JP2012164729A - White high reflection material with high heat resistance and led package - Google Patents

White high reflection material with high heat resistance and led package Download PDF

Info

Publication number
JP2012164729A
JP2012164729A JP2011022376A JP2011022376A JP2012164729A JP 2012164729 A JP2012164729 A JP 2012164729A JP 2011022376 A JP2011022376 A JP 2011022376A JP 2011022376 A JP2011022376 A JP 2011022376A JP 2012164729 A JP2012164729 A JP 2012164729A
Authority
JP
Japan
Prior art keywords
weight
parts
white
resin
reflective material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011022376A
Other languages
Japanese (ja)
Inventor
Masaaki Arita
雅昭 有田
Shinji Morimoto
信司 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2011022376A priority Critical patent/JP2012164729A/en
Priority to US13/073,780 priority patent/US20110242818A1/en
Priority to EP11160120A priority patent/EP2372799A3/en
Priority to TW100110974A priority patent/TW201203617A/en
Publication of JP2012164729A publication Critical patent/JP2012164729A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/4805Shape
    • H01L2224/4809Loop shape
    • H01L2224/48091Arched
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/42Wire connectors; Manufacturing methods related thereto
    • H01L2224/47Structure, shape, material or disposition of the wire connectors after the connecting process
    • H01L2224/48Structure, shape, material or disposition of the wire connectors after the connecting process of an individual wire connector
    • H01L2224/481Disposition
    • H01L2224/48151Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/48221Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/48245Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic
    • H01L2224/48247Connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being metallic connecting the wire to a bond pad of the item

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Polymerisation Methods In General (AREA)
  • Polymerization Catalysts (AREA)
  • Led Device Packages (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide: a white high reflection material with high heat resistance, capable of highly efficiently reflecting light having a peak in a wavelength of 350-800 nm even after the material passes through a solder reflow furnace; and an LED package.SOLUTION: A white high reflection material with high heat resistance is obtained by curing a resin composition for a reflection material. The resin composition for a reflection material is obtained by mixing: 100 pts. wt. in total of a mixed resin formed by mixing 20-50 pts. wt. of an adamantane resin having an acrylic functional group and 50-80 pts. wt. of a silicone resin; a hardener; and 100 pts. wt. or more of spherical particle-shaped alumina.

Description

本発明は、特定の波長にピークを有する光を高効率で取り出すための反射材の中でも、350nm〜800nmにピークを有する波長を高効率で反射し、耐熱性を有する白色高耐熱高反射材およびLEDパッケージに関する。   The present invention is a white high heat-resistant and high-reflecting material having heat resistance, reflecting a wavelength having a peak at 350 nm to 800 nm with high efficiency, among reflective materials for extracting light having a peak at a specific wavelength with high efficiency, and The present invention relates to an LED package.

近年、装置の小型化および光源の小型化のための光源の半導体化、すなわち半導体レーザー、発光ダイオード(Light Emitting Diode、以下LEDと略す)を利用したデバイスが提案されている。実際のところ、LEDは長寿命、省電力、温度安定性、低電圧駆動などの特徴が評価され、ディスプレイ、行き先表示板、車載照明、信号灯、ビデオカメラなどへ応用されている。そんな中、LEDの光源から発せられる光の発光効率を向上させたり、特定波長域にピークを有する光を高効率で取り出すには、反射材の反射率を向上させる必要がある。   2. Description of the Related Art In recent years, there has been proposed a device that uses a semiconductor light source for miniaturization of an apparatus and a light source, that is, a semiconductor laser and a light emitting diode (hereinafter abbreviated as LED). Actually, LEDs have been evaluated for characteristics such as long life, power saving, temperature stability, and low voltage driving, and are applied to displays, destination display boards, in-vehicle lighting, signal lights, video cameras, and the like. Meanwhile, in order to improve the light emission efficiency of light emitted from the light source of the LED or to extract light having a peak in a specific wavelength region with high efficiency, it is necessary to improve the reflectance of the reflecting material.

LEDなどの用途の反射材としては、芳香族ポリエステル系樹脂からなる反射材が開示されている。しかし、これらの反射材の分子鎖中に含まれる芳香環が紫外線を吸収するため、紫外線に晒されると反射材が劣化黄変して反射率が経時的に低下するという課題を有していた。また、ポリアミド系樹脂に酸化チタンを添加した樹脂組成物が反射材として開示されている(例えば、特許文献1参照)。   As a reflector for applications such as LEDs, a reflector made of an aromatic polyester resin is disclosed. However, since the aromatic ring contained in the molecular chain of these reflectors absorbs ultraviolet rays, there is a problem that when exposed to ultraviolet rays, the reflectors deteriorate and yellow and the reflectance decreases with time. . In addition, a resin composition in which titanium oxide is added to a polyamide-based resin is disclosed as a reflector (see, for example, Patent Document 1).

特開平2−288274号公報JP-A-2-288274

しかしながら、上記従来の技術では、可視光領域では非常に高い反射率を有しているものの、酸化チタンは400nm以下の紫外線を良く吸収するため、この材料は400nm以下の紫外線をほとんど反射しないという課題や、最大温度が260℃のリフロー炉で10秒保持して半田付けするプロセスを複数回行った後に、樹脂が褐色に変色して反射材の反射率を低下させてしまうという課題を有していた。   However, in the above-described conventional technology, although the titanium oxide has a very high reflectance in the visible light region, titanium oxide absorbs ultraviolet rays of 400 nm or less well, so that this material hardly reflects ultraviolet rays of 400 nm or less. In addition, after performing the soldering process by holding for 10 seconds in a reflow furnace having a maximum temperature of 260 ° C. for a plurality of times, the resin turns brown and the reflectance of the reflector is reduced. It was.

そこで本発明は上記従来の問題に鑑みて、350nm〜800nmにピークを有する波長を、半田リフロー炉通過後においても高効率で反射することができる白色高耐熱高反射材およびLEDパッケージを提供することを目的とする。   Accordingly, in view of the above-described conventional problems, the present invention provides a white highly heat-resistant and highly reflective material and an LED package that can reflect a wavelength having a peak at 350 nm to 800 nm with high efficiency even after passing through a solder reflow furnace. With the goal.

本発明は、上記課題を解決するために鋭意検討を行った結果、20乃至50重量部のアクリル系の官能基を有するアダマンタン樹脂と50乃至80重量部のシリコーン樹脂とを混ぜ合わせて合計100重量部とした混合樹脂と、1乃至2重量部のラジカル型熱重合開始剤と、100重量部以上の球状の粒子形状のアルミナと、を混ぜ合わせた反射材用樹脂組成物を硬化させたことを特徴とする白色高耐熱高反射材である。   The present invention has been intensively studied to solve the above-mentioned problems, and as a result, 20 to 50 parts by weight of an adamantane resin having an acrylic functional group and 50 to 80 parts by weight of a silicone resin are mixed to total 100 weights. A resin composition for a reflector, which is a mixture of 1 part to 2 parts by weight of a radical thermal polymerization initiator and 100 parts by weight or more of spherical particle-shaped alumina. It is a white, high heat-resistant, highly reflective material.

本発明によれば、350nm〜800nmにピークを有する波長を、半田リフロー炉通過後においても高効率で反射することができる。   According to the present invention, a wavelength having a peak at 350 nm to 800 nm can be reflected with high efficiency even after passing through a solder reflow furnace.

本発明の白色高耐熱高反射材を作製するための工程フロー図Process flow diagram for producing the white high heat resistant high reflective material of the present invention 本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図Sectional drawing which shows one Example of the LED package using the white high heat-resistant highly reflective material of this invention 本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図Sectional drawing which shows one Example of the LED package using the white high heat-resistant highly reflective material of this invention 本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図Sectional drawing which shows one Example of the LED package using the white high heat-resistant highly reflective material of this invention 本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図Sectional drawing which shows one Example of the LED package using the white high heat-resistant highly reflective material of this invention 本発明の白色高耐熱高反射材の4万時間保証温度を推定するアレニウスプロットを示す図The figure which shows the Arrhenius plot which estimates the 40,000 hours guarantee temperature of the white high heat-resistant highly reflective material of this invention

以下、本発明について詳しく説明する。   The present invention will be described in detail below.

本発明の白色高耐熱高反射材は、20乃至50重量部のアクリル系の官能基を有するアダマンタン樹脂と50乃至80重量部のシリコーン樹脂とを混ぜ合わせて合計100重量部とした混合樹脂と、1乃至2重量部のラジカル型熱重合開始剤と、100重量部以上の球状の粒子形状のアルミナと、を混ぜ合わせた反射材用樹脂組成物を硬化させたことを特徴とする。   The white highly heat-resistant and highly reflective material of the present invention is a mixed resin in which 20 to 50 parts by weight of an adamantane resin having an acrylic functional group and 50 to 80 parts by weight of a silicone resin are mixed to make a total of 100 parts by weight; A resin composition for a reflector, which is a mixture of 1 to 2 parts by weight of a radical thermal polymerization initiator and 100 parts by weight or more of spherical particle-shaped alumina, is cured.

所定の比率でアクリル系の官能基を有するアダマンタン樹脂とシリコーン樹脂とラジカル型熱重合開始剤とフィラーを組み合わせて、ラジカル重合反応を起こすことで樹脂が白色硬化をさせるという作用を有する。また、フィラーを組み合わせることで、反射率が向上すると共に、耐熱性も向上するという作用を有する。   An adamantane resin having an acrylic functional group at a predetermined ratio, a silicone resin, a radical thermal polymerization initiator, and a filler are combined to cause a radical polymerization reaction, thereby causing the resin to be white-cured. Further, by combining the filler, the reflectance is improved and the heat resistance is also improved.

特に、フィラーは、アルミナ、チタニア、酸化亜鉛などの白色顔料として使用される無機材料や内部に空隙を有しかつポリマーが高度に架橋された中空状のポリマーからなる有機材料を使用することができるが、耐熱性という面から無機材料が好ましい。無機材料を加えることで反射率と耐熱性が向上するという作用を有し、更にアルミナは350乃至800nmの波長領域で比較的反射率の低下が少ないという作用も有するが、チタニア、酸化亜鉛は、400nm前後より短い波長領域で反射率が著しく低下してしまう。また、アルミナ粒子の形状についても、球状粒子については350乃至800nmの範囲で80%以上の反射率を有するが、鱗片状の粒子は反射率が10%程度低下してしまう。   In particular, the filler can be an inorganic material used as a white pigment such as alumina, titania, zinc oxide, or an organic material made of a hollow polymer having voids inside and a highly crosslinked polymer. However, an inorganic material is preferable from the viewpoint of heat resistance. The addition of an inorganic material has the effect of improving the reflectance and heat resistance, and alumina has the effect of relatively little decrease in the reflectance in the wavelength region of 350 to 800 nm, but titania and zinc oxide are The reflectance is remarkably lowered in a wavelength region shorter than about 400 nm. The shape of the alumina particles also has a reflectance of 80% or more in the range of 350 to 800 nm for the spherical particles, but the reflectance of the scaly particles is reduced by about 10%.

また、アクリル系官能基を有するアダマンタン樹脂が1−アダマンチルメタクリレートであることを特徴とする。   Further, the adamantane resin having an acrylic functional group is 1-adamantyl methacrylate.

アダマンタンは10個の炭素がダイヤモンドの構造と同様に配置されたかご型の分子である。分子の外側には水素が突き出しているが、この水素をアクリル基に置き換えたものがアクリル系の官能基を有するアダマンタン樹脂である。アクリル系のアダマンタン樹脂としては、1−アダマンチルアクリレート、1−アダマンチルメタクリレート、1,3−アダマンタンジメタノールジアクリレート、1,3−アダマンタンジメタノールジメタクリレートがあるが、1−アダマンチルメタクリレート以外は室温にて固体であり、湯浴などで加温することで液化することで使用可能なものもあるが、室温に戻ると再結晶化するなど、シリコーン樹脂との相溶性が悪く好ましくない。このアクリル系の官能基を有するアダマンタン樹脂とシリコーン樹脂をラジカル重合させることで樹脂が白色化するという作用を有し、エポキシ基などと置き換えたアダマンタン樹脂では白色化すると作用は発現しない。   Adamantane is a cage-shaped molecule in which 10 carbons are arranged in the same way as the diamond structure. Hydrogen protrudes from the outside of the molecule, but this hydrogen is replaced with an acrylic group to form an adamantane resin having an acrylic functional group. Examples of acrylic adamantane resins include 1-adamantyl acrylate, 1-adamantyl methacrylate, 1,3-adamantane dimethanol diacrylate, and 1,3-adamantane dimethanol dimethacrylate, except for 1-adamantyl methacrylate at room temperature. Some are solid and can be used by liquefying by heating in a hot water bath or the like. However, they are not preferred because they are recrystallized when returned to room temperature and have poor compatibility with silicone resins. The adamantane resin having an acrylic functional group and a silicone resin are radically polymerized to effect the whitening of the resin, and the adamantane resin replaced with an epoxy group or the like does not exhibit the effect when whitened.

また、シリコーン樹脂が付加反応型のシリコーンゴムであることを特徴とする。   Further, the silicone resin is an addition reaction type silicone rubber.

シリコーン樹脂は、珪素と酸素からなるシロキサン結合を骨格とし、その珪素にメチル基を主体とする有機基が結合した付加重合型のシリコーンゴムであり、有機基が結合したシロキサンを基本骨格としたものであれば、特に制限は無く、例えば信越シリコーン株式会社のKEシリーズやモメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社のIVSシリーズなどの市販品を使用できる。アクリル系の官能基を有するアダマンタン樹脂とシリコーン樹脂をラジカル重合させることで樹脂が白色化するという作用を有する。   Silicone resin is an addition-polymerization type silicone rubber in which a siloxane bond consisting of silicon and oxygen is used as a skeleton, and an organic group mainly composed of a methyl group is bonded to the silicon. If it is, there is no restriction | limiting in particular, For example, commercial items, such as KE series of Shin-Etsu Silicone Co., Ltd., and IVS series of Momentive Performance Materials Japan GK, can be used. The resin is whitened by radical polymerization of an adamantane resin having an acrylic functional group and a silicone resin.

また、ラジカル型熱重合開始剤が、有機過酸化物系熱重合開始剤であることを特徴とする。   The radical thermal polymerization initiator is an organic peroxide thermal polymerization initiator.

ラジカル型熱重合開始剤としては、有機過酸化物系やアゾ化合物系のラジカル重合開始剤がある。何れの重合開始剤を使用しても白色高耐熱高反射材を得ることができるが、有機過酸化物系の方が耐熱性に優れている。有機過酸化物系のラジカル重合開始剤としては、日油株式会社のパーオキシケタール、ハイドロパーオキサイド、ジアルキルパーオキサイド、ジアシルパーオキサイド、パーオキシジカーボネート、パーオキシエステルなどの市販品を使用できる。本発明の反応は、ラジカルを発生させることで、白色化するという作用が発現するので、カチオン系やアニオン系などのほかの重合開始剤は適さない。   Examples of the radical thermal polymerization initiator include organic peroxide type and azo compound type radical polymerization initiators. Although any polymerization initiator can be used, a white, high heat-resistant, high-reflecting material can be obtained, but the organic peroxide type is superior in heat resistance. As the organic peroxide radical polymerization initiator, commercially available products such as peroxyketal, hydroperoxide, dialkyl peroxide, diacyl peroxide, peroxydicarbonate, and peroxyester manufactured by NOF Corporation can be used. In the reaction of the present invention, the action of whitening occurs by generating radicals, so other polymerization initiators such as cationic and anionic are not suitable.

本発明の白色高耐熱高反射材で使用する、20乃至50重量部のアクリル系の官能基を有するアダマンタン樹脂と50乃至80重量部のシリコーン樹脂とを混ぜ合わせて合計100重量部とした混合樹脂と、1乃至2重量部のラジカル型熱重合開始剤を混合して、加熱して得られる樹脂硬化物の構造は、以下のようになる。すなわち、赤外吸収スペクトルで得られる官能基特有の吸収ピークに関して、硬化する前に得られた1700cm-1付近、1050〜1400cm-1付近にかけてのアクリル基を構成する官能基に特有の吸収ピークが、加熱硬化する事によって吸収ピークが小さくなっていることが確認できた。従って、樹脂硬化物はアダマンタン樹脂の官能基であるアクリル基を介してシリコーン樹脂と反応して硬化している事がわかる。 20 to 50 parts by weight of an adamantane resin having an acrylic functional group and 50 to 80 parts by weight of a silicone resin used in the white high heat and high reflection material of the present invention to make a total of 100 parts by weight The structure of the cured resin obtained by mixing and heating 1 to 2 parts by weight of a radical thermal polymerization initiator is as follows. That is, for the functional groups characteristic absorption peaks obtained by the infrared absorption spectrum, around 1700 cm -1 obtained before curing, the absorption peaks peculiar to the functional group constituting the acrylic group toward near 1050~1400Cm -1 It was confirmed that the absorption peak was reduced by heat curing. Therefore, it can be seen that the cured resin is cured by reacting with the silicone resin via the acrylic group which is a functional group of the adamantane resin.

以下、本発明を実施例について図面を参照しながら説明する。   DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below with reference to the drawings.

図1は、本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図である。   FIG. 1 is a cross-sectional view showing an embodiment of an LED package using the white high heat resistant high reflective material of the present invention.

まず、各材料を所定量秤量して、混合容器に入れる。次いで、減圧による脱泡機能を有する撹拌混合装置にセットし、所定時間混合する。次いで、テフロン(登録商標)で作製した型枠にリードフレーム、リフレクターを所定の位置にセットし、そこに混合した反射材用樹脂組成物を流し込む。最後に所定温度の電気炉に入れ、硬化を行う。   First, a predetermined amount of each material is weighed and placed in a mixing container. Next, it is set in a stirring and mixing device having a defoaming function by decompression and mixed for a predetermined time. Next, a lead frame and a reflector are set at predetermined positions on a mold made of Teflon (registered trademark), and the mixed resin composition for a reflector is poured into the mold. Finally, it is placed in an electric furnace at a predetermined temperature and cured.

かかる構成によれば、樹脂組成物を均一に混合することができ、また、リードフレーム、リフレクターを所定の位置にセットしたテフロン(登録商標)製の型枠に、樹脂組成物を流し込んだ後、即熱硬化を行うことができるために、樹脂組成物の漏れ出しが無く、離型性が良好になる作用がある。   According to such a configuration, the resin composition can be mixed uniformly, and after pouring the resin composition into a Teflon (registered trademark) mold frame in which a lead frame and a reflector are set at predetermined positions, Since immediate heat curing can be performed, there is no leakage of the resin composition and there is an effect that the releasability is improved.

図2は、本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図であって、発光素子1とリフレクター2とリードフレーム3とを白色高耐熱高反射材5とでモールドし、発光素子1とリードフレーム3の一端をワイヤー4でボンディングした構成をしたLEDパッケージの断面図である。   FIG. 2 is a cross-sectional view showing an embodiment of an LED package using the white high heat resistant high reflective material of the present invention, in which the light emitting element 1, the reflector 2 and the lead frame 3 are connected to the white high heat resistant high reflective material 5; 2 is a cross-sectional view of an LED package that is molded with a light emitting element 1 and one end of a lead frame 3 bonded with a wire 4.

かかる構成によれば、リードフレームとリフレクターをモールドする際に同時に接着することができ、リフレクターとリードフレームを接着するための専用の接着剤を省略することができる。また、リードフレームのギャップ間にも白色高耐熱高反射材5がモールドされているので、市販のモールド樹脂を使用した場合に比べて半田リフロー炉を通過した後の反射率の低下が非常に少ないという作用が有する。   According to this configuration, the lead frame and the reflector can be bonded at the same time, and a dedicated adhesive for bonding the reflector and the lead frame can be omitted. In addition, since the white high heat resistant high reflective material 5 is molded between the gaps of the lead frame, the decrease in the reflectance after passing through the solder reflow furnace is very small compared to the case where a commercially available mold resin is used. It has the action.

図3は、本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図であって、ワイヤー8でボンディングした発光素子6とリードフレーム8を白色高反射材9でモールドし、リフレクターをも白色高反射材9で形成したLEDパッケージの断面図である。   FIG. 3 is a cross-sectional view showing an embodiment of an LED package using the white high heat resistant high reflective material of the present invention, in which the light emitting element 6 bonded with the wire 8 and the lead frame 8 are molded with the white high reflective material 9. And it is sectional drawing of the LED package which also formed the reflector with the white highly reflective material 9. FIG.

かかる構成によれば、リフレクターを白色高反射材9で形成することができ、製造工程を短縮することができる。   According to this structure, a reflector can be formed with the white highly reflective material 9, and a manufacturing process can be shortened.

図4は、本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図であって、発光素子とリフレクターとリードフレームとを白色高耐熱高反射材とでモールドし、さらにリードフレームのワイヤーボンディングする部分以外の部分を白色高耐熱高反射材で形成したLEDパッケージの断面図である。   FIG. 4 is a cross-sectional view showing an embodiment of an LED package using the white high heat resistant high reflective material of the present invention, in which a light emitting element, a reflector, and a lead frame are molded with a white high heat resistant high reflective material, Furthermore, it is sectional drawing of the LED package which formed parts other than the part to wire-bond of a lead frame with the white high heat-resistant highly reflective material.

かかる構成によれば、図2に示した構成により得られる作用に加えて、リードフレーム表面の硫化による黒色化を防ぐという作用を有する。   According to such a configuration, in addition to the operation obtained by the configuration shown in FIG.

図5は、本発明の白色高耐熱高反射材を用いたLEDパッケージの一実施例を示す断面図であって、ワイヤーでボンディングした発光素子とリードフレームを白色高耐熱高反射材でモールドし、リフレクターとリードフレームのワイヤーボンディングする部分以外の部分を白色高耐熱高反射材で形成したLEDパッケージの断面図である。   FIG. 5 is a cross-sectional view showing an embodiment of an LED package using the white high heat resistant high reflective material of the present invention, in which a light emitting element bonded with a wire and a lead frame are molded with a white high heat resistant high reflective material, It is sectional drawing of the LED package which formed parts other than the part which wire-bonds a reflector and a lead frame with the white high heat-resistant highly reflective material.

かかる構成によれば、図3に示した構成により得られる作用に加えて、リードフレーム表面の硫化による黒色化を防ぐという作用を有する。   According to such a configuration, in addition to the operation obtained by the configuration shown in FIG. 3, it has an operation of preventing blackening due to sulfuration of the lead frame surface.

以下、本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   Hereinafter, the present invention will be specifically described, but the present invention is not limited to these examples.

(実施例1)
アダマンテートX−M−104(出光興産株式会社製)20重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ40重量部、パーオクタO(日油株式会社製)1重量部メノウ乳鉢に入れ、前記メノウ乳鉢を自動乳鉢AMM−140D(日陶科学株式会社製)にセットし5分間混合する。これに球状アルミナ粒子であるアドマファインAO−502(株式会社アドマテック製)100重量部を少量ずつメノウ乳鉢に入れていき、全量を投入した後、さらに30分間混合する。次に混合した樹脂組成物を自公転式の撹拌脱泡装置用の専用容器に入れ、自公転式の撹拌脱泡装置V−mini300(株式会社EME製)で公転速度1600rpm、自転速度800rpm、減圧下の条件で4分間撹拌した。得られた樹脂組成物をV−mini300で、公転速度1400rpm、自転速度700rpmの条件で30秒撹拌しながら、シリンジに充填した。次に厚み1mm、40mm角のテフロン(登録商標)シートの中央部分に直径30mmの円をくりぬいた型枠を準備し、この型枠の両側を厚み0.3mm、直径40mm角のテフロン(登録商標)シートを介して、厚み3mm、直径40mm角のガラス板で挟みこみ、この型枠の中に混合した樹脂組成物を充填した。充填した型枠は恒温器ST−120(エスペック株式会社製)に入れ、150℃で30分間硬化を行った。
Example 1
20 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.), 40 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.), and 1 part by weight of perocta O (manufactured by NOF Corporation) The agate mortar is set in an automatic mortar AMM-140D (manufactured by Nippon Ceramic Science Co., Ltd.) and mixed for 5 minutes. To this, 100 parts by weight of Admafine AO-502 (manufactured by Admatech Co., Ltd.), which is spherical alumina particles, is added little by little in an agate mortar, and the whole amount is added, followed by further mixing for 30 minutes. Next, the mixed resin composition is put into a dedicated container for a self-revolving stirring and defoaming device, and a revolving speed of 1600 rpm, a rotating speed of 800 rpm, and a reduced pressure is obtained with a self-revolving stirring and defoaming device V-mini300 (manufactured by EME Co., Ltd.). Stir for 4 minutes under the following conditions. The obtained resin composition was filled into a syringe while stirring for 30 seconds under conditions of V-mini300 at a revolution speed of 1400 rpm and a rotation speed of 700 rpm. Next, a mold is prepared by hollowing a circle with a diameter of 30 mm at the center of a 1 mm thick, 40 mm square Teflon (registered trademark) sheet, and both sides of the mold are 0.3 mm thick and 40 mm square Teflon (registered trademark). ) The sheet was sandwiched between glass plates having a thickness of 3 mm and a diameter of 40 mm via a sheet, and the resin composition mixed in this mold was filled. The filled mold was placed in a thermostat ST-120 (manufactured by ESPEC Corporation) and cured at 150 ° C. for 30 minutes.

(実施例2)
アドマファインAO−502(株式会社アドマテック製)を200重量部にした以外は実施例1と同様である。
(Example 2)
The same as Example 1 except that Admafine AO-502 (manufactured by Admatech Co., Ltd.) was 200 parts by weight.

(実施例3)
パーオクタO(日油株式会社製)を2重量部にした以外は実施例1と同様である。
(Example 3)
The same as Example 1 except that Perocta O (manufactured by NOF Corporation) was changed to 2 parts by weight.

(実施例4)
アドマファインAO−502(株式会社アドマテック製)を300重量部にした以外は実施例1と同様である。
Example 4
The same as Example 1 except that Admafine AO-502 (manufactured by Admatech Co., Ltd.) was 300 parts by weight.

(実施例5)
アダマンテートX−M−104(出光興産株式会社製)40重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ30重量部とした以外は実施例1と同様である。
(Example 5)
Example 1 is the same as Example 1 except that 40 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.) and silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.) are each 30 parts by weight.

(実施例6)
アダマンテートX−M−104(出光興産株式会社製)40重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ30重量部、アドマファインAO−502(株式会社アドマテック製)を200重量部にした以外は実施例1と同様である。
(Example 6)
40 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.), 30 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.), and 200 parts by weight of Admafine AO-502 (manufactured by Admatech Co., Ltd.) Example 1 is the same as in Example 1 except that

(実施例7)
アダマンテートX−M−104(出光興産株式会社製)40重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ30重量部、アドマファインAO−502(株式会社アドマテック製)を300重量部にした以外は実施例1と同様である。
(Example 7)
40 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.), 30 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.) and 300 parts by weight of Admafine AO-502 (manufactured by Admatech Co., Ltd.) Example 1 is the same as in Example 1 except that

(実施例8)
アダマンテートX−M−104(出光興産株式会社製)50重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ25重量部とした以外は実施例1と同様である。
(Example 8)
Example 1 is the same as Example 1 except that 50 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.) and 25 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.) are used.

(実施例9)
アダマンテートX−M−104(出光興産株式会社製)50重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ25重量部、アドマファインAO−502(株式会社アドマテック製)を200重量部にした以外は実施例1と同様である。
Example 9
50 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.), 25 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.), and 200 parts by weight of Admafine AO-502 (manufactured by Admatech Co., Ltd.) Example 1 is the same as in Example 1 except that

(実施例10)
アダマンテートX−M−104(出光興産株式会社製)50重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ25重量部、アドマファインAO−502(株式会社アドマテック製)を300重量部にした以外は実施例1と同様である。
(Example 10)
50 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.), 25 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.), and 300 parts by weight of Admafine AO-502 (manufactured by Admatech Co., Ltd.) Example 1 is the same as in Example 1 except that

(比較例1)
パーオクタO(日油株式会社製)を0.5重量部にした以外は実施例1と同様である。
(Comparative Example 1)
The same as Example 1 except that Perocta O (manufactured by NOF Corporation) was changed to 0.5 part by weight.

(比較例2)
パーオクタO(日油株式会社製)を2.5重量部にした以外は実施例1と同様である。
(Comparative Example 2)
The same as Example 1 except that Perocta O (manufactured by NOF Corporation) was changed to 2.5 parts by weight.

(比較例3)
アドマファインAO−502(株式会社アドマテック製)を50重量部にした以外は実
施例1と同様である。
(Comparative Example 3)
The same as Example 1 except that 50 parts by weight of Admafine AO-502 (manufactured by Admatech) was used.

(比較例4)
アダマンテートX−M−104(出光興産株式会社製)40重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ30重量部、アドマファインAO−502(株式会社アドマテック製)を50重量部にした以外は実施例1と同様である。
(Comparative Example 4)
40 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.), 30 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.), and 50 parts by weight of Admafine AO-502 (manufactured by Admatech Co., Ltd.) Example 1 is the same as in Example 1 except that

(比較例5)
アダマンテートX−M−104(出光興産株式会社製)50重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ25重量部、アドマファインAO−502(株式会社アドマテック製)を50重量部にした以外は実施例1と同様である。
(Comparative Example 5)
50 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.), 25 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.), and 50 parts by weight of Admafine AO-502 (manufactured by Admatech Co., Ltd.) Example 1 is the same as in Example 1 except that

(比較例6)
アダマンテートX−M−104(出光興産株式会社製)とイルガキュア184(チバ・ジャパン株式会社製)を添加せず、シリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ50重量部とし、更に、ベルトコンベア式の紫外線照射機VB−15201BY(ウシオ電機株式会社製)にて紫外線を照射し、一次硬化を行わなかったこと以外は実施例1と同様である。
(Comparative Example 6)
Do not add adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.) and Irgacure 184 (manufactured by Ciba Japan Co., Ltd.), and add 50 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.). Example 1 is the same as Example 1 except that UV irradiation was performed with a belt conveyor type UV irradiation machine VB-15201BY (USHIO INC.) And primary curing was not performed.

(比較例7)
アダマンテートX−M−104(出光興産株式会社製)60重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ20重量部とした以外は実施例1と同様である。
(Comparative Example 7)
Example 1 is the same as Example 1 except that 60 parts by weight of adamantate X-M-104 (manufactured by Idemitsu Kosan Co., Ltd.) and 20 parts by weight of silicone resins KE109A and KE109B (manufactured by Shin-Etsu Silicone Co., Ltd.) are used.

(比較例8)
アダマンテートX−M−104(出光興産株式会社製)80重量部とシリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)をそれぞれ10重量部とした以外は実施例1と同様である。
(Comparative Example 8)
Example 1 is the same as Example 1 except that 80 parts by weight of adamantate X-M-104 (Idemitsu Kosan Co., Ltd.) and 10 parts by weight of silicone resins KE109A and KE109B (Shin-Etsu Silicone Co., Ltd.) are used.

(比較例9)
アダマンテートX−M−104(出光興産株式会社製)100重量部とし、シリコーン樹脂KE109AおよびKE109B(信越シリコーン株式会社製)を添加しなかったとした以外は実施例1と同様である。
(Comparative Example 9)
The same as Example 1 except that 100 parts by weight of adamantate X-M-104 (made by Idemitsu Kosan Co., Ltd.) and silicone resins KE109A and KE109B (made by Shin-Etsu Silicone Co., Ltd.) were not added.

(比較例10)
球状アルミナ粒子であるアドマファインAO−502(株式会社アドマテック製)を板状アルミナ粒子であるセラフYFA05070(キンセイマテック株式会社製)にした以外は実施例1と同様である。
(Comparative Example 10)
Example 1 is the same as Example 1 except that Admafine AO-502 (manufactured by Admatech), which is spherical alumina particles, is changed to Seraph YFA05070 (manufactured by Kinsei Matec Corporation), which is plate-like alumina particles.

(比較例11)
球状アルミナ粒子であるアドマファインAO−502(株式会社アドマテック製)をルチル型酸化チタンTIO13PB(株式会社高純度化学研究所製)にした以外は実施例1と同様である。
(Comparative Example 11)
The same as Example 1 except that Admafine AO-502 (manufactured by Admatech Co., Ltd.), which is spherical alumina particles, was changed to rutile titanium oxide TIO13PB (manufactured by Kojundo Chemical Laboratory Co., Ltd.).

(比較例12)
球状アルミナ粒子であるアドマファインAO−502(株式会社アドマテック製)をアナターゼ型酸化チタンTIO17PB(株式会社高純度化学研究所製)にした以外は実施例1と同様である。
(Comparative Example 12)
The same as Example 1 except that Admafine AO-502 (manufactured by Admatech Co., Ltd.), which is spherical alumina particles, was changed to anatase type titanium oxide TIO17PB (manufactured by Kojundo Chemical Laboratory Co., Ltd.).

(比較例13)
球状アルミナ粒子であるアドマファインAO−502(株式会社アドマテック製)を酸化亜鉛ZNO03PB(株式会社高純度化学研究所製)にした以外は実施例1と同様である。
(Comparative Example 13)
The same as Example 1, except that Admafine AO-502 (manufactured by Admatech Co., Ltd.), which is spherical alumina particles, was changed to zinc oxide ZNO03PB (manufactured by Kojundo Chemical Laboratory Co., Ltd.).

(反射率の測定)
得られた白色高耐熱高反射材を150φ積分球付属装置を取り付けたU−3500形自記分光光度計(株式会社日立製作所株式会社製)に取り付け、350nm〜800nmの波長の全反射率を測定した。なお、測定の際のリファレンスとしては硫酸マグネシウムを使用した。
(Measurement of reflectance)
The obtained white high heat resistant high reflective material was attached to a U-3500 self-recording spectrophotometer (manufactured by Hitachi, Ltd.) equipped with a 150φ integrating sphere attachment device, and the total reflectance at a wavelength of 350 nm to 800 nm was measured. . Note that magnesium sulfate was used as a reference for the measurement.

得られた全反射率の測定結果を(表1)に示した。   The measurement results of the obtained total reflectance are shown in (Table 1).

実施例1〜10の初期反射率は、波長が350nmのときの全反射率が80%以上、波長が460nmのときの全反射率が95%以上、波長が800nmのときの全反射率が93%以上となり、また260℃1時間処理後の反射率が、波長が350nmのときの全反射率が75%以上、波長が460nmのときの全反射率が92%以上、波長が800nmのときの全反射率が90%以上となった。   The initial reflectances of Examples 1 to 10 are 80% or more when the wavelength is 350 nm, 95% or more when the wavelength is 460 nm, and 93 when the wavelength is 800 nm. The reflectance after 1 hour treatment at 260 ° C. is 75% or more when the wavelength is 350 nm, 92% or more when the wavelength is 460 nm, and when the wavelength is 800 nm. Total reflectance was 90% or more.

一方、比較例1のラジカル型光重合開始剤の添加量が少ない場合の初期反射率は、波長が350nmのときの全反射率が78.6%、波長が460nmのときの全反射率が93.2%、波長が800nmのときの全反射率が91.5%となり、また260℃1時間処理後の反射率が、波長が350nmのときの全反射率が71%、波長が460nmのときの全反射率が90.4%、波長が800nmのときの全反射率が89.6%となり、本発明の実施例と比べて、260℃1時間処理熱処理後の反射率が大きく低下しており、本発明の白色高耐熱高反射材が優れていることが明らかとなった。また、比較例2のラジカル型光重合開始剤の添加量が多い場合の初期反射率は、波長が350nmのときの全反射率が83.5%、波長が460nmのときの全反射率が96.4%、波長が800nmのときの全反射率が93.8%となり、また260℃1時間処理後の反射率が、波長が350nmのときの全反射率が70.6%、波長が460nmのときの全反射率が89.5%、波長が800nmのときの全反射率が91.3%となり、本発明の実施例と比べて、260℃1時間処理熱処理後の反射率が大きく低下しており、本発明の白色高耐熱高反射材が優れていることが明らかとなった。比較例3〜5のアルミナの充填量が少ないサンプルの初期反射率は、波長が350nmのときの全反射率が80%以上、波長が460nmのときの全反射率が95%以上、波長が800nmのときの全反射率が92%以上となり、また260℃1時間処理後の反射率が、波長が350nmのときの全反射率が最も良いサンプルで57%、波長が460nmのときの全反射率が最も良いサンプルで78%、波長が800nmのときの全反射率が最も良いサンプルで93%となり、本発明の実施例と比べて、260℃1時間処理熱処理後の反射率が大きく低下しており、本発明の白色高耐熱高反射材が優れていることが明らかとなった。また、樹脂組成物の組成比を変えた比較例6〜9のサンプルの初期反射率は、波長が350nmのときの全反射率が80%以上、波長が460nmのときの全反射率が95%以上、波長が800nmのときの全反射率が92%以上となり、また260℃1時間処理後の反射率が、波長が350nmのときの全反射率が最も良いサンプルで70%、波長が460nmのときの全反射率が最も良いサンプルで78%、波長が800nmのときの全反射率が最も良いサンプルで84%となり、本発明の実施例と比べて、260℃1時間処理熱処理後の反射率が大きく低下しており、本発明の白色高耐熱高反射材が優れていることが明らかとなった。更に充填するフィラーであるアルミナの形状を変えた比較例10のサンプルでは、初期反射率は、波長が350nmのときの全反射率が74%、波長が460nmのときの全反射率が86%、波長が800nmのときの全反射率が85%となり、また260℃1時間処理後の反射率が、波長が350nmのときの全反射率が51%、波長が460nmのときの全反射率が80%、波長が800nmのときの全反射率が最も良いサンプルで84%となり、本発明の実施例と比べて、初期の場合でも全体的に反射率が低く、本発明の白色高耐熱高反射材が優れていることが明らかとなった。更に充填するフィラーの種類を変えた比較例11〜13のサンプルでは、初期反射率は、波長が350nmのときの全反射率が10%以下、波長が460nmのときの全反射率が98%以上、波長が800nmのときの全反射率が95%以上となり、また260℃1時間処理後の反射率が、波長が350nmのときの全反射率が10%以下、波長が460nmのときの全反射率が最も良いサンプルで92%、波長が800nmのときの全反射率が最も良いサンプルで93%となり、本発明の実施例と比べて、初期の反射率の特に350nmでの反射率が大きく低下しており、本発明の白色高耐熱高反射材が広い波長領域で反射率が高く、優れていることが明らかとなった。   On the other hand, the initial reflectance when the amount of the radical photopolymerization initiator added in Comparative Example 1 is small is 78.6% when the wavelength is 350 nm, and 93 when the wavelength is 460 nm. .2%, when the wavelength is 800 nm, the total reflectance is 91.5%, and when the reflectance after treatment at 260 ° C. for 1 hour is 71% when the wavelength is 350 nm, and when the wavelength is 460 nm The total reflectivity of 90.4% and the total reflectivity of 89.6% when the wavelength is 800 nm is 89.6%, and the reflectivity after heat treatment at 260 ° C. for 1 hour is greatly reduced as compared with the example of the present invention. Thus, it was revealed that the white high heat resistant high reflective material of the present invention is excellent. The initial reflectance when the radical photopolymerization initiator added in Comparative Example 2 is large has a total reflectance of 83.5% when the wavelength is 350 nm and a total reflectance of 96 when the wavelength is 460 nm. .4%, the total reflectance when the wavelength is 800 nm is 93.8%, and the reflectance after 1 hour treatment at 260 ° C. is 70.6% when the wavelength is 350 nm, and the wavelength is 460 nm. In this case, the total reflectivity is 89.5%, and the total reflectivity is 91.3% when the wavelength is 800 nm. Compared with the embodiment of the present invention, the reflectivity after heat treatment at 260 ° C. for 1 hour is greatly reduced. Thus, it was revealed that the white high heat resistant high reflective material of the present invention is excellent. The initial reflectances of the samples with a small amount of alumina filled in Comparative Examples 3 to 5 are 80% or more when the wavelength is 350 nm, 95% or more when the wavelength is 460 nm, and 800 nm when the wavelength is 800 nm. The total reflectance at 92 ° C. is 92% or more, and the reflectance after processing at 260 ° C. for 1 hour is 57% for the sample having the best total reflectance when the wavelength is 350 nm, and the total reflectance when the wavelength is 460 nm. Is 78% for the best sample and 93% for the best sample when the wavelength is 800 nm, and the reflectivity after heat treatment at 260 ° C. for 1 hour is greatly reduced compared to the example of the present invention. Thus, it was revealed that the white high heat resistant high reflective material of the present invention is excellent. In addition, the initial reflectances of the samples of Comparative Examples 6 to 9 in which the composition ratio of the resin composition was changed were 80% or more when the wavelength was 350 nm, and 95% when the wavelength was 460 nm. As described above, the total reflectivity when the wavelength is 800 nm is 92% or more, and the reflectivity after 1 hour treatment at 260 ° C. is 70% for the sample having the best total reflectivity when the wavelength is 350 nm, and the wavelength is 460 nm. The sample with the best total reflectivity is 78% and the sample with the best total reflectivity when the wavelength is 800 nm is 84%. Compared with the embodiment of the present invention, the reflectivity after heat treatment at 260 ° C. for 1 hour Was significantly reduced, and it was clarified that the white high heat resistant high reflective material of the present invention is excellent. Further, in the sample of Comparative Example 10 in which the shape of alumina as a filler to be filled was changed, the initial reflectance was 74% when the wavelength was 350 nm, 86% when the wavelength was 460 nm, The total reflectivity when the wavelength is 800 nm is 85%, the reflectivity after treatment at 260 ° C. for 1 hour is 51% when the wavelength is 350 nm, and the total reflectivity when the wavelength is 460 nm is 80%. %, The total reflectance at the wavelength of 800 nm is 84% for the best sample, and the overall reflectance is lower than that of the embodiment of the present invention even in the initial stage. Was found to be superior. Furthermore, in the samples of Comparative Examples 11 to 13 in which the type of filler to be filled is changed, the initial reflectance is 10% or less when the wavelength is 350 nm, and 98% or more when the wavelength is 460 nm. The total reflectivity when the wavelength is 800 nm is 95% or more, and the reflectivity after 1 hour treatment at 260 ° C. is 10% or less when the wavelength is 350 nm, and the total reflectivity when the wavelength is 460 nm. The best reflectivity sample is 92% and the total reflectivity when the wavelength is 800 nm is 93%, and the initial reflectivity, particularly at 350 nm, is greatly reduced compared to the embodiment of the present invention. Thus, it has been clarified that the white high heat resistant high reflective material of the present invention has a high reflectance in a wide wavelength region and is excellent.

なお、本実施例では、白色高耐熱高反射材に球状のアルミナを100重量部以上入れることで、上記効果が得られるが、フィラーを多く入れすぎると、分散剤などを入れる必要があり、分散剤は熱に弱いため、白色高耐熱高反射材に入れるフィラーは300重量部以下であることが好ましい。   In this example, the above effect can be obtained by adding 100 parts by weight or more of spherical alumina to the white high heat resistant high reflective material. However, if too much filler is added, it is necessary to add a dispersant and the like. Since the agent is vulnerable to heat, the amount of filler to be added to the white high heat resistant high reflective material is preferably 300 parts by weight or less.

(耐熱性の評価)
一般のLED照明は4万時間の寿命を必要としている。また、社団法人日本照明器具工業会が示した「白色LED照明器具性能要求事項」において、LEDの寿命は初期光束の70%に低下した時間を寿命とすることが決められている。そこで反射材に実使用温度よりも高い温度を加えて加速劣化させ、アレニウスプロットを応用して、反射率が70%まで低下する時間を予測することで、4万時間を保証できる温度を見積もることができる。
(Evaluation of heat resistance)
General LED lighting requires a life of 40,000 hours. In addition, in the “White LED Lighting Equipment Performance Requirements” presented by the Japan Lighting Equipment Manufacturers Association, it is determined that the lifetime of the LED is the time when it has decreased to 70% of the initial luminous flux. Therefore, estimate the temperature that can guarantee 40,000 hours by applying a temperature higher than the actual use temperature to the reflective material and accelerating deterioration, and predicting the time when the reflectance falls to 70% by applying Arrhenius plot. Can do.

アレニウスプロットは化学反応の速度と使用温度の関係を示す式であり、(式1)で表される。   The Arrhenius plot is an expression showing the relationship between the chemical reaction rate and the operating temperature, and is expressed by (Expression 1).

L=B・exp(E/kT) ・・・(式1)
L:寿命
B:定数
E:活性化エネルギー
k:ボルツマン定数
T:絶対温度
この式の自然対数を取ると、(式2)のように表される。
L = B · exp (E / kT) (Formula 1)
L: Life B: Constant E: Activation energy k: Boltzmann constant T: Absolute temperature Taking the natural logarithm of this equation, it is expressed as (Equation 2).

lnL=(E/k)(1/T)+lnB ・・・(式2)
この(式2)は対数グラフ上で、y=ax+bの形で表され、lnLと1/Tを変数とする直線とみなすことが出来る。従って、少なくとも3点以上の異なる温度で処理した際の反射率が70%まで低下する時間を(式2)に適用して直線式となれば、4万時間の自然対数を取った10.4と交わる時の横軸の値が1/Tとなり、逆数を取れば、4万時間を保障できる温度が見積もれる。
lnL = (E / k) (1 / T) + lnB (Expression 2)
This (Expression 2) is expressed in the form of y = ax + b on the logarithmic graph, and can be regarded as a straight line having lnL and 1 / T as variables. Therefore, if the time when the reflectance when processed at different temperatures of at least three points is reduced to 70% is applied to (Equation 2) to form a linear equation, the natural logarithm of 40,000 hours is taken 10.4. The value of the horizontal axis at the time of crossing with becomes 1 / T, and if the reciprocal is taken, a temperature that can guarantee 40,000 hours can be estimated.

図6は、本発明の白色高耐熱高反射材の4万時間保証温度を推定するアレニウスプロットを示す図である。   FIG. 6 is a diagram showing an Arrhenius plot for estimating the 40,000 hour guaranteed temperature of the white high heat resistant high reflective material of the present invention.

実施例としては、熱硬化型の白色高耐熱高反射材はフィラーの充填量が50%と66%の2種類について、比較例としては、光/熱併用硬化型のフィラーの充填量が66%について、180乃至260℃の範囲の4点の任意温度で熱処理を行い、反射率の経時変化を測定した。熱処理は、3mm厚のテフロン(登録商標)製シートを敷いたステンレス製バット上に反射率測定用のサンプルを置き、これをドライングオーブンDX−300(ヤマトサイエンティフィック(株)製)内に入れて行った。得られたデータより、反射率が70%まで低下する推定時間の自然対数を縦軸に、処理温度の絶対温度の逆数を横軸にしたものを図6に示す。熱硬化型の白色高耐熱高反射材はフィラーの2種類は明らかに光/熱併用硬化型に比べて4万時間保障温度が高く、耐熱性が格段に優れることが判った。   As an example, the thermosetting white high heat resistance and high reflection material has two filler filling amounts of 50% and 66%. As a comparative example, the filling amount of the light / heat combination curing filler is 66%. Was subjected to heat treatment at four arbitrary temperatures in the range of 180 to 260 ° C., and the change in reflectance with time was measured. For heat treatment, a sample for reflectance measurement is placed on a stainless steel vat with a 3 mm thick Teflon (registered trademark) sheet, and this is placed in a drying oven DX-300 (manufactured by Yamato Scientific Co., Ltd.). I went. From the obtained data, FIG. 6 shows the natural logarithm of the estimated time when the reflectance is reduced to 70% on the vertical axis and the reciprocal of the absolute temperature of the processing temperature on the horizontal axis. It was found that the thermosetting white high heat resistance and high reflective material has two types of fillers, which clearly have a higher temperature for 40,000 hours as compared with the light / heat combination curing type, and the heat resistance is remarkably superior.

本発明の白色高耐熱高反射材は、液晶ディスプレイのバックライトに使用されるリフレクター、各種照明用途の反射板、LEDパッケージを構成するリフレクターなどに使用できる。   The white high heat resistance and high reflection material of the present invention can be used for a reflector used for a backlight of a liquid crystal display, a reflector for various lighting applications, a reflector constituting an LED package, and the like.

1 発光素子
2 リフレクター
3 リードフレーム
4 ワイヤー
5 白色高耐熱高反射材
6 発光素子
7 リフレクター
8 リードフレーム
9 ワイヤー
10 白色高耐熱高反射材
11 発光素子
12 リードフレーム
13 ワイヤー
14 白色高反射材
15 発光素子
16 リードフレーム
17 ワイヤー
18 白色高反射材
DESCRIPTION OF SYMBOLS 1 Light emitting element 2 Reflector 3 Lead frame 4 Wire 5 White high heat resistant high reflective material 6 Light emitting element 7 Reflector 8 Lead frame 9 Wire 10 White high heat resistant high reflective material 11 Light emitting element 12 Lead frame 13 Wire 14 White high reflective material 15 Light emitting element 16 Lead frame 17 Wire 18 White highly reflective material

Claims (5)

20乃至50重量部のアクリル系の官能基を有するアダマンタン樹脂と50乃至80重量部のシリコーン樹脂とを混ぜ合わせて合計100重量部とした混合樹脂と、
1乃至2重量部のラジカル型熱重合開始剤と、
100重量部以上の球状の粒子形状のアルミナと、
を混ぜ合わせた反射材用樹脂組成物を硬化させたことを特徴とする白色高耐熱高反射材。
A mixed resin in which 20 to 50 parts by weight of an adamantane resin having an acrylic functional group and 50 to 80 parts by weight of a silicone resin are mixed to make a total of 100 parts by weight;
1 to 2 parts by weight of a radical thermal polymerization initiator;
100 parts by weight or more of spherical particle-shaped alumina,
A white, high heat-resistant, high-reflective material, characterized by curing a resin composition for a reflective material that is mixed together.
アクリル系官能基を有するアダマンタン樹脂が1−アダマンチルメタクリレートであることを特徴とする請求項1に記載の白色高耐熱高反射材。 The white highly heat-resistant and highly reflective material according to claim 1, wherein the adamantane resin having an acrylic functional group is 1-adamantyl methacrylate. シリコーン樹脂が付加反応型のシリコーンゴムであることを特徴とする請求項1に記載の白色高耐熱高反射材。 2. The white high heat resistance and high reflection material according to claim 1, wherein the silicone resin is an addition reaction type silicone rubber. ラジカル型熱重合開始剤が、有機過酸化物系熱重合開始剤であることを特徴とする請求項1に記載の白色高耐熱高反射材。 The white high heat resistance and high reflection material according to claim 1, wherein the radical thermal polymerization initiator is an organic peroxide thermal polymerization initiator. 発光素子搭載する金属リードフレームと、前記発光素子の上部を除く周囲を囲むように配置するリフレクターと、請求項1に記載の白色高反射材とで構成している特徴とするLEDパッケージ。 An LED package comprising: a metal lead frame mounted with a light emitting element; a reflector disposed so as to surround a periphery excluding an upper portion of the light emitting element; and the white highly reflective material according to claim 1.
JP2011022376A 2010-03-30 2011-02-04 White high reflection material with high heat resistance and led package Withdrawn JP2012164729A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2011022376A JP2012164729A (en) 2011-02-04 2011-02-04 White high reflection material with high heat resistance and led package
US13/073,780 US20110242818A1 (en) 2010-03-30 2011-03-28 Highly reflective white material and led package
EP11160120A EP2372799A3 (en) 2010-03-30 2011-03-29 Highly reflective white material and led package
TW100110974A TW201203617A (en) 2010-03-30 2011-03-30 Highly reflective white material and LED package

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022376A JP2012164729A (en) 2011-02-04 2011-02-04 White high reflection material with high heat resistance and led package

Publications (1)

Publication Number Publication Date
JP2012164729A true JP2012164729A (en) 2012-08-30

Family

ID=46843861

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022376A Withdrawn JP2012164729A (en) 2010-03-30 2011-02-04 White high reflection material with high heat resistance and led package

Country Status (1)

Country Link
JP (1) JP2012164729A (en)

Similar Documents

Publication Publication Date Title
JP6724898B2 (en) Light-scattering complex forming composition, light-scattering complex and method for producing the same
JP6297070B2 (en) Curable silicone composition, cured product thereof, and optical semiconductor device
WO2011136302A1 (en) Package for semiconductor light emitting device, and light emitting device
TW200840080A (en) Surface mount type light emitting diode package device and light emitting element package device
JP2010265437A (en) Composition for thermosetting silicone resin
CN105038233B (en) Resin composition and method for producing same
WO2017110468A1 (en) Heat-curable resin composition
TW201333118A (en) Curable silicone composition, cured product thereof, and optical semiconductor device
TWI746876B (en) Dispersion, composition, sealing member, light-emitting device, lighting fixture, display device, and manufacturing method of light-emitting device
JP6344190B2 (en) Optical semiconductor light emitting device, lighting fixture, display device, and manufacturing method of optical semiconductor light emitting device
JP2006321832A (en) Resin composition for sealing optical semiconductor and optical semiconductor device using the same
JP2008210845A (en) Sealing material composition for light-emitting element, cured object thereof and light-emitting element sealing body
JP2015073084A (en) Wavelength conversion sheet, sealed optical semiconductor, and optical semiconductor element device
TWI506058B (en) Curable silicone resin composition
US20110242818A1 (en) Highly reflective white material and led package
WO2013137079A1 (en) Method for producing optical semiconductor device and optical semiconductor device
JP6287747B2 (en) Light-scattering composition, light-scattering composite, and method for producing the same
JP2011249554A (en) White high heat-resistant and high reflection material and led package
JP2012164729A (en) White high reflection material with high heat resistance and led package
JP2010275405A (en) Resin composition and light emission source prepared by using the same
Chang et al. Effects of hydrosilyl monomers on the performance of polysiloxane encapsulant/phosphor blend based hybrid white‐light‐emitting diodes
JP2012238767A (en) Resin composition for semiconductor light-emitting device package, semiconductor light-emitting device package and manufacturing method of the same
JP7003075B2 (en) Wafer-level optical semiconductor device resin composition and wafer-level optical semiconductor device using the composition
Zhang et al. Development of an Al2O3 filled composite for the bracket of ultraviolet light-emitting diodes (UV-LEDs)
JP2012109461A (en) Composition for semiconductor light-emitting device member, sealing medium, semiconductor light-emitting device member, and semiconductor light-emitting device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513