JP2012171871A - Bath agent - Google Patents

Bath agent Download PDF

Info

Publication number
JP2012171871A
JP2012171871A JP2011032458A JP2011032458A JP2012171871A JP 2012171871 A JP2012171871 A JP 2012171871A JP 2011032458 A JP2011032458 A JP 2011032458A JP 2011032458 A JP2011032458 A JP 2011032458A JP 2012171871 A JP2012171871 A JP 2012171871A
Authority
JP
Japan
Prior art keywords
water
hydrogen
magnesium hydride
bath
bath agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011032458A
Other languages
Japanese (ja)
Other versions
JP5805403B2 (en
Inventor
Fumiaki Ota
史暁 太田
Hiroyuki Uesugi
浩之 上杉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SUISO KENKO IGAKU LABO KK
Bio Coke Lab Co Ltd
Original Assignee
SUISO KENKO IGAKU LABO KK
Bio Coke Lab Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SUISO KENKO IGAKU LABO KK, Bio Coke Lab Co Ltd filed Critical SUISO KENKO IGAKU LABO KK
Priority to JP2011032458A priority Critical patent/JP5805403B2/en
Publication of JP2012171871A publication Critical patent/JP2012171871A/en
Application granted granted Critical
Publication of JP5805403B2 publication Critical patent/JP5805403B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Cosmetics (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a bath agent which simply and safely enables bathing in hydrogen water.SOLUTION: Fine-grained magnesium hydride is incorporated into a bath agent. When the magnesium hydride is added to a bathtub having a water depth of 20 cm at 40°C at a ratio of 2.5 mg per liter water, the amount of hydrogen after 30 min becomes 0.01 mmol/L or more and it is preferred that the magnesium hydride has such a particle diameter as not to surface. Further, the average particle diameter is preferably 10-120 μm.

Description

本発明は、水素水での入浴を簡便にかつ安全に行うことができる浴用剤に関する。   The present invention relates to a bath agent that can be simply and safely bathed with hydrogen water.

水に気体水素を溶存させると、その水(水素水)は、酸化還元電位(ORP)が還元側にシフトして、抗酸化能が付与された機能水となる。皮膚老化防止、酸化ストレスの減少、成人病予防、アンチエージングによる健康維持など、幅広い分野での応用が期待されている。   When gaseous hydrogen is dissolved in water, the water (hydrogen water) becomes functional water to which the oxidation-reduction potential (ORP) is shifted to the reduction side and to which antioxidant ability is imparted. It is expected to be applied in a wide range of fields such as preventing skin aging, reducing oxidative stress, preventing adult diseases, and maintaining health through anti-aging.

このような機能性を有する水素水をお風呂のお湯として利用することも試みられている。例えば、特許文献1に、水素水の連続製造方法及びその製造装置並びに水素水を使用した入浴装置及び浴室装置が開示されている。また、特許文献2には、水素化アルカリ土類金属等の水素化合物の粉末が、ポリエチレングリコール、キシリトール、トレハロース等の水溶性化合物に包埋されてなる水素発生剤が開示されており、これを入浴剤に用いることが記載されている。   Attempts have also been made to use hydrogen water having such functionality as hot water for a bath. For example, Patent Document 1 discloses a method for continuously producing hydrogen water, a production apparatus therefor, and a bath apparatus and a bathroom apparatus using hydrogen water. Patent Document 2 discloses a hydrogen generator in which a powder of a hydrogen compound such as an alkaline earth metal hydride is embedded in a water-soluble compound such as polyethylene glycol, xylitol, or trehalose. It is described to be used as a bath agent.

特開2008−6365号公報JP 2008-6365 A 特許第4384227号公報Japanese Patent No. 4384227

しかしながら、上記特許文献1の入浴装置では、水素ガス供給部が設けられているので、ガス漏れなどの危険を伴うという問題があった。また、特別の設備が必要であり家庭用には不向きであった。一方、上記特許文献2の水素発生剤は、水素化アルカリ土類金属と水とを反応させて水中に水素を発生させるものであるが、水素発生量の制御のためポリエチレングリコール、キシリトール、又はトレハロースに包埋させたり、酸を含有させたりする必要があった。また、その水素発生量を安定に制御しにくいという問題があった。   However, the bathing apparatus disclosed in Patent Document 1 has a problem in that it involves a risk of gas leakage and the like because the hydrogen gas supply unit is provided. In addition, special equipment is necessary and it is not suitable for home use. On the other hand, the hydrogen generating agent of Patent Document 2 reacts with an alkaline earth metal hydride and water to generate hydrogen in water, but polyethylene glycol, xylitol, or trehalose is used to control the amount of hydrogen generated. It was necessary to embed it in acid or to contain acid. In addition, there is a problem that it is difficult to stably control the amount of hydrogen generation.

本発明の目的は、水素水での入浴を簡便にかつ安全に行うことができる浴用剤を提供することにある。   An object of the present invention is to provide a bath agent that can be simply and safely bathed with hydrogen water.

上記目的を達成するために本発明者らが鋭意研究した結果、微粒子化した水素化マグネシウムと水との反応によって、水素を再現性よく安定に発生させることができることを見出し、本発明を完成するに至った。   As a result of intensive studies by the present inventors in order to achieve the above object, it has been found that hydrogen can be stably generated with good reproducibility by the reaction between finely divided magnesium hydride and water, and the present invention is completed. It came to.

すなわち、本発明の浴用剤は、微粒子化した水素化マグネシウムを含有することを特徴とする。   That is, the bath agent of the present invention is characterized by containing finely divided magnesium hydride.

本発明においては、前記水素化マグネシウムは、水深20cmの40℃の水槽中に、水1リットルに対して前記水素化マグネシウムを2.5mgの割合で添加したとき、30分後の溶存水素量が0.01mmol/L以上となり、且つ、浮上しないような粒径とされていることが好ましい。   In the present invention, when the magnesium hydride is added in a ratio of 2.5 mg to 1 liter of water in a 40 ° C. water tank having a water depth of 20 cm, the amount of dissolved hydrogen after 30 minutes is The particle diameter is preferably 0.01 mmol / L or more and does not float.

本発明においては、前記水素化マグネシウムは、水深20cmの40℃の水槽中に、水1リットルに対して該水素化マグネシウムを2.5mgの割合で添加したとき、30分後の溶存水素量が0.01mmol/L以上であって外気への揮散水素量が0.03mmol以下となり、且つ、浮上しないような粒径とされていることが好ましい。   In the present invention, when the magnesium hydride is added in a ratio of 2.5 mg to 1 liter of water in a 40 ° C. water tank having a water depth of 20 cm, the amount of dissolved hydrogen after 30 minutes is It is preferable that the particle size is 0.01 mmol / L or more, the amount of volatilized hydrogen to the outside air is 0.03 mmol or less, and does not float.

また、前記水素化マグネシウムは、その平均粒径が10〜120μmであることが好ましい。   Moreover, it is preferable that the average particle diameter of the said magnesium hydride is 10-120 micrometers.

本発明の浴用剤は、浴用水1リットルに対して0.5〜125mgの前記水素化マグネシウムが添加されるように調製されていることが好ましい。   The bath agent of the present invention is preferably prepared such that 0.5 to 125 mg of the magnesium hydride is added to 1 liter of bath water.

本発明の浴用剤によれば、微粒子化した水素化マグネシウムと水との反応によって水素を発生させ、お風呂のお湯の溶存水素量を再現性よく安定に高めることができる。したがって水素水での入浴を簡便にかつ安全に行うことができ、その水素水による抗酸化効果や血流促進効果も期待できる。   According to the bath agent of the present invention, hydrogen can be generated by a reaction between finely divided magnesium hydride and water, and the amount of dissolved hydrogen in the hot water of the bath can be stably increased with good reproducibility. Therefore, bathing with hydrogen water can be performed simply and safely, and the antioxidant effect and blood flow promoting effect of the hydrogen water can be expected.

試験例1の溶存水素量の変動の結果を平均して示す図表である。6 is a chart showing an average of results of fluctuations in dissolved hydrogen amount in Test Example 1. 試験例2の呼気水素量の変動の結果をパネラー毎に示す図表である。It is a graph which shows the result of the fluctuation | variation of the expiration | expired_air hydrogen amount of the test example 2 for every panelist.

水素化マグネシウムは、マグネシウムの金属原子間の隙間に水素を保持してなる化合物であり、下記式(1)の反応式に従って水と反応して水素を放出しながら分解する。
MgH+2HO→Mg(OH)+2H…(1)
Magnesium hydride is a compound that holds hydrogen in the gaps between metal atoms of magnesium, and decomposes while releasing hydrogen by reacting with water according to the reaction formula of the following formula (1).
MgH 2 + 2H 2 O → Mg (OH) 2 + 2H 2 (1)

水素化マグネシウムを製造する方法には種々あるが、例えば特許第4083786号公報や、特許第4425990号公報に開示されている方法によって、効率的に製造することが可能となっている。   Although there are various methods for producing magnesium hydride, it can be efficiently produced by, for example, methods disclosed in Japanese Patent No. 4083786 and Japanese Patent No. 4425990.

具体的には、特許第4083786号公報に開示されているように、マグネシウムを主成分とする原料粉体を、封入容器内に封入した水素ガス雰囲気中に保持しておき、その封入容器内の水素ガス雰囲気の圧力を所定圧力に維持しつつ、その封入容器内の水素ガス雰囲気の温度を、単体のマグネシウム及び水素分子が化合して水素化マグネシウムが生成する反応と逆反応との平衡曲線上の前記所定圧力に対応する温度よりも高温で、且つその温度からの温度差が所定値以内である温度に、所定の第1期間維持することによって、前記原料粉体表面の被膜を除去し、次に、その封入容器内の水素ガス雰囲気の温度を、室温へ戻さずに、前記平衡曲線上の前記所定圧力に対応する温度よりも低温で、且つその温度からの温度差が所定値以内である温度に、所定の第2期間維持することによって、前記原料粉体から水素化マグネシウムを製造する。この方法によれば、水素化率の高い水素化マグネシウムを効率的に製造することができる。また、特許第4425990号公報に開示されているように、粉体原料のかわりに、マグネシウムを主成分とする薄片を複数集積して圧縮した圧縮物を作成し、これを水素ガス雰囲気中で水素ガスとを反応させてもよい。この方法によれば、マグネシウムを主成分とする薄片から製造するので、粉塵爆発を起こす可能性がある粉体原料から製造する方法に比べて、より安全に、水素化率の高い水素化マグネシウムを効率的に製造することができる。   Specifically, as disclosed in Japanese Patent No. 4083786, a raw material powder containing magnesium as a main component is held in a hydrogen gas atmosphere sealed in a sealed container, While maintaining the pressure of the hydrogen gas atmosphere at a predetermined pressure, the temperature of the hydrogen gas atmosphere in the enclosure is on the equilibrium curve between the reaction in which single magnesium and hydrogen molecules combine to produce magnesium hydride and the reverse reaction. The coating on the surface of the raw material powder is removed by maintaining at a temperature higher than the temperature corresponding to the predetermined pressure and at a temperature difference from the temperature within a predetermined value for a predetermined first period, Next, without returning the temperature of the hydrogen gas atmosphere in the enclosure to room temperature, the temperature is lower than the temperature corresponding to the predetermined pressure on the equilibrium curve, and the temperature difference from the temperature is within a predetermined value. is there Time to, by maintaining a predetermined second period, the production of magnesium hydride from the raw material powder. According to this method, magnesium hydride having a high hydrogenation rate can be efficiently produced. Further, as disclosed in Japanese Patent No. 4425990, instead of powder raw material, a compressed product is prepared by compressing a plurality of flakes mainly composed of magnesium and compressing them in a hydrogen gas atmosphere. You may make it react with gas. According to this method, magnesium hydride having a high hydrogenation rate is manufactured more safely than a method of manufacturing from a powder raw material that may cause a dust explosion because it is manufactured from a flake mainly composed of magnesium. It can be manufactured efficiently.

なお、水素化率とは、MgHの分子量26とMgの分子量24に従って理想的に吸蔵され得る水素量に対する百分率であり、水素化マグネシウムの製造時に水素吸蔵前後の質量を測定して、下記式(2)のようにして求められる。 The hydrogenation rate is a percentage of the amount of hydrogen that can be ideally occluded according to the molecular weight 26 of MgH 2 and the molecular weight 24 of Mg, and the mass before and after hydrogen occlusion is measured when magnesium hydride is produced. It is obtained as in (2).

上記の方法などにより得られる水素化マグネシウムは、通常その水素化率は70〜100程度、より好ましくは90〜100%程度であり他の水素吸蔵合金と比べても高く、化学的劣化に対しても安定であり、輸送、供給、貯蔵等の作業性の面でも扱いやすく、非常に優れた水素吸蔵体ではあるが、その一方で水中での水との反応が遅く、水素発生速度の面からは難がある。   Magnesium hydride obtained by the above method usually has a hydrogenation rate of about 70 to 100, more preferably about 90 to 100%, which is higher than other hydrogen storage alloys and is resistant to chemical deterioration. Although it is stable and easy to handle in terms of workability such as transportation, supply, storage, etc., it is an excellent hydrogen storage material, but on the other hand, it reacts slowly with water in water, and from the aspect of hydrogen generation rate There are difficulties.

そこで本発明の浴用剤は、微粒子化した水素化マグネシウムを用いる。これによれば、酸などで反応を促進しなくても、後述の実施例に示すように、浴用剤として好適な水素発生を実現することができる。また、細かな気体粒となって水素が発生するので、発生した水素は外気に揮散してしまわずに水との溶存状態を作りやすい。水素化マグネシウムの平均粒径は10〜120μmであることが好ましく、20〜80μmであることがより好ましい。平均粒径が大きいと水素発生速度が低下する傾向があり、またお湯に入れて使用したときに水素化マグネシウムのざらつき感が残ってしまう傾向がある。平均粒径が小さすぎると微粒子化による静電気の増大や濡れ性の低下から、お湯に入れて使用したときに表面に浮いてしまい溶存水素量を増加させにくくなる傾向がある。具体的には、水深約20cmの40℃の水槽中に、水1リットルに対して前記水素化マグネシウムを2.5mgの割合で添加したとき、30分後の溶存水素量が0.01mmol/L以上、より好ましくは0.03mmol/L以上となり、且つ、浮上しないような粒径とされていることが好ましい。更に、その条件で外気への揮散水素量が0.03mmol以下、好ましくは0.01mmol以下となる粒径とされていることが好ましい。
なお、水素化マグネシウムの平均粒径を求める測定方法としては、粉末X線回折装置によって観察される回折ピーク形状の解析から粒径値を見積もる方法が簡便であり、好ましく用いられる。微粒子化は公知の方法で行えばよく特にその装置、方法等に制限はない。例えばジェットミルや高圧ガスの超微粉砕機などを用いることができる。また、乳鉢での粉砕なども簡易な方法として用いられる。
Therefore, finely divided magnesium hydride is used for the bath agent of the present invention. According to this, even if the reaction is not promoted with an acid or the like, hydrogen generation suitable as a bath agent can be realized as shown in the examples described later. Further, since hydrogen is generated as fine gas particles, the generated hydrogen does not volatilize to the outside air, and it is easy to make a dissolved state with water. The average particle size of magnesium hydride is preferably 10 to 120 μm, and more preferably 20 to 80 μm. When the average particle size is large, the hydrogen generation rate tends to decrease, and when used in hot water, the rough feeling of magnesium hydride tends to remain. If the average particle size is too small, static electricity increases due to atomization and wettability decreases, so that when used in hot water, it tends to float on the surface, making it difficult to increase the amount of dissolved hydrogen. Specifically, when the magnesium hydride is added at a rate of 2.5 mg to 1 liter of water in a 40 ° C. water tank having a water depth of about 20 cm, the dissolved hydrogen amount after 30 minutes is 0.01 mmol / L. As described above, it is more preferable that the particle size is 0.03 mmol / L or more and does not float. Furthermore, it is preferable that the amount of volatilized hydrogen to the outside air is 0.03 mmol or less, preferably 0.01 mmol or less under the conditions.
As a measuring method for obtaining the average particle size of magnesium hydride, a method of estimating the particle size value from the analysis of the diffraction peak shape observed by a powder X-ray diffractometer is simple and preferably used. The fine particles may be formed by a known method, and there are no particular restrictions on the apparatus and method. For example, a jet mill or a high-pressure gas ultrafine pulverizer can be used. Also, pulverization in a mortar can be used as a simple method.

本発明の浴用剤は、例えば200L用浴用剤25g中に、上記の水素化マグネシウムを0.1〜25g含有することが好ましく、0.5〜20g含有することがより好ましく、0.5〜10g含有することが最も好ましい。その剤形的形態は、水素化マグネシウムが水分と反応してしまうのを避けるため、水分含量の少ない配合原料とともに混合してなる粉体であることが好ましい。   The bath agent of the present invention preferably contains 0.1 to 25 g of the above magnesium hydride, more preferably 0.5 to 20 g, and more preferably 0.5 to 10 g in 25 g of a 200 L bath agent. It is most preferable to contain. The dosage form is preferably a powder formed by mixing together with a raw material having a low water content in order to prevent the magnesium hydride from reacting with water.

本発明の浴用剤には、上記の水素化マグネシウム以外に公知の添加物やその他の成分を添加することができる。例えば、エタノール等のアルコール類、非イオン界面活性剤、多糖類、低分子糖類、天然油脂、乳化剤、香料などが例示される。   In addition to the above magnesium hydride, known additives and other components can be added to the bath agent of the present invention. Examples thereof include alcohols such as ethanol, nonionic surfactants, polysaccharides, low molecular sugars, natural fats and oils, emulsifiers, and fragrances.

本発明の浴用剤は、上記水素化マグネシウムが浴用水1リットルに対して0.5〜125mg、より好ましくは2.5〜50mg添加されるように調製されていることが好ましい。そして、その使用時において、お湯に浴用剤を入れてから15分の間に溶存水素量が0.01mmol/L以上に増加し、その後60分までに0.03mmol/L以上に増加するように調製されていることが好ましく、お湯に浴用剤を入れてから15分の間に溶存水素量が0.04mmol/L程度に増加し、その後60分までに0.05mmol/L程度に増加するように調製されていることがより好ましい。   The bath agent of the present invention is preferably prepared such that the magnesium hydride is added in an amount of 0.5 to 125 mg, more preferably 2.5 to 50 mg, per liter of bath water. At the time of use, the amount of dissolved hydrogen increases to 0.01 mmol / L or more within 15 minutes after the bath agent is added to hot water, and then increases to 0.03 mmol / L or more by 60 minutes. It is preferable that the amount of dissolved hydrogen increases to about 0.04 mmol / L within 15 minutes after the bath agent is added to hot water, and then increases to about 0.05 mmol / L by 60 minutes. More preferably, it is prepared.

以下に例を挙げて本発明について具体的に説明するが、これらの例は本発明の範囲を限定するものではない。   The present invention will be specifically described below with reference to examples, but these examples do not limit the scope of the present invention.

<製造例1>
特許第4425990号公報に開示されている方法にてインゴット形状の水素化マグネシウム(水素化率90〜95%)を調製し、これをミル機で粗く砕いて0.1mm程度に粉砕し、さらにジェットミルで微粉砕化した。得られた水素化マグネシウムの粒径は、粉体X線回折装置を用いた解析によると60μmであった。
<Production Example 1>
Ingot-shaped magnesium hydride (hydrogenation rate: 90 to 95%) is prepared by the method disclosed in Japanese Patent No. 4425990, and this is coarsely crushed by a mill and pulverized to about 0.1 mm. Milled with a mill. The particle size of the obtained magnesium hydride was 60 μm according to analysis using a powder X-ray diffractometer.

<試験例1>
製造例1で得られた水素化マグネシウムを、市販の浴用剤成分に0.5g配合して、浴用剤25g(200L用)を調製した。
<Test Example 1>
0.5 g of the magnesium hydride obtained in Production Example 1 was blended with a commercially available bath agent component to prepare 25 g (200 L) of a bath agent.

また、熱帯魚用の水槽(横60cm×縦30cm×奥行き40cm)に水道水のお湯50L(水深20cm)を入れ、ヒーターで水温を40℃に保ち浴槽モデルとした。これに上記浴用剤の1/4量の6.25gを入れ、50cm長のプラスチック定規で2往復撹拌した。その後、水流は特に起こさずに静置して、浴用剤を入れた時間から0、15、30、60、120、180分後の溶存水素濃度を測定した。計測には溶存水素計「Micro-sensor Multi-Meter(H2 sensor)」(UNISENSE社製)を用い、その電極を水槽内のお湯に入れたままにして、時間ごとの計測値を観測した。なお、室内は特に換気は行わず、設置してある空調で温度湿度の管理を行った。試験は日時をかえて計8回行った。   Moreover, hot water 50L (water depth 20 cm) was put into a water tank for tropical fish (width 60 cm × length 30 cm × depth 40 cm), and the water temperature was kept at 40 ° C. with a heater to form a bathtub model. To this was added 6.25 g of the ¼ amount of the above bath agent, and the mixture was stirred twice with a 50 cm long plastic ruler. Thereafter, the water flow was not particularly caused, and the dissolved hydrogen concentration was measured 0, 15, 30, 60, 120, and 180 minutes after the bathing agent was added. For measurement, a dissolved hydrogen meter “Micro-sensor Multi-Meter (H2 sensor)” (manufactured by UNISENSE) was used, and the measured value for each time was observed while the electrode was kept in the hot water in the water tank. The room was not ventilated, and the temperature and humidity were controlled by the installed air conditioning. The test was performed a total of 8 times with different dates.

表1には計8回の試験の結果を示し、図1にはその平均をグラフにして示す。   Table 1 shows the results of eight tests in total, and FIG.

その結果、浴用剤を入れてから0〜15分の間に溶存水素量が平均で0.036mmol/L程度に増加し、その後も時間の経過とともに溶存水素量が徐々に増加した。なお、表1、図1には示さないが、テスト6〜8の計測を180分以降も続けたときの溶存水素量は、最大で0.1mmol/Lに達し、その後その値を維持する傾向が認められた。この濃度は飽和溶存水素濃度の12.5%に相当する高い値であった。   As a result, the amount of dissolved hydrogen increased to an average of about 0.036 mmol / L between 0 and 15 minutes after putting the bath agent, and the amount of dissolved hydrogen gradually increased over time. Although not shown in Table 1 and FIG. 1, the amount of dissolved hydrogen when the measurements of tests 6 to 8 are continued after 180 minutes reaches a maximum of 0.1 mmol / L, and thereafter tends to maintain that value. Was recognized. This concentration was a high value corresponding to 12.5% of the saturated dissolved hydrogen concentration.

<試験例2>
水素水で入浴した際のヒトの呼気中の水素量の増減を調べた。
<Test Example 2>
The increase or decrease in the amount of hydrogen in the human breath when bathing with hydrogen water was examined.

そのため、試験例1で使用した浴用剤25gをお湯200Lに入れて、溶存水素量が安定する約30分後にパネラーに入浴してもらい、経過時間ごとにその呼気を採取して水素量を測定した。計測には「Breath Gas Analyzer MODEL TGA-2000」(TERAMECS社製)を用いた。なお、呼気の採取に関してはアルミパウチに三方コックをつけた捕集容器を使い、気道の空気を外に出してから、できるだけ肺を通った呼気のみを採取するようにした。また、できるだけ呼吸から水素を取り入れないようにするため、浴槽には蓋をし、さらにパネラーとの隙間をビニールで覆って、お湯と呼吸器とを可能な限り遮断し、更に、浴室内の換気を十分にして行った。試験は日時をかえて計13人のパネラーで行った。   Therefore, 25 g of the bathing agent used in Test Example 1 was put in 200 L of hot water, and the panel was bathed about 30 minutes after the amount of dissolved hydrogen was stabilized, and the amount of hydrogen was measured by collecting the exhalation at each elapsed time. . For the measurement, “Breath Gas Analyzer MODEL TGA-2000” (manufactured by TERAMECS) was used. Regarding the collection of exhaled air, a collection container with a three-way cock attached to an aluminum pouch was used, and after exhaling air in the airway, only exhaled gas that passed through the lungs was collected as much as possible. In addition, in order to avoid taking in hydrogen from breathing as much as possible, the bathtub is covered, and the gap between the panel and the panel is covered with vinyl, blocking hot water and the respiratory organs as much as possible, and ventilation in the bathroom. I went with enough. The test was conducted by a total of 13 panelists at different times.

表2にはパネラー個々の試験結果を示し、図2にはその結果をグラフにして示す。   Table 2 shows the test results for each panel, and FIG. 2 shows the results in a graph.

その結果、個人差があるものの、製造例1で得られた水素化マグネシウムを配合した浴用剤を入れたお湯に入浴することによって、呼気中の水素量が増加する傾向が認められた。このパネラーの呼気中の水素量の増加は、試験時にあわせて測定したパネラーの呼吸器近傍の浴室内空気中の水素量は、1.0〜6.8ppm程度で一定に推移していたので、お湯中の溶存水素が入浴中に皮膚から吸収されたことを示すと考えられた。なお、試験中、浴室内空気中の水素ガスの濃度は爆発限界である4〜75(v/v)%をはるかに下回る濃度であり、爆発の危険は全くなかった。   As a result, although there were individual differences, there was a tendency for the amount of hydrogen in the exhalation to increase by bathing in hot water containing a bath preparation formulated with magnesium hydride obtained in Production Example 1. The increase in the amount of hydrogen in the breath of the panelist was because the amount of hydrogen in the bathroom air near the respiratory of the paneler measured at the time of the test was constant at about 1.0 to 6.8 ppm. It was thought that dissolved hydrogen in hot water was absorbed from the skin during bathing. During the test, the concentration of hydrogen gas in the bathroom air was much lower than the explosion limit of 4 to 75 (v / v)%, and there was no danger of explosion.

本発明の浴用剤によれば、抗酸化能などの機能性を有する水素水での入浴を簡便にかつ安全に楽しむことができる。   According to the bath agent of the present invention, bathing with hydrogen water having functionality such as antioxidant ability can be enjoyed simply and safely.

Claims (5)

微粒子化した水素化マグネシウムを含有することを特徴とする浴用剤。   A bath agent characterized by containing finely divided magnesium hydride. 前記水素化マグネシウムは、水深20cmの40℃の水槽中に、水1リットルに対して該水素化マグネシウムを2.5mgの割合で添加したとき、30分後の溶存水素量が0.01mmol/L以上となり、且つ、浮上しないような粒径とされている請求項1記載の浴用剤。   The magnesium hydride has a dissolved hydrogen content of 0.01 mmol / L after 30 minutes when the magnesium hydride is added at a rate of 2.5 mg to 1 liter of water in a 40 ° C. water bath having a water depth of 20 cm. The bath preparation according to claim 1, wherein the particle size is such that the particle size does not float. 前記水素化マグネシウムは、水深20cmの40℃の水槽中に、水1リットルに対して該水素化マグネシウムを2.5mgの割合で添加したとき、30分後の溶存水素量が0.01mmol/L以上であって外気への揮散水素量が0.03mmol以下となり、且つ、浮上しないような粒径とされている請求項1記載の浴用剤。   The magnesium hydride has a dissolved hydrogen content of 0.01 mmol / L after 30 minutes when the magnesium hydride is added at a rate of 2.5 mg to 1 liter of water in a 40 ° C. water bath having a water depth of 20 cm. The bath agent according to claim 1, wherein the particle size is such that the volatilized hydrogen amount to the outside air is 0.03 mmol or less and does not float. 前記水素化マグネシウムは、その平均粒径が10〜120μmである請求項1〜3のいずれか1つに記載の浴用剤。   The bath magnifying agent according to any one of claims 1 to 3, wherein the magnesium hydride has an average particle size of 10 to 120 µm. 浴用水1リットルに対して0.5〜125mgの前記水素化マグネシウムが添加されるように調製された請求項1〜4のいずれか1つに記載の浴用剤。   The bath preparation according to any one of claims 1 to 4, which is prepared so that 0.5 to 125 mg of the magnesium hydride is added to 1 liter of bath water.
JP2011032458A 2011-02-17 2011-02-17 Bath preparation Active JP5805403B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011032458A JP5805403B2 (en) 2011-02-17 2011-02-17 Bath preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011032458A JP5805403B2 (en) 2011-02-17 2011-02-17 Bath preparation

Publications (2)

Publication Number Publication Date
JP2012171871A true JP2012171871A (en) 2012-09-10
JP5805403B2 JP5805403B2 (en) 2015-11-04

Family

ID=46975097

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011032458A Active JP5805403B2 (en) 2011-02-17 2011-02-17 Bath preparation

Country Status (1)

Country Link
JP (1) JP5805403B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019689A (en) * 2012-07-23 2014-02-03 Kracie Home Products Ltd Powder for hydrogen generation
JP2017197435A (en) * 2016-04-25 2017-11-02 株式会社バスクリン Hydrogen generating bath agent

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052811A (en) * 2003-08-05 2005-03-03 Hikari Berukomu:Kk Tablet for producing acidic reduced water
WO2007055146A1 (en) * 2005-11-10 2007-05-18 Hiromaito Co., Ltd. Hydrogen-generating agent and use thereof
JP4083786B2 (en) * 2006-07-20 2008-04-30 友宏 秋山 Magnesium-based hydride manufacturing method and magnesium-based hydride manufacturing apparatus
JP2009046370A (en) * 2007-08-22 2009-03-05 Aquafairy Kk Hydrogen generating device and hydrogen generating method
JP4425990B1 (en) * 2009-03-05 2010-03-03 バイオコーク技研株式会社 Method for producing magnesium-based hydride

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005052811A (en) * 2003-08-05 2005-03-03 Hikari Berukomu:Kk Tablet for producing acidic reduced water
WO2007055146A1 (en) * 2005-11-10 2007-05-18 Hiromaito Co., Ltd. Hydrogen-generating agent and use thereof
JP4083786B2 (en) * 2006-07-20 2008-04-30 友宏 秋山 Magnesium-based hydride manufacturing method and magnesium-based hydride manufacturing apparatus
JP2009046370A (en) * 2007-08-22 2009-03-05 Aquafairy Kk Hydrogen generating device and hydrogen generating method
JP4425990B1 (en) * 2009-03-05 2010-03-03 バイオコーク技研株式会社 Method for producing magnesium-based hydride

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014019689A (en) * 2012-07-23 2014-02-03 Kracie Home Products Ltd Powder for hydrogen generation
JP2017197435A (en) * 2016-04-25 2017-11-02 株式会社バスクリン Hydrogen generating bath agent

Also Published As

Publication number Publication date
JP5805403B2 (en) 2015-11-04

Similar Documents

Publication Publication Date Title
Sung et al. Acute inhalation toxicity of silver nanoparticles
JP5828644B2 (en) Powder bath cosmetic
Sukul et al. Oral or nasal breathing? Real-time effects of switching sampling route onto exhaled VOC concentrations
GIACOMELLI-MALTONI et al. Deposition efficiency of monodisperse particles in human respiratory tract
Heravi et al. Effect of fluoride on nickel-titanium and stainless steel orthodontic archwires: an in-vitro study
JP2007238431A (en) Method for generation of hydrogen gas from borohydride
JP5805403B2 (en) Bath preparation
JP2001347269A (en) Anode electrolytic water and its manufacturing method
JP2014028714A (en) Composition for generating hydrogen
Amr Trace elements in Egyptian teeth
JPWO2014024299A1 (en) Powder bath cosmetic
Renita et al. Influence of artificial saliva on the corrosion behavior of dental alloys: a review
CN105982734A (en) Authentic human body upper respiratory tract model flow field aerosol deposition measurement method and test device
CN111484084A (en) Acetone gas-sensitive material and preparation method thereof
Queiroz et al. Electrochemical behavior and pH stability of artificial salivas for corrosion tests
CN102438939B (en) Hydrogen-generating material and manufacture method, method for preparing hydrogen and hydrogen producing apparatus
JP2017165636A (en) Hydrogen generating composition and hydrogen generating beverage
EP2786737B1 (en) Reducing agent containing sodium borohydride
TW201210934A (en) Hydrogen production method
JP2017137282A (en) Hydrogen ion generating composition and hydrogen ion generating beverage
Clifford et al. Highly magnetic Co nanoparticles fabricated by X-ray radiolysis
Mallongi et al. Risks Assessment due to the Exposure of Copper and Nitrogen Dioxide in the Goldsmith in Malimongan Makassar
JP2006335603A (en) Hydrogen generating agent and hydrogen generating method
Liu et al. Plasma electrolytic oxidation of AZ91D magnesium alloy in biosafety electrolyte for the surgical implant purpose
CN204797996U (en) Experimental apparatus is measured to true human upper respiratory tract model flow field aerosol deposit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141024

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141111

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150108

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20150206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150818

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150902

R150 Certificate of patent or registration of utility model

Ref document number: 5805403

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250