JP2012162794A - Electrolytic pickling method for descaling stainless steel strip - Google Patents

Electrolytic pickling method for descaling stainless steel strip Download PDF

Info

Publication number
JP2012162794A
JP2012162794A JP2011026185A JP2011026185A JP2012162794A JP 2012162794 A JP2012162794 A JP 2012162794A JP 2011026185 A JP2011026185 A JP 2011026185A JP 2011026185 A JP2011026185 A JP 2011026185A JP 2012162794 A JP2012162794 A JP 2012162794A
Authority
JP
Japan
Prior art keywords
aqueous solution
stainless steel
steel strip
anode
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011026185A
Other languages
Japanese (ja)
Other versions
JP5757745B2 (en
Inventor
Taichiro Mizoguchi
太一朗 溝口
Katsuyuki Shiotsuki
勝幸 汐月
Wakahiro Harada
和加大 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2011026185A priority Critical patent/JP5757745B2/en
Publication of JP2012162794A publication Critical patent/JP2012162794A/en
Application granted granted Critical
Publication of JP5757745B2 publication Critical patent/JP5757745B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To attain a current efficiency of 90% or more by appropriately designing the structure of a tank corresponding to the scale of pickling equipment.SOLUTION: A stainless steel strip after annealed is descaled in a neutral salt solution or an acidic aqueous solution by anode electrolyte using indirect energizing method. In such descaling equipment (electrolytic pickling equipment), the electrolytic pickling method satisfies the following formula: L >0.6 DW/I, wherein a distance between anode and cathode is L (mm), current energizing among electrodes is I(A), a substantial width of a pickling tank between the anode and cathode is W (mm), a substantial depth thereof is D (mm), and the substantial width W and substantial depth D are dimensions after the size of insulation substance is subtracted from the actual sizes.

Description

本発明は、焼鈍処理によってステンレス鋼帯表面に生じた酸化スケールを、中性塩水溶液または酸性水溶液中において間接通電法による陽極電解によって脱デスケールする際に、通電した電流を効率よくストリップへ流すための電解酸洗法に関するものである。   In the present invention, when an oxide scale formed on the surface of a stainless steel strip by annealing treatment is descaled by anodic electrolysis by an indirect energization method in a neutral salt aqueous solution or an acidic aqueous solution, the energized current flows efficiently to the strip. This relates to the electrolytic pickling method.

冷間圧延後のステンレス鋼帯に対して行われる焼鈍処理方法の1つとして、大気雰囲気炉内で燃料をバーナー燃焼させて熱処理を行う大気焼鈍方法がある。この焼鈍方法では、大気中の酸素および燃焼によって生じた水蒸気により、ステンレス鋼帯の表面に金属酸化物が生成するので、これを除去し、良好な品質のステンレス鋼帯を製造するために、焼鈍処理後に脱スケール処理が行われる。   As one of the annealing treatment methods performed on the stainless steel strip after cold rolling, there is an atmospheric annealing method in which heat treatment is performed by burning the fuel in an air atmosphere furnace. In this annealing method, metal oxides are formed on the surface of the stainless steel strip due to oxygen in the atmosphere and water vapor generated by combustion, so that it is removed and annealed to produce a stainless steel strip of good quality. A descaling process is performed after the process.

脱スケール処理方法として、酸性水溶液中に浸漬する方法、中性塩水溶液あるいは酸性水溶液中で陽極電解を行う方法(以下、単に電解酸洗と言う)、苛性ソーダと硝酸ソーダとの混合溶融塩中での浸漬処理を行う方法があり、これらを組み合わせてステンレス鋼帯の脱スケールが行われている。   The descaling method includes immersion in an acidic aqueous solution, neutral salt aqueous solution or anodic electrolysis in an acidic aqueous solution (hereinafter simply referred to as electrolytic pickling), mixed molten salt of caustic soda and sodium nitrate. There is a method of performing an immersion treatment of these, and the descaling of the stainless steel strip is performed by combining these methods.

電解酸洗においては、ステンレス鋼帯の通枚方向に対して非接触に陰極と陽極を交互に配置し、ステンレス鋼帯に陽極電解と陰極電解を順次施す間接通電法が広く行われている。間接通電法ではステンレス鋼帯に通電ロールを接触させる必要がないため、通電ロールとの接触による表面キズ発生などの問題がない。しかし、ステンレス鋼帯に接触していないために、通電し電流の一部が陽極から陰極へ直接流れ、ステンレス鋼帯へ流れる電流効率が低下するという問題がある。   In the electrolytic pickling, an indirect energization method in which cathodes and anodes are alternately arranged in a non-contact manner in the sheet passing direction of the stainless steel strip, and anodic electrolysis and cathode electrolysis are sequentially performed on the stainless steel strip is widely performed. In the indirect energization method, since there is no need to bring the energizing roll into contact with the stainless steel strip, there are no problems such as surface scratches due to contact with the energizing roll. However, since it is not in contact with the stainless steel strip, there is a problem that a part of the current flows directly from the anode to the cathode and the current efficiency flowing to the stainless steel strip is reduced.

陽極から陰極へ直接流れる電極間電流をなくすためには、陽極電解を行う槽と陰極電解を行う槽を独立させることが最も有効である。このような技術に関しては、特許文献1に記載されている。しかし槽を分けた場合、それぞれの槽について液の管理が必要になること、槽間にロールが必要になるため、ロールコストが生じ、さらにロールとの接触によるキズの発生が懸念されるなど、デメリットも存在する。   In order to eliminate the inter-electrode current flowing directly from the anode to the cathode, it is most effective to make the tank for performing anodic electrolysis and the tank for performing cathodic electrolysis independent. Such a technique is described in Patent Document 1. However, when the tanks are divided, it is necessary to manage the liquid for each tank, and rolls are required between the tanks, resulting in roll costs, and there is concern about the occurrence of scratches due to contact with the rolls, etc. There are also disadvantages.

特開2004−300541JP2004-300541

1槽内に陽極と陰極を配置する場合においては、陽極と陰極間の距離を広くとることが、電流効率を向上させるのに有効な対策である。槽を分けることに比べて電流効率では劣るものの、液の管理やロールなどの設備管理面も考慮するとメリットは大きい。   In the case where the anode and the cathode are arranged in one tank, it is an effective measure for improving the current efficiency to increase the distance between the anode and the cathode. Although the current efficiency is inferior to dividing the tank, there are significant advantages in consideration of equipment management such as liquid management and rolls.

総合的なメリットが大きいことから、1槽内に陽極と陰極を配置する電解酸洗方法は広く利用されている。しかしながら、電極配置と電流効率の関係についての詳細な検討が行われておらず、電極間距離を広く取りすぎて槽が大型化し管理面での負荷が大きくなる場合や、設置場所等の関係から電極間距離を狭くして電流効率が低下する場合があった。したがって、電極配置と電流効率の関係について検討し、最適な槽構成を把握する必要があった。   Since the overall merit is great, an electrolytic pickling method in which an anode and a cathode are arranged in one tank is widely used. However, a detailed study on the relationship between electrode arrangement and current efficiency has not been conducted, and the distance between the electrodes is too wide and the tank becomes large and the load on the management side becomes large. In some cases, the current efficiency is reduced by reducing the distance between the electrodes. Therefore, it was necessary to study the relationship between the electrode arrangement and the current efficiency and grasp the optimum tank configuration.

発明者らは、電流効率の低下は図2に示すように電流が陽極から陰極へ直接流れることによって起こるものであり、陽極と陰極間の電気抵抗を大きくすることによって電流効率を高めることが出来るとの考えのもと、種々の実験を行った。その結果、電流効率と槽の構成の関係を把握し、本発明をなした。   The inventors have found that the decrease in current efficiency occurs when the current flows directly from the anode to the cathode as shown in FIG. 2, and the current efficiency can be increased by increasing the electrical resistance between the anode and the cathode. Based on this idea, various experiments were conducted. As a result, the relationship between the current efficiency and the tank configuration was grasped and the present invention was made.

請求項1に記載の発明は、焼鈍後のステンレス鋼帯を中性塩水溶液または酸性水溶液中において、間接通電法による陽極電解によって脱スケールを行う設備(以下、単に電解酸洗設備と言う)について、陽極と陰極間の距離をL(mm)、電極間を通電する電流をI(A)、陽極と陰極間における酸洗槽の実質幅をW(mm)、実質深さをD(mm)としたとき、以下の式を満たす電解酸洗法である。
L>0.6DW/I・・・・・・(1)
ここで実質幅W、実質深さDとは、実際の寸法から、絶縁物が設置してある部分を差し引いた寸法を言う。
請求項2に記載の発明は、ステンレス鋼帯と電極間の距離を20mm以上、150mm以下とする請求項1に記載の電解酸洗法である。
請求項3に記載の発明は、中性塩電解水溶液として100〜250g/lのNaSOを含む水溶液、酸性水溶液として50〜200g/lのHSOまたはHNOを含む水溶液を用いることを特徴とする、請求項1または2に記載の電解酸洗法である。
The invention described in claim 1 relates to equipment for descaling the annealed stainless steel strip in a neutral salt aqueous solution or an acidic aqueous solution by anodic electrolysis using an indirect current method (hereinafter simply referred to as electrolytic pickling equipment). The distance between the anode and the cathode is L (mm), the current passing between the electrodes is I (A), the actual width of the pickling tank between the anode and the cathode is W (mm), and the actual depth is D (mm) Is an electrolytic pickling method that satisfies the following formula.
L> 0.6DW / I (1)
Here, the substantial width W and the substantial depth D refer to dimensions obtained by subtracting a portion where an insulator is installed from actual dimensions.
Invention of Claim 2 is the electrolytic pickling method of Claim 1 which makes the distance between a stainless steel strip and an electrode 20 mm or more and 150 mm or less.
The invention according to claim 3 uses an aqueous solution containing 100 to 250 g / l Na 2 SO 4 as a neutral salt electrolysis aqueous solution, and an aqueous solution containing 50 to 200 g / l H 2 SO 4 or HNO 3 as an acidic aqueous solution. It is the electrolytic pickling method of Claim 1 or 2 characterized by the above-mentioned.

本発明により、酸洗設備の規模に応じた適切な槽の構成を設計し、電流効率90%以上を得ることができる。   According to the present invention, an appropriate tank configuration corresponding to the scale of the pickling facility can be designed, and a current efficiency of 90% or more can be obtained.

本発明の形態に係る脱スケール設備の概略構成図Schematic configuration diagram of descaling equipment according to an embodiment of the present invention 間接通電法における電流回路を表す図Diagram showing current circuit in indirect energization method 本発明の形態に係る脱スケール設備の例Examples of descaling equipment according to embodiments of the present invention 酸洗槽の構成と電流効率の関係を表す図Diagram showing the relationship between the structure of the pickling tank and the current efficiency

本発明の実施形態に係る脱スケール設備を図1に示す。通板するステンレス鋼帯の上下に、鋼帯から一定の距離を取った位置に陽極および陰極を配置する。電解電圧とコストを考慮すると、陽極は白金族金属あるいは白金属酸化物を被覆した電極を使用し、陰極はステンレス鋼などの鉄系合金を使用することが好ましい。このとき、陽極と陰極の最も近い距離を電極間距離Lとする。なお電流効率の点からは鋼帯と電極間の距離は近いほどよいが、近づけすぎると鋼帯と電極が接触してキズの原因となるので、鋼帯と電極間の距離は20mm以上、150mm以下とすることが好ましい。   A descaling facility according to an embodiment of the present invention is shown in FIG. An anode and a cathode are arranged above and below the stainless steel strip to be passed through at a certain distance from the steel strip. Considering the electrolytic voltage and cost, it is preferable to use an electrode coated with a platinum group metal or a white metal oxide for the anode and an iron-based alloy such as stainless steel for the cathode. At this time, the closest distance between the anode and the cathode is defined as an interelectrode distance L. From the viewpoint of current efficiency, the closer the distance between the steel strip and the electrode is, the better. The following is preferable.

図1のような電極配置を1組として、1槽内に2組以上設置しても良い。陽極として白金族金属あるいは白金属酸化物を被覆した電極を使用し、陰極としてステンレス鋼などの鉄系合金が使用できる。   Two or more sets of electrode arrangements as shown in FIG. 1 may be installed in one tank. An electrode coated with a platinum group metal or white metal oxide can be used as the anode, and an iron-based alloy such as stainless steel can be used as the cathode.

酸洗液には、ステンレス鋼の脱スケールに用いられる一般的な酸洗液を用いることができる。本発明では、中性塩水溶液として、100〜250g/lのNaSOを含む水溶液、酸性水溶液として、50〜200g/lのHSOまたはHNOを含む水溶液を想定している。 As the pickling solution, a general pickling solution used for descaling stainless steel can be used. In the present invention, an aqueous solution containing 100 to 250 g / l Na 2 SO 4 is assumed as the neutral salt aqueous solution, and an aqueous solution containing 50 to 200 g / l H 2 SO 4 or HNO 3 is assumed as the acidic aqueous solution.

総通電量は酸洗設備の規模に応じて定めるものであり、電極表面の電流密度として100〜5000A/mとなるように電流および電極形状を調整すればよい。 The total energization amount is determined according to the scale of the pickling facility, and the current and the electrode shape may be adjusted so that the current density on the electrode surface is 100 to 5000 A / m 2 .

表1に示す組成の中性塩水溶液、硫酸水溶液、硝酸水溶液を用い、SUS304の脱スケールを行った。脱スケール中に鋼帯中を流れる電流Iを測定し、通電電流1000Aに対する比率を電流効率とした。図3に示すように、電極間距離を変えた場合あるいは、槽内に絶縁物を設置することで酸洗槽の実質幅、実質深さを変えた場合の電流効率を求めた。 SUS304 was descaled using a neutral salt solution, a sulfuric acid solution, and a nitric acid solution shown in Table 1. During descaling measuring current I d flowing through the steel strip, the ratio of applied current 1000A and current efficiency. As shown in FIG. 3, the current efficiency was obtained when the distance between the electrodes was changed or when the actual width and depth of the pickling tank were changed by installing an insulator in the tank.

Figure 2012162794
Figure 2012162794

図4に各条件での電流効率をまとめて示す。酸洗槽の形状および電極配置を本発明範囲設計することにより、酸洗液の種類によらず90%以上の電流効率を得ることができた。
FIG. 4 summarizes the current efficiency under each condition. By designing the shape and electrode arrangement of the pickling tank within the scope of the present invention, a current efficiency of 90% or more could be obtained regardless of the type of pickling solution.

Claims (3)

焼鈍後のステンレス鋼帯を中性塩水溶液または酸性水溶液中において、間接通電法による陽極電解によって脱スケールを行う設備(以下、単に電解酸洗設備と言う)について、陽極と陰極間の距離をL(mm)、電極間を通電する電流をI(A)、陽極と陰極間における酸洗槽の実質幅をW(mm)、実質深さをD(mm)としたとき、以下の式を満たす電解酸洗法。
L>0.6DW/I・・・・・・(1)
ここで実質幅W、実質深さDとは、実際の寸法から、絶縁物が設置してある部分を差し引いた寸法を言う。
For the equipment for descaling the annealed stainless steel strip in a neutral salt aqueous solution or acidic aqueous solution by anodic electrolysis using the indirect current method (hereinafter simply referred to as electrolytic pickling equipment), the distance between the anode and the cathode is L (Mm), where the current flowing between the electrodes is I (A), the substantial width of the pickling tank between the anode and the cathode is W (mm), and the substantial depth is D (mm), the following equation is satisfied: Electrolytic pickling method.
L> 0.6DW / I (1)
Here, the substantial width W and the substantial depth D refer to dimensions obtained by subtracting a portion where an insulator is installed from actual dimensions.
ステンレス鋼帯と電極間の距離を20mm以上、150mm以下とする請求項1に記載の電解酸洗法。   The electrolytic pickling method according to claim 1, wherein a distance between the stainless steel strip and the electrode is 20 mm or more and 150 mm or less. 中性塩電解水溶液として100〜250g/lのNaSOを含む水溶液、酸性水溶液として50〜200g/lのHSOまたはHNOを含む水溶液を用いることを特徴とする、請求項1または2に記載の電解酸洗法。
The aqueous solution containing 100 to 250 g / l Na 2 SO 4 as the neutral salt electrolysis aqueous solution and the aqueous solution containing 50 to 200 g / l H 2 SO 4 or HNO 3 as the acidic aqueous solution are used. Or the electrolytic pickling method of 2.
JP2011026185A 2011-02-09 2011-02-09 Electrolytic pickling method for descaling stainless steel strip Active JP5757745B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011026185A JP5757745B2 (en) 2011-02-09 2011-02-09 Electrolytic pickling method for descaling stainless steel strip

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011026185A JP5757745B2 (en) 2011-02-09 2011-02-09 Electrolytic pickling method for descaling stainless steel strip

Publications (2)

Publication Number Publication Date
JP2012162794A true JP2012162794A (en) 2012-08-30
JP5757745B2 JP5757745B2 (en) 2015-07-29

Family

ID=46842459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011026185A Active JP5757745B2 (en) 2011-02-09 2011-02-09 Electrolytic pickling method for descaling stainless steel strip

Country Status (1)

Country Link
JP (1) JP5757745B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528058A (en) * 2019-08-29 2019-12-03 浦项(张家港)不锈钢股份有限公司 A kind of 254SMo stainless steel surface pit defect ameliorative way
CN113897661A (en) * 2021-10-08 2022-01-07 南京宝日钢丝制品有限公司 Wire rod steel wire pickling device and pickling control method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445300A (en) * 1990-06-13 1992-02-14 Nisshin Steel Co Ltd Neutral salt electrolysis of stainless steel strip
JPH06220699A (en) * 1993-01-28 1994-08-09 Nippon Steel Corp Device for electrolytically pickling steel material
JPH0827600A (en) * 1994-07-14 1996-01-30 Nisshin Steel Co Ltd Descaling method and device for stainless steel strip
WO1999039028A1 (en) * 1998-02-02 1999-08-05 Avesta Sheffield Aktiebolag (Publ) Method for treating a metal product
WO2000015880A1 (en) * 1998-09-11 2000-03-23 Henkel Kommanditgesellschaft Auf Aktien Process for electrolytic pickling using nitric acid-free solutions
JP2000204499A (en) * 1999-01-08 2000-07-25 Nisshin Steel Co Ltd Electrolytical descaling of stainless steel strip
JP2008174794A (en) * 2007-01-18 2008-07-31 Nippon Mektron Ltd Pretreatment method to plating for printed circuit board

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0445300A (en) * 1990-06-13 1992-02-14 Nisshin Steel Co Ltd Neutral salt electrolysis of stainless steel strip
JPH06220699A (en) * 1993-01-28 1994-08-09 Nippon Steel Corp Device for electrolytically pickling steel material
JPH0827600A (en) * 1994-07-14 1996-01-30 Nisshin Steel Co Ltd Descaling method and device for stainless steel strip
WO1999039028A1 (en) * 1998-02-02 1999-08-05 Avesta Sheffield Aktiebolag (Publ) Method for treating a metal product
JP2002501987A (en) * 1998-02-02 2002-01-22 アヴェスタ シェフィールド アクツイエボラーグ How to process metal products
WO2000015880A1 (en) * 1998-09-11 2000-03-23 Henkel Kommanditgesellschaft Auf Aktien Process for electrolytic pickling using nitric acid-free solutions
JP2000204499A (en) * 1999-01-08 2000-07-25 Nisshin Steel Co Ltd Electrolytical descaling of stainless steel strip
JP2008174794A (en) * 2007-01-18 2008-07-31 Nippon Mektron Ltd Pretreatment method to plating for printed circuit board

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110528058A (en) * 2019-08-29 2019-12-03 浦项(张家港)不锈钢股份有限公司 A kind of 254SMo stainless steel surface pit defect ameliorative way
CN113897661A (en) * 2021-10-08 2022-01-07 南京宝日钢丝制品有限公司 Wire rod steel wire pickling device and pickling control method thereof
CN113897661B (en) * 2021-10-08 2024-02-02 南京宝日钢丝制品有限公司 Wire rod steel wire pickling device and pickling control method thereof

Also Published As

Publication number Publication date
JP5757745B2 (en) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2012098689A1 (en) Method for producing stainless steel for fuel cell separators, stainless steel for fuel cell separators, fuel cell separator, and fuel cell
EP1115917B1 (en) Process for electrolytic pickling using nitric acid-free solutions
US9580831B2 (en) Stainless steel pickling in an oxidizing, electrolytic acid bath
Wu et al. The effects of additives on the electrowinning of zinc from sulphate solutions with high fluoride concentration
JP5757745B2 (en) Electrolytic pickling method for descaling stainless steel strip
CN203284488U (en) Aluminium alloy anodic oxidation device
JPH0827600A (en) Descaling method and device for stainless steel strip
CN205152386U (en) Electrochemical corrosion device of positive pole aluminium foil for aluminium electrolytic capacitor
CN112877699B (en) Metal anticorrosion device based on Hall effect
JP2000204499A (en) Electrolytical descaling of stainless steel strip
CN201354386Y (en) Aluminum electrolysis bath energy-saving cathode block structure
JPH11343586A (en) Descaling method of titanium material
JP4157441B2 (en) Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet
JP3846646B2 (en) Surface cleaning method by electrolysis of steel
JPH06220699A (en) Device for electrolytically pickling steel material
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
JP4890387B2 (en) Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet
JP3269444B2 (en) Titanium descaling method and continuous annealing descaling device
CN212051723U (en) Steel wire bar electrolytic pickling device with neutralizing tank
KR102300834B1 (en) Ionic liquid for pickling stainless steel and pickling method for stainless steel using the same
JP2868589B2 (en) Neutral salt electrolytic treatment method for stainless steel strip
RU2578623C1 (en) Electrolytic method for removing scales from belt of rolled metal
JPH0534439B2 (en)
CN104005042A (en) Method for antioxidation treatment of conducting rod in lead electrolysis system
JP3660712B2 (en) Electrolytic pickling method for chromium-containing alloy steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20150217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150515

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150602

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150602

R150 Certificate of patent or registration of utility model

Ref document number: 5757745

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250