JP4890387B2 - Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet - Google Patents

Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet Download PDF

Info

Publication number
JP4890387B2
JP4890387B2 JP2007216218A JP2007216218A JP4890387B2 JP 4890387 B2 JP4890387 B2 JP 4890387B2 JP 2007216218 A JP2007216218 A JP 2007216218A JP 2007216218 A JP2007216218 A JP 2007216218A JP 4890387 B2 JP4890387 B2 JP 4890387B2
Authority
JP
Japan
Prior art keywords
silicon steel
steel sheet
metal
grain
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007216218A
Other languages
Japanese (ja)
Other versions
JP2009046746A (en
Inventor
重信 古賀
昌浩 藤倉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2007216218A priority Critical patent/JP4890387B2/en
Publication of JP2009046746A publication Critical patent/JP2009046746A/en
Application granted granted Critical
Publication of JP4890387B2 publication Critical patent/JP4890387B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Of Steel Electrode Plates (AREA)

Description

本発明は、仕上げ焼鈍済みの方向性珪素鋼板表面に電解エッチングにより溝加工を行った後、絶縁被膜を形成する際に、地金との密着性の良好な絶縁被膜を形成することのできる方向性珪素鋼板の製造方法及び製造装置に関するものである。   The present invention provides a direction in which an insulating coating with good adhesion to a metal can be formed when a groove is formed by electrolytic etching on the surface of a directional silicon steel sheet that has been subjected to finish annealing. The present invention relates to a method and an apparatus for producing a porous silicon steel sheet.

従来、仕上げ焼鈍済みの方向性珪素鋼板表面に形成された絶縁被膜の一部を除去するなどの手段によって、絶縁被膜にエッチングパターンを付与し、エッチングパターンにそってエッチングして方向性珪素鋼板表面に選択的に溝加工を施すことにより、方向性珪素鋼板の鉄損特性を改善する技術が、例えば特許文献1により知られている。この技術は、その後の歪取り焼鈍によっても溝加工による鉄損改善効果が消失しないために有利であり、近年、特許文献2、3に示されるような溝加工を電解エッチングにより連続して実施する技術も提案されている。   Conventionally, a surface of a directional silicon steel sheet is formed by applying an etching pattern to the insulating film by means such as removing a part of the insulating film formed on the surface of the directionally annealed directional silicon steel sheet, and etching along the etching pattern. For example, Patent Document 1 discloses a technique for improving the iron loss characteristic of a grain-oriented silicon steel sheet by selectively performing grooving. This technique is advantageous because the iron loss improvement effect by groove processing does not disappear even by subsequent strain relief annealing, and in recent years, groove processing as shown in Patent Documents 2 and 3 is continuously performed by electrolytic etching. Technology has also been proposed.

特許文献2では、直接通電方式において連続電解するエッチング装置が開示されている。該装置は、図2に示すように、片面に電気絶縁性の絶縁被膜が選択的に施された金属帯1の電解エッチング装置であって、電解エッチング槽2と、陽極であるコンダクターロール16と、該コンダクターロール16と金属帯1を介在して相接するように配設されたバックアップロール17と、電解エッチング槽2の電解液3に浸漬された陰極電極15と、金属帯1を電解液3に浸漬するための浸漬用ロール13、14とを有している。   Patent Document 2 discloses an etching apparatus that performs continuous electrolysis in a direct energization method. As shown in FIG. 2, this apparatus is an electrolytic etching apparatus for a metal strip 1 having an electrically insulating insulating film selectively applied on one side, and includes an electrolytic etching tank 2, a conductor roll 16 serving as an anode, The backup roll 17 disposed so as to be in contact with the conductor roll 16 with the metal strip 1 interposed therebetween, the cathode electrode 15 immersed in the electrolytic solution 3 of the electrolytic etching tank 2, and the metal strip 1 with the electrolytic solution 3 and dipping rolls 13 and 14 for dipping in 3.

そして、この装置では、金属帯1の絶縁被膜が施された面が下向きに通板され、当該金属帯1の絶縁被膜面側と相対向して陰極電極15が上向きに、かつ当該絶縁被膜面と陰極間距離が所定間隔となるように配設され、コンダクターロール16が金属帯1の絶縁被膜が施されていない面に、バックアップロール17が金属帯1の絶縁被膜面にそれぞれ当接されるように配設されている。陽極であるコンダクターロール16と陰極電極15は直流電源装置7に接続され、金属帯1への直接通電により、選択的に電解エッチングが施される。また、コンダクターロール16は、電解エッチング槽2の電解液3の外側に配設され、短絡電流の発生が防止されている。   In this apparatus, the surface of the metal strip 1 on which the insulating coating is applied is passed downward, the cathode electrode 15 faces upward and faces the insulating coating surface of the metal strip 1, and the insulating coating surface. The conductor roll 16 is brought into contact with the surface of the metal strip 1 where the insulating coating is not applied, and the backup roll 17 is brought into contact with the insulating coating surface of the metal strip 1. It is arranged like this. Conductor roll 16 and cathode electrode 15, which are anodes, are connected to DC power supply device 7 and selectively subjected to electrolytic etching by direct energization of metal strip 1. Moreover, the conductor roll 16 is arrange | positioned on the outer side of the electrolyte solution 3 of the electrolytic etching tank 2, and generation | occurrence | production of a short circuit current is prevented.

また、特許文献3では、間接通電方式において連続電解するエッチング方法と装置が開示されている。該装置は、図3に示すように、片側の表面に絶縁被膜が選択的に形成された金属帯1のエッチング面と相対向して金属帯1の進行方向に、電極4、電極5を設置し、金属帯1と電極4、電極5の間に電解液3を充填し、電極4と電極5の間に、直流電源装置7及び8を配置している。直流電源装置7と電極4の間には開閉器9が、直流電源装置8と電極4の間には開閉器10が設置されており、直流電源装置7と電極5の間には開閉器9′が、直流電源装置8と電極5の間には開閉器10′が設置されて間接通電により選択的に電解エッチングが施される。また、電極4と電極5の間で電解液3を介して直接電流が流れる漏れ電流を抑制する目的で、電極4と電極5の間に非導電性材料からなる遮蔽板6が設置されている。   Patent Document 3 discloses an etching method and apparatus for continuous electrolysis in an indirect energization method. As shown in FIG. 3, the apparatus is provided with electrodes 4 and 5 in the traveling direction of the metal band 1 opposite to the etching surface of the metal band 1 with an insulating film selectively formed on one surface. In addition, the electrolytic solution 3 is filled between the metal strip 1 and the electrodes 4 and 5, and the DC power supply devices 7 and 8 are disposed between the electrodes 4 and 5. A switch 9 is installed between the DC power supply 7 and the electrode 4, a switch 10 is installed between the DC power supply 8 and the electrode 4, and a switch 9 is installed between the DC power supply 7 and the electrode 5. However, a switch 10 ′ is installed between the DC power supply 8 and the electrode 5 and selectively subjected to electrolytic etching by indirect energization. In addition, a shielding plate 6 made of a nonconductive material is installed between the electrode 4 and the electrode 5 for the purpose of suppressing a leakage current that flows directly between the electrode 4 and the electrode 5 via the electrolytic solution 3. .

エッチングの際には、電極4と電極5の間に設置された開閉器9、9′、10、10′を操作することにより、図4に示すように、電極4が陽極となる電圧印加に対して、電流の流れる向きが逆になり電極4が陰極となる電圧を一時的に印加する。逆向きの電圧を印加することにより、図5の(イ)に示すような目標形状になるようにエッチングの溝形状を制御し、(ロ)〜(ニ)に示す溝形状の発生を防止している。   In the etching, by operating the switches 9, 9 ', 10, 10' installed between the electrodes 4 and 5, as shown in FIG. On the other hand, a voltage at which the direction of current flow is reversed and the electrode 4 becomes a cathode is temporarily applied. By applying a reverse voltage, the etching groove shape is controlled so as to obtain the target shape as shown in FIG. 5A, and the occurrence of the groove shapes shown in FIGS. ing.

特開昭63−76819号公報JP-A-63-76819 特開平10−204699号公報Japanese Patent Laid-Open No. 10-204699 特開2004−131841号公報JP 2004-131841 A WO03/048416号公報WO03 / 048416

上記特許文献1〜3に示されるような、方向性珪素鋼板の表面をエッチングによって溝加工する場合には、エッチング後の鋼板表面に更に絶縁被膜の成膜を行う必要があるが、それらの特許文献には、絶縁被膜の地金に対する密着性については具体的な記載がなされていない。
本発明者らは、特に、特許文献2、3に示されているような電解エッチングによって溝加工した鋼板に対する絶縁被膜の密着性について基礎的なデータを収集するために、電解エッチングを行った鋼板に絶縁被膜を塗覆し、絶縁被膜の地金に対する密着性を評価した。
When the surface of a grain-oriented silicon steel sheet is grooved by etching as shown in Patent Documents 1 to 3, it is necessary to further form an insulating film on the steel sheet surface after etching. The literature does not specifically describe the adhesion of the insulating coating to the metal.
In particular, the present inventors have carried out electrolytic etching in order to collect basic data on the adhesion of the insulating film to the steel sheet grooved by electrolytic etching as shown in Patent Documents 2 and 3. An insulating film was applied to the film, and the adhesion of the insulating film to the base metal was evaluated.

その結果、電解エッチングを行わなかった鋼材に比べ、電解エッチングを行った鋼板では絶縁被膜の密着力が低下する傾向にあり、特に、溝部に被覆した絶縁被膜の密着力が低下した場合には、その後の処理工程で鋼板を通板中に、絶縁被膜が鋼板表面から脱落し、それが原因で鋼板に傷が発生し、製品の品質が低下する等の問題が発生することが判明した。   As a result, compared to the steel material that was not subjected to electrolytic etching, in the steel sheet that was subjected to electrolytic etching, the adhesive strength of the insulating coating tends to decrease, and in particular, when the adhesive strength of the insulating coating that covers the groove portion decreases, In subsequent processing steps, it was found that the insulating coating dropped from the surface of the steel sheet during the passing of the steel sheet, which caused problems such as damage to the steel sheet and deterioration of product quality.

そこで、本発明は、電解エッチングを行った鋼材においても、電解エッチングを行わなかった鋼材と同様の絶縁被膜の地金に対する密着性を得ることができる方向性珪素鋼板を得ることができるようにすることを課題とし、そのような課題を解決した方向性珪素鋼板の製造方法および製造装置を提供することを目的とするものである。   Therefore, the present invention makes it possible to obtain a grain-oriented silicon steel sheet capable of obtaining adhesion of an insulating coating similar to that of a steel material that has not been subjected to electrolytic etching to a base metal even in a steel material that has been subjected to electrolytic etching. It is an object of the present invention to provide a method and an apparatus for producing a directional silicon steel sheet that solves such a problem.

本発明者らは、密着性が低下する傾向にあるのは、電解エッチングを行った鋼板では、溝部の表面が平滑であり、かつ、溝部に形成される絶縁被膜が厚くなるためであることを見出した。そして、溝部に選択的に地鉄との密着性の良好な被膜を形成できれば、その下地被膜を介して絶縁被膜との密着性が向上するのではないかと考え、さらに、電解エッチングに引き続いて、電解エッチングと同等の処理速度で連続的に成膜できる手段について検討した。
その結果、本発明者らは、上記の条件満たすものとして特許文献4に記載されている電解処理による成膜技術に着目した。
The inventors of the present invention have a tendency to reduce the adhesion because the surface of the groove is smooth and the insulating coating formed in the groove becomes thicker in the steel sheet subjected to electrolytic etching. I found it. And, if the film with good adhesion to the base metal can be selectively formed in the groove part, it is thought that the adhesion with the insulating film is improved through the base film, and further, following the electrolytic etching, The means for continuously forming a film at a processing rate equivalent to that of electrolytic etching was investigated.
As a result, the present inventors paid attention to the film formation technique by electrolytic treatment described in Patent Document 4 as satisfying the above conditions.

特許文献4に記載されている技術は、(1)金属イオンと概金属イオンに対してモル比で4倍以上のフッ素イオンを含み、及び/又は、(2)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素を含有する化合物が少なくとも結合した錯イオンを含み、pHが3〜7の処理水溶液中に金属材料を浸漬、あるいは導電性材料を電解することで、該金属材料表面に前記金属イオンを含む金属酸化物及び/又は金属水酸化物の被膜を形成する技術である。   The technique described in Patent Document 4 includes (1) a fluorine ion having a molar ratio of 4 times or more with respect to a metal ion and an approximately metal ion, and / or (2) a metal ion and the metal ion. A metal material containing at least a complex ion to which a fluorine-containing compound having a molar ratio of 4 times or more is bonded and having a pH of 3 to 7 is immersed in a treatment solution or electrolyzed with a conductive material. This is a technique for forming a metal oxide and / or metal hydroxide film containing the metal ions on the surface.

そして、本発明者らは、特許文献4に記載されている技術によって、絶縁被膜を形成する前に予め溝部に金属酸化物や金属水酸化物の被膜を成膜しておくことにより、溝部の表面における絶縁被膜に対する密着性が向上し、電解エッチングを行った鋼板においても電解エッチングを行わなかった鋼材と同等以上の密着性を得ることができることを見出した。   The inventors of the present invention described in Patent Document 4 previously formed a metal oxide or metal hydroxide film on the groove part before forming the insulating film, thereby forming the groove part. It has been found that the adhesion to the insulating coating on the surface is improved, and that a steel sheet that has been subjected to electrolytic etching can have an adhesion equal to or higher than that of a steel material that has not been subjected to electrolytic etching.

以上の知見に基づいてなされた本発明の要旨とするところは、以下のとおりである。
(1)仕上げ焼鈍され、表面に絶縁被膜を有する方向性珪素鋼板の片面または両面を、電解エッチングにより連続的に溝加工し、その後、溝加工された面に絶縁被膜を形成する方向性珪素鋼板の製造方法であって、前記電解エッチングによる溝加工とその後の絶縁被膜形成の各工程の間に、(1)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素イオンを含み、及び/又は、(2)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素を含有する化合物が少なくとも結合した錯イオンを含み、pHが3〜7である後処理水溶液中で、前記方向性珪素鋼板に通電して電圧印加を行い、前記溝加工された部分の表面に、前記金属イオンを含む金属酸化物及び/又は金属水酸化物の被膜を形成する金属化合物被覆形成工程を有することを特徴とする方向性珪素鋼板の製造方法。
(2)前記金属化合物被覆形成工程における方向性珪素鋼板への電圧印加のための通電は、前記後処理水溶液中で方向性珪素鋼板のエッチング面と相対向して配設された電極による間接通電であり、該電極は、方向性珪素鋼板の進行方向に互いに極性が異なる電極を交互に、かつ最下流の電極が陽極となるように配設され、これら陰極と陽極の電極間に電圧印加されることを特徴とする上記(1)に記載の方向性珪素鋼板の製造方法。
The gist of the present invention made based on the above findings is as follows.
(1) A directional silicon steel sheet in which one side or both sides of a directional silicon steel sheet that has been annealed and has an insulating coating on its surface is continuously grooved by electrolytic etching, and then an insulating coating is formed on the grooved surface. And (1) metal ions and fluorine ions at a molar ratio of 4 times or more with respect to the metal ions, between each step of the groove processing by the electrolytic etching and the subsequent formation of the insulating film, And / or (2) in a post-treatment aqueous solution having a complex ion in which at least a compound containing fluorine at a molar ratio of 4 times or more with respect to the metal ion and the metal ion is bonded and having a pH of 3 to 7. Applying a voltage by energizing the grain-oriented silicon steel sheet, and forming a metal oxide coating and / or metal hydroxide coating containing the metal ions on the surface of the grooved portion. Yes Method for producing a grain-oriented silicon steel sheet characterized by Rukoto.
(2) The energization for applying a voltage to the directional silicon steel sheet in the metal compound coating forming step is indirect energization by an electrode disposed opposite to the etching surface of the directional silicon steel sheet in the post-treatment aqueous solution. The electrodes are arranged such that electrodes having different polarities are alternately arranged in the traveling direction of the grain-oriented silicon steel sheet so that the most downstream electrode serves as an anode, and a voltage is applied between the cathode and the anode electrode. The method for producing a grain-oriented silicon steel sheet according to (1) above, wherein

(3)上記(1)に記載の方向性珪素鋼板の製造方法を実施するための装置であって、仕上げ焼鈍され、表面に絶縁被膜を有する方向性珪素鋼板の片面または両面を電解エッチングにより連続的に溝加工するエッチング装置に続いて、(1)金属イオンと概金属イオンに対してモル比で4倍以上のフッ素イオンを含み、及び/又は、(2)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素を含有する化合物が少なくとも結合した錯イオンを含み、pHが3〜7の後処理水溶液が充填された後処理槽と、前記方向性珪素鋼板に電圧印加を行う電極を有し、前記後処理水溶液中で方向性珪素鋼板のエッチング面に前記金属イオンを含む金属酸化物及び/又は金属水酸化物の被膜を連続的に形成する後処理装置が設けられていることを特徴とする方向性珪素鋼板の製造装置。
(4)前記電極は互いに極性が異なる複数の電極よりなり、前記後処理水溶液中で方向性珪素鋼板のエッチング面と相対向して交互に極性が異なるように配設され、かつ最下流の電極が陽極となるように配設されており、互いに隣接する電極の間には非導電性材料の遮蔽板が配設されていて、前記方向性珪素鋼板への電圧印加のための通電は前記電極による間接通電によって行われることを特徴とする上記(3)に記載の方向性珪素鋼板の製造装置。
(3) An apparatus for carrying out the method for producing a grain-oriented silicon steel sheet according to (1) above, wherein one or both surfaces of a grain-oriented silicon steel sheet having a finish annealing and having an insulating coating on the surface are continuously etched by electrolytic etching. And (1) containing fluorine ions at a molar ratio of 4 times or more with respect to metal ions and approximately metal ions, and / or (2) with respect to metal ions and the metal ions. In addition, a voltage is applied to the post-treatment tank containing a complex ion to which at least a compound containing fluorine at a molar ratio of 4 times or more is bound and having a pH of 3 to 7 and filled with a post-treatment aqueous solution and the grain-oriented silicon steel sheet. There is provided a post-processing apparatus that has an electrode and continuously forms a film of the metal oxide and / or metal hydroxide containing the metal ions on the etched surface of the grain-oriented silicon steel sheet in the post-treatment aqueous solution. That Apparatus for producing a grain-oriented silicon steel sheet according to symptoms.
(4) The electrode is composed of a plurality of electrodes having different polarities from each other, arranged in the post-treatment aqueous solution so as to be opposite to each other and opposite to the etching surface of the directional silicon steel sheet, and the most downstream electrode Is disposed as an anode, a shielding plate made of a non-conductive material is disposed between adjacent electrodes, and energization for applying a voltage to the directional silicon steel plate is performed by the electrode. The directional silicon steel sheet manufacturing apparatus according to (3) above, wherein the directional silicon steel sheet is manufactured by indirect energization.

本発明によれば、電解エッチングによって溝加工を行った方向性珪素鋼板においても、電解エッチングを行わなかった鋼板と同等以上の密着性を得ることが可能となり、電源トランスの鉄心等に利用される低鉄損方向性珪素鋼板の通板中に脱落した絶縁被膜により発生する傷の発生等を防止することができるため、製品の品質及び歩留まりが向上する。しかも、後処理工程をエッチング工程と同様に電解処理により連続的に実施できるので生産性の点でも優れている。   According to the present invention, even in a directional silicon steel sheet that has been grooved by electrolytic etching, it becomes possible to obtain adhesion equal to or better than that of a steel sheet that has not been subjected to electrolytic etching, and is used for an iron core of a power transformer and the like. Since generation | occurrence | production of the damage | wound etc. which generate | occur | produce by the insulating film which fell during the passage of the low iron loss directional silicon steel plate can be prevented, the quality and yield of a product improve. Moreover, since the post-treatment process can be carried out continuously by electrolytic treatment in the same manner as the etching process, it is excellent in terms of productivity.

以下、図を参照しながら、本発明を実施するための形態について説明する。
図1は、本発明の一実施の形態にかかる設備を模式的に示すもので、仕上げ焼鈍済みの方向性珪素鋼板1の表面をエッチングするための電解エッチング装置20とエッチング後の表面に金属化合物被覆を形成する後処理装置40が連続的に配置されている。
Hereinafter, embodiments for carrying out the present invention will be described with reference to the drawings.
FIG. 1 schematically shows equipment according to an embodiment of the present invention. An electrolytic etching apparatus 20 for etching the surface of a directional silicon steel sheet 1 that has been subjected to finish annealing and a metal compound on the surface after etching. A post-processing device 40 for forming the coating is continuously arranged.

方向性珪素鋼板1には、選択的に絶縁被膜が形成されているか、仕上げ焼鈍後にレーザ加工などにより表面の絶縁被膜が選択的に除去されていて、所定のエッチング用マスクパターンが予め形成されている。表面エッチング装置20では、そのような方向性珪素鋼板を電解エッチングすることにより、エッチングパターンに沿って溝加工を行い、後処理装置40では、エッチング加工後の方向性珪素鋼板の表面に、後処理水溶液中に溶けている金属イオンを含む金属酸化物及び/又は金属水酸化物の被膜を形成する。
なお、後処理装置40の下流側には、方向性珪素鋼板上に絶縁被膜を塗付焼き付けるための絶縁被膜形成処理装置が配置されるが、図では省略されている。
The grain-oriented silicon steel sheet 1 is selectively formed with an insulating film, or the surface insulating film is selectively removed by laser processing or the like after finish annealing, and a predetermined etching mask pattern is formed in advance. Yes. In the surface etching apparatus 20, groove processing is performed along the etching pattern by electrolytic etching of such a directional silicon steel sheet. In the post-processing apparatus 40, post-treatment is performed on the surface of the directional silicon steel sheet after the etching process. A metal oxide and / or metal hydroxide film containing metal ions dissolved in an aqueous solution is formed.
In addition, although the insulating film formation processing apparatus for apply | coating and baking an insulating film on a directional silicon steel plate is arrange | positioned in the downstream of the post-processing apparatus 40, it is abbreviate | omitted in the figure.

エッチング装置20では、方向性珪素鋼板1のエッチング面と相対向して方向性珪素鋼板1の進行方向に、電極4、電極5を設置し、方向性珪素鋼板1と電極4、電極5の間に電解液3を充填し、電極4と電極5の間に、直流電源装置7及び直流電源装置8を配置している。直流電源装置7と電極4の間には開閉器9が、直流電源装置8と電極4の間には開閉器10が設置されており、直流電源装置7と電極5の間には開閉器9′と抵抗22が、直流電源装置8と電極5の間には開閉器10′と抵抗23が設置されて間接通電により電解エッチングが施される。また、電極4と電極5の間で電解液3を介して直接電流が流れる漏れ電流を抑制する目的で、電極4と電極5の間に非導電性材料からなる遮蔽板6が設置されている。   In the etching apparatus 20, the electrodes 4 and 5 are installed in the traveling direction of the directional silicon steel plate 1 so as to face the etching surface of the directional silicon steel plate 1, and between the directional silicon steel plate 1 and the electrodes 4 and 5. The electrolyte solution 3 is filled in, and a DC power supply device 7 and a DC power supply device 8 are disposed between the electrode 4 and the electrode 5. A switch 9 is installed between the DC power supply 7 and the electrode 4, a switch 10 is installed between the DC power supply 8 and the electrode 4, and a switch 9 is installed between the DC power supply 7 and the electrode 5. 'And a resistor 22, and a switch 10 ′ and a resistor 23 are installed between the DC power supply 8 and the electrode 5, and electrolytic etching is performed by indirect energization. In addition, a shielding plate 6 made of a nonconductive material is installed between the electrode 4 and the electrode 5 for the purpose of suppressing a leakage current that flows directly between the electrode 4 and the electrode 5 via the electrolytic solution 3. .

方向性珪素鋼板のエッチングに当たっては、電極4と電極5の間には、開閉器9、9′、10、10′を操作することにより図4に示すように電流の流れる向きが逆になる電圧を一時的に印加する。また、前記抵抗22、23を増加・減少させることにより、電極4と電極5の間で電極4に印加する電圧を増加・減少させる。
これにより、例えば、電極4への負の印加時間を3〜7msec、正の印加時間を12〜200msecとして、溝形状のばらつきが少なく安定して図5の(イ)に示すような溝形状になるようにする。
When etching the grain-oriented silicon steel sheet, the voltage between the electrodes 4 and 5 is such that the direction of current flow is reversed as shown in FIG. 4 by operating the switches 9, 9 ', 10, 10'. Is temporarily applied. Further, the voltage applied to the electrode 4 between the electrode 4 and the electrode 5 is increased / decreased by increasing / decreasing the resistors 22, 23.
Accordingly, for example, the negative application time to the electrode 4 is set to 3 to 7 msec, the positive application time is set to 12 to 200 msec, and there is little variation in the groove shape, and the groove shape as shown in FIG. To be.

なお、電解エッチングの電気回路の電気抵抗が変化しない場合は、単位時間あたりの通電量の制御は電圧制御で代替できることを前提としている。
また、電解槽2の入出側には、方向性珪素鋼板1の搬送ロールとして、リンガーロール11、22が設置され、電解エッチング液3の槽外への流出を抑制している。槽内には、シンクロール13、14が設置され、陰極電極4、陽極電極5と方向性珪素鋼板1の距離を一定に保持している。
In the case where the electric resistance of the electric circuit of electrolytic etching does not change, it is assumed that the control of the energization amount per unit time can be replaced by voltage control.
Further, ringer rolls 11 and 22 are installed on the entry / exit side of the electrolytic cell 2 as conveyance rolls for the directional silicon steel sheet 1 to suppress the outflow of the electrolytic etching solution 3 to the outside of the cell. Sink rolls 13 and 14 are installed in the tank, and the distance between the cathode electrode 4 and the anode electrode 5 and the directional silicon steel sheet 1 is kept constant.

エッチング装置20にて溝加工された方向性珪素鋼板1は、続いて後処理装置40に搬送される。後処理装置40では、方向性珪素鋼板1のエッチング面と相対向して方向性珪素鋼板1の進行方向下流側に向かって、陰極電極34、陽極電極35を順次設置し、方向性珪素鋼板1と陰極電極34、陽極電極35の間に後処理水溶液33を充填し、陰極電極34と陽極電極35の間に、直流電源装置37を配置している。   The grain-oriented silicon steel sheet 1 that has been grooved by the etching apparatus 20 is subsequently conveyed to the post-processing apparatus 40. In the post-processing apparatus 40, the cathode electrode 34 and the anode electrode 35 are sequentially installed facing the etching surface of the directional silicon steel plate 1 toward the downstream side in the traveling direction of the directional silicon steel plate 1. A post-treatment aqueous solution 33 is filled between the cathode electrode 34 and the anode electrode 35, and a DC power supply device 37 is disposed between the cathode electrode 34 and the anode electrode 35.

直流電源装置37と陰極電極34の間には、開閉器39が設置されて間接通電により金属酸化物の被膜形成が施される。また、陽極電極35から陰極電極34へ、後処理水溶液33を介して直接電流が流れる漏れ電流を抑制する目的で、陽極電極35と陰極電極34の間の後処理槽32内に非導電性材料からなる遮蔽板36が設置されている。直流電源装置37と陽極電極35の間には、抵抗52が設置されている。   A switch 39 is installed between the DC power supply device 37 and the cathode electrode 34 to form a metal oxide film by indirect energization. In addition, a non-conductive material is provided in the post-treatment tank 32 between the anode electrode 35 and the cathode electrode 34 for the purpose of suppressing leakage current that flows directly from the anode electrode 35 to the cathode electrode 34 via the post-treatment aqueous solution 33. The shielding board 36 which consists of is installed. A resistor 52 is installed between the DC power supply device 37 and the anode electrode 35.

開閉器39を閉にすることにより、陰極電極34と陽極電極35の間に電圧を印加する。なお、開閉器39を開とすることにより、電圧印加を中断する。また、前記抵抗52を増加・減少させることにより、陰極電極34と陽極電極35の間で陰極電極34に印加する負の電圧を増加・減少させる。なお、金属酸化物の被膜形成の電気回路の電気抵抗が変化しない場合は、単位時間あたりの通電量の制御は電圧制御で代替できることを前提としている。   A voltage is applied between the cathode electrode 34 and the anode electrode 35 by closing the switch 39. The voltage application is interrupted by opening the switch 39. Further, by increasing / decreasing the resistance 52, the negative voltage applied to the cathode electrode 34 between the cathode electrode 34 and the anode electrode 35 is increased / decreased. In the case where the electric resistance of the electric circuit for forming the metal oxide film does not change, it is assumed that the control of the energization amount per unit time can be replaced by voltage control.

また、後処理槽32の入出側には、方向性珪素鋼板1の搬送ロールとして、リンガーロール41、42が設置され、後処理水溶液33の槽外への流出を抑制している。槽内には、シンクロール43、44が設置され、陰極電極34、陽極電極35と方向性珪素鋼板1の距離を一定に保持している。   In addition, ringer rolls 41 and 42 are installed on the entry / exit side of the post-treatment tank 32 as conveying rolls of the directional silicon steel sheet 1 to suppress the outflow of the post-treatment aqueous solution 33 to the outside of the tank. Sink rolls 43 and 44 are installed in the tank, and the distance between the cathode electrode 34 and the anode electrode 35 and the directional silicon steel sheet 1 is kept constant.

後処理水溶液33は、
(1)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素イオン、
(2)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素を含有する化合物が少なくとも結合した錯イオン、
の1種または2種を含み、pH3〜7の水溶液で構成される。
The post-treatment aqueous solution 33 is
(1) Metal ions and fluorine ions at a molar ratio of 4 times or more with respect to the metal ions,
(2) a complex ion in which a metal ion and a compound containing fluorine at a molar ratio of 4 times or more with respect to the metal ion are combined;
These are one or two of the above, and are composed of an aqueous solution having a pH of 3 to 7.

後処理水溶液のpHが3未満では水素発生による下地被膜の生成の阻害が起こりやすく、また、7より大きい場合には、水溶液中に凝集したものが析出し、密着性が向上しないため、pHは3〜7が望ましい。   If the pH of the post-treatment aqueous solution is less than 3, inhibition of the formation of the base film due to hydrogen generation is likely to occur, and if it is greater than 7, the aggregate in the aqueous solution is precipitated and the adhesion is not improved. 3-7 are desirable.

前記金属イオンおよびこれの錯イオンを構成する金属としては、Ti、Siが望ましいが、これに限定されることなく、Zr、Fe、Sn、Ndなどのフッ素を含有する化合物が少なくとも結合した錯イオンを形成する金属であってもよい。   Ti and Si are preferable as the metal ions and the metal constituting the complex ions. However, the metal ions are not limited thereto, and complex ions in which fluorine-containing compounds such as Zr, Fe, Sn, and Nd are at least bonded. The metal which forms may be sufficient.

また、本発明で用いられるフッ素イオンは、フッ化水素酸あるいはその塩、例えば、アンモニウム塩、カリウム塩、ナトリウム塩などが挙げられ、これらに関しては特に制約がないが、塩を用いる場合はそのカテキン種によって飽和溶液度が異なるため、成膜濃度範囲を考慮して選定しなければならない場合がある。   The fluorine ion used in the present invention includes hydrofluoric acid or a salt thereof such as ammonium salt, potassium salt, sodium salt and the like. There are no particular restrictions on these, but when a salt is used, its catechin is used. Since the degree of saturated solution varies depending on the species, it may be necessary to select a film concentration range in consideration.

陽極電極35は、前記錯イオンの分解を促進する金属イオンを放出する金属から構成されるのがよく、そのためにはAlが望ましい。また、陰極電極34は電界電圧を小さくする観点から、一般的には水素過電圧の小さな、例えば、Pt等が望ましい。   The anode electrode 35 is preferably made of a metal that releases metal ions that promote the decomposition of the complex ions, and Al is desirable for this purpose. Further, from the viewpoint of reducing the electric field voltage, the cathode electrode 34 is generally desirable to have a small hydrogen overvoltage, such as Pt.

以上のような後処理装置40において、陰極電極34と陽極電極35との間で陰極電極34に負の電圧印加を行う。これにより予め調整された所定の電解電流が、陽極電極35より、該電極に相対する後処理水溶液33、方向性珪素鋼板1のエッチング溝部(陰極となる)を通って方向性珪素鋼板1へ流れ、さらには陰極電極34に相対する方向性珪素鋼板1のエッチング溝部(陽極となる)、後処理水溶液33を経て陰極電極34へと流れる。   In the post-processing apparatus 40 as described above, a negative voltage is applied to the cathode electrode 34 between the cathode electrode 34 and the anode electrode 35. As a result, a predetermined electrolytic current adjusted in advance flows from the anode electrode 35 to the directional silicon steel plate 1 through the post-treatment aqueous solution 33 facing the electrode and the etching groove portion (which becomes a cathode) of the directional silicon steel plate 1. In addition, it flows to the cathode electrode 34 through the etching groove portion (to be an anode) of the directional silicon steel sheet 1 facing the cathode electrode 34 and the post-treatment aqueous solution 33.

この電解電流により陰極電極34への電圧印加は負の電圧印加であり、前記の陰極電極34に相対する側の方向性珪素鋼板1のエッチング溝部(陽極となる)では、陽極反応
Me→Me++e-(金属帯が鋼帯の場合、Fe→Fe2+2e-
により電解エッチングが進行することになる。
Due to this electrolytic current, the voltage applied to the cathode electrode 34 is a negative voltage application, and the anodic reaction Me → Me + is applied to the etching groove portion (which becomes the anode) of the directional silicon steel sheet 1 on the side facing the cathode electrode 34. + E (When the metal strip is a steel strip, Fe → Fe 2 + 2e )
As a result, electrolytic etching proceeds.

また、陰極電極34では、陰極反応(電子受容反応)
2H++2e-→H2
によりH2ガスが発生する。
In the cathode electrode 34, the cathode reaction (electron acceptance reaction)
2H + + 2e - → H 2
As a result, H 2 gas is generated.

一方、前記の陽極電極35に相対する側の方向性珪素鋼板1のエッチング溝部では、陰極反応にて、フッ素を含有する化合物が結合した金属錯イオンから金属酸化物あるいは水酸化物が析出する。金属がTiである錯イオンのときは
2TiF6 + 2H2O → TiO2 +6HF
により方向性珪素鋼板1のエッチング溝部にTiO2が析出する。
On the other hand, in the etching groove portion of the directional silicon steel sheet 1 on the side facing the anode electrode 35, a metal oxide or hydroxide is precipitated from a metal complex ion bonded with a fluorine-containing compound by a cathode reaction. When the metal is a complex ion of Ti, H 2 TiF 6 + 2H 2 O → TiO 2 + 6HF
As a result, TiO 2 is deposited in the etching groove of the directional silicon steel sheet 1.

また、陽極電極35では、陽極反応
Me→Me++e-(電極がAlの場合、Al→Al3++3e-
により金属電極の溶解が進行することになる。
なお、後処理槽33の処理水溶液内では、
Al3+ + 6HF → H3AlF6 + 3H+
となり、反応は継続する。
Further, in the anode electrode 35, the anode reaction Me → Me + + e (when the electrode is Al, Al → Al 3+ + 3e )
As a result, dissolution of the metal electrode proceeds.
In the treatment aqueous solution of the post-treatment tank 33,
Al 3+ + 6HF → H 3 AlF 6 + 3H +
And the reaction continues.

以上のような反応を継続するための前記電圧印加の単位時間あたりの通電量は、数C/dm2程度とする。これは、絶縁被膜の地鉄に対する密着性向上には非常に薄い金属酸化物で十分であるからである。
また、後処理装置に使用する電解電源装置は、前記の電圧印加を取れるものであれば、方式を問わない。例えば、6相半波整流波形の、トランジスター方式でも、インバータ方式でも有効である。また、抵抗も必ずしも単独に設置する必要はなく、前記の電圧印加の通電量を制御できるものであれば、方式は問わない。
The energization amount per unit time of the voltage application for continuing the above reaction is about several C / dm 2 . This is because a very thin metal oxide is sufficient for improving the adhesion of the insulating coating to the ground iron.
The electrolytic power supply device used for the post-treatment device may be of any system as long as the voltage application can be performed. For example, a 6-phase half-wave rectified waveform of a transistor system or an inverter system is effective. Moreover, it is not always necessary to install a single resistor, and any method can be used as long as the amount of voltage application can be controlled.

以上のような後処理装置を通すことにより、方向性珪素鋼板1のエッチング溝部には、例えばTiO2が析出し、エッチングで露出した地鉄表面が薄い金属酸化物による被膜(酸化膜)で被われる。その後、方向性珪素鋼板に、張力付与型被膜(燐酸系の絶縁被膜)などの絶縁被膜が形成されるが、その際、地鉄表面と絶縁被膜の間にこの酸化膜が介在することにより、絶縁被膜の方向性珪素鋼板表面への密着性が、エッチングしていない面と同等あるいはそれ以上に向上する。 By passing the post-processing apparatus as described above, for example, TiO 2 is deposited in the etching groove portion of the grain-oriented silicon steel sheet 1, and the base metal surface exposed by etching is covered with a thin metal oxide film (oxide film). Is called. Thereafter, an insulating film such as a tension-imparting film (phosphoric acid-based insulating film) is formed on the directional silicon steel sheet. At this time, the oxide film intervenes between the surface of the ground iron and the insulating film. The adhesion of the insulating coating to the directional silicon steel sheet surface is improved to be equal to or higher than that of the unetched surface.

金属化合物被覆形成工程で作成される被膜は上記のような金属酸化物に限定されず、金属水酸化物の被膜でも同様に被膜の形成は可能であり、酸化物と同様に被膜の密着性を向上することができる。   The film formed in the metal compound coating formation step is not limited to the metal oxide as described above, and it is possible to form a film in the same manner even in the case of a metal hydroxide film. Can be improved.

以上の実施の形態では、方向性珪素鋼板の片側の面にエッチング加工を行い、そのエッチング加工面に被膜処理を行う例を説明したが、両面をエッチングした鋼板の両面に絶縁被膜を成膜加工する場合でも同様に実施できる。
両側の表面を処理するばあいには、図1に示した装置において、エッチング装置20及び後処理装置40とも電極部と電源装置部を方向性珪素鋼板1の上面側にも下面側と同様に配設することにより可能である。
In the above embodiment, an example in which etching processing is performed on one surface of a directional silicon steel sheet and coating processing is performed on the etching processing surface has been described, but an insulating film is formed on both surfaces of a steel sheet etched on both surfaces. The same can be done even when doing.
In the case of processing the surfaces on both sides, in the apparatus shown in FIG. 1, both the etching unit 20 and the post-processing unit 40 have the electrode part and the power supply unit part on the upper surface side of the directional silicon steel sheet 1 as well as the lower surface side. It is possible by arranging.

また、以上の実施の形態では、方向性珪素鋼板1への通電方法としては間接通電で説明したが、間接通電に限定されるものではなく、直接通電でもエッチング及び被膜の形成は可能であることはもちろんである。   Moreover, in the above embodiment, although the indirect energization was demonstrated as the energization method to the grain-oriented silicon steel plate 1, it is not limited to indirect energization, Etching and film formation are possible also by direct energization. Of course.

直接通電によって被膜を形成する場合は、方向性珪素鋼板1を陰極、電極を陽極となるように電圧印加する。これにより、方向性珪素鋼板1のエッチング溝部では、フッ素を含有する化合物が結合した金属錯イオンから金属酸化物あるいは水酸化物が析出する。
金属がTiである錯イオンのときは
2TiF6 + 2H2O → TiO2 +6HF
により方向性珪素鋼板1の溝部にTiO2が析出する。
When the coating is formed by direct energization, a voltage is applied so that the directional silicon steel plate 1 serves as a cathode and the electrode serves as an anode. Thereby, in the etching groove part of the grain-oriented silicon steel sheet 1, a metal oxide or a hydroxide precipitates from the metal complex ion to which the fluorine-containing compound is bonded.
When the metal is a complex ion of Ti, H 2 TiF 6 + 2H 2 O → TiO 2 + 6HF
As a result, TiO 2 precipitates in the groove portion of the grain-oriented silicon steel sheet 1.

また、電極部では、陽極反応
Me→Me++e-(電極がAlの場合、Al→Al3++3e-
により金属電極の溶解が進行することになる。
なお、後処理槽の処理水溶液内では、
Al3+ + 6HF → H3AlF6 + 3H+
となり、反応は継続する。
Further, in the electrode section, an anodic reaction Me → Me + + e (when the electrode is Al, Al → Al 3+ + 3e )
As a result, dissolution of the metal electrode proceeds.
In the treatment aqueous solution in the post-treatment tank,
Al 3+ + 6HF → H 3 AlF 6 + 3H +
And the reaction continues.

さらに、以上の実施の形態では、陽極と陰極よりなる1対の電極をエッチング装置20及び後処理装置40とも1組配設した例を説明したが、電極の対を複数組連続的に配設して、処理速度をより速くすることも可能である。
その場合、最下流の電極は、エッチング装置では陰極となるように、後処理装置では陽極となるように配設される。
Further, in the above embodiment, an example in which a pair of electrodes composed of an anode and a cathode is provided for both the etching apparatus 20 and the post-processing apparatus 40 has been described. However, a plurality of pairs of electrodes are continuously provided. Thus, the processing speed can be further increased.
In that case, the most downstream electrode is arranged to be a cathode in the etching apparatus and to be an anode in the post-processing apparatus.

また、本発明が適用される方向性珪素鋼板としては、フォルステライト(Mg2SiO4)が表面に形成された鋼板に限らず、フォルステライトを有しない表面に張力付与型被膜(燐酸系の絶縁被膜)が選択的に塗膜された、あるいは、全面に塗膜された張力付与型被膜が選択的に除去された方向性珪素鋼板でもその効果は有効である。 In addition, the grain-oriented silicon steel plate to which the present invention is applied is not limited to a steel plate on which forsterite (Mg 2 SiO 4 ) is formed, but a tension-imparting coating (phosphoric acid-based insulation) on the surface not having forsterite. The effect is effective even in a grain-oriented silicon steel sheet in which the film) is selectively coated or the tension-imparting film coated on the entire surface is selectively removed.

以下、実施例に基づいて本発明の実施可能性及び効果について具体的に説明する。   Hereinafter, based on an Example, the feasibility and effect of this invention are demonstrated concretely.

方向性珪素鋼板用の素材を用いて最終板厚まで冷間圧延された鋼板が準備され、その鋼板が脱炭焼鈍された後、MgOからなる焼鈍分離材が両側の表面に塗布・乾燥処理され、さらに、仕上げ焼鈍され、仕上げ焼鈍中に両表面に生成したフォルステライト(Mg2SiO4)被膜の上に張力付与型被膜(燐酸系の絶縁被膜)が塗布されて焼き付けられて、方向性珪素鋼板が準備された。その後、この鋼板を電解エッチングする前に、その片側の表面はレーザ光線によりフォルステライト被膜と張力付与型被膜が選択的に除去されて、エッチングパターンが形成された。この張力付与型被膜は電気絶縁性被膜であるため、エッチングマスクとして利用した。 A steel sheet cold-rolled to the final thickness using a material for grain-oriented silicon steel sheets is prepared, and after the steel sheet is decarburized and annealed, an annealing separator made of MgO is applied and dried on both surfaces. Further, finish annealing is performed, and a tension-imparting coating (phosphate insulating coating) is applied and baked on the forsterite (Mg 2 SiO 4 ) coating formed on both surfaces during the finish annealing, and directional silicon A steel plate was prepared. Thereafter, before electrolytically etching the steel sheet, the forsterite coating and the tension-imparting coating were selectively removed from the surface on one side by a laser beam to form an etching pattern. Since this tension-imparting film is an electrically insulating film, it was used as an etching mask.

前記のような前処理が施された方向性珪素鋼板に、図1に示す間接通電式連続電解処理装置を用いて電解エッチング処理及び金属酸化物の被膜形成処理を行った。被膜形成処理では、金属イオンと該金属イオンに対してモル比で4倍以上のフッ素を含有する化合物が少なくとも結合した錯イオンを含むpH3〜7の後処理水溶液(A)、及び、(B)中にて、金属酸化物の被膜を形成した。
その際の具体的な条件を以下に示す。
The grain-oriented silicon steel sheet subjected to the pretreatment as described above was subjected to electrolytic etching treatment and metal oxide film formation treatment using the indirect energization type continuous electrolytic treatment apparatus shown in FIG. In the film-forming treatment, a post-treatment aqueous solution (A) having a pH of 3 to 7 and containing a complex ion in which a metal ion and a compound containing fluorine at a molar ratio of 4 times or more with respect to the metal ion are combined, and (B) Inside, a metal oxide film was formed.
Specific conditions at that time are shown below.

[方向性珪素鋼板] 板厚 0.22mm、板幅 1000mm
[絶縁被膜] 鋼帯長手方向に直角な方向(鋼帯幅方向)に、3mmピッチ 幅0.2mmのエッチングパターンを有する。
[エッチング 電解液] 組成500g−NaCl/l、液温 60℃
[エッチング 目標溝深さ]0.02mm
[エッチング 電解電流] 350C/dm2
[後処理水溶液]
A液: 組成 (NH42TiF6 0.02M
(Ti:F(モル比)=1:6)
液温 60℃
B液: 組成 TiCl4 0.02M、(NH4)HF2 0.06M
(Ti:F(モル比)=1:6)
液温 60℃
C液: 組成 (NHTiF 0.01M
TiCl 0.01M、(NH)HF 0.03M
(Ti:F(モル比)=1:6)
液温 60℃
[後処理 陽極電極材質] Al
[後処理 電解電流] 2C/dm2
[Directional silicon steel sheet] Thickness 0.22 mm, width 1000 mm
[Insulating coating] It has an etching pattern with a pitch of 3 mm and a width of 0.2 mm in a direction perpendicular to the longitudinal direction of the steel strip (steel strip width direction).
[Etching Electrolyte] Composition 500 g-NaCl / l, liquid temperature 60 ° C.
[Etching target groove depth] 0.02 mm
[Etching Electrolytic Current] 350 C / dm 2
[Post-treatment aqueous solution]
Liquid A: Composition (NH 4 ) 2 TiF 6 0.02M
(Ti: F (molar ratio) = 1: 6)
Liquid temperature 60 ℃
Solution B: Composition TiCl 4 0.02M, (NH 4) HF 2 0.06M
(Ti: F (molar ratio) = 1: 6)
Liquid temperature 60 ℃
Solution C: Composition (NH 4) 2 TiF 6 0.01M
TiCl 4 0.01M, (NH 4 ) HF 2 0.03M
(Ti: F (molar ratio) = 1: 6)
Liquid temperature 60 ℃
[Post-treatment anode material] Al
[Post-treatment electrolytic current] 2C / dm 2

電解エッチング後、各速度のサンプルを採取し、鋼帯の幅方向における電解エッチングで形成された溝の形状パターン、溝の深さのばらつきを評価した。また、電解エッチング処理及び後処理(金属酸化物の被膜形成)の後に、絶縁被膜を塗布し、鋼板に対する密着性(φ20の棒にまきつけての剥離試験)を評価した。   After the electrolytic etching, samples at various speeds were taken, and the variation in the shape pattern of the groove formed by the electrolytic etching in the width direction of the steel strip and the depth of the groove were evaluated. In addition, after the electrolytic etching treatment and the post-treatment (metal oxide film formation), an insulating film was applied, and the adhesion to the steel sheet (peeling test by attaching to a φ20 bar) was evaluated.

表1に、図1に示す装置を用いて方向性珪素鋼板に電圧印加をしたときの試験条件と結果を示す。なお、溝の形状は、エッチング後の溝の形状を図5に基づいて(イ)〜(ニ)に分類して、それぞれの存在割合を%で示した。
No.1〜5、No.11〜15、No.21〜25、及び、No.31〜36に示される本発明によるところのエッチング例では、溝の形状は全て(イ)で安定しており、溝の深さのバラツキ(%)((溝の深さの標準偏差)/(溝の深さの平均値)×100)も極めて小さいことが分かる。さらに、後処理水溶液(A)で金属酸化物の被膜形成を行ったNo.1〜5、後処理水溶液(B)で金属酸化物の被膜形成を行ったNo.21〜25、及び、処理液(C)で金属酸化物の皮膜形成を行ったNo.31〜36は、金属酸化物の被膜形成を行わなかったNo.11〜15と比べ、地金に対する被膜密着性が良好(曲げ試験で剥離なし)であった。
なお、No.6〜10は、電極4への正負の電圧の印加時間の配分が適切でなく、(イ)の形状の溝が安定して形成できなかったため、被膜形成を行なわなかった参考例である。
Table 1 shows test conditions and results when voltage is applied to the grain-oriented silicon steel sheet using the apparatus shown in FIG. In addition, the shape of the groove | channel classified the shape of the groove | channel after an etching into (A)-(D) based on FIG. 5, and each presence ratio was shown by%.
No. 1-5, no. 11-15, no. 21-25 and No. In the etching examples according to the present invention shown in 31 to 36, the shape of the groove is all stable in (a), and the groove depth variation (%) ((standard deviation of groove depth) / ( It can be seen that the average value of the groove depth) × 100) is also very small. Furthermore, the metal oxide film was formed using the post-treatment aqueous solution (A). 1-5, No. 1 in which the metal oxide film was formed with the post-treatment aqueous solution (B). No. 21 to 25, and No. 1 in which a metal oxide film was formed with the treatment liquid (C). Nos. 31 to 36 were No. which did not perform metal oxide film formation. Compared with 11-15, the film adhesion to the metal was good (no peeling in the bending test).
In addition, No. Reference numerals 6 to 10 are reference examples in which no coating was formed because the distribution of the positive and negative voltage application time to the electrode 4 was not appropriate and the groove having the shape (a) could not be stably formed.

Figure 0004890387
Figure 0004890387

本発明の一実施の形態に係る、片側の表面にエッチングパターンを付与した絶縁被膜が形成された金属帯に、間接通電式電解エッチングにより連続して溝加工する装置及び間接通電方式により連続して溝部に金属酸化物の被膜を形成する装置の長手方向垂直断面図による概略説明図である。According to an embodiment of the present invention, a metal strip having an insulating film provided with an etching pattern on one surface is continuously grooved by an indirect energization electrolytic etching and continuously by an indirect energization method. It is a schematic explanatory drawing by the longitudinal direction vertical sectional view of the apparatus which forms the metal oxide film in a groove part. 従来の金属帯の直接通電式連続電解エッチング装置の概略を、長手方向垂直断面図で説明する図である。It is a figure explaining the outline of the conventional direct current | flow type continuous electrolytic etching apparatus of a metal strip with a longitudinal direction vertical sectional view. 従来の金属帯の間接通電式連続電解エッチング装置の概略を、長手方向垂直断面図で説明する図である。It is a figure explaining the outline of the conventional indirect energization type continuous electrolytic etching apparatus of a metal belt with a longitudinal direction vertical sectional view. 本発明の一実施の形態に係る、電極4と電極5の間での電圧印加例を示す図である。It is a figure which shows the example of a voltage application between the electrode 4 and the electrode 5 based on one embodiment of this invention. 電解エッチングで形成される溝の断面形状のパターンを分類して示す図である。It is a figure which classify | categorizes and shows the pattern of the cross-sectional shape of the groove | channel formed by electrolytic etching.

符号の説明Explanation of symbols

1 金属帯
2 電解槽(電解エッチング槽)
3 電解エッチング液
4、5 電極
6、36 遮蔽板(非導電性材料)
7、8、37 直流電源装置
9、10、9′、10′、39 開閉器
11、12、41、42 リンガーロール
13、14、43、44 シンクロール(浸漬用ロール)
15 陰極電極
16 コンダクターロール
17 バックアップロール
22、23、52 抵抗
32 後処理槽(金属酸化物の被膜形成槽)
33 後処理水溶液
34 陰極電極
35 陽極電極
20 エッチング装置
40 後処理装置
1 Metal strip 2 Electrolytic tank (electrolytic etching tank)
3 Electrolytic etching solution 4, 5 Electrode 6, 36 Shield plate (non-conductive material)
7, 8, 37 DC power supply 9, 10, 9 ', 10', 39 Switch 11, 12, 41, 42 Ringer roll 13, 14, 43, 44 Sink roll (dipping roll)
15 Cathode electrode 16 Conductor roll 17 Backup roll 22, 23, 52 Resistance 32 Post-treatment tank (metal oxide film formation tank)
33 Post-treatment aqueous solution 34 Cathode electrode 35 Anode electrode 20 Etching device 40 Post-treatment device

Claims (4)

仕上げ焼鈍され、表面に絶縁被膜を有する方向性珪素鋼板の片面または両面を、電解エッチングにより連続的に溝加工し、その後、溝加工された面に絶縁被膜を形成する方向性珪素鋼板の製造方法であって、
前記電解エッチングによる溝加工とその後の絶縁被膜形成の各工程の間に、(1)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素イオンを含み、及び/又は、(2)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素を含有する化合物が少なくとも結合した錯イオンを含み、pHが3〜7である後処理水溶液中で、前記方向性珪素鋼板に電圧印加を行い、前記溝加工された部分の表面に、前記金属イオンを含む金属酸化物及び/又は金属水酸化物の被膜を形成する金属化合物被覆形成工程を有することを特徴とする方向性珪素鋼板の製造方法。
A method for producing a directional silicon steel sheet, wherein one or both surfaces of a directional silicon steel sheet that is finish-annealed and has an insulating film on its surface is continuously grooved by electrolytic etching, and then an insulating film is formed on the grooved surface. Because
Between each step of the groove processing by the electrolytic etching and the subsequent formation of the insulating film, (1) metal ions and fluorine ions at a molar ratio of 4 times or more with respect to the metal ions and / or (2) In the post-treatment aqueous solution having a complex ion in which a metal ion and a compound containing fluorine at a molar ratio of 4 times or more with respect to the metal ion are bonded and having a pH of 3 to 7, a voltage is applied to the grain-oriented silicon steel plate. A grain-oriented silicon steel sheet characterized by having a metal compound coating forming step of applying and forming a film of the metal oxide and / or metal hydroxide containing the metal ions on the surface of the grooved portion Manufacturing method.
前記金属化合物被覆形成工程における方向性珪素鋼板への電圧印加のための通電は、前記後処理水溶液中で方向性珪素鋼板のエッチング面と相対向して配設された電極による間接通電であり、該電極は、方向性珪素鋼板の進行方向に互いに極性が異なる電極を交互に、かつ最下流の電極が陽極となるように配設され、これら陰極と陽極の電極間に電圧印加されることを特徴とする請求項1に記載の方向性珪素鋼板の製造方法。   The energization for voltage application to the directional silicon steel sheet in the metal compound coating forming step is indirect energization with an electrode disposed opposite to the etching surface of the directional silicon steel sheet in the post-treatment aqueous solution, The electrodes are arranged such that electrodes having different polarities are alternately arranged in the traveling direction of the grain-oriented silicon steel sheet so that the most downstream electrode serves as an anode, and a voltage is applied between these cathode and anode electrodes. The method for producing a grain-oriented silicon steel sheet according to claim 1, characterized in that: 請求項1に記載の方向性珪素鋼板の製造方法を実施するための装置であって、
仕上げ焼鈍され、表面に絶縁被膜を有する方向性珪素鋼板の片面または両面を電解エッチングにより連続的に溝加工するエッチング装置に続いて、(1)金属イオンと概金属イオンに対してモル比で4倍以上のフッ素イオンを含み、及び/又は、(2)金属イオンと該金属イオンに対してモル比で4倍以上のフッ素を含有する化合物が少なくとも結合した錯イオンを含み、pHが3〜7の後処理水溶液が充填された後処理槽と、前記方向性珪素鋼板に電圧印加を行う電極を有し、前記後処理水溶液中で方向性珪素鋼板のエッチング面に前記金属イオンを含む金属酸化物及び/又は金属水酸化物の被膜を連続的に形成する後処理装置が設けられていることを特徴とする方向性珪素鋼板の製造装置。
An apparatus for carrying out the method for producing a grain-oriented silicon steel sheet according to claim 1,
Next to an etching apparatus that performs continuous groove processing by electrolytic etching on one or both sides of a directional silicon steel sheet that has been annealed and has an insulating coating on its surface, (1) a molar ratio of 4 to metal ions and approximately metal ions. And / or (2) a complex ion in which at least a metal ion and a compound containing fluorine at a molar ratio of 4 or more with respect to the metal ion are bonded to each other, and the pH is 3 to 7 A metal oxide containing a post-treatment tank filled with a post-treatment aqueous solution and an electrode for applying a voltage to the grain-oriented silicon steel sheet, and containing the metal ions on the etching surface of the grain-oriented silicon steel sheet in the post-treatment aqueous solution An apparatus for producing a grain-oriented silicon steel sheet, wherein a post-treatment device for continuously forming a metal hydroxide film is provided.
前記電極は互いに極性が異なる複数の電極よりなり、前記後処理水溶液中で方向性珪素鋼板のエッチング面と相対向して交互に極性が異なるように配設され、かつ最下流の電極が陽極となるように配設されており、互いに隣接する電極の間には非導電性材料の遮蔽板が配設されていて、前記方向性珪素鋼板への電圧印加のための通電は前記電極による間接通電によって行われることを特徴とする請求項3に記載の方向性珪素鋼板の製造装置。   The electrodes are composed of a plurality of electrodes having different polarities from each other, arranged in the post-treatment aqueous solution so as to be opposite to each other and opposite to the etching surface of the grain-oriented silicon steel sheet, and the most downstream electrode is an anode. A shielding plate made of a non-conductive material is arranged between adjacent electrodes, and energization for applying voltage to the directional silicon steel plate is performed indirectly by the electrodes. The directional silicon steel sheet manufacturing apparatus according to claim 3, wherein
JP2007216218A 2007-08-22 2007-08-22 Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet Expired - Fee Related JP4890387B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007216218A JP4890387B2 (en) 2007-08-22 2007-08-22 Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007216218A JP4890387B2 (en) 2007-08-22 2007-08-22 Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet

Publications (2)

Publication Number Publication Date
JP2009046746A JP2009046746A (en) 2009-03-05
JP4890387B2 true JP4890387B2 (en) 2012-03-07

Family

ID=40499227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007216218A Expired - Fee Related JP4890387B2 (en) 2007-08-22 2007-08-22 Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet

Country Status (1)

Country Link
JP (1) JP4890387B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106498479B (en) * 2016-12-05 2018-11-16 中国特种飞行器研究所 Titanium alloy member is without mark micro arc oxidation treatment device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59215421A (en) * 1983-05-20 1984-12-05 Nippon Steel Corp Method for forming film containing zirconia on surface of silicon steel sheet
JP2001316896A (en) * 2000-05-10 2001-11-16 Nippon Steel Corp Production method of low core loss directional electromagnetic steel sheet
JP2005226134A (en) * 2004-02-13 2005-08-25 Nippon Steel Corp Indirect energizing type continuous electrolytic etching method and indirect energizing type continuous electrolytic etching apparatus for metallic strip

Also Published As

Publication number Publication date
JP2009046746A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
CN103620839B (en) Collector foil that is chemically treated, being made up of aluminum or aluminum alloy
JP5094172B2 (en) Aluminum base material for etching and aluminum electrode material for electrolytic capacitor using the same
CN110062819B (en) Method for electroplating uncoated steel strip with a coating
KR100530814B1 (en) Indirect conducting type continuous electrolytic etching method and apparatus for metallic strap
EP3460102A1 (en) Method of producing an electrocatalyst
KR100487646B1 (en) Process and a device for electrolytic pickling of metallic strip
JP4890387B2 (en) Manufacturing method and manufacturing apparatus for grain-oriented silicon steel sheet
US6611422B2 (en) Electrode foil for aluminum electrolytic capacitor and method of manufacturing same
JPS629205B2 (en)
JP4157441B2 (en) Indirect energization type continuous electrolytic etching method and indirect energization type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet
JP2011246790A (en) Continuous electrolytic etching method and continuous electrolytic etching device for metallic strip
RU2676816C1 (en) Electrotechnical steel strip with the oriented structure continuous electrolytic etching method and device for the electrotechnical steel strip with the oriented structure continuous electrolytic etching
JP2000064100A (en) Descaling apparatus for steel strip and apparatus for producing steel strip
JP3416620B2 (en) Electrolytic copper foil manufacturing apparatus and electrolytic copper foil manufacturing method
JP4157442B2 (en) Direct conduction type continuous electrolytic etching method and direct conduction type continuous electrolytic etching apparatus for low iron loss unidirectional silicon steel sheet
JP4016431B2 (en) Directional silicon steel strip manufacturing method and electrolytic etching apparatus
JP6081224B2 (en) Manufacturing method of surface-treated steel sheet
JP2005226134A (en) Indirect energizing type continuous electrolytic etching method and indirect energizing type continuous electrolytic etching apparatus for metallic strip
JP2005226135A (en) Direct energizing type continuous electrolytic etching method and direct energizing type continuous electrolytic etching apparatus for metallic strip
US6921443B1 (en) Process for producing stainless steel with improved surface properties
JP2005226132A (en) Direct energizing type continuous electrolytic etching method and direct energizing type continuous electrolytic etching apparatus for metallic strip
JP4423813B2 (en) Formation method of electrode foil for aluminum electrolytic capacitor
KR101325390B1 (en) Metal Foil Manufacturing Apparatus Comprising Perpendicular Type Cell
US11091850B2 (en) Producing method of wired circuit board
JP2005226133A (en) Indirect energizing type continuous electrolytic etching method and indirect energizing type continuous electrolytic etching apparatus for metallic strip

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090915

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20111122

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20111214

R151 Written notification of patent or utility model registration

Ref document number: 4890387

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141222

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees