D)で一定となる。したがって、第3の目視度数勾配D3は、第1の目視度数勾配D1および第2の目視度数勾配D2の最小値より小さく、第1の目視度数勾配D1、第2の目視度数勾配D2および第3の目視度数勾配D3は上記条件(1)を満たす。   The visual power AP obtained by the outer surface 19A and the inner surface 19B of the progressive-power lens 10 is substantially the same as the visual power AP of the progressive-power lens 10 of Example 1 as shown in FIG. The visual power of is approximately constant at 1.00 (D). Accordingly, the third visual power gradient D3 is smaller than the minimum value of the first visual power gradient D1 and the second visual power gradient D2, and the first visual power gradient D1, the second visual power gradient D2, and the third visual power gradient D2. The visual power gradient D3 satisfies the above condition (1).

実施例3の累進屈折力レンズ10も、実施例1の累進屈折力レンズ10と同様に、外面(物体側の面)19Aと内面(眼球側の面)19Bとが主注視線14に沿った異なる範囲に面屈折力が変化する累進面、すなわち、第1の累進面18Aおよび第2の累進面18Bとを含む。さらに、外面(物体側の面)19Aと内面(眼球側の面)19Bとは、さらに、主注視線14に沿った重複する位置に逆傾向の目視度数勾配を付与するように面屈折力が変化する累進面、すなわち、第1の累進面18Aおよび第2の累進面18Bを含む。そして、一部が重複する累進面18Aおよび18Bにより、中間部13の第1の領域131、第2の領域132および第3の領域133が形成され、目視度数勾配の少ない第3の領域133を中間部13に含む累進屈折力レンズ10を提供できる。   Similarly to the progressive-power lens 10 of Example 1, the progressive-power lens 10 of Example 3 also has an outer surface (object side surface) 19A and an inner surface (eyeball side surface) 19B along the main line of sight 14. It includes a progressive surface whose surface refractive power varies in different ranges, that is, a first progressive surface 18A and a second progressive surface 18B. Further, the outer surface (object-side surface) 19A and the inner surface (eyeball-side surface) 19B further have surface refractive power so as to give a reverse power gradient to the overlapping position along the main line of sight 14. It includes a progressive surface that changes, that is, a first progressive surface 18A and a second progressive surface 18B. Then, the first surface 131, the second region 132, and the third region 133 of the intermediate portion 13 are formed by the progressive surfaces 18A and 18B that are partially overlapped, and the third region 133 with a small visual power gradient is formed. The progressive addition lens 10 included in the intermediate portion 13 can be provided.

さらに、この実施例3の累進屈折力レンズ10においては、外面19Aに逆累進面18Aが形成され、面屈折力(ベースカーブ)OPは近用部12の方が遠用部11より小さくなっている。このため、先に式(12)に示したように、屈折力Pが大きくなると倍率Mも大きくなり、遠用部11に対して中間部13および近用部12の方が像の倍率Mが大きくなるが、外面19Aの面屈折力OPが小さくなるので遠用部11、中間部13および近用部12の像の倍率差を小さくできる。   Further, in the progressive addition lens 10 of the third embodiment, the reverse progressive surface 18A is formed on the outer surface 19A, and the surface refractive power (base curve) OP is smaller in the near portion 12 than in the distance portion 11. Yes. Therefore, as shown in the equation (12), when the refractive power P is increased, the magnification M is also increased, and the intermediate portion 13 and the near portion 12 have an image magnification M greater than that of the distance portion 11. However, since the surface refractive power OP of the outer surface 19A is reduced, the magnification difference between the images of the distance portion 11, the intermediate portion 13, and the near portion 12 can be reduced.

(実施例4)
図9に、実施例4の累進屈折力レンズ10の物体側の面(外面)19Aの主注視線14に沿った面屈折力OPの変化と、眼球側の面(内面)19Bの主注視線14に沿った面屈折力IPの変化と、外面19Aおよび内面19Bの面屈折力により得られる目視度数(平均度数)APの変化とを模式的に示している。
Example 4
FIG. 9 shows changes in the surface refractive power OP along the main gaze line 14 of the object side surface (outer surface) 19A of the progressive-power lens 10 of Example 4, and the main gaze line of the eyeball side surface (inner surface) 19B. 14 schematically shows a change in the surface refractive power IP along 14 and a change in the visual power (average power) AP obtained by the surface refractive power of the outer surface 19A and the inner surface 19B.

実施例4の累進屈折力レンズ10は、累進帯長が24mm、処方度数(遠用度数、Sph)が0.00(D)、加入度数(Add)が2.00(D)という条件で設計したものである。なお、レンズ10の直径は65mmであり、乱視度数は含まれていない。   The progressive-power lens 10 of Example 4 is designed on the condition that the progressive zone length is 24 mm, the prescription power (distance power, Sph) is 0.00 (D), and the addition power (Add) is 2.00 (D). It is a thing. The lens 10 has a diameter of 65 mm and does not include astigmatism power.

実施例4の累進屈折力レンズの外面19Aは、遠用部11の面屈折力IPが4.00(D)で、累進帯長がフィッティングポイントFPの上10mmから始まり、フィッティングポイントFPの14mm下で終わり、面屈折力OPの変化分ΔOPは2.40(D)である。すなわち、外面19Aは、面屈折力OPが変化する第1の累進面18Aを含み、第1の累進面18Aの開始座標P1は遠用部11と中間部13との境界PFであり、終了座標P2は近用部12と中間部13との境界PNとなっており、面屈折力OPによる度数変化DOPは0.100(D/mm)である。   As for the outer surface 19A of the progressive-power lens of Example 4, the surface refractive power IP of the distance portion 11 is 4.00 (D), the progressive zone length starts from 10 mm above the fitting point FP, and 14 mm below the fitting point FP. The change ΔOP of the surface power OP is 2.40 (D). That is, the outer surface 19A includes the first progressive surface 18A in which the surface refractive power OP changes, the start coordinate P1 of the first progressive surface 18A is the boundary PF between the distance portion 11 and the intermediate portion 13, and the end coordinate P2 is the boundary PN between the near portion 12 and the intermediate portion 13, and the power change DOP due to the surface refractive power OP is 0.100 (D / mm).

一方、内面19Bは、遠用部11の面屈折力IPが4.00(D)で、累進帯長がフィッティングポイントFPから始まり、フィッティングポイントFPの4mm下で終わり、面屈折力IPの変化分ΔIPは0.4(D)である。すなわち、内面19Bは、面屈折力IPが逆傾向に変化する第2の累進面(逆累進面)18Bを含み、第2の累進面18Bの開始座標P3はフィッティングポイントFPであり、終了座標P4はフィッティングポイントFPの下側4mmであり、面屈折力IPによる度数変化DIPは0.100(D/mm)である。   On the other hand, the inner surface 19B has a surface refractive power IP of 4.00 (D) for the distance portion 11 and a progressive zone length starting from the fitting point FP and ending at 4 mm below the fitting point FP. ΔIP is 0.4 (D). That is, the inner surface 19B includes a second progressive surface (reverse progressive surface) 18B in which the surface refractive power IP changes in a reverse tendency, the start coordinate P3 of the second progressive surface 18B is the fitting point FP, and the end coordinate P4. Is 4 mm below the fitting point FP, and the power change DIP due to the surface refractive power IP is 0.100 (D / mm).

したがって、第1の累進面18Aの座標P1は座標P2よりも大きく、第2の累進面18Bの座標P3は座標P4よりも大きく、さらに、第1の累進面18Aの開始座標P1は第2の累進面18Bの開始座標P3より大きく、第1の累進面18Aの終了座標P2は第2の累進面18Bの終了座標P4よりも小さい。したがって、座標P1、P2、P3およびP4は、上記条件(2)、(3)および(8)を満足する。   Therefore, the coordinate P1 of the first progressive surface 18A is larger than the coordinate P2, the coordinate P3 of the second progressive surface 18B is larger than the coordinate P4, and the start coordinate P1 of the first progressive surface 18A is the second coordinate. It is larger than the start coordinate P3 of the progressive surface 18B, and the end coordinate P2 of the first progressive surface 18A is smaller than the end coordinate P4 of the second progressive surface 18B. Therefore, the coordinates P1, P2, P3 and P4 satisfy the above conditions (2), (3) and (8).

累進屈折力レンズ10の外面19Aおよび内面19Bにより得られる目視度数APは、図9に示すように、実施例1の累進屈折力レンズ10の目視度数APとほぼ同一であり、第3の領域133の目視度数は近似的に1.00(D)で一定となる。したがって、第3の目視度数勾配D3は、第1の目視度数勾配D1および第2の目視度数勾配D2の最小値より小さく、第1の目視度数勾配D1、第2の目視度数勾配D2および第3の目視度数勾配D3は上記条件(1)を満たす。   The visual power AP obtained by the outer surface 19A and the inner surface 19B of the progressive-power lens 10 is substantially the same as the visual power AP of the progressive-power lens 10 of Example 1, as shown in FIG. The visual power of is approximately constant at 1.00 (D). Accordingly, the third visual power gradient D3 is smaller than the minimum value of the first visual power gradient D1 and the second visual power gradient D2, and the first visual power gradient D1, the second visual power gradient D2, and the third visual power gradient D2. The visual power gradient D3 satisfies the above condition (1).

(実施例5)
図10に、実施例5の累進屈折力レンズ10の物体側の面(外面)19Aの主注視線14に沿った面屈折力OPの変化と、眼球側の面(内面)19Bの主注視線14に沿った面屈折力IPの変化と、外面19Aおよび内面19Bの面屈折力により得られる目視度数(平均度数)APの変化とを模式的に示している。
(Example 5)
FIG. 10 shows changes in the surface refractive power OP along the main gaze line 14 of the object-side surface (outer surface) 19A of the progressive-power lens 10 of Example 5, and the main gaze line of the eyeball-side surface (inner surface) 19B. 14 schematically shows a change in the surface refractive power IP along 14 and a change in the visual power (average power) AP obtained by the surface refractive power of the outer surface 19A and the inner surface 19B.

実施例5の累進屈折力レンズ10は、累進帯長が24mm、処方度数(遠用度数、Sph)が0.00(D)、加入度数(Add)が2.00(D)という条件で設計したものである。なお、レンズ10の直径は65mmであり、乱視度数は含まれていない。   The progressive-power lens 10 of Example 5 is designed on the condition that the progressive zone length is 24 mm, the prescription power (distance power, Sph) is 0.00 (D), and the addition power (Add) is 2.00 (D). It is a thing. The lens 10 has a diameter of 65 mm and does not include astigmatism power.

実施例5の累進屈折力レンズの外面19Aは面屈折力OPが4.00(D)の球面である。一方、内面19Bは、遠用部11の面屈折力IPが4.00(D)で、累進帯長がフィッティングポイントFPの上10mmから始まり、フィッティングポイントFPで終わる累進面17Aと、フィッティングポイントFPの4mm下から始まりフィッティングポイントFPの14mm下で終わる累進面17Bとを含む。累進面17Aの面屈折力IPの変化分ΔIPは−0.75(D)であり、累進面17Bの面屈折力IPの変化分ΔIPは−1.25(D)であり、累進面17Aと累進面17Bとの間の面屈折力IPは変化せず3.25(D)で一定である。   The outer surface 19A of the progressive-power lens of Example 5 is a spherical surface having a surface refractive power OP of 4.00 (D). On the other hand, the inner surface 19B has a progressive surface 17A having a surface refractive power IP of 4.00 (D) of the distance portion 11 and a progressive zone length starting from 10 mm above the fitting point FP and ending at the fitting point FP, and the fitting point FP. And a progressive surface 17B starting from 4 mm below and ending 14 mm below the fitting point FP. The change ΔIP of the surface refractive power IP of the progressive surface 17A is −0.75 (D), and the change ΔIP of the surface refractive power IP of the progressive surface 17B is −1.25 (D). The surface refractive power IP between the progressive surface 17B does not change and is constant at 3.25 (D).

したがって、累進屈折力レンズ10の外面19Aおよび内面19Bにより得られる目視度数APは、図10に示すように、実施例1の累進屈折力レンズ10の目視度数APとほぼ同一であり、第3の目視度数勾配D3は、第1の目視度数勾配D1および第2の目視度数勾配D2の最小値より小さく、第1の目視度数勾配D1、第2の目視度数勾配D2および第3の目視度数勾配D3は上記条件(1)を満たす。   Therefore, the visual power AP obtained by the outer surface 19A and the inner surface 19B of the progressive-power lens 10 is substantially the same as the visual power AP of the progressive-power lens 10 of Example 1, as shown in FIG. The visual power gradient D3 is smaller than the minimum value of the first visual power gradient D1 and the second visual power gradient D2, and the first visual power gradient D1, the second visual power gradient D2, and the third visual power gradient D3. Satisfies the above condition (1).

図11に、累進屈折力レンズ10を設計および製造する過程を示している。ステップ101において、眼鏡仕様に基づいて外面(物体側の面)19Aおよび内面(眼球側の面)19Bを設計する。この際、中間部13が第1の領域131、第2の領域132および第3の領域133を含み、第1の領域131の第1の目視度数勾配D1、第2の領域132の第2の目視度数勾配D2、および第3の領域133の第3の目視度数勾配D3が上記条件(1)を満たすように外面19Aおよび内面19Bを設計する。   FIG. 11 shows a process of designing and manufacturing the progressive addition lens 10. In step 101, an outer surface (object side surface) 19A and an inner surface (eyeball side surface) 19B are designed based on spectacles specifications. At this time, the intermediate portion 13 includes the first region 131, the second region 132, and the third region 133, the first visual power gradient G1 of the first region 131, and the second region 132 of the second region 132. The outer surface 19A and the inner surface 19B are designed so that the visual power gradient D2 and the third visual power gradient D3 of the third region 133 satisfy the above condition (1).

典型的には、外面19Aを設計するステップ102において、中間部13が第1の累進面18Aを含むように設計し、内面19Bを設計するステップ103において、中間部が第2の累進面18Bを含むように設計する。第1の累進面18Aおよび第2の累進面18Bの主注視線14に沿った各座標P1〜P4が上記条件(2)および(3)を満たす場合、ステップ102および103においては、各座標P1〜P4が上記条件(4)〜(7)のいずれかを満たすように、第1の累進面18Aを含む外面19Aと、第2の累進面18Bを含む内面19Bとを設計する。   Typically, in step 102 of designing the outer surface 19A, the intermediate portion 13 is designed to include the first progressive surface 18A, and in step 103 of designing the inner surface 19B, the intermediate portion defines the second progressive surface 18B. Design to include. When the coordinates P1 to P4 along the main gazing line 14 of the first progressive surface 18A and the second progressive surface 18B satisfy the above conditions (2) and (3), in steps 102 and 103, the coordinates P1 The outer surface 19A including the first progressive surface 18A and the inner surface 19B including the second progressive surface 18B are designed so that .about.P4 satisfies any of the above conditions (4) to (7).

次に、ステップ104において、上記にて設計された内外面を有する眼鏡用の累進屈折力レンズ10を製造する。   Next, in step 104, the progressive-power lens 10 for spectacles having the inner and outer surfaces designed as described above is manufactured.

以上に説明した累進屈折力レンズ10は、中間部13に目視度数変化が中間部13の他の領域より小さい第3の領域133を含む。現在、中間距離で行う作業が増えている。例えば、PCディスプレイまでの距離が60cm〜80cm、中型および大型TVの視聴距離が1.0m〜2.0mであることを考えると、累進屈折力レンズ10の中間部13の使用頻度が増えている。したがって、目視度数変化の少ない(小さい)第3の領域133を中間視野領域として中間部13に設定し、使用頻度の高い中間距離に対応して、中間視野領域の加入度数を決めた累進屈折力レンズ10を設計および製造することにより、中間距離の使用頻度が高いユーザーに適した累進屈折力レンズ10を設計し、提供できる。   The progressive-power lens 10 described above includes a third region 133 in the intermediate portion 13 whose visual power change is smaller than other regions of the intermediate portion 13. Currently, more work is performed at intermediate distances. For example, considering that the distance to the PC display is 60 cm to 80 cm and the viewing distance of medium-sized and large-sized TVs is 1.0 m to 2.0 m, the frequency of use of the intermediate portion 13 of the progressive addition lens 10 is increasing. . Therefore, the third region 133 having a small (small) visual power change is set as the intermediate visual field region in the intermediate portion 13, and the progressive addition power in which the addition power of the intermediate visual field region is determined corresponding to the frequently used intermediate distance. By designing and manufacturing the lens 10, it is possible to design and provide a progressive power lens 10 suitable for users who frequently use intermediate distances.

特に、上記に示したように外面19Aおよび内面19Bにそれぞれ累進面18Aおよび18Bを設ける両面設計を採用することにより、中間視野領域の加入度数を容易に設定できる。また、フィッティングポイントFPよりも上側に一方の面の累進帯(累進面)を設けることにより、中間視野領域の加入度をさらにフレキシブルに設定できる。   In particular, by employing a double-sided design in which progressive surfaces 18A and 18B are provided on the outer surface 19A and the inner surface 19B as described above, the addition power of the intermediate visual field region can be easily set. Further, by providing a progressive zone (progressive surface) on one surface above the fitting point FP, the addition power of the intermediate visual field region can be set more flexibly.

なお、上記において例示した外面19Aおよび内面19Bの設計は一例に過ぎず、特許請求の範囲に記載された範囲内において眼鏡仕様に基づき様々な形状の曲面を採用してもよい。   The design of the outer surface 19A and the inner surface 19B exemplified above is merely an example, and curved surfaces having various shapes may be adopted based on spectacles specifications within the scope described in the claims.

1 眼鏡、 10、10L、10R 眼鏡用レンズ
11 遠用部、 12 近用部、 13 中間部(累進部)
19A 物体側の面、 19B 眼球側の面
20 フレーム
DESCRIPTION OF SYMBOLS 1 Glasses, 10, 10L, 10R Glasses lens 11 Distance part, 12 Near part, 13 Middle part (progressive part)
19A Object side surface, 19B Eyeball side surface 20 Frame

Claims (9)

目視度数の異なる遠用部および近用部と、前記遠用部および前記近用部の間に位置する中間部とを有する眼鏡用の累進屈折力レンズであって、
前記中間部が、前記遠用部に繋がり、第1の目視度数勾配D1を備えた第1の領域と、
前記近用部に繋がり、第2の目視度数勾配D2を備えた第2の領域と、
前記第1の領域および前記第2の領域の間に位置する第3の領域であって、第3の目視度数勾配D3を備えた第3の領域とを含み、前記第1の目視度数勾配D1、前記第2の目視度数勾配D2および前記第3の目視度数勾配D3は以下の条件を満たすとともに、前記第3の領域はフィッティングポイントを含み、前記中間部の物体側の面は、主注視線に沿った座標P1から座標P2の間で面屈折力が変化する第1の累進面を含み、前記中間部の眼球側の面は前記主注視線に沿った座標P3から座標P4の間で面屈折力が変化する第2の累進面を含み、前記座標P1、P2、P3およびP4はそれぞれ異なり、以下の条件を満たす、累進屈折力レンズ。
|D3|<MIN(|D1|、|D2|)
ただし、MINは最小値を示す関数である。
P1>P2
P3>P4
A progressive-power lens for spectacles having a distance portion and a near portion having different visual powers, and an intermediate portion located between the distance portion and the near portion,
The intermediate portion is connected to the distance portion, the first region having a first visual power gradient D1,
A second region connected to the near portion and having a second visual power gradient D2,
A third region located between the first region and the second region, the third region having a third visual power gradient D3, and the first visual power gradient D1 The second visual power gradient D2 and the third visual power gradient D3 satisfy the following conditions , the third area includes a fitting point, and the object side surface of the intermediate portion has a main gaze line. Including a first progressive surface whose surface refractive power changes between coordinates P1 and P2 along the center, and the eyeball side surface of the intermediate portion is a surface between coordinates P3 and coordinates P4 along the main gaze line. A progressive addition lens including a second progressive surface whose refractive power changes, wherein the coordinates P1, P2, P3 and P4 are different and satisfy the following conditions .
| D3 | <MIN (| D1 |, | D2 |)
However, MIN is a function indicating a minimum value.
P1> P2
P3> P4
請求項において、前記第1の累進面および前記第2の累進面はそれぞれ目視度数勾配を付与する面であり、前記座標P1、P2、P3およびP4は、さらに、以下の条件のいずれかを満たす、累進屈折力レンズ。
P2>P3
P1<P4
According to claim 1, wherein the first progressive surface and the second progressive surface is a surface which imparts a visual power gradient, respectively, the coordinates P1, P2, P3 and P4, further one of the following conditions Satisfactory, progressive addition lens.
P2> P3
P1 <P4
請求項において、前記第1の累進面および前記第2の累進面はそれぞれ目視度数勾配を付与する面であり、前記座標P1、P2、P3およびP4は、さらに、以下の条件のいずれかを満たす、累進屈折力レンズ。
P1>P3かつP2<P4
P1<P3かつP2>P4
According to claim 1, wherein the first progressive surface and the second progressive surface is a surface which imparts a visual power gradient, respectively, the coordinates P1, P2, P3 and P4, further one of the following conditions Satisfactory, progressive addition lens.
P1> P3 and P2 <P4
P1 <P3 and P2> P4
請求項において、前記物体側の面と前記眼球側の面とは主注視線に沿った異なる位置に目視度数勾配を付与するように面屈折力が変化する累進面を含む、累進屈折力レンズ。 According to claim 3, including a progressive surface to surface power as above and the object side surface and the eyeball side surface to impart eye vision power gradient in different positions along the main gazing line changes, progressive power lens. 請求項1ないしのいずれかに記載の累進屈折力レンズと、
前記累進屈折力レンズが取り付けられた眼鏡フレームとを有する眼鏡。
A progressive-power lens according to any one of claims 1 to 4 ,
Eyeglasses having an eyeglass frame to which the progressive addition lens is attached.
目視度数の異なる遠用部および近用部と、前記遠用部および前記近用部の間に位置する中間部とを有する眼鏡用の累進屈折力レンズの設計方法であって、
前記中間部に、前記遠用部に繋がり、第1の目視度数勾配D1を備えた第1の領域と、前記近用部に繋がり、第2の目視度数勾配D2を備えた第2の領域と、前記第1の領域および前記第2の領域の間に位置する第3の領域であって、第3の目視度数勾配D3を備えた第3の領域とを設けることを有し、
前記第1の目視度数勾配D1、前記第2の目視度数勾配D2および前記第3の目視度数勾配D3は以下の条件を満たすとともに、前記第3の領域はフィッティングポイントを含み、前記中間部の物体側の面は、主注視線に沿った座標P1から座標P2の間で面屈折力が変化する第1の累進面を含み、前記中間部の眼球側の面は前記主注視線に沿った座標P3から座標P4の間で面屈折力が変化する第2の累進面を含み、前記座標P1、P2、P3およびP4はそれぞれ異なり、以下の条件を満たす、累進屈折力レンズの設計方法。
|D3|<MIN(|D1|、|D2|)
ただし、MINは最小値を示す関数である。
P1>P2
P3>P4
A design method of a progressive-power lens for spectacles having a distance portion and a near portion having different visual powers, and an intermediate portion located between the distance portion and the near portion,
A first region connected to the distance portion and provided with a first visual power gradient G1, and a second region connected to the near portion and provided with a second visual power gradient D2. A third region located between the first region and the second region, the third region having a third visual power gradient D3,
The first visual power gradient D1, the second visual power gradient D2, and the third visual power gradient D3 satisfy the following conditions , the third region includes a fitting point, and the intermediate object The side surface includes a first progressive surface whose surface refractive power changes between coordinates P1 and coordinates P2 along the main gazing line, and the eyeball side surface of the intermediate portion is a coordinate along the main gazing line. A progressive power lens design method including a second progressive surface whose surface refractive power changes between P3 and coordinates P4, wherein the coordinates P1, P2, P3 and P4 are different from each other and satisfy the following conditions .
| D3 | <MIN (| D1 |, | D2 |)
However, MIN is a function indicating a minimum value.
P1> P2
P3> P4
目視度数の異なる遠用部および近用部と、前記遠用部および前記近用部の間に位置する中間部とを有する眼鏡用の累進屈折力レンズの設計方法であって、
物体側の面を設計することと、前記物体側の面を設計することと前後してあるいは同時に眼球側の面を設計することとを有し、
前記物体側の面を設計することは、前記中間部に含まれる第1の累進面であって、主注視線に沿った座標P1から前記座標P1より小さい座標P2の間で面屈折力が変化する第1の累進面を設計することを含み、
前記眼球側の面を設計することは、前記中間部に含まれる第2の累進面であって、前記主注視線に沿った座標P3から前記座標P3より小さい座標P4の間で面屈折力が変化する第2の累進面を設計することを含み、前記座標P1、P2、P3およびP4は以下の条件のいずれかを満たす、累進屈折力レンズの設計方法。
P2>P3
P1<P4
A design method of a progressive-power lens for spectacles having a distance portion and a near portion having different visual powers, and an intermediate portion located between the distance portion and the near portion,
Designing an object-side surface; designing the object-side surface; designing an eyeball-side surface before or after;
Designing the object-side surface is a first progressive surface included in the intermediate portion, and the surface refractive power changes between the coordinate P1 along the main line of sight and the coordinate P2 smaller than the coordinate P1. Designing a first progressive surface to
Designing the eyeball-side surface is a second progressive surface included in the intermediate portion, and has a surface refractive power between a coordinate P3 along the main gaze line and a coordinate P4 smaller than the coordinate P3. A design method of a progressive power lens, including designing a second progressive surface that changes, wherein the coordinates P1, P2, P3, and P4 satisfy any of the following conditions.
P2> P3
P1 <P4
目視度数の異なる遠用部および近用部と、前記遠用部および前記近用部の間に位置する中間部とを有する眼鏡用の累進屈折力レンズの設計方法であって、
物体側の面を設計することと、前記物体側の面を設計することと前後してあるいは同時に眼球側の面を設計することとを有し、
前記物体側の面を設計することは、前記中間部に含まれる第1の累進面であって、主注視線に沿った座標P1から前記座標P1より小さい座標P2の間で面屈折力が変化する第1の累進面を設計することを含み、
前記眼球側の面を設計することは、前記中間部に含まれる第2の累進面であって、前記主注視線に沿った座標P3から前記座標P3より小さい座標P4の間で面屈折力が変化する第2の累進面を設計することを含み、前記座標P1、P2、P3およびP4は以下の条件のいずれかを満たす、累進屈折力レンズの設計方法。
P1>P3かつP2<P4
P1<P3かつP2>P4
A design method of a progressive-power lens for spectacles having a distance portion and a near portion having different visual powers, and an intermediate portion located between the distance portion and the near portion,
Designing an object-side surface; designing the object-side surface; designing an eyeball-side surface before or after;
Designing the object-side surface is a first progressive surface included in the intermediate portion, and the surface refractive power changes between the coordinate P1 along the main line of sight and the coordinate P2 smaller than the coordinate P1. Designing a first progressive surface to
Designing the eyeball-side surface is a second progressive surface included in the intermediate portion, and has a surface refractive power between a coordinate P3 along the main gaze line and a coordinate P4 smaller than the coordinate P3. A design method of a progressive power lens, including designing a second progressive surface that changes, wherein the coordinates P1, P2, P3, and P4 satisfy any of the following conditions.
P1> P3 and P2 <P4
P1 <P3 and P2> P4
請求項ないしのいずれかに記載の設計方法により設計された累進屈折力レンズを製造することを含む、累進屈折力レンズの製造方法。 You claim 6 comprises producing the progressive-power lens designed by the design method according to any one of 8, a manufacturing method of the progressive addition lens.
JP2011060471A 2011-03-18 2011-03-18 Progressive power lens and design method thereof Expired - Fee Related JP5832765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011060471A JP5832765B2 (en) 2011-03-18 2011-03-18 Progressive power lens and design method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011060471A JP5832765B2 (en) 2011-03-18 2011-03-18 Progressive power lens and design method thereof

Publications (2)

Publication Number Publication Date
JP2012198256A JP2012198256A (en) 2012-10-18
JP5832765B2 true JP5832765B2 (en) 2015-12-16

Family

ID=47180576

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011060471A Expired - Fee Related JP5832765B2 (en) 2011-03-18 2011-03-18 Progressive power lens and design method thereof

Country Status (1)

Country Link
JP (1) JP5832765B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2752703A1 (en) * 2013-01-07 2014-07-09 ESSILOR INTERNATIONAL (Compagnie Générale d'Optique) Ophthalmic lens having at least a stable zone
EP3079006B1 (en) * 2015-04-10 2019-06-12 Essilor International Ophthalmic lens and method for determining such an ophthalmic lens

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3517321A1 (en) * 1985-05-14 1986-11-20 Fa. Carl Zeiss, 7920 Heidenheim MULTIFOCAL EYEWEAR LENS WITH AT LEAST ONE SPECTACLE
JP2005201979A (en) * 2004-01-13 2005-07-28 Pentax Corp Spectacle lens and method for manufacturing spectacle lens
JP5286473B2 (en) * 2009-03-31 2013-09-11 ホーヤ レンズ マニュファクチャリング フィリピン インク Progressive power spectacle lens design method

Also Published As

Publication number Publication date
JP2012198256A (en) 2012-10-18

Similar Documents

Publication Publication Date Title
JP4408112B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP4437482B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP5969631B2 (en) Eyeglass lenses
US8807746B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JP5952541B2 (en) Optical lens, optical lens design method, and optical lens manufacturing apparatus
JP2011203705A (en) Spectacle lens and method for designing the same
WO2015173381A1 (en) A progressive multifocal lens having an enlarged intermediate distance vision region
JP5897260B2 (en) Progressive power lens and design method thereof
WO2013151165A1 (en) Progressive-power lens and method for designing progressive-power lens
JP5805407B2 (en) Progressive power lens
WO2013137179A1 (en) Eyeglass lens and bifocal eyeglasses
JP5789108B2 (en) Progressive power lens and design method thereof
US8931898B2 (en) Non-progressive corridor bi-focal lens with substantially tangent boundary of near and distant visual fields
JP5832765B2 (en) Progressive power lens and design method thereof
KR20190052141A (en) Progressive lens pair, Progressive lens pair design method and Progressive lens pair manufacturing method
JP5036946B2 (en) Progressive spectacle lens with slight magnification difference
JP2014106385A (en) Progressive power lens and method of designing progressive power lens
JP6109872B2 (en) Spectacle lens, spectacles, and method for manufacturing spectacle lens
JP4404317B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP5749497B2 (en) Double-sided progressive lens, manufacturing method thereof, and manufacturing apparatus thereof
WO2013132752A1 (en) Lens set, lens design method, and lens manufacturing method
JP6038224B2 (en) Manufacturing method of progressive power lens
JP2010237402A (en) Progressive refractive power spectacle lens and method of manufacturing the same
KR100705120B1 (en) Progressive refractive power lens and production method therefor
JP2012083482A (en) Progressive refractive power lens

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130329

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141028

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150127

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150428

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150930

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20151028

R150 Certificate of patent or registration of utility model

Ref document number: 5832765

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees