JP2010237402A - Progressive refractive power spectacle lens and method of manufacturing the same - Google Patents

Progressive refractive power spectacle lens and method of manufacturing the same Download PDF

Info

Publication number
JP2010237402A
JP2010237402A JP2009084665A JP2009084665A JP2010237402A JP 2010237402 A JP2010237402 A JP 2010237402A JP 2009084665 A JP2009084665 A JP 2009084665A JP 2009084665 A JP2009084665 A JP 2009084665A JP 2010237402 A JP2010237402 A JP 2010237402A
Authority
JP
Japan
Prior art keywords
progressive
power
spectacle lens
lens
tilt angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2009084665A
Other languages
Japanese (ja)
Inventor
Shunei Shinohara
俊英 篠原
Tadayuki Kaga
唯之 加賀
Ayumi Ito
歩 伊藤
Moriyasu Shirayanagi
守康 白柳
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Seiko Optical Products Co Ltd
Original Assignee
Seiko Epson Corp
Seiko Optical Products Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp, Seiko Optical Products Co Ltd filed Critical Seiko Epson Corp
Priority to JP2009084665A priority Critical patent/JP2010237402A/en
Publication of JP2010237402A publication Critical patent/JP2010237402A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a progressive refractive power spectacle lens, suitably determining an inset amount of a near vision part even when a pantoscopic angle is different from a standard one, and obtaining a distinct vision range for a near vision fused by right and left eyes to achieve comfortable binocular vision. <P>SOLUTION: The progressive refractive power spectacle lens 1 includes a progressive part 13 continuously changing in refractive power, which is provided intermediate between a far vision part 11 and the near vision part 12. The inset amount H of the near vision part 12 is determined based on individual wearing status data of individual wearers and deflection of a visual line due to lens refraction. The individual wearing status data include information on the pantoscopic angle PA of the individual wearers. The inset amount H of the near vision part 12 is determined in consideration of the individual wearing state including the pantoscopic angle PA as well, so that it is possible to improve the problem of the conventional progressive refractive power spectacle lens 1 where distinct vision ranges for a near vision are not fused in the right and left eyes when the pantoscopic angle is different from the standard one. Thus, comfortable binocular vision can be achieved. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、近方視に対応する近用部を備えた累進屈折力眼鏡レンズ及びその製造方法に関する。   The present invention relates to a progressive-power spectacle lens having a near portion corresponding to near vision and a method for manufacturing the same.

一般的に、累進屈折力眼鏡レンズは、図1に示される通り、レンズの上方に遠くのものを見るための遠用部11と、レンズの下方に近くのものを見るための近用部12と、遠用部11と近用部12の中間に連続的に屈折力の変わる累進部13と、それ以外の「側方部」または「周辺部」と呼ばれる領域14,15とを有する。さらに、レンズ1のほぼ中央を通り、遠用部11、累進部13及び近用部12を貫いて、視線の通過頻度が高く収差がよく補正されていることが期待される主注視線16が存在する。   In general, as shown in FIG. 1, a progressive-power spectacle lens has a distance portion 11 for viewing a far object above the lens and a near portion 12 for viewing a near object below the lens. And a progressive portion 13 whose refractive power continuously changes between the distance portion 11 and the near portion 12 and other regions 14 and 15 called “side portions” or “peripheral portions”. Furthermore, a main gaze line 16 that passes through substantially the center of the lens 1 and penetrates the distance portion 11, the progressive portion 13, and the near portion 12 and is expected to have a high frequency of line-of-sight passage and a well-corrected aberration. Exists.

通常、眼鏡装用者が近方を見る時には、両眼の視線は内側に寄るので、主注視線16も遠用部11から近用部12にかけて内側へ(鼻側へ)偏位する。遠用部11における主注視線16Aと近用部12における主注視線16Bとの水平方向の距離がインセット(INSET)量Hである。
図2には累進屈折力眼鏡レンズ装用状態の概略平面図が示されている。
図2において、物体Oとレンズ1の外面中心との間の距離を近用物体距離ODとし、レンズ1の外面中心と眼球Eとの距離を眼球回旋距離EPとし、両眼球Eの瞳孔間距離を遠用瞳孔間距離PDとする。視線は内側へ(鼻側へ)偏位しており、遠用部における主注視線16Aと近用部12における主注視線16Bとにはレンズ1の外面上でインセット量Hが生じる。
Usually, when the spectacle wearer looks near, the line of sight of both eyes is on the inside, so the main gazing line 16 is also displaced inward (to the nose side) from the distance portion 11 to the near portion 12. The horizontal distance between the main gaze line 16A in the distance portion 11 and the main gaze line 16B in the near portion 12 is an inset (INSET) amount H.
FIG. 2 shows a schematic plan view of the progressive-power spectacle lens wearing state.
In FIG. 2, the distance between the object O and the center of the outer surface of the lens 1 is the near object distance OD, the distance between the center of the outer surface of the lens 1 and the eyeball E is the eyeball rotation distance EP, and the interpupillary distance between the eyes E Is the inter-pupil distance PD. The line of sight is deviated inward (to the nose side), and an inset amount H is generated on the outer surface of the lens 1 between the main gaze line 16A in the distance portion and the main gaze line 16B in the near portion 12.

累進屈折力眼鏡レンズではレンズの屈折力によらずインセット量Hが2.5〜3.0mm程度の範囲で一定に設定されていたが、レンズの屈折力や個々の装用者の個別装用状況データに基づいて、インセット量Hを変える従来例(特許文献1)がある。
この特許文献1の従来例では、眼鏡レンズ1の遠用部屈折力DF、加入屈折力ADD、及び個別装用状況データとして近用物体距離OD、遠用瞳孔間距離PD、眼球回旋距離EPを考慮してインセット量Hを決定することが開示されている。
また、装用時前傾角を含む個別装用状況を考慮して累進屈折力眼鏡レンズを設計・製造する従来例(特許文献2)がある。
In progressive-power eyeglass lenses, the inset amount H is set to a constant value in the range of 2.5 to 3.0 mm regardless of the refractive power of the lens. However, the refractive power of the lens and the individual wearing situation of each wearer There is a conventional example (Patent Document 1) in which the inset amount H is changed based on data.
In the conventional example of this patent document 1, the distance power DF, the addition power ADD of the spectacle lens 1 and the near object distance OD, the distance between the distance pupils PD, and the eyeball rotation distance EP are considered as the individual wearing situation data. Thus, it is disclosed that the inset amount H is determined.
In addition, there is a conventional example (Patent Document 2) in which a progressive-power eyeglass lens is designed and manufactured in consideration of individual wearing situations including a forward tilt angle during wearing.

特開平11−305173号公報Japanese Patent Laid-Open No. 11-305173 特開2001−356303号公報JP 2001-356303 A

特許文献1では、インセット量を決定するにあたり、装用時前傾角については考慮されていない。特許文献2では、装用時前傾角を含む個別装用状況を考慮して累進屈折力眼鏡レンズを設計・製造する方法が開示されているが、インセット量Hはレンズの装用時前傾角によって変更されるべきことは考慮されていない。
眼鏡フレームの中にはデザインや材質の関係で調整ができにくいものもあり、設計時に意図された装用時前傾角から大きく外れた装用時前傾角となって、本来意図された光学性能からずれた不適切な光学性能となるという不都合が生じるが、特許文献1,2で示される従来例では、この不都合を解決することができない。
In patent document 1, in determining the amount of inset, the forward tilt angle during wearing is not taken into consideration. Patent Document 2 discloses a method for designing and manufacturing a progressive-power spectacle lens in consideration of individual wearing situations including a forward tilt angle during wearing, but the inset amount H is changed depending on the forward tilt angle during wearing of the lens. What to do is not considered.
Some spectacle frames are difficult to adjust due to the design and material, and the pre-inclination angle deviates significantly from the pre-inclination angle during wearing, deviating from the originally intended optical performance. Although the inconvenience of inappropriate optical performance occurs, the conventional examples shown in Patent Documents 1 and 2 cannot solve this inconvenience.

図3及び図4には、累進屈折力眼鏡レンズの収差と、レンズを装用した時の視野との関係が示されている。
図3(A)はレンズ上の収差の分布を模式的に表した図である。図3(A)は、両眼用として左右に一対の眼鏡レンズの正面が示されており、各レンズの側方部にはハッチング領域として示される収差の多い領域Sが存在する。この領域Sを通して見ると像がぼやけて見える。
累進屈折力眼鏡レンズの各部位の屈折力に応じた距離で正面にある物体を両眼視した時に、インセット量Hが適切に設定されている眼鏡レンズ1においては、図3(A)に示される通り、想定された主注視線16と正面視線通過点の軌跡17とがほぼ一致するようになる。この時、片眼ずつの明視範囲(ぼやけずにスッキリと見ることができる範囲)は、図3(B)に示される通り、視野の中心に対して鼻側と耳側とでほぼ同じ幅Dになる。図3(C)は、図3(B)の左右の像を重ねたもので、両眼で1つの像を見た状態を示す。図3(C)に示される通り、左右眼の明視範囲が一致して視野のロスがない。
3 and 4 show the relationship between the aberration of the progressive-power spectacle lens and the field of view when the lens is worn.
FIG. 3A is a diagram schematically showing the aberration distribution on the lens. FIG. 3A shows the front of a pair of spectacle lenses on both the left and right sides for binocular use, and there is a region S with many aberrations shown as a hatched region at the side of each lens. When viewed through this region S, the image appears blurred.
In the spectacle lens 1 in which the inset amount H is appropriately set when an object in front is viewed with both eyes at a distance corresponding to the refractive power of each part of the progressive-power spectacle lens, FIG. As shown, the assumed main gaze line 16 and the trajectory 17 of the front line-of-sight passing point almost coincide with each other. At this time, the clear vision range for each eye (the range that can be clearly seen without blurring) is almost the same width on the nose side and the ear side with respect to the center of the visual field, as shown in FIG. D. FIG. 3C shows a state in which the left and right images in FIG. 3B are superimposed, and one image is viewed with both eyes. As shown in FIG. 3C, the clear vision ranges of the left and right eyes coincide and there is no visual field loss.

従来の累進屈折力眼鏡レンズにおいては、特許文献1に開示されたような個別装用状態に対応した眼鏡レンズであっても、装用時前傾角に関しては標準的な値(例えば10°)が設定されている。
しかしながら、このような眼鏡レンズも、装用時前傾角が標準と異なる場合には想定した主注視線16からずれたところを正面視線が通過するようになる。装用時前傾角が小さい場合には、正面視線は、より鼻側を通過する(図4(A)参照)。装用時前傾角が大きな場合にはより耳側を通過する。その結果、装用時前傾角が標準より小さい場合の片眼ずつの明視範囲は、図4(B)に示される通り、耳側に偏ったものになってしまう。つまり、視野の中心に対する鼻側の幅D2より耳側の幅D1が大きくなってしまう(D2<D1)。そのため、図4(C)に示される通り、左右眼の近用明視範囲がずれて、快適な両眼視が妨げられるという問題点がある。
In the conventional progressive-power spectacle lens, even if it is a spectacle lens corresponding to the individual wearing state as disclosed in Patent Document 1, a standard value (for example, 10 °) is set for the forward tilt angle during wearing. ing.
However, even in such a spectacle lens, when the forward tilt angle during wearing is different from the standard, the front line of sight passes through a position deviated from the assumed main gaze line 16. When the forward tilt angle during wearing is small, the front line of sight passes more through the nose side (see FIG. 4A). If the forward tilt angle during wearing is large, the ear side passes more. As a result, the clear vision range for each eye when the forward tilt angle during wearing is smaller than the standard is biased toward the ear as shown in FIG. 4B. That is, the ear-side width D1 is larger than the nose-side width D2 with respect to the center of the visual field (D2 <D1). Therefore, as shown in FIG. 4C, there is a problem that the near vision range for the left and right eyes is shifted, and comfortable binocular vision is hindered.

例えば、レンズの球面屈折力SPHが+4.00ディオプトリであり、加入屈折力ADDが2.00ディオプトリであり、屈折率Nが1.67であり、累進帯長PLが14mmである累進屈折力眼鏡レンズを、遠用瞳孔間距離PDが63mmの人が頂間距離12mm(眼球回旋距離EP25mm)、近用物体距離OD300mm、装用時前傾角PA10°で装用した場合を想定すると、最適なインセット量Hは3.11mmとなる。しかし、このように設計された累進屈折力眼鏡レンズを、フレームのフィッティング調整が十分に出来ないあるいはデザイン的な理由から、装用時前傾角0°で装用したとすると、視線はフィッティングポイント鉛直下より3.44mm鼻側の位置を通ってしまうことになる。このレンズの近用明視幅が左右眼個々には8mmであったとすると、両眼で快適に見ることのできる近用明視幅は7.67mmとなり、4%のロスとなってしまう。また、累進屈折力眼鏡レンズ特有の像のユガミも両眼で一致しないために、空間知覚における違和感の一因となっていた。   For example, the progressive power that the spherical power SPH of the lens is +4.00 diopter, the addition power ADD is 2.00 diopter, the refractive index N is 1.67, and the progressive zone length PL is 14 mm. An optimal inset is assumed when a spectacle lens is worn by a person with a distance-to-pupil distance PD of 63 mm and a vertex distance of 12 mm (eyeball rotation distance EP 25 mm), a near object distance OD 300 mm, and a forward tilt angle PA 10 ° during wearing. The quantity H is 3.11 mm. However, if the progressive-power spectacle lens designed in this way is worn at a forward tilt angle of 0 ° for wearing reasons due to inadequate frame fitting adjustment or design reasons, the line of sight is below the fitting point vertical. It will pass through the position on the nose side of 3.44 mm. If the near vision distance of this lens is 8 mm for each of the left and right eyes, the near vision width that can be comfortably viewed with both eyes is 7.67 mm, which is a loss of 4%. In addition, the distortion of the image peculiar to the progressive-power eyeglass lens also does not match with both eyes, which contributes to a sense of incongruity in spatial perception.

本発明の目的は、装用時前傾角が標準的なものと異なる場合にも、近用部のインセット量を適切に決定し、左右眼で融合した近用明視範囲が得られ快適な両眼視が可能な累進屈折力眼鏡レンズ及びその製造方法を提供することにある。   The object of the present invention is to appropriately determine the inset amount of the near portion even when the forward tilt angle during wearing is different from the standard one, and to obtain a near vision range that is fused with the left and right eyes. It is an object of the present invention to provide a progressive-power spectacle lens that can be viewed visually and a method of manufacturing the same.

本発明の累進屈折力眼鏡レンズは、近方視に対応する近用部を備え、個々の装用者の個別装用状況データとレンズ屈折作用による視線の偏向とに基づいて、前記近用部のインセット量が決定された累進屈折力眼鏡レンズにおいて、前記個別装用状況データは個々の装用者の装用時前傾角の情報を含むことを特徴とする。
本発明の累進屈折力眼鏡レンズの製造方法は、近方視に対応する近用部を備え、個々の装用者の個別装用状況データとレンズ屈折作用による視線の偏向とに基づいて前記近用部のインセット量が決定される累進屈折力眼鏡レンズの製造方法において、前記個別装用状況データは個々の装用者の装用時前傾角の情報を含むことを特徴とする。
The progressive-power spectacle lens of the present invention includes a near portion corresponding to near vision, and is based on individual wear situation data of each wearer and gaze deflection due to lens refraction action. In the progressive-power spectacle lens in which the set amount is determined, the individual wearing state data includes information on the forward tilt angle of each individual wearer.
The method for manufacturing a progressive-power spectacle lens according to the present invention includes a near part corresponding to near vision, and the near part based on individual wear situation data of each wearer and gaze deflection caused by lens refraction In the method of manufacturing a progressive-power spectacle lens in which the amount of inset is determined, the individual wearing status data includes information on the forward tilt angle of each individual wearer.

この構成の発明では、装用時前傾角も含めた個別装用状態を考慮して近用部のインセット量を決定するので、従来の累進屈折力眼鏡レンズでは標準的な装用時前傾角とは異なる場合に左右眼で近用明視範囲が融合しなかった問題が改善され、快適な両眼視が可能となる。   In the invention of this configuration, since the inset amount of the near portion is determined in consideration of the individual wearing state including the wearing front tilt angle, the conventional progressive-power spectacle lens is different from the standard wearing front tilt angle. In this case, the problem that the near vision range did not merge with the left and right eyes is improved, and comfortable binocular vision becomes possible.

ここで、本発明では、前記インセット量は、前記装用時前傾角に関して減少関数になるよう設定されていることが好ましい。
この構成の発明では、装用時前傾角が小さい場合にはインセット量を大きく、装用時前傾角が大きい場合にはインセット量を小さく設定することで、装用時前傾角の大小に対応してインセット量を最適に決定することができる。
Here, in the present invention, it is preferable that the inset amount is set to be a decreasing function with respect to the forward tilt angle during wearing.
In the invention of this configuration, the inset amount is set to be large when the forward tilt angle during wearing is small, and the inset amount is set to be small when the forward tilt angle during wearing is large, corresponding to the magnitude of the forward tilt angle during wearing. The amount of inset can be determined optimally.

前記個別装用状況データは個々の装用者の近用物体距離の情報を含むことが好ましい。
この構成の発明では、近用物体距離が個別装用状況データとしては重要な要素であるため、左右眼で融合した近用明視範囲を得ることができる。
The individual wearing status data preferably includes information on the near object distance of each wearing person.
In the invention of this configuration, the near object distance is an important element as the individual wearing situation data, and therefore a near vision range fused with the left and right eyes can be obtained.

前記個別装用状況データは個々の装用者の遠用瞳孔間距離の情報を含むことが好ましい。
この構成の発明では、遠用瞳孔間距離の情報が個別装用状況データとしては重要な要素であるため、左右眼で融合した近用明視範囲を得ることができる。
The individual wearing status data preferably includes information on distances between distance pupils of individual wearers.
In the invention with this configuration, the distance between the distance pupils is an important element as the individual wearing status data, and therefore a near vision range fused with the left and right eyes can be obtained.

また、累進屈折力眼鏡レンズの製造方法において、前記インセット量は、所望の屈折力で標準インセット量の累進屈折力眼鏡レンズに対して、個別装用状況下での近方視線を光線追跡することにより決定することが好ましい。
この構成の発明では、インセット量を決定するために近方視線を光線追跡する方法を採用するので、インセット量を正確に求めることができる。
Further, in the method of manufacturing a progressive power spectacle lens, the inset amount is a ray tracing of a near line of sight under an individual wearing condition with respect to a progressive power spectacle lens having a desired refractive power and a standard inset amount. It is preferable to determine by this.
In the invention of this configuration, since the method of ray tracing the near line of sight is used in order to determine the inset amount, the inset amount can be accurately obtained.

さらに、累進屈折力眼鏡レンズの製造方法において、前記インセット量は、所望の屈折力と個々の装用者の個別装用状況データに基づいて、近似式を用いて決定することが好ましい。
この構成の発明では、インセット量を決定するために近似式を用いるので、インセット量を簡易に求めることができる。
Further, in the method for manufacturing a progressive power spectacle lens, the inset amount is preferably determined using an approximate expression based on desired refractive power and individual wear situation data of each wearer.
In the invention of this configuration, since the approximate expression is used to determine the inset amount, the inset amount can be easily obtained.

累進屈折力眼鏡レンズの概略正面図。The schematic front view of a progressive-power eyeglass lens. 累進屈折力眼鏡レンズ装用状態の概略平面図。FIG. 2 is a schematic plan view of a progressive power eyeglass lens wearing state. 累進屈折力眼鏡レンズの収差と視野との関係を示すものであって装用時前傾角が標準の場合の概略図。Schematic diagram showing the relationship between the aberration of the progressive power eyeglass lens and the field of view, and when the forward tilt angle is standard. 累進屈折力眼鏡レンズの収差と視野との関係を示すものであって装用時前傾角が標準とは異なる場合の概略図。Schematic diagram showing the relationship between the aberration of the progressive-power eyeglass lens and the field of view, and the forward tilt angle when worn is different from the standard. 本発明の第1実施形態にかかる累進屈折力眼鏡レンズを示すもので、(A)は概略縦側面図、(B)は概略正面図。BRIEF DESCRIPTION OF THE DRAWINGS The progressive-power eyeglass lens concerning 1st Embodiment of this invention is shown, (A) is a schematic vertical side view, (B) is a schematic front view. 第1実施形態にかかる累進屈折力眼鏡レンズを示すもので、(A)は概略縦側面図、(B)は概略正面図。The progressive-power eyeglass lens concerning 1st Embodiment is shown, (A) is a schematic vertical side view, (B) is a schematic front view. 第1実施形態にかかる累進屈折力眼鏡レンズを示すもので、(A)は概略縦側面図、(B)は概略正面図。The progressive-power eyeglass lens concerning 1st Embodiment is shown, (A) is a schematic vertical side view, (B) is a schematic front view. (A)〜(I)は各実施例における装用時前傾角PAとインセット量Hとの関係を示すグラフ。(A)-(I) are the graphs which show the relationship between the wearing front inclination | tilt angle PA and the inset amount H in each Example. 第1実施形態にかかる累進屈折力眼鏡レンズの収差と視野との関係を示すものであって装用時前傾角が0°の場合の概略図。FIG. 3 is a schematic diagram illustrating the relationship between the aberration and the field of view of the progressive-power spectacle lens according to the first embodiment when the forward tilt angle during wearing is 0 °.

以下に、本発明の第1実施形態を図面に基づいて説明する。
図5から図7には本実施形態にかかる累進屈折力眼鏡レンズの概略構成が示されている。図5(A)は、累進屈折力眼鏡レンズの側面図、図5(B)は累進屈折力眼鏡レンズの正面図である。
図5において、累進屈折力眼鏡レンズ1は、図1のレンズと同様の基本構成であり、遠用部11、近用部12及び累進部13を備え、この累進部13の両側は「側方部」または「周辺部」と呼ばれる領域14,15とされる。レンズ1のほぼ中央を通って主注視線16が存在するものであり、遠用部11における主注視線16Aと近用部12における主注視線16Bとの間にはインセット量Hが存在する。
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
5 to 7 show a schematic configuration of the progressive-power spectacle lens according to the present embodiment. FIG. 5A is a side view of the progressive-power spectacle lens, and FIG. 5B is a front view of the progressive-power spectacle lens.
In FIG. 5, the progressive-power spectacle lens 1 has the same basic configuration as the lens of FIG. 1, and includes a distance portion 11, a near portion 12, and a progression portion 13. Both sides of the progression portion 13 are "side" The regions 14 and 15 are called “parts” or “peripheral parts”. The main gaze line 16 exists almost through the center of the lens 1, and an inset amount H exists between the main gaze line 16 </ b> A in the distance portion 11 and the main gaze line 16 </ b> B in the near portion 12. .

図5で示される眼鏡レンズ1は、装用時前傾角PAが標準である10°に設定される。ここで、装用時前傾角PAはプリズム測定基準点Pの断面図における外面の法線Tがその点を含む水平平面となす角として定義される。
図6において、累進屈折力眼鏡レンズ1は、図5のレンズと同様の基本構成であり、図5のレンズとは装用時前傾角PAとインセット量Hが異なる。図6で示される累進屈折力眼鏡レンズ1では、装用時前傾角PAは0°である。
図7において、累進屈折力眼鏡レンズ1は、図5のレンズと同様の基本構成であり、図5のレンズとは装用時前傾角PAとインセット量Hが異なる。図7で示される累進屈折力眼鏡レンズ1では、装用時前傾角PAは20°である。
これらの図で示される累進屈折力眼鏡レンズ1は、個々の装用者の個別装用状況データとレンズ屈折作用による視線の偏向とに基づいてインセット量Hが決定される。
個別装用状況データは、個々の装用者の装用時前傾角PA、近用物体距離OD、遠用瞳孔間距離PD及び眼球回旋距離EPが含まれている。
In the spectacle lens 1 shown in FIG. 5, the forward tilt angle PA is set to 10 °, which is the standard. Here, the forward tilt angle PA is defined as the angle formed by the normal T of the outer surface in the cross-sectional view of the prism measurement reference point P and the horizontal plane including that point.
In FIG. 6, the progressive-power eyeglass lens 1 has the same basic configuration as the lens of FIG. 5, and the forward tilt angle PA and the inset amount H are different from the lens of FIG. In the progressive-power spectacle lens 1 shown in FIG. 6, the forward tilt angle PA is 0 ° when worn.
In FIG. 7, the progressive-power spectacle lens 1 has the same basic configuration as the lens of FIG. 5, and differs from the lens of FIG. 5 in the forward tilt angle PA and the inset amount H when worn. In the progressive-power spectacle lens 1 shown in FIG. 7, the forward tilt angle PA is 20 ° when worn.
In the progressive-power spectacle lens 1 shown in these figures, the inset amount H is determined based on individual wear situation data of individual wearers and the deflection of the line of sight due to the lens refraction action.
The individual wearing state data includes the forward tilt angle PA, the near object distance OD, the distance between pupils PD for distance, and the eyeball rotation distance EP of each wearer.

本実施形態にかかる累進屈折力眼鏡レンズ1の製造方法について説明する。
まず、装用者に応じた遠用度数DF及び加入度数ADDを入力する。さらに、プリズム屈折力等の指定があれば入力する。次に、装用者の個別装用状況データのうちから、装用者の近用物体距離OD及び遠用瞳孔間距離PDを入力する。眼球回旋距離EPや装用状態における装用時前傾角PAを付加的に入力できるようにしておく。
その後、これらの入力された情報に基づいて、装用時前傾角PAが10°の標準的な装用状態を想定して前もって設計された眼鏡レンズで光線追跡のシミュレーションを行い、最適なインセット量Hを決定する。さらに、眼鏡レンズを装用時前傾角PAが0°及び20°で装用した場合の近方視線の通過位置を実光線追跡により求める。これにより、装用時前傾角PAが0°と20°との場合のインセット量Hを決定する。
A method for manufacturing the progressive-power spectacle lens 1 according to the present embodiment will be described.
First, the distance power DF and the addition power ADD corresponding to the wearer are input. Furthermore, if there is designation of prism refractive power or the like, it is inputted. Next, the near object distance OD and the distance between the distance pupils PD of the wearer are input from the individual wear situation data of the wearer. The eyeball rotation distance EP and the pre-wear inclination angle PA in the wearing state can be additionally inputted.
After that, based on the input information, a ray tracing simulation is performed with a spectacle lens designed in advance assuming a standard wearing state in which the pre-tilt angle PA is 10 °, and the optimal inset amount H To decide. Further, the passing position of the near line of sight when the spectacle lens is worn at the front tilt angle PA of 0 ° and 20 ° when worn is obtained by real ray tracing. Thus, the inset amount H is determined when the forward tilt angle PA is between 0 ° and 20 °.

次に、予め用意された複数種類のセミフィニッシュトレンズの中から、仕様に応じた適切なものを選ぶ。選ばれたセミフィニッシュトレンズの完成面との組み合わせにおいて、前記ステップで決定されたインセット量Hになるよう未加工面側の設計を行う。その際には、想定された近用物体距離OD、レンズ径や玉型形状に応じたプリズムシニング量、中心厚、等を考慮して光学性能の最適化も図られる。設計された未加工面の形状からNCデータを作成し、超精密3次元NC切削盤を駆動して素材を直接削り出す、いわゆる自由曲面加工技術が利用できる。   Next, an appropriate one according to the specification is selected from a plurality of types of semi-finished lenses prepared in advance. In the combination with the completed surface of the selected semi-finished lens, the unprocessed surface side is designed so that the inset amount H determined in the above step is obtained. In that case, the optical performance can be optimized in consideration of the assumed near object distance OD, the amount of prism thinning according to the lens diameter and the target lens shape, the center thickness, and the like. A so-called free-form surface machining technique can be used in which NC data is created from the shape of the designed unmachined surface and the material is directly machined by driving an ultra-precision 3D NC cutting machine.

従って、第1実施形態では、(1)遠くのものを見るための遠用部11と、近くのものを見るための近用部12と、遠用部11と近用部12の中間に連続的に屈折力の変わる累進部13とを備えた累進屈折力眼鏡レンズ1において、個々の装用者の個別装用状況データとレンズ屈折作用による視線の偏向とに基づいて近用部12のインセット量Hを決定する。そして、個別装用状況データは個々の装用者の装用時前傾角PAの情報を含む。そのため、装用時前傾角PAをも含めた個別装用状態を考慮して近用部12のインセット量Hを決定するので、従来の累進屈折力眼鏡レンズ1では標準的な装用時前傾角とは異なる場合に左右眼で近用明視範囲が融合しなかった問題が改善され、快適な両眼視が可能となる。   Accordingly, in the first embodiment, (1) a distance portion 11 for viewing a far object, a near portion 12 for viewing a near object, and a distance between the distance portion 11 and the near portion 12 are continuous. In the progressive-power spectacle lens 1 provided with a progressive portion 13 that changes its refractive power, the inset amount of the near portion 12 based on individual wear situation data of individual wearers and the deflection of the line of sight due to the lens refraction action H is determined. The individual wearing status data includes information on the forward tilt angle PA of each individual wearer. Therefore, since the inset amount H of the near portion 12 is determined in consideration of the individual wearing state including the wearing front tilt angle PA, in the conventional progressive power lens 1, what is the standard wearing front tilt angle? When different, the problem that the near vision range did not merge with the left and right eyes is improved, and comfortable binocular vision becomes possible.

また、第1実施形態では、(2)インセット量Hは、個別装用状況下での近方視線を光線追跡することにより決定する構成であるため、インセット量Hを個別に正確に求めることができる。従って、左右眼で融合した近用明視範囲が得られ、より快適な両眼視が可能となる。   In the first embodiment, (2) the inset amount H is determined by ray tracing the near line of sight under the individual wearing situation, so that the inset amount H is obtained accurately and individually. Can do. Therefore, the near vision range fused with the left and right eyes is obtained, and more comfortable binocular vision is possible.

次に、第1実施形態の効果を確認するために実施例について説明する。
[実施例1]
実施例1の諸元が表1に示されている。
Next, examples will be described in order to confirm the effects of the first embodiment.
[Example 1]
The specifications of Example 1 are shown in Table 1.

Figure 2010237402
Figure 2010237402

実施例1では、遠用部球面屈折力SPHが+4.00ディオプトリ、加入屈折力ADDが2.00ディオプトリ、屈折率Nが1.67、累進帯長PLが14mmの累進屈折力眼鏡レンズを、遠用瞳孔間距離PDが63mmの人が頂間距離12mm(眼球回旋距離EP25mm)、近用物体距離OD300mm、装用時前傾角PA10°で装用した場合を想定すると、最適なインセット量Hは3.11mmとなる。
このレンズを装用時前傾角PAが0°及び20°で装用した場合の、近方視線の通過位置を実光線追跡により求めた結果は、それぞれフィッティングポイント鉛直下より3.44mm、2.85mmであった。
従って、累進面を個別設計する際には、インセット量Hが3.44mm(装用時前傾角PA=0°の場合)、3.11mm(装用時前傾角PA=10°の場合)、2.85mm(装用時前傾角PA=20°の場合)となるように設計すればよい。装用時前傾角PAとインセット量Hとの関係が図8(A)に示されている。図8(A)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。
実施例1では、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲を一致させることができる。
In Example 1, a progressive-power spectacle lens with a distance portion spherical refractive power SPH of +4.00 diopters, an addition refractive power ADD of 2.00 diopters, a refractive index N of 1.67, and a progressive zone length PL of 14 mm, Assuming that a person with a distance-to-pupil distance PD of 63 mm is worn at an apex distance of 12 mm (eyeball rotation distance EP25 mm), a near object distance OD300 mm, and a forward tilt angle PA10 of wearing, the optimum inset amount H is 3 .11 mm.
When this lens is worn at a pretilt angle PA of 0 ° and 20 °, the passing position of the near line of sight is obtained by tracing the actual ray, and the results are 3.44 mm and 2.85 mm below the fitting point vertical, respectively. there were.
Therefore, when the progressive surface is individually designed, the inset amount H is 3.44 mm (when the forward tilt angle PA is 0 °), 3.11 mm (when the forward tilt angle PA is 10 °), 2 What is necessary is just to design so that it may be set to 85 mm (when the forward tilt angle PA = 20 ° during wearing). The relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8 (A), it can be seen that the forward tilt angle PA and the inset amount H are set to be a decreasing function.
In the first embodiment, the near vision range for the left and right eyes can be matched even when the forward tilt angle PA is 0 °, 10 °, or 20 °.

図9は装用時前傾角PAが0°の場合の近用明視範囲の一致を示す図である。図9(A)はレンズ上の収差の分布を模式的に表した図である。図9(A)は、両眼用として左右に一対の眼鏡レンズの正面が示されており、各レンズの側方部には収差の多い領域Sが存在する。累進屈折力眼鏡レンズ1の各部位の屈折力に応じた距離で正面にある物体を両眼視した時に、インセット量Hが設定されているから、図9(A)に示される通り、想定された主注視線16と正面視線通過点の軌跡17とがほぼ一致するようになる。この時、片眼ずつの明視範囲は、図9(B)に示される通り、視野の中心に対して鼻側と耳側とでほぼ同じ幅Dになる。両眼で1つの像を見た状態を示す図9(C)において、左右眼の明視範囲が一致して視野のロスがないことがわかる。   FIG. 9 is a diagram showing the coincidence of the near vision range when the forward tilt angle PA is 0 °. FIG. 9A schematically shows the aberration distribution on the lens. FIG. 9A shows the front of a pair of spectacle lenses on both the left and right sides for both eyes, and there is a region S with much aberration at the side of each lens. Since an inset amount H is set when an object in front is viewed with both eyes at a distance corresponding to the refractive power of each part of the progressive-power eyeglass lens 1, as shown in FIG. The main gaze line 16 thus made and the locus 17 of the front line-of-sight passage point substantially coincide. At this time, the clear vision range for each eye has substantially the same width D on the nose side and the ear side with respect to the center of the visual field, as shown in FIG. 9B. In FIG. 9C showing a state where one image is viewed with both eyes, it can be seen that the clear vision ranges of the left and right eyes coincide with each other and there is no visual field loss.

[実施例2]
実施例2の諸元が表2に示されている。
[Example 2]
The specifications of Example 2 are shown in Table 2.

Figure 2010237402
Figure 2010237402

実施例2は、近用物体距離ODが200mmであること以外は実施例1と同じである。
表2の右端に示すようにインセット量Hを設定することで、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲を一致させることができた。実施例2では、装用時前傾角PAとインセット量Hとの関係が図8(B)に示されている。図8(B)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。
Example 2 is the same as Example 1 except that the near object distance OD is 200 mm.
By setting the inset amount H as shown in the right end of Table 2, the near vision range for the left and right eyes can be made to coincide even when the forward tilt angle PA is 0 °, 10 °, or 20 °. did it. In Example 2, the relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8B, it can be seen that the forward tilt angle PA and the inset amount H are set to be a decreasing function.

[実施例3]
実施例3の諸元が表3に示されている。
[Example 3]
The specifications of Example 3 are shown in Table 3.

Figure 2010237402
Figure 2010237402

実施例3は遠用瞳孔間距離PDが68mmであること以外は実施例1と同じである。
表3の右端に示すようにインセット量Hを設定することで、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲を一致させることができた。実施例3では、装用時前傾角PAとインセット量Hとの関係が図8(C)に示されている。図8(C)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。
The third embodiment is the same as the first embodiment except that the distance pupil distance PD is 68 mm.
By setting the inset amount H as shown in the right end of Table 3, the near vision range for the left and right eyes can be made consistent when the forward tilt angle PA is 0 °, 10 °, or 20 °. did it. In Example 3, a relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8C, it can be seen that the forward tilt angle PA and the inset amount H are set so as to be a decreasing function.

[実施例4]
実施例4の諸元が表4に示されている。
[Example 4]
The specifications of Example 4 are shown in Table 4.

Figure 2010237402
Figure 2010237402

実施例4では、遠用部球面屈折力SPHが−4.00ディオプトリ、加入屈折力ADDが2.00ディオプトリ、屈折率Nが1.67、累進帯長PLが14mmの累進屈折力眼鏡レンズを、遠用瞳孔間距離PDが63mmの人が頂間距離12mm(眼球回旋距離EP25mm)、近用物体距離OD300mm、装用時前傾角PA0°、10°、20°で装用した場合を想定し、表4の右端に示すようにインセット量Hをそれぞれ2.66mm(装用時前傾角PA=0°の場合)、2.47mm(装用時前傾角PA=10°の場合)、2.39mm(装用時前傾角PA=20°の場合)に設定することで、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲を一致させることができた。実施例4では、装用時前傾角PAとインセット量Hとの関係が図8(D)に示されている。図8(D)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。   In Example 4, a progressive-power spectacle lens in which the distance portion spherical refractive power SPH is −4.00 diopter, the addition refractive power ADD is 2.00 diopter, the refractive index N is 1.67, and the progressive zone length PL is 14 mm. Assuming that a person with a distance PD distance of 63 mm wears at a vertex distance of 12 mm (eye rotation distance EP25 mm), a near object distance OD 300 mm, and a forward tilt angle PA 0 °, 10 °, 20 ° during wearing, As shown at the right end of FIG. 4, the inset amount H is 2.66 mm (when the forward tilt angle PA = 0 ° when worn), 2.47 mm (when the forward tilt angle PA is 10 °) 2.39 mm (wear) By setting the forward tilt angle PA = 20 °), the near vision range for the left and right eyes could be matched when the forward tilt angle PA was 0 °, 10 °, or 20 °. . In the fourth embodiment, the relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8D, it can be seen that the forward tilt angle PA and the inset amount H are set to be a decreasing function.

[実施例5]
実施例5の諸元が表5に示されている。
[Example 5]
Specifications of Example 5 are shown in Table 5.

Figure 2010237402
Figure 2010237402

実施例5は近用物体距離ODが200mmであること以外は実施例4と同じである。
表5の右端に示すようにインセット量Hを設定することで、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲を一致させることができた。実施例5では、装用時前傾角PAとインセット量Hとの関係が図8(E)に示されている。図8(E)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。
Example 5 is the same as Example 4 except that the near object distance OD is 200 mm.
By setting the inset amount H as shown at the right end of Table 5, the near vision range for the left and right eyes can be made consistent when the forward tilt angle PA is 0 °, 10 °, or 20 °. did it. In the fifth embodiment, the relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8 (E), it can be seen that the forward tilt angle PA and the inset amount H are set to be a decreasing function.

[実施例6]
実施例6の諸元が表6に示されている。
[Example 6]
The specifications of Example 6 are shown in Table 6.

Figure 2010237402
Figure 2010237402

実施例6は遠用瞳孔間距離PDが68mmであること以外は実施例4と同じである。
表6の右端に示すようにインセット量Hを設定することで、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲を一致させることができた。実施例6では、装用時前傾角PAとインセット量Hとの関係が図8(F)に示されている。図8(F)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。
The sixth embodiment is the same as the fourth embodiment except that the distance pupil distance PD is 68 mm.
By setting the inset amount H as shown in the right end of Table 6, the near vision range for the left and right eyes can be made to coincide even when the forward tilt angle PA is 0 °, 10 °, or 20 °. did it. In Example 6, the relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8 (F), it can be seen that the forward tilt angle PA and the inset amount H are set to be a decreasing function.

次に、本発明の第2実施形態を説明する。
第2実施形態では、インセット量を決定するために、所望の屈折力と個々の装用者の個別装用状況データに基づいて、近似式を用いるものであり、他の構成は第1実施形態と同じである。
レンズの遠用度数をDF(ディオプタ)、加入度数をADD(ディオプタ)、近用物体距離をOD(mm)、眼球回旋距離をEP(mm)、遠用瞳孔間距離をPD(mm)とすると、最適なインセット量H(mm)は近似的に、下記式(1)で求められる。
H=EP×PD/2×{EP+OD−EP×OD×(DF+ADD)/1000}
……(1)
Next, a second embodiment of the present invention will be described.
In the second embodiment, in order to determine the inset amount, an approximate expression is used based on the desired refractive power and individual wearer's individual wear situation data, and other configurations are the same as those of the first embodiment. The same.
The distance power of the lens is DF (diopter), the addition power is ADD (diopter), the near object distance is OD (mm), the eyeball rotation distance is EP (mm), and the distance between the distance pupils is PD (mm). The optimum inset amount H (mm) is approximately obtained by the following equation (1).
H = EP × PD / 2 × {EP + OD−EP × OD × (DF + ADD) / 1000}
...... (1)

式(1)は、眼鏡レンズを薄肉レンズとして近軸光線追跡より導かれる。実際に厚肉である正の屈折力を持ったレンズにおいては、近似式と実光線追跡により求まった結果との誤差が大きくなるが、想定された標準装用状態での最適インセット量Hと標準でない状態での最適インセット量H'との差は、近似式を用いたものと実光線追跡によるものとでそれほど差がない。想定された標準装用状態の各量をOD、EP、PDとする時、近似式によるインセット変更量ΔHは、次の式(2)で求められる。
ΔH=EP×PD/2×{EP+OD−EP×OD×(DF+ADD)/1000}−EP×PD/2×{EP+OD−EP×OD×(DF+ADD)/1000}……(2)
Equation (1) is derived from paraxial ray tracing using a spectacle lens as a thin lens. For lenses with positive refractive power that are actually thick, the error between the approximate expression and the result obtained by tracking the actual ray becomes large, but the optimum inset amount H and the standard in the assumed standard wearing state The difference from the optimum inset amount H ′ in the non-existing state is not so different between the one using the approximate expression and the one using the real ray tracing. When each amount of the assumed standard wearing state is OD 0 , EP 0 , PD 0 , the inset change amount ΔH by the approximate expression is obtained by the following expression (2).
ΔH = EP × PD / 2 × {EP + OD-EP × OD × (DF + ADD) / 1000} -EP 0 × PD 0/2 × {EP 0 + OD 0 -EP 0 × OD 0 × (DF + ADD) / 1000} ...... (2)

この式(2)で求められた変更量ΔHを実光線追跡により予め設計された標準設計レンズからのインセット変更量とすることができる。式(2)は特許文献1(特開平11−305173号公報)で開示されたものであるが、この式はパラメータとして装用時前傾角PAを含んでいない。
本発明の第2実施形態では、さらに装用時前傾角をPA(°)とし、装用時前傾角PAが標準装用状態での装用時前傾角PAからずれた場合にはレンズの近用部と眼との距離が変化することに着目し、累進帯長をPL(mm)として、眼球回旋距離EPを次の式(3)で置き換える。
EP'=EP−PL×(PA−PA)*π/180 ……(3)
そして、インセット変更量ΔHを式(4)で求める。
ΔH=EP'×PD/2×{EP'+OD−EP'×OD×(DF+ADD)/1000}−EP×PD/2×{EP+OD−EP×OD×(DF+ADD)/1000}
……(4)
The change amount ΔH obtained by the equation (2) can be set as an inset change amount from a standard design lens designed in advance by real ray tracing. Expression (2) is disclosed in Patent Document 1 (Japanese Patent Laid-Open No. 11-305173), but this expression does not include the forward tilt angle PA when used as a parameter.
In the second embodiment of the present invention, the wearing front tilt angle is PA (°), and when the wearing front tilt angle PA deviates from the wearing front tilt angle PA 0 in the standard wearing state, Focusing on the change in the distance to the eye, the progressive zone length is PL (mm), and the eyeball rotation distance EP is replaced by the following equation (3).
EP ′ = EP−PL × (PA−PA 0 ) * π / 180 (3)
Then, the inset change amount ΔH is obtained by Expression (4).
ΔH = EP '× PD / 2 × {EP' + OD-EP '× OD × (DF + ADD) / 1000} -EP 0 × PD 0/2 × {EP 0 + OD 0 -EP 0 × OD 0 × (DF + ADD) / 1000}
(4)

さらに、標準装用状態での最適なインセット量Hも、その都度、実光線追跡で求めるのではなく、予めいつかのサンプル設計から遠用度数DFの多項式で近似しておき、例えば累進帯長14mmの場合には式(5)としておく。
=2.7699+0.080196×DF+0.0014418×DF×DF
……(5)
最終的に近似式による最適インセット量は式(6)で求められる。
H=H+ΔH ……(6)
Further, the optimum inset amount H in the standard wearing state is not obtained by actual ray tracing each time, but is approximated by a polynomial of a distance power DF from some sample design in advance, for example, a progressive zone length of 14 mm In this case, the equation (5) is used.
H 0 = 2.7699 + 0.080196 × DF + 0.0014418 × DF × DF
...... (5)
Finally, the optimum inset amount by the approximate expression is obtained by Expression (6).
H = H 0 + ΔH (6)

従って、第2実施形態では、第1実施形態の(1)と同様の効果を奏することができる他、次の効果を奏することができる。
(3)インセット量Hを所望の屈折力と個々の装用者の個別装用状況データに基づいて、近似式を用いて決定した。そのため、標準レンズによる実光線追跡の工程を簡略化することができ、設計、製造効率を向上させることができる。
Therefore, in 2nd Embodiment, there can exist the following effect other than the same effect as (1) of 1st Embodiment.
(3) The inset amount H was determined using an approximate expression based on the desired refractive power and individual wear situation data of individual wearers. Therefore, it is possible to simplify the actual ray tracing process using the standard lens, and to improve the design and manufacturing efficiency.

次に、第2実施形態の効果を確認するために実施例について説明する。
[実施例7]
実施例7の諸元が表7に示されている。
Next, examples will be described in order to confirm the effects of the second embodiment.
[Example 7]
The specifications of Example 7 are shown in Table 7.

Figure 2010237402
Figure 2010237402

実施例7では、遠用部球面屈折力SPHが0.00ディオプトリ、加入屈折力ADDが2.00ディオプトリ、屈折率Nが1.67、累進帯長PLが14mmの累進屈折力眼鏡レンズを、遠用瞳孔間距離PDが63mmの人が頂間距離15mm(眼球回旋距離EP28mm)、近用物体距離OD300mm、装用時前傾角PAが0°、10°、20°で装用した場合を想定し、近似式を用いて表7の右端に示すようにインセット量Hとして3.30mm(装用時前傾角PA=0°の場合)、3.06mm(装用時前傾角PA=10°の場合)、2.82mm(装用時前傾角PA=20°の場合)を得た。この値は、実光線追跡による値3.25mm、3.00mm、2.83mmに対して実用上十分に良い近似である。実施例7では、装用時前傾角PAとインセット量Hとの関係が図8(G)に示されている。図8(G)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。
近似式を用いることで、標準レンズによる実光線追跡の工程を簡略化することができ、設計、製造効率が向上した。さらに、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲をほぼ一致させることができた。
In Example 7, a progressive-power spectacle lens having a distance spherical power SPH of 0.00 diopter, an addition power ADD of 2.00 diopter, a refractive index N of 1.67, and a progressive zone length PL of 14 mm, Assume that a person with a distance pupil distance PD of 63 mm wears at a vertex distance of 15 mm (eyeball rotation distance EP 28 mm), a near object distance OD 300 mm, and a forward tilt angle PA of 0 °, 10 °, and 20 ° when worn. As shown at the right end of Table 7, using an approximate expression, the inset amount H is 3.30 mm (when the forward tilt angle PA is 0 °), 3.06 mm (when the forward tilt angle PA is 10 °), 2.82 mm (when the forward tilt angle PA = 20 ° during wearing) was obtained. This value is a sufficiently good approximation for practical use with respect to the values of 3.25 mm, 3.00 mm, and 2.83 mm obtained by real ray tracing. In Example 7, the relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8G, it can be seen that the forward tilt angle PA and the inset amount H are set so as to be a decreasing function.
By using the approximate expression, the process of tracing the actual ray by the standard lens can be simplified, and the design and manufacturing efficiency is improved. Furthermore, the near vision range for the left and right eyes could be substantially matched when the forward tilt angle PA was 0 °, 10 °, or 20 °.

[実施例8]
実施例8の諸元が表8に示されている。
[Example 8]
The specifications of Example 8 are shown in Table 8.

Figure 2010237402
Figure 2010237402

実施例8では、遠用部球面屈折力SPHが−6.00ディオプトリ、加入屈折力ADDが2.00ディオプトリ、屈折率Nが1.67、累進帯長PLが14mmの累進屈折力眼鏡レンズを、遠用瞳孔間距離PDが68mmの人が頂間距離12mm(眼球回旋距離EP25mm)、近用物体距離OD300mm、装用時前傾角PAが0°、10°、20°で装用した場合を想定し、近似式を用いて表8の右端に示すようにインセット量Hとして、2.71mm(装用時前傾角PA=0°の場合)、2.52mm(装用時前傾角PA=10°の場合)、2.32mm(装用時前傾角PA=20°の場合)を得た。この値は、実光線追跡による値2.71mm、2.53mm、2.46mmに対して実用上十分に良い近似である。実施例8では、装用時前傾角PAとインセット量Hとの関係が図8(H)に示されている。図8(H)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。
近似式を用いることで、標準レンズによる実光線追跡の工程を簡略化することができ、設計・製造効率が向上した。さらに、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲をほぼ一致させることができた。
In Example 8, a progressive-power spectacle lens in which the distance portion spherical refractive power SPH is −6.00 diopter, the addition refractive power ADD is 2.00 diopter, the refractive index N is 1.67, and the progressive zone length PL is 14 mm. Suppose a person with a distance PD distance of 68 mm wears the apex distance 12 mm (eyeball rotation distance EP 25 mm), the near object distance OD 300 mm, and the forward tilt angle PA is 0 °, 10 °, 20 °. As shown in the right end of Table 8, using an approximate expression, the inset amount H is 2.71 mm (when the forward tilt angle PA is 0 °), 2.52 mm (when the forward tilt angle PA is 10 °) ) 2.32 mm (when the forward tilt angle PA = 20 ° during wearing) was obtained. This value is a sufficiently good approximation for practical use with respect to the values of 2.71 mm, 2.53 mm, and 2.46 mm according to real ray tracing. In the eighth embodiment, the relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8H, it can be seen that the forward tilt angle PA and the inset amount H are set so as to be a decreasing function.
By using the approximate expression, the process of tracing the actual ray by the standard lens can be simplified, and the design / manufacturing efficiency is improved. Furthermore, the near vision range for the left and right eyes could be substantially matched when the forward tilt angle PA was 0 °, 10 °, or 20 °.

[実施例9]
実施例9の諸元が表9に示されている。
[Example 9]
The specifications of Example 9 are shown in Table 9.

Figure 2010237402
Figure 2010237402

実施例9では、遠用部球面屈折力SPHが+2.00ディオプトリ、加入屈折力ADDが3.00ディオプトリ、屈折率Nが1.67、累進帯長PLが14mmの累進屈折力眼鏡レンズを、遠用瞳孔間距離PDが63mmの人が頂間距離12mm(眼球回旋距離EP25mm)、近用物体距離OD300mm、装用時前傾角PAが0°、10°、20°で装用した場合を想定し、近似式を用いて表8の右端に示すようにインセット量Hとして、3.29mm(装用時前傾角PA=0°の場合)、3.01mm(装用時前傾角PA=10°の場合)、2.73mm(装用時前傾角PA=20°の場合)を得た。この値は、実光線追跡による値3.27mm、2.97mm、2.74mmに対して実用上十分に良い近似である。実施例9では、装用時前傾角PAとインセット量Hとの関係が図8(I)に示されている。図8(I)に示される通り、装用時前傾角PAとインセット量Hとが減少関数になるよう設定されていることがわかる。
近似式を用いることで、標準レンズによる実光線追跡の工程を簡略化することができ、設計・製造効率が向上した。さらに、装用時前傾角PAが0°、10°、20°いずれの場合にも左右眼の近用明視範囲をほぼ一致させることができた。
In Example 9, a progressive-power spectacle lens having a distance spherical power SPH of +2.00 diopters, an addition power ADD of 3.00 diopters, a refractive index N of 1.67, and a progressive zone length PL of 14 mm is used. Suppose that a person with a distance between pupils PD of 63 mm is worn at a vertex distance of 12 mm (eyeball rotation distance EP25 mm), a near object distance OD 300 mm, and a forward tilt angle PA of 0 °, 10 °, and 20 °. As shown in the right end of Table 8, using an approximate expression, the inset amount H is 3.29 mm (when the forward tilt angle PA is 0 °), 3.01 mm (when the forward tilt angle PA is 10 °) ) 2.73 mm (when the forward tilt angle PA = 20 ° during wearing) was obtained. This value is a sufficiently good approximation for practical use with respect to the values of 3.27 mm, 2.97 mm, and 2.74 mm obtained by real ray tracing. In Example 9, the relationship between the forward tilt angle PA and the inset amount H is shown in FIG. As shown in FIG. 8 (I), it can be seen that the forward tilt angle PA and the inset amount H are set to be a decreasing function.
By using the approximate expression, the process of tracing the actual ray by the standard lens can be simplified, and the design / manufacturing efficiency is improved. Furthermore, the near vision range for the left and right eyes could be substantially matched when the forward tilt angle PA was 0 °, 10 °, or 20 °.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前記実施形態では、標準的な装用時前傾角PAを10°とし、実際に装用されるレンズの装用時前傾角PAを0°と20°の場合について説明したが、本発明では、標準的な装用時前傾角PAや実際に装用されるレンズの装用時前傾角PAはこれらの角度に限定されるものではない。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the above embodiments, the standard pantoscopic angle PA o and 10 °, has been described actually results when the pantoscopic angle PA of the wear the lens to the 0 ° and 20 °, in the present invention, standard pantoscopic angle PA of the pantoscopic angle PA o and actually worn by the lens is not limited to these angles.

本発明は、累進屈折力眼鏡レンズに利用することができる。   The present invention can be used for progressive-power spectacle lenses.

1…累進屈折力眼鏡レンズ、11…遠用部、12…近用部、13…累進部、16…主注視線、PA…装用時前傾角、H…インセット量   DESCRIPTION OF SYMBOLS 1 ... Progressive-power eyeglass lens, 11 ... Distance part, 12 ... Near part, 13 ... Progressive part, 16 ... Main gaze, PA ... Front tilt angle at the time of wearing, H ... Inset amount

Claims (10)

近方視に対応する近用部を備え、個々の装用者の個別装用状況データとレンズ屈折作用による視線の偏向とに基づいて、前記近用部のインセット量が決定された累進屈折力眼鏡レンズにおいて、
前記個別装用状況データは個々の装用者の装用時前傾角の情報を含むことを特徴とする累進屈折力眼鏡レンズ。
Progressive power glasses having a near portion corresponding to near vision and in which the amount of inset of the near portion is determined based on individual wear situation data of each wearer and gaze deflection due to lens refraction action In the lens,
The progressive-power spectacle lens, wherein the individual wearing status data includes information on a forward tilt angle of each individual wearer.
請求項1に記載の累進屈折力眼鏡レンズにおいて、
前記インセット量は、前記装用時前傾角に関して減少関数になるよう設定されていることを特徴とする累進屈折力眼鏡レンズ。
The progressive-power eyeglass lens according to claim 1,
The progressive-power spectacle lens according to claim 1, wherein the inset amount is set to be a decreasing function with respect to the forward tilt angle during wearing.
請求項1又は請求項2に記載の累進屈折力眼鏡レンズにおいて、
前記個別装用状況データは個々の装用者の近用物体距離の情報を含むことを特徴とする累進屈折力眼鏡レンズ。
In the progressive-power spectacle lens according to claim 1 or 2,
The progressive-power spectacle lens, wherein the individual wearing status data includes information on a near object distance of each wearer.
請求項1又は請求項2に記載の累進屈折力眼鏡レンズにおいて、
前記個別装用状況データは個々の装用者の遠用瞳孔間距離の情報を含むことを特徴とする累進屈折力眼鏡レンズ。
In the progressive-power spectacle lens according to claim 1 or 2,
The progressive-power spectacle lens characterized in that the individual wearing status data includes information on distances between pupils of distances of individual wearers.
近方視に対応する近用部を備え、個々の装用者の個別装用状況データとレンズ屈折作用による視線の偏向とに基づいて前記近用部のインセット量が決定される累進屈折力眼鏡レンズの製造方法において、
前記個別装用状況データは個々の装用者の装用時前傾角の情報を含むことを特徴とする累進屈折力眼鏡レンズの製造方法。
A progressive power eyeglass lens having a near portion corresponding to near vision and in which the amount of inset of the near portion is determined based on individual wear situation data of each wearer and gaze deflection due to lens refraction action In the manufacturing method of
The method for manufacturing a progressive-power spectacle lens, wherein the individual wearing state data includes information on a forward tilt angle of each individual wearer.
請求項5に記載の累進屈折力眼鏡レンズの製造方法において、
前記インセット量は、前記装用時前傾角に関して減少関数になるよう設定することを特徴とする累進屈折力眼鏡レンズの製造方法。
In the manufacturing method of the progressive-power eyeglass lens according to claim 5,
The method for manufacturing a progressive-power spectacle lens, wherein the inset amount is set to be a decreasing function with respect to the forward tilt angle during wearing.
請求項5又は請求項6に記載の累進屈折力眼鏡レンズの製造方法において、
前記個別装用状況データは個々の装用者の近用物体距離の情報を含むことを特徴とする累進屈折力眼鏡レンズの製造方法。
In the manufacturing method of the progressive-power spectacles lens according to claim 5 or 6,
The method of manufacturing a progressive-power spectacle lens, wherein the individual wearing status data includes information on a near object distance of each wearer.
請求項5又は請求項6に記載の累進屈折力眼鏡レンズの製造方法において、
前記個別装用状況データは個々の装用者の遠用瞳孔間距離の情報を含むことを特徴とする累進屈折力眼鏡レンズの製造方法。
In the manufacturing method of the progressive-power spectacles lens according to claim 5 or 6,
The method for manufacturing a progressive-power spectacle lens, wherein the individual wearing status data includes information on distances between pupils for a distance of each wearer.
請求項5から請求項8のいずれかに記載の累進屈折力眼鏡レンズの製造方法において、
前記インセット量は、所望の屈折力で標準インセット量の累進屈折力眼鏡レンズに対して、個別装用状況下での近方視線を光線追跡することにより決定することを特徴とする累進屈折力眼鏡レンズの製造方法。
In the manufacturing method of the progressive-power eyeglass lens according to any one of claims 5 to 8,
The inset amount is determined by ray tracing a near line of sight under individual wearing conditions with respect to a progressive power lens having a desired refractive power and a standard inset amount. A method of manufacturing a spectacle lens.
請求項5から請求項8のいずれかに記載の累進屈折力眼鏡レンズの製造方法において、
前記インセット量は、所望の屈折力と個々の装用者の個別装用状況データに基づいて、近似式を用いて決定することを特徴とする累進屈折力眼鏡レンズの製造方法。
In the manufacturing method of the progressive-power eyeglass lens according to any one of claims 5 to 8,
The method of manufacturing a progressive-power spectacle lens, wherein the inset amount is determined using an approximate expression based on desired refractive power and individual wear situation data of each wearer.
JP2009084665A 2009-03-31 2009-03-31 Progressive refractive power spectacle lens and method of manufacturing the same Pending JP2010237402A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009084665A JP2010237402A (en) 2009-03-31 2009-03-31 Progressive refractive power spectacle lens and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009084665A JP2010237402A (en) 2009-03-31 2009-03-31 Progressive refractive power spectacle lens and method of manufacturing the same

Publications (1)

Publication Number Publication Date
JP2010237402A true JP2010237402A (en) 2010-10-21

Family

ID=43091792

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009084665A Pending JP2010237402A (en) 2009-03-31 2009-03-31 Progressive refractive power spectacle lens and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP2010237402A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112153A (en) * 2012-12-05 2014-06-19 Nikon-Essilor Co Ltd Parameter measurement device, parameter measurement method, spectacle lens design method, spectacle lens manufacturing method and spectacle lens
ES2556263A1 (en) * 2014-07-09 2016-01-14 Joseba GORROTXATEGI SALABERRIA Procedure, system, computer system and computer program product to design at least one progressive ophthalmic lens, and progressive ophthalmic lens (Machine-translation by Google Translate, not legally binding)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014112153A (en) * 2012-12-05 2014-06-19 Nikon-Essilor Co Ltd Parameter measurement device, parameter measurement method, spectacle lens design method, spectacle lens manufacturing method and spectacle lens
ES2556263A1 (en) * 2014-07-09 2016-01-14 Joseba GORROTXATEGI SALABERRIA Procedure, system, computer system and computer program product to design at least one progressive ophthalmic lens, and progressive ophthalmic lens (Machine-translation by Google Translate, not legally binding)

Similar Documents

Publication Publication Date Title
JP3881449B2 (en) Processing method of progressive multifocal lens
KR101902372B1 (en) Progressive ophthalmic lens
JP4408112B2 (en) Double-sided aspherical progressive-power lens and design method thereof
KR100393901B1 (en) Leaning focus lens
JP4437482B2 (en) Double-sided aspherical progressive-power lens and design method thereof
JP5969631B2 (en) Eyeglass lenses
JP2007241276A (en) Method for the determination of progressive focus ophthalmic lens
JPWO2009072528A1 (en) Pair of progressive-power lenses and design method thereof
JP2009517709A (en) Eyeglass lenses
JP2011203705A (en) Spectacle lens and method for designing the same
JP3617004B2 (en) Double-sided aspherical progressive-power lens
JP4707256B2 (en) Manufacturing method of spectacle lens group and spectacle lens group
CN102681205B (en) Progressive refractive power glasses lens
CN106461975B (en) With the progressive multifocal lenses in amplification apart from vision area
JPH1031198A (en) Multi-focus spectacle lens
WO2014097852A1 (en) Production method and production device for spectacle lenses
CN111065960A (en) Progressive multifocal lens and method for manufacturing same
KR101859009B1 (en) Methods for determining a progressive ophthalmic lens and a set of semi finished lens blanks
CN102681206A (en) Progressive-power lens
JP2008299168A (en) Aspherical spectacle lens, and method of manufacturing the same
JP2010237402A (en) Progressive refractive power spectacle lens and method of manufacturing the same
JP5832765B2 (en) Progressive power lens and design method thereof
JP4219148B2 (en) Double-sided aspherical progressive-power lens
JP4404317B2 (en) Double-sided aspherical progressive-power lens and design method thereof
KR100705120B1 (en) Progressive refractive power lens and production method therefor