JP2012172244A - Copper alloy sheet with deformed cross section excellent in press workability, and method for producing the same - Google Patents

Copper alloy sheet with deformed cross section excellent in press workability, and method for producing the same Download PDF

Info

Publication number
JP2012172244A
JP2012172244A JP2011038123A JP2011038123A JP2012172244A JP 2012172244 A JP2012172244 A JP 2012172244A JP 2011038123 A JP2011038123 A JP 2011038123A JP 2011038123 A JP2011038123 A JP 2011038123A JP 2012172244 A JP2012172244 A JP 2012172244A
Authority
JP
Japan
Prior art keywords
copper alloy
section
roll
ratio
deformed cross
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011038123A
Other languages
Japanese (ja)
Other versions
JP5623309B2 (en
Inventor
Takeshi Sakurai
健 櫻井
俊緑 ▲すくも▼田
Shunroku Sukumoda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Shindoh Co Ltd
Original Assignee
Mitsubishi Shindoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Shindoh Co Ltd filed Critical Mitsubishi Shindoh Co Ltd
Priority to JP2011038123A priority Critical patent/JP5623309B2/en
Publication of JP2012172244A publication Critical patent/JP2012172244A/en
Application granted granted Critical
Publication of JP5623309B2 publication Critical patent/JP5623309B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a copper alloy sheet with a deformed cross section, which is a Cu-Fe-P-based copper alloy plate with a deformed cross section, and high press workability, and a method for producing the same.SOLUTION: The copper alloy sheet with a deformed cross section has a thick part and a thin part arranged side by side in a width direction and has a composition comprising, by mass, 0.05-0.15% Fe, 0.015-0.050% P, 0.01-0.20% Zn and the balance being Cu and unavoidable impurities. When T1 and T2 represent the measured values for the thick part and the thin part, respectively, as measured by an EBSD method on a scanning electron microscope equipped with an electron backscattered diffraction imaging system, the ratio of orientation density of brass orientation (T1/T2) is 0.2-0.8, the ratio of orientation density of copper orientation (T1/T2) is 1.2-5.0, and the ratio of GOS (T1/T2) is 0.8-1.5.

Description

本発明は、プレス加工性に優れた異形断面銅合金板およびその製造方法に関し、特に詳しくは、銅合金組成がFe;0.05〜0.15重量%、P;0.015〜0.050重量%およびZn;0.01〜0.20重量%を各々含有し、残部Cuおよび不可避的不純物からなるプレス加工性の良好な異形断面銅合金板及びその製造方法に関する。   The present invention relates to a modified cross-section copper alloy plate excellent in press workability and a method for producing the same, and more particularly, the copper alloy composition is Fe; 0.05 to 0.15 wt%, P; 0.015 to 0.050. The present invention relates to a deformed cross-section copper alloy sheet having a good press workability, and containing the remaining Cu and unavoidable impurities, and a manufacturing method thereof.

厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金板は、その後にプレス加工にて打抜きや曲げなどの加工が施され、端子材やリードフレーム材として使用されており、耐熱性、通電性、熱放散性が要求されている。
一般的に、この異形断面銅合金板は、銅合金鋳塊から板幅方向に一定の厚さを有する平板を製造する平板加工工程と、その平板を用いて板幅方向に厚さの異なる異形断面板を製造する異形加工工程により製造される。平板加工工程は、銅合金鋳塊の均熱、熱間圧延、冷間圧延、焼鈍、続いて必要に応じて行われる冷間圧延の各工程からなる。異形加工工程は、平板加工工程によって製造された平板を最終製品形状に加工するにあたり、必要とされる幅に切断した後に、粗冷間加工、焼鈍、仕上げ冷間加工、スリッタ加工、必要に応じて行われる矯正の各工程からなる。この場合、冷間加工の中間で焼鈍を行わず、仕上げ冷間加工後、焼鈍を行うこともある。また、異形加工工程における冷間加工は、異形ロールによる冷間圧延、或いは、異形金型による冷間圧延や鍛造などにより行われ、異なる加工方法が組み合わされることもある。
The deformed cross-section copper alloy plate with thick and thin parts aligned in the width direction is then stamped and bent by press working, and is used as a terminal material and lead frame material. In addition, electrical conductivity and heat dissipation are required.
Generally, this modified cross-section copper alloy plate is produced by a flat plate processing step for producing a flat plate having a certain thickness in the plate width direction from a copper alloy ingot, and a variant having a different thickness in the plate width direction using the flat plate. Manufactured by a profile processing step for producing a cross-sectional plate. The flat plate processing step includes soaking of the copper alloy ingot, hot rolling, cold rolling, annealing, and then cold rolling performed as necessary. In the special shape processing process, after processing the flat plate produced by the flat plate processing step into the final product shape, it is cut to the required width, followed by rough cold working, annealing, finish cold working, slitter processing, as required It consists of each process of correction performed. In this case, annealing may not be performed in the middle of cold working, but may be performed after finishing cold working. Further, the cold working in the deforming process is performed by cold rolling using a deformed roll, or cold rolling or forging using a deformed die, and different processing methods may be combined.

特許文献1には、鋳塊から板厚方向に一定の厚さを有する平板を製造し、その平板を異形ロールにより冷間圧延して、板幅方向に厚さの異なる異形断面銅合金板を製造するに当たり、異形ロールによる冷間圧延の中間又は最終で一度も焼鈍を行わずに、高耐熱性を有し、かつ高導電性及び優れた曲げ加工性を有する異形断面銅合金板が開示されている。Ni:0.03〜0.5質量%、P:0.01〜0.2質量%を含有し、NiとPとの質量比であるNi/Pが2〜10であり、残部銅及び不可避不純物からなる銅合金を用いる。望ましくはSn:0.005〜0.5%又は/及びFe:0.005〜0.20%を含む。必要に応じてZn:0.005〜0.5%を含む。異形ロールによる冷間圧延において、薄肉部の冷間加工率は30〜90%とされる。   In Patent Document 1, a flat plate having a certain thickness in the plate thickness direction is manufactured from the ingot, and the flat plate is cold-rolled by a deformed roll to obtain a modified cross-section copper alloy plate having a different thickness in the plate width direction. In manufacturing, a deformed cross-section copper alloy sheet having high heat resistance, high conductivity, and excellent bending workability is disclosed without being annealed once in the middle or at the end of cold rolling with a deformed roll. ing. Ni: 0.03-0.5 mass%, P: 0.01-0.2 mass% is contained, Ni / P which is a mass ratio of Ni and P is 2-10, the remainder copper and unavoidable A copper alloy made of impurities is used. Desirably, it contains Sn: 0.005 to 0.5% or / and Fe: 0.005 to 0.20%. If necessary, it contains Zn: 0.005 to 0.5%. In the cold rolling with a deformed roll, the cold working rate of the thin portion is set to 30 to 90%.

特許文献2には、良好な曲げ加工性を備えるとともに、芯線圧着部や嵌合凸部等を簡単にかつ高強度に成形することが可能な端子用銅合金条材及びその製造方法が開示されている。端子を製作するための端子用銅合金条材であって、時効析出型銅合金で構成されるとともに、条材の長手方向に直交する断面において、板厚の厚い厚板部と、この厚板部よりも板厚の薄い薄板部とを備えており、厚板部の引張強度TS1と薄板部の引張強度TS2との比TS1/TS2が、1<TS1/TS2≦1.4の範囲となるように設定されている。   Patent Document 2 discloses a copper alloy strip for terminals and a method for manufacturing the same, which have good bending workability and can easily form a core crimping portion and a fitting convex portion with high strength. ing. A copper alloy strip for a terminal for manufacturing a terminal, which is composed of an aging precipitation type copper alloy, and a thick plate portion having a thick plate thickness in a cross section perpendicular to the longitudinal direction of the strip, and the thick plate And the ratio TS1 / TS2 between the tensile strength TS1 of the thick plate portion and the tensile strength TS2 of the thin plate portion is in the range of 1 <TS1 / TS2 ≦ 1.4. Is set to

特開2007−39735号公報JP 2007-39735 A 特開2009− 9887号公報JP 2009-9887 A

従来のCu−Fe−P系、Cu−Ni−Si系の異形断面銅合金板は、端子材やリードフレーム材としての耐熱性や曲げ加工性が重要視されており、製品として所定の形状に成型するためのプレス加工性が充分とは言えず、製造コストを低下させるために、更にプレス加工性の向上した異形断面銅合金板が求められていた。   Conventional Cu-Fe-P-based and Cu-Ni-Si-based deformed cross-section copper alloy plates place importance on heat resistance and bending workability as terminal materials and lead frame materials, and have a predetermined shape as a product. The press workability for molding cannot be said to be sufficient, and a deformed cross-section copper alloy plate with further improved press workability has been demanded in order to reduce the manufacturing cost.

本発明は、合金組成がFe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなるCu−Fe−P系の異形断面銅合金板であり、プレス加工性の良好な異形断面銅合金板及びその製造方法を提供する。   In the present invention, the alloy composition contains Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, and the balance Cu and Provided are a deformed cross-section copper alloy plate of Cu-Fe-P type that consists of inevitable impurities and has good press workability, and a method for producing the same.

本発明者らは、Cu−Fe−P系の異形断面銅合金板の結晶組織に着目して鋭意検討の結果、その厚肉部と薄肉部の後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定した、Brass方位密度の比と、Copper方位密度の比と、GOSの比を各々最適範囲内に収めることにより、プレス加工性が向上することを見出した。
また、この異形断面銅合金板を製造するには、粗圧延加工を凹凸状成形面を有するダイによる冷間圧延にて、加工前後の銅合金板の幅の変動を最適に選定して行い、仕上げ圧延加工を異形ロールによる冷間圧延にて、加工時の銅合金板の圧延ロールとの接触長さと接触角度を最適に選定して行なうことにより、上述の厚肉部と薄肉部のEBSD法にて測定したBrass方位密度の比とCopper方位密度の比とGOSの比とを最適範囲内に収められることを見出した。
As a result of diligent investigation focusing on the crystal structure of the Cu-Fe-P deformed cross-section copper alloy plate, the inventors have made a scanning electron microscope with a backscattered electron diffraction image system of the thick and thin portions. It has been found that press workability is improved by keeping the ratio of the Brass orientation density, the ratio of Copper orientation density, and the ratio of GOS measured by the EBSD method according to the above.
Moreover, in order to produce this deformed cross-section copper alloy sheet, the rough rolling process is performed by cold rolling with a die having a concavo-convex shaped surface, and the variation in the width of the copper alloy sheet before and after the process is optimally selected, The above-described EBSD method for the thick and thin portions is performed by optimally selecting the contact length and the contact angle of the copper alloy sheet with the rolling roll during the cold rolling with a deformed roll. It was found that the ratio of the Brass azimuth density, the ratio of the Copper azimuth density, and the ratio of GOS measured in the above can be within the optimum range.

即ち、本発明のプレス打抜き加工性に優れた異形断面銅合金板は、厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金板であり、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる組成を有し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したときの前記厚肉部の測定値をT1、前記薄肉部の測定値をT2とするとき、Brass方位密度の比(T1/T2)が0.2〜0.8であり、Copper方位密度の比(T1/T2)が1.2〜5.0であり、GOSの比(T1/T2)が0.8〜1.5であることを特徴とする。   That is, the deformed cross-section copper alloy plate excellent in press punching workability of the present invention is a deformed cross-section copper alloy plate in which a thick portion and a thin portion are aligned in the width direction, and Fe: 0.05 to 0.15 mass %, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, each having a composition consisting of the balance Cu and inevitable impurities, with backscattered electron diffraction image system When the measured value of the thick part when measured by the EBSD method using the scanning electron microscope of T1 is T1, and the measured value of the thin part is T2, the ratio of the Brass orientation density (T1 / T2) is 0.2. -0.8, the ratio of Copper orientation density (T1 / T2) is 1.2-5.0, and the ratio of GOS (T1 / T2) is 0.8-1.5, To do.

後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)が0.8を超える、或いは、Copper方位密度の比(T1/T2)が5.0を超える、或いは、GOSの比(T1/T2)が1.5を超えると、プレス時のせん断面積が大きくなり、プレス加工性が悪くなる。後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)が0.2未満、或いは、Copper方位密度の比(T1/T2)が1.2未満、或いは、GOSの比(T1/T2)が0.8未満であると、効果が飽和して製造時の圧延コストが上昇する。
更に、本発明のプレス打抜き加工性に優れた異形断面銅合金板は、Ni、Coからなる元素のうち少なくとも一種を0.01〜0.20質量%含有することを特徴とする。
これらの元素の添加は、更に耐熱性を向上させる役割を有する。添加量が0.01質量%未満では効果がなく、0.20質量%を超えると導電率を低下させる。
The ratio of Brass orientation density (T1 / T2) by a scanning electron microscope with a backscattered electron diffraction image system exceeds 0.8, or the ratio of Copper orientation density (T1 / T2) exceeds 5.0, or If the ratio of GOS (T1 / T2) exceeds 1.5, the shear area during pressing increases and the press workability deteriorates. The ratio of Brass orientation density (T1 / T2) by a scanning electron microscope with a backscattered electron diffraction image system is less than 0.2, the ratio of Copper orientation density (T1 / T2) is less than 1.2, or GOS If the ratio (T1 / T2) is less than 0.8, the effect is saturated and the rolling cost during production increases.
Furthermore, the modified cross-section copper alloy sheet excellent in press punching workability of the present invention is characterized by containing 0.01 to 0.20% by mass of at least one element composed of Ni and Co.
Addition of these elements has a role of further improving heat resistance. If the added amount is less than 0.01% by mass, there is no effect, and if it exceeds 0.20% by mass, the conductivity is lowered.

また、本発明のプレス打抜き加工性に優れた異形断面銅合金板の製造方法は、平板状銅合金素材を圧延して厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金板を製造する方法であって、前記厚肉部となる凸部及び前記薄肉部となる凹部を形成するための成形面を有するダイと、前記ダイの成形面に対向する位置と前記ダイの成形面からずれた位置との間でダイの成形面の長さ方向に沿って往復移動させられる押圧ロールとにより、前記押圧ロールが前記ダイの成形面からずれた位置にあるときに、前記平板状銅合金素材を長さ方向に間欠送りし、前記押圧ロールが前記ダイの成形面に対向する位置にあるときに、前記押圧ロールと前記ダイの成形面との間に前記平板状銅合金素材を挟みこんで圧延加工して前記凸部と凹部とを有する粗異形断面銅合金板を製造する粗圧延加工工程と、前記厚肉部を形成するための小径ロール部および前記薄肉部を形成するための大径ロール部が軸線方向に並んで形成された段付きロールと、半径が軸線方向に沿って一定とされた平ロールとからなる圧延ロールにより、前記粗異形断面銅合金板を挟み込んで圧延加工して異形断面銅合金板を製造する仕上げ圧延加工工程とを有し、前記平板状銅合金素材の幅をW1mmとし、前記粗異形断面銅合金板の幅をW2mmとし、前記圧延ロールと前記粗銅合金異形断面板との接触長さをLmmとし、接触角度をθ°としたとき、(W1/W2)×(L/θ)の値が0.25〜3.0の範囲となるように粗圧延加工および仕上げ圧延加工することを特徴とする。   In addition, the method for producing a deformed cross-section copper alloy plate excellent in press punching workability according to the present invention is a method of rolling a flat copper alloy material to form a deformed cross-section copper alloy plate in which a thick portion and a thin portion are aligned in the width direction. A method of manufacturing, comprising: a die having a molding surface for forming the convex portion to be the thick portion and the concave portion to be the thin portion; a position facing the molding surface of the die; and a molding surface of the die The flat copper alloy when the pressing roll is in a position displaced from the molding surface of the die by a pressing roll that is reciprocated along the length direction of the molding surface of the die between the shifted position When the material is intermittently fed in the length direction and the pressing roll is at a position facing the die forming surface, the flat copper alloy material is sandwiched between the pressing roll and the die forming surface. The rough profile having the convex part and the concave part by rolling with Rough rolling process for producing a face copper alloy plate, a stepped roll in which a small diameter roll part for forming the thick part and a large diameter roll part for forming the thin part are formed side by side in the axial direction And a finish rolling process step of producing a deformed cross-section copper alloy plate by rolling the rough deformed cross-section copper alloy plate with a rolling roll comprising a flat roll whose radius is constant along the axial direction. Having a width of the flat copper alloy material W1 mm, a width of the rough deformed cross section copper alloy plate W2 mm, a contact length of the rolling roll and the rough copper alloy deformed cross section plate Lmm, and a contact angle When θ °, rough rolling and finish rolling are performed so that the value of (W1 / W2) × (L / θ) is in the range of 0.25 to 3.0.

粗圧延加工工程にて、後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)、Copper方位密度の比(T1/T2)、GOSの比(T1/T2)が前記の所定範囲に8〜9割がた収まる素地を作り、仕上げ圧延加工工程にて、前記の所定範囲内とする。
W1/W2は、0.5〜0.9であることが好ましく、0.5未満では、仕上げ圧延加工に負荷がかかり過ぎ、後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)、Copper方位密度の比(T1/T2)、GOSの比(T1/T2)が、前記の所定範囲に収まり難くなる。0.9を超えると、仕上げ圧延加工にて、所定の異形寸法に収めることが難しくなる。
接触長さLは、粗銅合金異形断面板が複数組の圧延ロールと接触している距離であり、接触角度θは、粗銅合金異形断面板の厚みをH、異形断面銅合金板の厚みをHとしたときに、tanθ={(H−H)/2}/Lで表される。
(W1/W2)×(L/θ)が、0.25未満、或いは、3.0を超えると、後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)、Copper方位密度の比(T1/T2)、GOSの比(T1/T2)が、前記の所定範囲に収まらない。
また、粗粗圧延加工後に、調質のための焼鈍を施し、その後に仕上げ圧延加工を施しても良い。
In the rough rolling process, a ratio of Brass orientation density (T1 / T2), a ratio of Copper orientation density (T1 / T2), and a ratio of GOS (T1 / T2) by a scanning electron microscope with a backscattered electron diffraction image system Is made into a base that fits 80 to 90% within the predetermined range, and within the predetermined range in the finish rolling process.
W1 / W2 is preferably 0.5 to 0.9, and if it is less than 0.5, a load is excessively applied to the finish rolling process, and the Brass orientation density by a scanning electron microscope with a backscattered electron diffraction image system The ratio (T1 / T2), the ratio of Copper orientation density (T1 / T2), and the ratio of GOS (T1 / T2) are difficult to fall within the predetermined range. When it exceeds 0.9, it becomes difficult to fit into predetermined irregular dimensions in finish rolling.
The contact length L is the distance at which the rough copper alloy deformed cross-section plate is in contact with a plurality of sets of rolling rolls, and the contact angle θ is the thickness of the rough copper alloy deformed cross-sectional plate H 0 and the thickness of the deformed cross-section copper alloy plate. When H 1 , tan θ = {(H 0 −H 1 ) / 2} / L.
When (W1 / W2) × (L / θ) is less than 0.25 or more than 3.0, the ratio of the Brass orientation density by a scanning electron microscope with a backscattered electron diffraction image system (T1 / T2) The ratio of Copper orientation density (T1 / T2) and the ratio of GOS (T1 / T2) do not fall within the predetermined range.
Moreover, after rough rough rolling, annealing for tempering may be performed, and then finish rolling may be performed.

本発明により、合金組成がFe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなるプレス加工性の良好な異形断面銅合金板及びその製造方法を提供することができる。   According to the present invention, the alloy composition contains Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, with the balance Cu and It is possible to provide a deformed cross-section copper alloy plate made of inevitable impurities and having good press workability, and a method for producing the same.

本発明の異形断面銅合金板の一実施形態について、平板状銅合金素材、粗異形断面銅合金板、異形断面銅合金板の製造工程順に示す斜視図である。BRIEF DESCRIPTION OF THE DRAWINGS FIG. 1 is a perspective view showing an embodiment of a modified cross-section copper alloy plate according to the present invention in the order of manufacturing steps of a flat copper alloy material, a rough modified cross-section copper alloy plate, and a modified cross-section copper alloy plate. ダイと押圧ロールとにより粗異形断面銅合金板を製造している状態を示す正面図である。It is a front view which shows the state which is manufacturing the rough-shaped cross-section copper alloy board with die | dye and a press roll. 図2のダイの成形面を示す平面図である。It is a top view which shows the molding surface of the die | dye of FIG. 圧延ロールにより異形断面銅合金板を製造している状態を示す斜視図である。It is a perspective view which shows the state which manufactures the irregular cross-section copper alloy plate with the rolling roll. 図4の圧延ロールと粗銅合金異形断面板との接触長さLと接触角度θとの関係を示す模式図である。It is a schematic diagram which shows the relationship between the contact length L and the contact angle (theta) of the rolling roll of FIG. 4, and a rough copper alloy irregular cross-section board. 図5の寸法関係図である。FIG. 6 is a dimensional relationship diagram of FIG.

図1〜図6を参照に、本発明の異形断面銅合金板の一実施形態を説明する。
本発明のプレス打抜き加工性に優れた異形断面銅合金板1は、厚肉部2と薄肉部3とが幅方向に並んだW3の幅を有する異形断面銅合金板(図1参照)であり、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる組成を有し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したときの厚肉部2の測定値をT1、薄肉部3の測定値をT2とするとき、Brass方位密度の比(T1/T2)が0.2〜0.8であり、Copper方位密度の比(T1/T2)が1.2〜5.0であり、GOSの比(T1/T2)が0.8〜1.5である。
また、異形断面銅合金板1は、Ni、Coからなる元素のうち少なくとも一種を0.01〜0.20質量%含有していても良い。これらの元素の添加は、更に耐熱性を向上させる役割を有する。添加量が0.01質量%未満では効果がなく、0.20質量%を超えると導電率を低下させる。
With reference to FIGS. 1-6, one Embodiment of the irregular cross-section copper alloy plate of this invention is described.
The modified cross-section copper alloy plate 1 excellent in press punching workability of the present invention is a modified cross-section copper alloy plate (see FIG. 1) having a width W3 in which a thick portion 2 and a thin portion 3 are arranged in the width direction. , Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, and the balance consisting of Cu and inevitable impurities When the measured value of the thick part 2 is T1 and the measured value of the thin part 3 is T2 when measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system, the Brass orientation density Ratio (T1 / T2) is 0.2 to 0.8, Copper orientation density ratio (T1 / T2) is 1.2 to 5.0, and GOS ratio (T1 / T2) is 0.00. 8 to 1.5.
Moreover, the irregular cross-section copper alloy plate 1 may contain 0.01 to 0.20 mass% of at least one of elements made of Ni and Co. Addition of these elements has a role of further improving heat resistance. If the added amount is less than 0.01% by mass, there is no effect, and if it exceeds 0.20% by mass, the conductivity is lowered.

後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)が0.8を超える、或いは、Copper方位密度の比(T1/T2)が5.0を超える、或いは、GOSの比(T1/T2)が1.5を超えると、プレス時のせん断面積が大きくなり、プレス加工性が悪くなる。後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)が0.2未満、或いは、Copper方位密度の比(T1/T2)が1.2未満、或いは、GOSの比(T1/T2)が0.8未満であると、効果が飽和して製造時の圧延コストが上昇する。   The ratio of Brass orientation density (T1 / T2) by a scanning electron microscope with a backscattered electron diffraction image system exceeds 0.8, or the ratio of Copper orientation density (T1 / T2) exceeds 5.0, or If the ratio of GOS (T1 / T2) exceeds 1.5, the shear area during pressing increases and the press workability deteriorates. The ratio of Brass orientation density (T1 / T2) by a scanning electron microscope with a backscattered electron diffraction image system is less than 0.2, the ratio of Copper orientation density (T1 / T2) is less than 1.2, or GOS If the ratio (T1 / T2) is less than 0.8, the effect is saturated and the rolling cost during production increases.

GOS、Brass方位密度、Copper方位密度は次の手法にて測定した。
EBSD法による結晶粒内の全ピクセル間の平均方位差の全結晶粒における平均値の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなし、結晶粒界で囲まれた個々の結晶粒の全てにについて、結晶粒内の全ピクセル間の方位差の平均値である平均方位差(GOS:Grain Orientation Spread)を(1)の式にて計算し、当該測定領域内の全ての結晶粒における値の平均値を全結晶粒における平均方位差の平均値とした。なお、2ピクセル以上が連結しているものを結晶粒とした
GOS, Brass orientation density, and Copper orientation density were measured by the following methods.
Measurement of the average value of the average orientation difference between all the pixels in the crystal grains by the EBSD method is usually performed by dividing the measurement area of the sample into areas such as hexagons, and for each divided area on the sample surface. The Kikuchi pattern is obtained from the reflected electrons of the incident electron beam, the electron beam is scanned two-dimensionally on the sample surface, the orientation of all the pixels within the measurement area range is measured at a step size of 1.0 μm, and adjacent. A boundary where the orientation difference between pixels is 15 ° or more is regarded as a crystal grain boundary, and for all individual crystal grains surrounded by the crystal grain boundary, this is an average value of orientation differences between all pixels in the crystal grain. The average orientation difference (GOS: Grain Orientation Spread) was calculated by the equation (1), and the average value of all the crystal grains in the measurement region was defined as the average value of the average orientation difference in all the crystal grains. In addition, the crystal grains are those in which two or more pixels are connected.

Figure 2012172244
Figure 2012172244

上式において、i、jは結晶粒内のピクセルの番号を示す。
nは結晶粒内のピクセル数を示す。
αijはピクセルiとjの方位差を示す。
In the above formula, i and j indicate the numbers of pixels in the crystal grains.
n indicates the number of pixels in the crystal grains.
α ij represents the difference in orientation between pixels i and j.

EBSD法によるBrass方位密度の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするBrass方位(理想方位から15°以内)か否かを判定し、測定領域におけるBrass方位密度(結晶方位の面積率)を求めた。   The measurement of the Brass orientation density by the EBSD method usually divides the measurement area of the sample into areas such as hexagons, and for each divided area, obtains a Kikuchi pattern from the reflected electrons of the electron beam incident on the sample surface. The surface of the sample is scanned two-dimensionally on the sample surface, the orientation of all pixels within the measurement area range is measured at a step size of 1.0 μm, and the boundaries where the orientation difference between adjacent pixels is 15 ° or more are crystal grains. Considering the boundary, the distribution of crystal grains on the sample surface was determined. Then, it was determined whether or not each crystal grain had a target Brass orientation (within 15 ° from the ideal orientation), and the Brass orientation density (area ratio of crystal orientation) in the measurement region was determined.

EBSD法によるCopper方位密度の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするCopper方位(理想方位から15°以内)か否かを判定し、測定領域におけるCopper方位密度(結晶方位の面積率)を求めた。   The measurement of Copper orientation density by the EBSD method usually divides the measurement area of the sample into areas such as hexagons, and for each divided area, obtains a Kikuchi pattern from the reflected electrons of the electron beam incident on the sample surface, The surface of the sample is scanned two-dimensionally on the sample surface, the orientation of all pixels within the measurement area range is measured at a step size of 1.0 μm, and the boundaries where the orientation difference between adjacent pixels is 15 ° or more are crystal grains. Considering the boundary, the distribution of crystal grains on the sample surface was determined. Then, it was determined whether or not each crystal grain had a target Copper orientation (within 15 ° from the ideal orientation), and a Copper orientation density (area ratio of crystal orientation) in the measurement region was determined.

次に、本発明の異形断面銅合金板の製造方法につき説明する。
先ず、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる組成を有する幅がW1である平板状銅合金素材10を用意する。
そして、図1に矢印の順に示すように、この平板条銅合金素材10を図2及び図3に示すダイ11と押圧ロール12とにより冷間で粗圧延加工して、厚肉部2とするための凸部13及び薄肉部3とするための凹部14を形成した粗異形断面銅合金板15に成形し、次いで、この粗異形断面銅合金板15を図4に示す段付きロール16と平ロール17とからなる圧延ロール18により冷間で仕上げ圧延加工して、厚肉部2と薄肉部3とを有する異形断面銅合金板1に成形する。
Next, the manufacturing method of the irregular cross-section copper alloy plate of this invention is demonstrated.
First, Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, with the balance being Cu and inevitable impurities A flat copper alloy material 10 having a composition width W1 is prepared.
Then, as shown in the order of the arrows in FIG. 1, the flat strip copper alloy material 10 is cold-rolled cold by the die 11 and the pressing roll 12 shown in FIGS. 4 is formed into a rough deformed cross-section copper alloy plate 15 formed with a concave portion 14 for forming a convex portion 13 and a thin portion 3, and then the rough deformed cross-section copper alloy plate 15 is flattened with a stepped roll 16 shown in FIG. It is cold-finished by a rolling roll 18 composed of a roll 17 and formed into a deformed section copper alloy plate 1 having a thick portion 2 and a thin portion 3.

粗異形断面銅合金板15を成形するためのダイ11は、図2及び図3に示すように、凸部13を成形するための溝部21を介して、凹部14を成形するための二つの突起部22が形成された成形面23を表面に有しており、押圧ロール12は、ダイ11の成形面23に対向する位置とダイ11の成形面23からずれた位置との間で矢印で示すようにダイ11の成形面23の長さ方向に沿って往復移動させられる。このダイ11と押圧ロール12とにより、押圧ロール12がダイ11の成形面23からずれた位置にあるときに、平板状銅合金素材10を長さ方向に間欠送りし、押圧ロール12がダイ11の成形面23に対向する位置にあるとき、押圧ロール12とダイ11の成形面23との間に平板状銅合金素材10を挟みこんで圧延加工して幅がW2である粗異形断面銅合金板15を製造する。
この場合、W1/W2は、0.5〜0.9であることが好ましく、0.5未満では、仕上げ圧延加工に負荷がかかり過ぎ、後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)、Copper方位密度の比(T1/T2)、GOSの比(T1/T2)が、前記の所定範囲の収まり難くなる。0.9を超えると、仕上げ圧延加工にて、所定の異形寸法に収めることが難しくなる。
As shown in FIGS. 2 and 3, the die 11 for forming the rough deformed cross-section copper alloy plate 15 has two protrusions for forming the recess 14 through the groove 21 for forming the protrusion 13. The pressing roll 12 is indicated by an arrow between a position facing the molding surface 23 of the die 11 and a position shifted from the molding surface 23 of the die 11. In this way, the die 11 is reciprocated along the length direction of the molding surface 23 of the die 11. When the pressing roll 12 is in a position displaced from the molding surface 23 of the die 11 by the die 11 and the pressing roll 12, the flat copper alloy material 10 is intermittently fed in the length direction, and the pressing roll 12 is moved to the die 11. When the surface is opposite to the forming surface 23, the copper alloy material 10 is sandwiched between the pressing roll 12 and the forming surface 23 of the die 11 and rolled to form a rough deformed cross-section copper alloy having a width of W2. The plate 15 is manufactured.
In this case, W1 / W2 is preferably 0.5 to 0.9. If it is less than 0.5, too much load is applied to the finish rolling process, and a Brass by a scanning electron microscope with a backscattered electron diffraction image system is used. The ratio of azimuth density (T1 / T2), the ratio of Copper azimuth density (T1 / T2), and the ratio of GOS (T1 / T2) are difficult to fit within the predetermined range. When it exceeds 0.9, it becomes difficult to fit into predetermined irregular dimensions in finish rolling.

この粗異形断面銅合金板15を異形断面銅合金板1に仕上げ圧延するための段付きロール16は、図4に示すように、厚肉部2を形成するための小径ロール部25及び薄肉部3を形成するための大径ロール部26が軸線方向に並んで形成されており、平ロール17は、半径が軸線方向に沿って一定とされている。そして、これら段付きロール16と平ロール17とからなる圧延ロール18により粗異形断面銅合金板15を挟みこんで圧延する。このとき、厚肉部2及び薄肉部3のいずれにおいても、この圧延ロール18と粗銅合金異形断面板15との接触長さをLmmとし、接触角度をθ°としたとき、(W1/W2)×(L/θ)の値が0.25〜3.0の範囲となるように仕上げ圧延加工し、W3の幅を有する異形断面銅合金板1を製造する。   As shown in FIG. 4, a stepped roll 16 for finishing and rolling the rough deformed cross-section copper alloy plate 15 into a deformed cross-section copper alloy plate 1 includes a small-diameter roll portion 25 and a thin-wall portion for forming the thick portion 2. 3 is formed side by side in the axial direction, and the flat roll 17 has a constant radius along the axial direction. Then, the rough deformed cross-section copper alloy plate 15 is sandwiched and rolled by a rolling roll 18 composed of the stepped roll 16 and the flat roll 17. At this time, in both the thick part 2 and the thin part 3, when the contact length between the rolling roll 18 and the rough copper alloy deformed cross section plate 15 is Lmm and the contact angle is θ °, (W1 / W2) Finished rolling is performed so that the value of x (L / θ) is in the range of 0.25 to 3.0, and a deformed cross-section copper alloy sheet 1 having a width of W3 is manufactured.

図5及び図6に示すように、接触長さLは、粗銅合金異形断面板15が圧延ロールと接触している距離であり、接触角度θは、粗銅合金異形断面板の厚みをH、異形断面銅合金板1の厚みをHとしたときに、tanθ={(H−H)/2}/Lで表される。厚肉部と薄肉部とは、仕上げ圧延加工工程の前の粗圧延加工工程においてほぼ外形が成形されており、仕上げ圧延加工工程においては、凸部及び凹部の表面を最終の形状に成形することになり、粗圧延加工工程における(W1/W2)の結果に応じて(L/θ)が調整される。
この場合、(W1/W2)×(L/θ)が、0.25未満、或いは、3.0を超えると、後方散乱電子回折像システム付の走査型電子顕微鏡によるBrass方位密度の比(T1/T2)、Copper方位密度の比(T1/T2)、GOSの比(T1/T2)が、前記の所定範囲に収まらない。
また、粗圧延加工後に、調質のための焼鈍を施し、その後に仕上げ圧延加工を施しても良い。
As shown in FIGS. 5 and 6, the contact length L is the distance that the rough copper alloy deformed cross-section plate 15 is in contact with the rolling roll, and the contact angle θ is the thickness of the rough copper alloy deformed cross-section plate as H 0 , the thickness of the modified cross-section copper alloy sheet 1 is taken as H 1, represented by tanθ = {(H 0 -H 1 ) / 2} / L. The thick part and the thin part are almost formed in the outline in the rough rolling process before the finish rolling process, and in the finish rolling process, the surface of the convex part and the concave part is formed into a final shape. (L / θ) is adjusted according to the result of (W1 / W2) in the rough rolling process.
In this case, when (W1 / W2) × (L / θ) is less than 0.25 or more than 3.0, the ratio of the Brass orientation density by the scanning electron microscope with the backscattered electron diffraction image system (T1) / T2), the ratio of Copper orientation density (T1 / T2), and the ratio of GOS (T1 / T2) do not fall within the predetermined range.
Further, after rough rolling, annealing for tempering may be performed, and then finish rolling may be performed.

合金組成がFe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる鋳塊に熱間圧延と冷間圧延を施し、厚さ2.0mm、幅600mmのコイルを製造し、スリッタラインに通して幅70mmの条材を作製した。
この条材を素材として、厚み2.0mm×幅70mmのコイルを、表1に示すW1/W2にて、凸部及び凹部を形成するための成形面を有するダイと、該ダイの成形面に対向する位置とダイの成形面からずれた位置との間でダイの成形面の長さ方向に沿って往復移動させられる押圧ロールとにより、押圧ロールがダイの成形面からずれた位置にあるときに、コイルを長さ方向に間欠送りし、押圧ロールがダイの成形面に対向する位置にあるときに押圧ロールとダイの成形面との間にコイルを挟みこんで圧延加工し、厚肉部となる凸部の幅が30〜34mm、薄肉部となる凹部の厚さが0.2〜0.4mm、凸部の厚さが1.1〜1.35mm、凸部の立上傾斜角度βが10°(図1参照:水平面からは80°)の粗異形断面銅合金板を連続的に作製した。
The alloy composition contains Fe; 0.05 to 0.15% by mass, P; 0.015 to 0.050% by mass and Zn; 0.01 to 0.20% by mass, respectively, from the remainder Cu and inevitable impurities The resulting ingot was subjected to hot rolling and cold rolling to produce a coil having a thickness of 2.0 mm and a width of 600 mm, and a strip material having a width of 70 mm was produced through a slitter line.
Using this strip as a raw material, a coil having a thickness of 2.0 mm × width of 70 mm is formed on the molding surface of the die having a molding surface for forming convex portions and concave portions at W1 / W2 shown in Table 1. When the pressing roll is in a position deviated from the molding surface of the die by the pressing roll that is reciprocated along the length direction of the molding surface of the die between the facing position and the position shifted from the molding surface of the die. The coil is intermittently fed in the length direction, and when the pressing roll is at a position facing the molding surface of the die, the coil is sandwiched between the pressing roll and the molding surface of the die and rolled, The width of the convex part to be 30 to 34 mm, the thickness of the concave part to be a thin part is 0.2 to 0.4 mm, the thickness of the convex part is 1.1 to 1.35 mm, the rising inclination angle β of the convex part 10 ° (See Fig. 1: 80 ° from the horizontal plane) It was manufactured.

次に、この粗異形断面銅合金板を、表1に示すL/θにて、厚肉部を形成するための小径ロール部及び薄肉部を形成するための大径ロール部が軸線方向に並んで形成された段付きロールと、半径が軸線方向に沿って一定とされた平ロールとからなる圧延ロールにより、挟み込んで圧延加工して、厚肉部の幅が29〜32mm、薄肉部の厚さが0.15〜0.32mm、厚肉部の厚さが1.0〜1.20mm、厚肉部の立上傾斜角度βが10°(水平面から80°)の実施例1〜10及び比較例1〜5の異形断面銅合金板を連続的に作製した。   Next, in this rough deformed cross-section copper alloy plate, a small diameter roll part for forming a thick part and a large diameter roll part for forming a thin part are aligned in the axial direction at L / θ shown in Table 1. The thick roll is 29 to 32 mm wide, and the thickness of the thin wall is rolled by a rolling roll comprising a stepped roll formed with a flat roll whose radius is constant along the axial direction. Examples 1 to 10 in which the thickness is 0.15 to 0.32 mm, the thickness of the thick part is 1.0 to 1.20 mm, and the rising inclination angle β of the thick part is 10 ° (80 ° from the horizontal plane) The odd-shaped cross-section copper alloy plates of Comparative Examples 1 to 5 were continuously prepared.

実施例1〜10及び比較例1〜5の各異形断面銅合金板から試料を採取し、厚肉部と薄肉部を後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定し、Brass方位密度の比(T1/T2)、Copper方位密度の比(T1/T2)、GOSの比(T1/T2)を求めた。   Samples were taken from each of the irregular cross-section copper alloy plates of Examples 1 to 10 and Comparative Examples 1 to 5, and the thick part and the thin part were measured by an EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. The ratio of Brass orientation density (T1 / T2), the ratio of Copper orientation density (T1 / T2), and the ratio of GOS (T1 / T2) were determined.

各々のGOS、Brass方位密度、Copper方位密度は次のように測定した。
EBSD法による結晶粒内の全ピクセル間の平均方位差の全結晶粒における平均値の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなし、結晶粒界で囲まれた個々の結晶粒の全てにについて、結晶粒内の全ピクセル間の方位差の平均値である平均方位差(GOS:Grain Orientation Spread)を(1)の式にて計算し、当該測定領域内の全ての結晶粒における値の平均値を全結晶粒における平均方位差の平均値とした。なお、2ピクセル以上が連結しているものを結晶粒とした
Each GOS, Brass orientation density, and Copper orientation density were measured as follows.
Measurement of the average value of the average orientation difference between all the pixels in the crystal grains by the EBSD method is usually performed by dividing the measurement area of the sample into areas such as hexagons, and for each divided area on the sample surface. The Kikuchi pattern is obtained from the reflected electrons of the incident electron beam, the electron beam is scanned two-dimensionally on the sample surface, the orientation of all the pixels within the measurement area range is measured at a step size of 1.0 μm, and adjacent. A boundary where the orientation difference between pixels is 15 ° or more is regarded as a crystal grain boundary, and for all individual crystal grains surrounded by the crystal grain boundary, this is an average value of orientation differences between all pixels in the crystal grain. The average orientation difference (GOS: Grain Orientation Spread) was calculated by the equation (1), and the average value of all the crystal grains in the measurement region was defined as the average value of the average orientation difference in all the crystal grains. In addition, the crystal grains are those in which two or more pixels are connected.

Figure 2012172244
Figure 2012172244

上式において、i、jは結晶粒内のピクセルの番号を示す。
nは結晶粒内のピクセル数を示す。
αijはピクセルiとjの方位差を示す。
In the above formula, i and j indicate the numbers of pixels in the crystal grains.
n indicates the number of pixels in the crystal grains.
α ij represents the difference in orientation between pixels i and j.

EBSD法によるBrass方位密度の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするBrass方位(理想方位から15°以内)か否かを判定し、測定領域におけるBrass方位密度(結晶方位の面積率)を求めた。   The measurement of the Brass orientation density by the EBSD method usually divides the measurement area of the sample into areas such as hexagons, and for each divided area, obtains a Kikuchi pattern from the reflected electrons of the electron beam incident on the sample surface. The surface of the sample is scanned two-dimensionally on the sample surface, the orientation of all pixels within the measurement area range is measured at a step size of 1.0 μm, and the boundaries where the orientation difference between adjacent pixels is 15 ° or more are crystal grains. Considering the boundary, the distribution of crystal grains on the sample surface was determined. Then, it was determined whether or not each crystal grain had a target Brass orientation (within 15 ° from the ideal orientation), and the Brass orientation density (area ratio of crystal orientation) in the measurement region was determined.

EBSD法によるCopper方位密度の測定は、試料の測定領域を通常、六角形等の領域に区切り、区切られた各領域について、試料表面に入射させた電子線の反射電子から菊地パターンを得て、電子線を試料表面に2次元で走査させ、ステップサイズ1.0μmにて、測定面積範囲内の全ピクセルの方位を測定し、隣接するピクセル間の方位差が15°以上である境界を結晶粒界とみなして、試料表面の結晶粒の分布を求めた。そして、各結晶粒が、対象とするCopper方位(理想方位から15°以内)か否かを判定し、測定領域におけるCopper方位密度(結晶方位の面積率)を求めた。
その結果を表1に示す。
The measurement of Copper orientation density by the EBSD method usually divides the measurement area of the sample into areas such as hexagons, and for each divided area, obtains a Kikuchi pattern from the reflected electrons of the electron beam incident on the sample surface, The surface of the sample is scanned two-dimensionally on the sample surface, the orientation of all pixels within the measurement area range is measured at a step size of 1.0 μm, and the boundaries where the orientation difference between adjacent pixels is 15 ° or more are crystal grains. Considering the boundary, the distribution of crystal grains on the sample surface was determined. Then, it was determined whether or not each crystal grain had a target Copper orientation (within 15 ° from the ideal orientation), and a Copper orientation density (area ratio of crystal orientation) in the measurement region was determined.
The results are shown in Table 1.

Figure 2012172244
Figure 2012172244

次に、実施例1〜10及び比較例1〜5から試料を採取し、プレス性を評価した。
プレス条件は次の通りである。
パンチ径:4.96mm、パンチ穴径:5.00mm、クリアランス:0.02mm、
パンチ速度:1m/min
プレス箇所は厚肉部2箇所、薄肉部2箇所として、各々のバリ、ダレ、せん断面率、2次せん断面の有無を評価し、4箇所の平均値を代表値とした。
バリは、4箇所の断面を光学顕微鏡(20倍)にて目視観察し、発生したバリの平均高さが0.5μm未満であったものを○、0.5μm以上であったものを×とした。
ダレは、4箇所を光学顕微鏡(20倍)にて目視観察し、発生したダレの深さが0.3μm未満のものを○、0.3μm以上であったものを×とした。
せん断面率は、4箇所の断面を光学顕微鏡(20倍)にて目視観察し、せん断面と破断面を識別して、せん断面率=(せん断面面積)/(せん断面面積+破断面面積)として求めた。2次せん断面を有していたものは、その2次せん断面の面積も含めてせん段面面積とした。
2次せん断面は、4箇所の断面を光学顕微鏡(20倍)にて目視観察し、2次せん断面が観察されなかったものを○、観察されたものを×とした。
これらの測定の結果を表2に示す。
Next, samples were taken from Examples 1 to 10 and Comparative Examples 1 to 5 to evaluate pressability.
The press conditions are as follows.
Punch diameter: 4.96 mm, punch hole diameter: 5.00 mm, clearance: 0.02 mm,
Punch speed: 1m / min
The press location was 2 thick-walled portions and 2 thin-walled portions, and the presence or absence of each burr, sagging, shear surface rate, and secondary shear surface was evaluated, and the average value of 4 locations was used as a representative value.
The burrs were visually observed at four cross-sections with an optical microscope (20 ×), and the burrs that were generated had an average height of less than 0.5 μm. did.
The sagging was visually observed at four locations with an optical microscope (20 ×).
The shear surface ratio was determined by visually observing the cross-sections at four locations with an optical microscope (20 ×), and discriminating between the shear surface and the fracture surface. Shear surface ratio = (shear surface area) / (shear surface area + fracture surface area) ). For those having a secondary shear surface, the stepped surface area including the area of the secondary shear surface was used.
As for the secondary shear plane, four cross-sections were visually observed with an optical microscope (20 times), and those where the secondary shear plane was not observed were marked with ◯, and those observed were marked with x.
The results of these measurements are shown in Table 2.

Figure 2012172244
Figure 2012172244

これらの結果より、本発明の異形断面銅合金板は良好なプレス加工性を有することがわかる。   From these results, it can be seen that the modified cross-section copper alloy sheet of the present invention has good press workability.

以上、本発明の実施形態であるめっき付銅条材の製造方法について説明したが、本発明はこの記載に限定されることはなく、その発明の技術的思想を逸脱しない範囲で適宜変更可能である。   As mentioned above, although the manufacturing method of the plated copper strip which is embodiment of this invention was demonstrated, this invention is not limited to this description, In the range which does not deviate from the technical idea of the invention, it can change suitably. is there.

1 異形断面銅合金板
2 厚肉部
3 薄肉部
10 平板状銅合金素材
11 ダイ
12 押圧ロール
13 凸部
14 凹部
15 粗異形断面銅合金板
16 段付きロール
17 平ロール
23 成形面
26 大径ロール部
27 小径ロール部
DESCRIPTION OF SYMBOLS 1 Profile cross-section copper alloy plate 2 Thick part 3 Thin part 10 Flat copper alloy material 11 Die 12 Press roll 13 Convex part 14 Concave part 15 Coarse cross section copper alloy board 16 Stepped roll 17 Flat roll 23 Forming surface 26 Large diameter roll Part 27 Small-diameter roll part

Claims (3)

厚肉部と薄肉部とが幅方向に並んだ異形断面銅合金板であり、Fe;0.05〜0.15質量%、P;0.015〜0.050質量%およびZn;0.01〜0.20質量%を各々含有し、残部Cuおよび不可避的不純物からなる組成を有し、後方散乱電子回折像システム付の走査型電子顕微鏡によるEBSD法にて測定したときの前記厚肉部の測定値をT1、前記薄肉部の測定値をT2とするとき、Brass方位密度の比(T1/T2)が0.2〜0.8であり、Copper方位密度の比(T1/T2)が1.2〜5.0であり、GOSの比(T1/T2)が0.8〜1.5であることを特徴とするプレス打抜き加工性に優れた異形断面銅合金板。   It is a modified cross-section copper alloy plate in which a thick part and a thin part are arranged in the width direction, Fe; 0.05 to 0.15 mass%, P; 0.015 to 0.050 mass% and Zn; 0.01 Each of which has a composition composed of the balance Cu and inevitable impurities, and each of the thick-walled portion measured by the EBSD method using a scanning electron microscope with a backscattered electron diffraction image system. When the measured value is T1 and the measured value of the thin portion is T2, the ratio of the Brass orientation density (T1 / T2) is 0.2 to 0.8, and the ratio of the Copper orientation density (T1 / T2) is 1. A deformed cross-section copper alloy sheet excellent in press punching workability, characterized in that the ratio is 2 to 5.0 and the GOS ratio (T1 / T2) is 0.8 to 1.5. Ni、Coからなる元素のうち少なくとも一種を0.01〜0.20質量%含有することを特徴とする請求項1に記載のプレス打抜き加工性に優れた異形断面銅合金板。   The deformed cross-section copper alloy sheet excellent in press punching workability according to claim 1, wherein 0.01 to 0.20% by mass of at least one element of Ni and Co is contained. 平板状銅合金素材を圧延して請求項1又は2に記載のプレス打抜き加工性に優れた異形断面銅合金板を製造する方法であって、前記厚肉部となる凸部及び前記薄肉部となる凹部を形成するための成形面を有するダイと、前記ダイの成形面に対向する位置と前記ダイの成形面からずれた位置との間でダイの成形面の長さ方向に沿って往復移動させられる押圧ロールとにより、前記押圧ロールが前記ダイの成形面からずれた位置にあるときに、平板状銅合金素材を長さ方向に間欠送りし、前記押圧ロールが前記ダイの成形面に対向する位置にあるときに、前記押圧ロールと前記ダイの成形面との間に前記平板状銅合金素材を挟みこんで圧延加工して前記凸部と凹部とを有する粗異形断面銅合金板を製造する粗圧延加工工程と、前記厚肉部を形成するための小径ロール部および前記薄肉部を形成するための大径ロール部が軸線方向に並んで形成された段付きロールと、半径が軸線方向に沿って一定とされた平ロールとからなる圧延ロールにより、前記粗異形断面銅合金板を挟み込んで圧延加工して異形断面銅合金板を製造する仕上げ圧延加工工程とを有し、前記平板状銅合金素材の幅をW1mmとし、前記粗異形断面銅合金板の幅をW2mmとし、前記圧延ロールと前記粗銅合金異形断面板との接触長さをLmmとし、接触角度をθ°としたとき、(W1/W2)×(L/θ)の値が0.25〜3.0の範囲となるように粗圧延加工および仕上げ圧延加工することを特徴とするプレス打抜き加工性に優れた異形断面銅合金板の製造方法。   A method for producing a deformed cross-section copper alloy plate excellent in press punching processability according to claim 1 or 2 by rolling a flat copper alloy material, wherein the convex portion and the thin portion become the thick portion, Reciprocating along the length of the die molding surface between a die having a molding surface to form a recess, and a position opposite to the die molding surface and a position offset from the die molding surface. When the pressing roll is in a position deviated from the molding surface of the die, the flat copper alloy material is intermittently fed in the length direction, and the pressing roll faces the molding surface of the die. And producing a rough deformed cross-section copper alloy plate having the convex portions and the concave portions by sandwiching the flat copper alloy material between the pressing roll and the forming surface of the die. Rough rolling process and forming the thick part A roll having a step diameter roll in which a small diameter roll part for forming the thin part and a large diameter roll part for forming the thin part are formed side by side in the axial direction, and a flat roll having a constant radius along the axial direction And a finish rolling step of producing a deformed cross-section copper alloy plate by sandwiching the rough deformed cross-section copper alloy plate and making the width of the flat copper alloy material W1 mm, and the rough deformed cross-section copper alloy When the width of the alloy plate is W2 mm, the contact length between the rolling roll and the rough copper alloy deformed section plate is Lmm, and the contact angle is θ °, the value of (W1 / W2) × (L / θ) is A method for producing a deformed cross-section copper alloy sheet excellent in press punching processability, characterized by subjecting rough rolling and finish rolling to a range of 0.25 to 3.0.
JP2011038123A 2011-02-24 2011-02-24 Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof Active JP5623309B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011038123A JP5623309B2 (en) 2011-02-24 2011-02-24 Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011038123A JP5623309B2 (en) 2011-02-24 2011-02-24 Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2012172244A true JP2012172244A (en) 2012-09-10
JP5623309B2 JP5623309B2 (en) 2014-11-12

Family

ID=46975439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011038123A Active JP5623309B2 (en) 2011-02-24 2011-02-24 Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5623309B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111495966A (en) * 2019-12-19 2020-08-07 东北大学无锡研究院 Transverse variable-thickness plate strip and preparation method thereof
CN112387798A (en) * 2019-08-13 2021-02-23 青岛海尔多媒体有限公司 Method and system for manufacturing electronic equipment shell

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592201A (en) * 1979-01-06 1980-07-12 Hitachi Cable Ltd Material alignment method of groove type irregular shape rolling mill
JPS635836A (en) * 1986-06-24 1988-01-11 Kawai Musical Instr Mfg Co Ltd Manufacture of metal plate with high accuracy plate thickness
JPH03193232A (en) * 1989-12-22 1991-08-23 Hitachi Cable Ltd Manufacture of deformed cross section bar
JPH0679388A (en) * 1992-09-01 1994-03-22 Hitachi Cable Ltd Rolling roll for special shape cross section and production of special shape cross section
JPH06285573A (en) * 1993-04-02 1994-10-11 Kawai Musical Instr Mfg Co Ltd Die rolling continuous treating apparatus
JPH09104956A (en) * 1995-10-09 1997-04-22 Dowa Mining Co Ltd Production of high strength and high electric conductivity copper alloy
JP2000328158A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd Copper alloy sheet excellent in press punchability
JP2001279348A (en) * 2000-03-31 2001-10-10 Kobe Steel Ltd Copper alloy for electronic and electrical parts, planar row material and row material having deformed cross section, and lead frame formed by the planar row material or row material having deformed cross section
JP2003136103A (en) * 2001-11-02 2003-05-14 Mitsubishi Shindoh Co Ltd Method for manufacturing deformed steel bar and lead frame
JP2006083465A (en) * 2004-08-17 2006-03-30 Kobe Steel Ltd Copper alloy sheet for electric and electronic parts having bendability
JP2006316320A (en) * 2005-05-12 2006-11-24 Kobe Steel Ltd Copper alloy sheet with deformed cross-section, and method for producing the same
JP2007039735A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd Method for producing copper alloy sheet with deformed cross section
JP2011246772A (en) * 2010-05-27 2011-12-08 Mitsubishi Shindoh Co Ltd Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN CONDUCTIVITY AND HEAT RESISTANCE, AND METHOD OF MANUFACTURING THE SAME

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5592201A (en) * 1979-01-06 1980-07-12 Hitachi Cable Ltd Material alignment method of groove type irregular shape rolling mill
JPS635836A (en) * 1986-06-24 1988-01-11 Kawai Musical Instr Mfg Co Ltd Manufacture of metal plate with high accuracy plate thickness
JPH03193232A (en) * 1989-12-22 1991-08-23 Hitachi Cable Ltd Manufacture of deformed cross section bar
JPH0679388A (en) * 1992-09-01 1994-03-22 Hitachi Cable Ltd Rolling roll for special shape cross section and production of special shape cross section
JPH06285573A (en) * 1993-04-02 1994-10-11 Kawai Musical Instr Mfg Co Ltd Die rolling continuous treating apparatus
JPH09104956A (en) * 1995-10-09 1997-04-22 Dowa Mining Co Ltd Production of high strength and high electric conductivity copper alloy
JP2000328158A (en) * 1999-05-13 2000-11-28 Kobe Steel Ltd Copper alloy sheet excellent in press punchability
JP2001279348A (en) * 2000-03-31 2001-10-10 Kobe Steel Ltd Copper alloy for electronic and electrical parts, planar row material and row material having deformed cross section, and lead frame formed by the planar row material or row material having deformed cross section
JP2003136103A (en) * 2001-11-02 2003-05-14 Mitsubishi Shindoh Co Ltd Method for manufacturing deformed steel bar and lead frame
JP2006083465A (en) * 2004-08-17 2006-03-30 Kobe Steel Ltd Copper alloy sheet for electric and electronic parts having bendability
JP2006316320A (en) * 2005-05-12 2006-11-24 Kobe Steel Ltd Copper alloy sheet with deformed cross-section, and method for producing the same
JP2007039735A (en) * 2005-08-03 2007-02-15 Kobe Steel Ltd Method for producing copper alloy sheet with deformed cross section
JP2011246772A (en) * 2010-05-27 2011-12-08 Mitsubishi Shindoh Co Ltd Cu-Fe-P BASED COPPER ALLOY SHEET EXCELLENT IN CONDUCTIVITY AND HEAT RESISTANCE, AND METHOD OF MANUFACTURING THE SAME

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112387798A (en) * 2019-08-13 2021-02-23 青岛海尔多媒体有限公司 Method and system for manufacturing electronic equipment shell
CN111495966A (en) * 2019-12-19 2020-08-07 东北大学无锡研究院 Transverse variable-thickness plate strip and preparation method thereof
CN111495966B (en) * 2019-12-19 2022-04-12 东北大学无锡研究院 Transverse variable-thickness plate strip and preparation method thereof

Also Published As

Publication number Publication date
JP5623309B2 (en) 2014-11-12

Similar Documents

Publication Publication Date Title
US11104977B2 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP5908796B2 (en) Cu-Mg-P-based copper alloy plate excellent in mechanical formability and method for producing the same
KR102545312B1 (en) Copper alloy sheet and its manufacturing method
US11268171B2 (en) Aluminum alloy foil, and method for producing aluminum alloy foil
JP4117327B2 (en) Copper alloy sheet for electrical and electronic parts with excellent press punchability
US11566311B2 (en) Aluminum alloy foil, and method for producing aluminum alloy foil
US11655523B2 (en) Copper alloy for electronic/electric device, copper alloy sheet/strip material for electronic/electric device, component for electronic/electric device, terminal, and busbar
JP2005298931A (en) Copper alloy and its production method
CN114959355A (en) Copper alloy material for resistor material, method for producing same, and resistor
TWI681825B (en) Heat radiating plate and method for producing same
TW201842205A (en) Cu-co-si copper alloy plate material and manufacturing method, and parts using the plate material
CN105829555A (en) Copper alloy sheet material, connector, and production method for copper alloy sheet material
JP5833892B2 (en) Modified cross-section copper alloy sheet with low bending anisotropy and excellent stress relaxation resistance, and method for producing the same
TWI607098B (en) Copper alloy plate and stamped product with copper alloy plate
JP5623309B2 (en) Modified cross-section copper alloy sheet excellent in press workability and manufacturing method thereof
JP5869288B2 (en) Modified cross-section copper alloy sheet with excellent bending workability and low anisotropy and method for producing the same
CN111971406B (en) Copper alloy sheet material, method for producing copper alloy sheet material, and connector using copper alloy sheet material
JP4275560B2 (en) Aluminum alloy fin material for heat exchangers with excellent Abeck resistance and stackability
JP5759264B2 (en) Modified cross-section copper alloy sheet excellent in Ni plating characteristics and method for producing the same
KR20190042659A (en) Method for manufacturing Fe-Ni alloy thin plate and Fe-Ni alloy thin plate
JP6879971B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP6816056B2 (en) Manufacturing method of copper alloy material, electronic parts, electronic equipment and copper alloy material
JP4210705B1 (en) Copper alloy sheet with excellent stress relaxation resistance and press punchability
JP2000317523A (en) Bar stock having special cross section and straightening method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140916

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140924

R150 Certificate of patent or registration of utility model

Ref document number: 5623309

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250