JP2012162619A - 新規ポリイソイミド樹脂及びその製造方法並びにポリイミド樹脂の製造方法。 - Google Patents

新規ポリイソイミド樹脂及びその製造方法並びにポリイミド樹脂の製造方法。 Download PDF

Info

Publication number
JP2012162619A
JP2012162619A JP2011022957A JP2011022957A JP2012162619A JP 2012162619 A JP2012162619 A JP 2012162619A JP 2011022957 A JP2011022957 A JP 2011022957A JP 2011022957 A JP2011022957 A JP 2011022957A JP 2012162619 A JP2012162619 A JP 2012162619A
Authority
JP
Japan
Prior art keywords
resin
polyisoimide
polyimide resin
group
polyamic acid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011022957A
Other languages
English (en)
Inventor
Jiro Sugiyama
二郎 杉山
Tomoko Shirai
智子 白井
Akira Ishikubo
章 石窪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2011022957A priority Critical patent/JP2012162619A/ja
Publication of JP2012162619A publication Critical patent/JP2012162619A/ja
Withdrawn legal-status Critical Current

Links

Landscapes

  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)

Abstract

【課題】高溶解性と熱可塑性を持つポリイソイミド樹脂及びポリイミド樹脂の製造方法を提供する。
【解決手段】1,1’−ビシクロヘキサン−3,3’4,4’−テトラカルボン酸−3,3’4,4’−二無水物を酸成分として得られるポリイソイミド樹脂であって、イソイミド環の窒素原子が3,3’−、4,4’−、3,4’−の各位置にある3種の繰り返し単位の少なくとも1種を含むポリイソイミド樹脂であり、融点が300℃以下であり、かつイソイミドからイミドへの転位温度が融点より高いポリイソイミド樹脂、これを用いたポリイミド樹脂の製造方法、及びポリアミック酸樹脂又はポリアミック酸エステル樹脂を用いたポリイソイミド樹脂の製造方法。
【選択図】なし

Description

本発明は、新規のポリイソイミド樹脂とその製造方法、及びこのポリイソイミド樹脂を用いたポリイミド樹脂の製造方法に関する。
ポリイミド樹脂は、耐熱性や機械物性、耐薬品性、電気特性等の点において優れた特性を有しているために、自動車、航空宇宙産業、電気、電子、電池分野において、成形材料、コーティング材料、複合材料として幅広く使用されている。また透明性が要求される光学部材の分野においては、透明性ポリイミド樹脂が使用されている。
例えば、特許文献1にはジシクロヘキシル−3,4,3’,4’−テトラカルボン酸二無水物骨格を用いた透明ポリイミド樹脂が記載されている。又、溶液流延法におけるイミド化加熱工程を低温で行える透明ポリイミド樹脂成形体の製造方法が記載されている。
また、特許文献2では、溶媒溶解性のポリイソイミド樹脂をポリイミド樹脂前駆体として用いることにより、比較的低温の加熱工程で透明ポリイミド樹脂のフィルムを得る方法が報告されている。
特開平8−104750号公報 特開平8−3314号公報
一般的にポリイミド樹脂は溶剤可溶性に乏しいため、フィルムなどの成形体を得る方法としては、ポリアミック酸樹脂溶液を流延(塗布)した後、加熱により有機溶媒を除去し、更に加熱して脱水又は脱アルコール閉環反応を行い、ポリイミド樹脂フィルムを得る溶液流延法が知られている。しかしながら、この方法は製造工程が複雑なだけでなく、イミド化の際に水分子の脱離が起こり、成形体が大きく収縮したり性能が低下したりするという課題があった。又、ポリアミック酸樹脂溶液は保存安定性が悪いうえ、ポリアミック酸樹脂が熱成形温度範囲でイミド化してガラス転移温度が上昇し、樹脂の流動性が大きく低下するので、製造条件の制御が困難となり生産性が低下するという課題があった。
また、ポリイミド樹脂を加工して成形体を得る他の方法として加圧加熱成形が知られている。しかし、一般的なポリイミド樹脂は耐熱性に優れるため非常に高温での加工が必要になり、押出成形や射出成形等の一般的な熱可塑性樹脂の成形方法の適用は困難であった。さらに、耐熱性に劣る材料と複合させて成形加工を行うことができないという課題もあった。
上記問題点に鑑み、本発明の目的は、従来の溶液流延法のみならず熱可塑成形等の多様な方法でポリイミド樹脂を製造するためのポリイミド樹脂前駆体として好適な、溶媒溶解性及び熱可塑性を持つポリイソイミド樹脂を提供するとともに、これを用いたポリイミド樹脂及びポリイミド樹脂成形体の製造方法を提供することにある。
本発明者らは、上記課題を解決すべく鋭意検討した結果、溶媒溶解性や熱融解性が高い
ポリイソイミド樹脂を見出し、またそのポリイソイミド樹脂をポリイミド樹脂の前駆体として用いることによりイミド樹脂の熱可塑成形が可能となることを見出し、本発明を達成するに至った。
即ち、本発明の要旨は以下のとおりである。
[1]下記式(A1)、(A2)及び(A3)で表される繰り返し単位の少なくとも1種を含むポリイソイミド樹脂であって、示差走査熱量測定法(DSC法)による融点が300℃以下であり、かつ示差走査熱量測定法(DSC法)によるポリイソイミド樹脂からポリイミド樹脂への転位温度が該融点より高いことを特徴とするポリイソイミド樹脂。
Figure 2012162619
(式(A1)、(A2)及び(A3)中、Rは下記式(1)で表される基を示す。
Figure 2012162619
式(1)中、環A、環Bは各々独立して、置換基を有していても良い芳香族環又は置換基を有していても良い脂肪族環を示し、p、qは各々独立して、1〜10の整数を示す。Xは単結合、酸素原子、硫黄原子、置換基を有していても良いアルキレン基、スルホニル基、スルフィド基、カルボニル基、芳香族基又は−O−CnH2n−O−を示す。但し、nは1〜5の整数を示す。Y、Yは各々独立して、単結合、酸素原子、硫黄原子、置換基を有していても良いアルキレン基、スルホニル基、スルフィド基又はカルボニル基を示す。)
[2][1]に記載のポリイソイミド樹脂を転位してポリイミド樹脂を得ることを特徴とする、ポリイミド樹脂の製造方法。
[3] 下記各工程を含むことを特徴とする、ポリイミド樹脂成形体の製造方法。
(1a)ポリアミック酸樹脂又はポリアミック酸エステル樹脂を含む溶液を塗布し成形体とする工程
(1b)得られた成形体のポリアミック酸樹脂又はポリアミック酸エステル樹脂を閉環反応させて、[1]に記載のポリイソイミド樹脂の成形体とする工程
(1c)該ポリイソイミド樹脂成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
[4] 下記各工程を含むことを特徴とする、ポリイミド樹脂成形体の製造方法。
(2a)[1]に記載のポリイソイミド樹脂の溶液を塗布しポリイソイミド成形体とする工程
(2b)得られた成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
[5] 下記各工程を含むことを特徴とする、ポリイミド樹脂成形体の製造方法。
(3a)[1]に記載のポリイソイミド樹脂の溶液中でポリイソイミド樹脂を転位し、ポリイミド樹脂溶液を得る工程
(3b)得られたポリイミド樹脂溶液を塗布しポリイミド樹脂成形体を得る工程
[6] 下記各工程を含むことを特徴とする、ポリイミド樹脂成形体の製造方法。
(4a)[1]に記載のポリイソイミド樹脂を溶融し、成形してポリイソイミド樹脂成形体を得る工程
(4b)得られた成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
[7]下記式(B1)、(B2)及び(B3)で表される繰り返し単位の少なくとも1種を含むポリアミック酸樹脂又はポリアミック酸エステル樹脂を閉環反応させることにより[1]に記載のポリイソイミド樹脂を得ること特徴とするポリイソイミド樹脂の製造方法。
Figure 2012162619
(式(B1)、(B2)及び(B3)中、Rは水素原子又は置換基を有していてもよい炭素数1〜14のアルキル基を示す。)
本発明のポリイソイミド樹脂は、各種溶媒への溶解性を有し、かつ熱可塑性を有することから、従来の溶液流延法のみならず熱可塑成形等の多様な方法でポリイミド樹脂を製造するためのポリイミド樹脂前駆体として好適である。従ってこれを前駆体とすることで、多様な成形手法を用いてポリイミド樹脂成形体を得ることができ、フィルム、シート、成形材料、コーティング等広範な用途に利用することができる。
さらに得られたポリイミド樹脂は、耐熱性、透明性に優れるという利点も有するため透明耐熱材料として使用することができる。
以下に、本発明の実施の形態を詳細に説明する。
以下に記載する構成要件の説明は、本発明の実施形態の一例(代表例)であり、本発明のその要旨を超えない限り、これらの内容に特定はされない。
<ポリイソイミド樹脂>
本発明のポリイソイミド樹脂としては、下記式(A1)、(A2)及び(A3)で表される繰り返し単位の少なくとも1種を含むポリイソイミド樹脂であって、示差走査熱量測定法(DSC法)による融点が300℃以下であり、かつ示差走査熱量測定法(DSC法)によるポリイソイミド樹脂からポリイミド樹脂への転位温度が該融点より高いポリイソイミド樹脂である。
Figure 2012162619
(式(A1)、(A2)及び(A3)中、Rは下記式(1)で表される基を示す。
Figure 2012162619
式(1)中、環A、環Bは各々独立して、置換基を有していても良い芳香族環又は置換基を有していても良い脂肪族環を示し、p、qは各々独立して、1〜10の整数を示す。Xは単結合、酸素原子、硫黄原子、置換基を有していても良いアルキレン基、スルホニル基、スルフィド基、カルボニル基、芳香族基又は−O−CnH2n−O−を示す。但し、nは1〜5の整数を示す。Y、Yは各々独立して、単結合、酸素原子、硫黄原子、置換基を有していても良いアルキレン基、スルホニル基、スルフィド基又はカルボニル基を示す。)
環A、環Bは各々独立して、置換基を有していても良い芳香族環又は置換基を有していても良い脂肪族環を示す。なお、環A、環Bは単独又は二種類以上であっても良い。
芳香族環は、特段の制限はないが、芳香族炭化水素環又は芳香族複素環が挙げられる。
芳香族炭化水素環としては、例えば、ベンゼン環、ナフタレン環、アズレン環、ビフェ
ニル環、アセナフチレン環、フルオレン環、フェナントレン環、アントラセン環、フルオランセン環、トリフェニル環、ターフェニル環、ピレン環、クリセン環、ナフタセン環、ペリレン環又はペンタセン環等が挙げられる。芳香族複素環としては、ピロール環、フラン環、チオフェン環、ピリジン環、キノリン環、イソイキノリン環などが挙げられる。その中でもベンゼン環、ビフェニレン環、ターフェニル環が好ましい。
脂肪族環は、シクロブタン環、シクロペンタン環、シクロヘキサン環、シクロヘプタン環、シクロオクタン環、ノルボルナン環、ノルボルネン環、ヒドリンダン環、デカヒドロナフタレン環、テトラヒドロペンタジエン環又はアダマンタン環が挙げられる。その中でもシクロヘキサン環、シクロペンタン環、ノルボルナン環が好ましい。
芳香族環及び脂肪族環の結合位置は特に制限されない。芳香族環又は脂肪族環が有していても良い置換基は、具体的には、ハロゲン原子、アルキル基、アルコキシ基、ヒドロキシル基が挙げられる。
ハロゲン基とは、具体的には、フッ素原子、臭素原子、塩素原子等が挙げられる。
アルキル基とは、具体的には、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、ターシャリーブチル基等が挙げられる。
アルコキシ基とは、具体的には、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、ターシャリーブトキシ基等が挙げられる。
p、qは各々独立して、1以上、好ましくは2以上の整数であり、一方、5以下、好ましくは10以下の整数である。
Xは単結合、酸素原子、硫黄原子、置換基を有していても良いアルキレン基、スルホニル基、スルフィド基、カルボニル基、置換基を有していても良い芳香族基又は−O−CnH2n−O−を示す。但し、nは1〜5の整数を示す。その中でも、単結合、酸素原子、置換基を有していても良いアルキレン基、スルホニル基が好ましい。
アルキレン基とは、特段の制限はないが、具体的には炭素数1〜20のアルキレン基であり、好ましくは炭素数1〜10のアルキレン基であり、より好ましくは、メチレン基、エチレン基、プロピレン基、ブチレン基、ペンチレン基又はヘキシレン基が挙げられる。
芳香族基とは、特段の制限はないが、芳香族炭化水素基と芳香族複素環基が挙げられる。芳香族炭化水素基としては、フェニレン基、ビフェニレン基、ナフチレン基、フェナントレン基、トリフェニレン基、ターフェニレン基、ピレニレン基又はフルオレン基が挙げられる。芳香族複素環基としては、ピリジレン基、キノリレン基が挙げられる。その中でも、フェニレン基、ナフチレン基、ピリジレン基が好ましい。
アルキレン基又は芳香族基が有していても良い置換基は、炭素数1〜5のアルキル基、ヒドロキシ基、アルコキシ基、アミノ基、カルボキシル基、エポキシ基が挙げられる。該置換基にさらにフッ素原子、クロロ原子等のハロゲン原子等が置換されていても良い。
、Yは各々独立して、単結合、酸素原子、硫黄原子、置換基を有していても良いアルキレン基、スルホニル基、スルフィド基又はカルボニル基を示す。その中でも、単結合、酸素原子が好ましい。なお、Y、Yはそれぞれ、単独又は二種以上であっても良い。
アルキレン基とは、上述のXで規定されるアルキレン基と同義である。アルキレン基が有していても良い置換基とは、上述のXで規定される置換基と同義である。
は、上記の構成を満たせば特段の制限はないが、後述するジアミン化合物の構成単位が挙げられる。ジアミン化合物の具体例としては、1,4−フェニレンジアミン、1,2−フェニレンジアミン、1,3−フェニレンジアミン、4,4’−ジアミノジフェニル
エーテル、3,4’−ジアミノジフェニルエーテル、1,4−ビス(4−アミノフェノキシ)ベンゼン、1,3−ビス(4−アミノフェノキシ)ベンゼン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、ビス(4−(3−アミノフェノキシ)フェニル)スルホン、1,3−ビス(4−アミノフェノキシ)ネオペンタン、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−3,3’−ジメチルビフェニル、4,4’−ジアミノ−2,2’−ジメチルビフェニル、4,4’−ジアミノ−2,2’−ビス(トリフルオロメチル)ビフェニル、4,4’−ビス(4−アミノフェノキシ)ビフェニル、4,4’−ジアミノ−3,3’−ジヒドロキシビフェニル、ビス(4−アミノ−3−カルボキシフェニル)メタン、4,4’−ジアミノジフェニルスルホン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、4,4’−ジアミノジフェニルスルフィド、N−(4−アミノフェノキシ)−4−アミノベンズアミン、1,4−ジアミノシクロヘキサン、4,4’−メチレンビス(シクロヘキシルアミン)、4,4’−メチレンビス(2−メチルシクロヘキシルアミン)が挙げられる。この中でも4,4’−ジアミノジフェニルエーテル、2,2−ビス(4−(4−アミノフェノキシ)フェニル)プロパン、2,2−ビス(4−(4−アミノフェノキシ)フェニル)ヘキサフルオロプロパン、ビス(4−(4−アミノフェノキシ)フェニル)スルホン、4,4’−メチレンビス(シクロヘキシルアミン)が透明性と耐熱性、機械強度を同時に達成するために好ましい。
本発明のポリイソイミド樹脂の示差走査熱量測定法(DSC法)による融点は、下限に特段の制限は無いが、通常40℃以上、好ましくは50℃以上、より好ましくは60℃以上であり、一方、300℃以下、好ましくは250℃以下、より好ましくは200℃以下である。
本発明のポリイソイミド樹脂の融点が40℃以上であることは、室温では固体状の本発明樹脂を成形機内で加熱溶融させる点で好ましく、本発明のポリイソイミド樹脂の融点が300℃以下であることは、成形工程中における加熱劣化を抑制する点で好ましい。
本発明のポリイソイミド樹脂の示差走査熱量測定法(DSC法)により測定されるポリイソイミド樹脂からポリイミド樹脂への転位温度は、示差走査熱量測定法(DSC法)による融点より高い。
本発明におけるポリイソイミド樹脂からポリイミド樹脂への転位温度とは、示差走査熱量測定法(DSC法)においてポリイソイミド樹脂からポリイミド樹脂への転位反応に起因する発熱ピークが始まる温度を指す。本発明のポリイソイミド樹脂のポリイミド樹脂への転位温度は、ポリイソイミド樹脂の融点より高ければ特段の制限は無いが、通常50℃以上、好ましくは70℃以上、より好ましくは100℃以上であり、一方、通常300℃以下、好ましくは280℃以下、より好ましくは250℃以下である。本発明のポリイソイミド樹脂のポリイミド樹脂への転位温度が上記範囲内であることにより、成形工程中にポリイミド樹脂化することを防ぎ、さらにポリイミド樹脂の加熱劣化を抑制する点で好ましい。
本発明のポリイソイミド樹脂の融点と、ポリイソイミド樹脂からポリイミド樹脂への転位温度との温度差については、特段の制限は無いが、通常10℃以上、好ましくは20℃以上、より好ましくは30℃以上であり、一方、通常260℃以下、好ましくは230℃以下、より好ましくは190℃以下である。本発明のポリイソイミド樹脂の融点と、ポリイソイミド樹脂からポリイミド樹脂への転位温度との温度差が上記範囲内であることにより、成形工程中の過剰なポリイミド樹脂化とポリイミド樹脂の加熱劣化を抑制する点で好ましい。
また、本発明のポリイソイミド樹脂の重量平均分子量は、目的とする用途に適していれ
ば特に制限されず、通常1000以上、好ましくは5000以上、一方、通常100万以下、好ましくは50万以下である。
本発明のポリイソイミド樹脂に含まれるイソイミド骨格は核磁気共鳴スペクトル法(NMR)、赤外分光法(IR)、紫外可視吸収スペクトル法(UV−vis)等で測定することができる。例えばフーリエ変換赤外分光計により測定される、イソイミド骨格由来のピークの面積(=Siso )とイミド骨格由来のピークの面積(=Sim )の面積比(=Siso/(Siso+Sim)、イソイミド骨格含有量と記載する場合がある)が通常0.3以上、好ましくは0.5以上、特に好ましくは0.8以上であり、一方、通常1以下である。イソイミド骨格含有量が0.3以上1以下であることにより、熱可塑成形を行う場合には、融点とポリイミド樹脂への転位点が近接せず、熱可塑成形可能温度範囲が広くなり、かつ比較的低温領域に融点を持ち、ポリマーの分解温度以下で成形することができるために、好ましい。
また、ポリイミド樹脂のイソイミド骨格含有量は、通常0以上、一方、通常0.2以下である。ポリアミック酸樹脂又はポリアミック酸エステル樹脂の場合はSiso及びSimともに観測されない。
イソイミド骨格由来のピークは式(A1)、(A2)及び(A3)で表される繰り返し単位に由来するものだけでなく、イソイミド骨格を一つ有する繰り返し構造を含んでいても構わない。このような繰り返しの例として式(D1)〜(D4)で示される繰り返し単位を挙げることができる。これらの式中におけるRおよびRは一般式(A1)等におけるRおよび後述する式(B1)等におけるRと同義である。
Figure 2012162619
また、イミド骨格由来のピークは後述する一般式(C)で表される繰り返し単位に由来するものだけでなく、イミド骨格を一つ有する繰り返し単位を含んでいても構わない。このような構造の例として式(D3)〜(D6)で示される構造を挙げることができる。これらの式中におけるRおよびRは一般式(A1)等におけるRおよび後述する一般式(B1)等におけるRと同義である。
Figure 2012162619
本発明のポリイソイミド樹脂を構成する繰り返し単位は、一般式(A1)、(A2)及び(A3)で表される繰り返し単位に由来するものだけでなく、後述するポリアミック酸
樹脂の一般式(B1)、(B2)及び(B3)で表される繰り返し単位、後述するポリイミド樹脂の一般式(C)で表される繰り返し単位又は前記一般式(D1)〜(D6)で表される繰り返し単位が挙げられる。
本発明のポリイソイミド樹脂は、テトラカルボン酸残基として1,1’−ビシクロヘキサンを繰り返し単位に有するポリイソイミド樹脂である。このことは、芳香族基、または単環の脂肪族環と比較して着色の減少、融点の低下、溶解性の向上という理由が挙げられるので、溶液で用いる場合は溶液濃度を自由に調整することができ、熱可塑成形を行う場合は幅広い成形温度で成形可能である点で好ましいと考えられる。
<ポリイソイミド樹脂の製造方法>
本発明のポリイソイミド樹脂の製造方法は、特段の制限は無いが、前駆体であるポリアミック酸樹脂又はポリアミック酸エステル樹脂を製造し、得られたポリアミック酸樹脂をポリイソイミド樹脂化する製造方法が挙げられる。
<ポリアミック酸樹脂又はポリアミック酸エステル樹脂の合成方法>
本発明のポリアミック酸樹脂又はポリアミック酸エステル樹脂は、適当な溶媒中で、一般式(E1)で表されるテトラカルボン酸二無水物と一般式(E2)で表されるジアミン化合物を反応させる事により得られる。
Figure 2012162619
この時、テトラカルボン酸二無水物(E1)には本発明のポリイソイミド樹脂の特性及びポリイソイミド樹脂を前駆体として得られるポリイミド樹脂の無色性、透明性及び各種物性を損なわない範囲で他のテトラカルボン酸二無水物を混合して用いることができる。混合しても良いテトラカルボン酸二無水物は、本発明を損なわない限り制限は無く、エチレンテトラカルボン酸二無水物、ブタンテトラカルボン酸二無水物、シクロペンタンテトラカルボン酸二無水物、1,2,4,5−シクロヘキサンテトラカルボン酸二無水物、1,2,3,4−シクロヘキサンテトラカルボン酸二無水物、ピロメリット酸二無水物、1, 1−ビス(2,3−ジカルボキシフェニル)エタン二無水物、ビス(2,3−ジカルボキシフェニル)メタン二無水物、ビス(3,4−ジカルボキシフェニル)メタン二無水物、3,3’, 4,4’−ビフェニルテトラカルボン酸二無水物、2,2−ビス(3,4−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)プロパン二無水物、2,2−ビス(3,4−ジカルボキシフェニル)−1,1,1,3,3,3−ヘキサフルオロプロパン二無水物、2,2−ビス(2,3−ジカルボキシフェニル)−1,1,1,3,3,3 −ヘキサフルオロプロパン二無水物、ビス(3,4−ジカルボキシフェニル)スルホン二無水物、ビス(3,4−ジカルボキシフェニル)エーテル二無水物、ビス(2,3−ジカルボキシフェニル)エーテル二無水物、3,3’,4,4’−ベンゾフェノンテトラカルボン酸二無水物、2,2’,3,3’−ベンゾフェノンテトラカルボン酸二無水物、4,4− (p−フェニレンジオキシ)ジフタル酸二無水物、4,4−(m−フェニレンジオキシ)ジフタル酸二無水物、1,2,5,6−ナフタレンジカルボン酸二無水物、1,4,5,8−ナフタレンジカルボン酸二無水物、2,3,6,7−ナフタレンジカルボン酸二無水物、1, 2,3,4−ベンゼンテトラカルボン酸二無水物、2,2’,6,6’−ビフェニルテトラカルボン酸二無水物、3,4,9,10−ペリレンテトラカルボン酸二無水物、2,3,6,7 −アントラセンテトラカルボン酸二無水物又は1,2,7,8−フェナントレンテトラカルボン酸二無水物
等が挙げられる。
これらのテトラカルボン酸二無水物は単独又は二種以上混合して用いることができる。ただし、ピロメリット酸二無水物等芳香環を含むテトラカルボン酸二無水物や1, 2,
4, 5 −シクロヘキサンテトラカルボン酸二無水物等剛直な骨格を有するテトラカルボン酸二無水物を過剰に用いるとポリアミック酸樹脂およびポリイソイミド樹脂の溶媒への溶解性や、ポリイミド樹脂の無色性、透明性および各種物性が損なわれる傾向がある。
また、ジアミン化合物(E2)中のRは一般式(A1)等で定義したRと同義である。これらのジアミン化合物は単独あるいは二種以上混合して用いることができる。
ポリアミック酸樹脂の反応方法としては従来公知いずれの方法を用いても良い。
各原料テトラカルボン酸二無水物とジアミン化合物の仕込み方法、添加順序や添加方法は特に限定はなく、いずれの方法でも良い。ジアミン化合物の量は、テトラカルボン酸二無水物に対して、通常0.8以上、好ましくは1モル以上である。一方、通常1.2モル以下、好ましくは1.1モル以下である。溶媒中のテトラカルボン酸二無水物とジアミン化合物の濃度は、各々の条件やポリアミック酸樹脂溶液粘度に対して適宜設定しうるが、テトラカルボン酸二無水物とジアミン化合物の合計の重量は、特段の制限は無いが、全溶液量に対し、通常1重量%、好ましくは5重量%以上、一方、通常70重量%,好ましくは30重量%以下である。
反応温度は、特段の制限は無いが、通常0℃以上、好ましくは20℃以上、一方、通常100℃以下、好ましくは80℃以下である。
反応時間は、特段の制限は無いが、通常1時間以上、好ましくは2時間以上、一方、通常100時間以下、好ましくは24時間以下である。
この反応で用いる溶媒としては、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン、キシレン又はメシチレン等の炭化水素系溶媒;四塩化炭素、塩化メチレン、クロロホルム、1,2−ジクロロエタン、クロロベンゼン、ジクロロベンゼン又はフルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1、4−ジオキサン又はメトキシベンゼン等のエーテル系溶媒;アセトン又はメチルエチルケトン等のケトン系溶媒;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド又はN−メチル−2−ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系極性溶媒;ピリジン、ピコリン、ルチジン、キノリン又はイソキノリン等の複素環系溶媒;フェノール、クレゾールのようなフェノール系溶媒等が挙げられるが、特に限定されるものではない。これらは単独で使用することができ、2種類以上の混媒として使用する事もできる。
<末端封止>
本発明において用いられるポリアミック酸樹脂又はポリアミック酸エステル樹脂は、必要に応じて末端封止されていても良い。末端封止することで、ポリアミック酸樹脂又はポリアミック酸エステル樹脂末端の重合性が低下し、溶液の粘度が安定する点で好ましい。
末端封止方法は、限定されるものではなく、従来公知のいずれの方法を用いても良い。好ましい方法としては、末端封止剤を用いる方法が挙げられる。例えば末端封止剤を用いて封止する場合、その末端封止剤としては、従来公知の何れのものを用いても構わないが、例えば、末端アミノ基を封止する際の末端封止剤としては、無水フタル酸、1,2−シクロヘキサンジカルボン酸無水物、4−メチルシクロヘキサンー1,2−ジカルボン酸無水物又は(2−メチル−2−プロペニル)コハク酸無水物等の酸無水物;安息香酸クロリド等のような有機酸クロリドが挙げられる。また、末端酸無水物基を封止する際の末端封止剤としては、3−アミノフェニルアセチレン、アニリン又はシクロヘキシルアミン等のようなアミン化合物が挙げられる。
上記一般式(E1)と(E2)から製造されるポリアミック酸樹脂又はポリアミック酸エステル樹脂は主に下記の繰り返し単位を含む。
Figure 2012162619
(一般式(B1)、(B2)及び(B3)中のRは水素原子、置換基を有していてもよい炭素数1〜14のアルキル基を示す。)
は水素原子、置換基を有していてもよい炭素数1〜14のアルキル基を示す。
アルキル基としては、特段の制限は無いが、通常炭素数1〜14のアルキル基であり、炭素数1〜10のアルキル基が好ましく、メチル基、エチル基、n−プロピル基、イソプロピル基、n−ブチル基又はイソブチル基がより好ましく、メチル基又はエチル基が更に好ましい。
アルキル基が有していても良い置換基とは、ハロゲン原子等が挙げられる。
本発明のポリアミック酸樹脂又はポリアミック酸エステル樹脂において一般式(B1)、(B2)及び(B3)中の存在比は問わない。本発明のポリイソイミド樹脂はこれらポリアミック酸樹脂又はポリアミック酸エステル樹脂を後述の方法でポリイソイミド樹脂化して得られる。
<ポリイソイミド樹脂化>
本発明のポリイソイミド樹脂の製造方法には特段の制限は無いが、好ましくは、上記ポリアミック酸樹脂又はポリアミック酸エステル樹脂をイソイミド化剤を用いて閉環し、ポリイソイミド樹脂化する事により得られる。 イソイミド化剤としては、特段の制限は無いが、脱水縮合剤が挙げられる。
脱水縮合剤としては、N,N−ジシクロヘキシルカルボジイミド又はN,N−ジフェニルカルボジイミド等のN,N−2置換カルボジイミド;無水酢酸、無水トリフルオロ酢酸等の酸無水物;塩化チオニル又は塩化トシルのような塩化物;アセチルクロライド、アセチルブロマイド、プロピオニルアイオダイド、アセチルフルオライド、プロピオニルクロライド、プロピオニルブロマイド、プロピオニルアイオダイド、プロピオニルフルオライド、イソブチリルクロライド、イソブチリルブロマイド、イソブチリルアイオダイド、イソブチリルフルオライド、n−ブチリルクロライド、n−ブチリルブロマイド、n−ブチリルアイオダイド、n−ブチリルフルオライド、モノ−,ジ−,トリ−クロロアセチルクロライド、モノ−,ジ−,トリ−ブロモアセチルクロライド、モノ−,ジ−,トリ−アイ
オドアセチルクロライド、モノ−,ジ−,トリ−フルオロアセチルクロライド、無水クロロ酢酸、フェニルホスフォニックジクロライド、チオニルクロライド、チオニルブロマイド、チオニルアイオダイド又はチオニルフルオライド等のハロゲン化化合物;三塩化リン、亜リン酸トリフェニル又はジエチルリン酸シアニドのようなリン化合物等が挙げられる。
これらの脱水縮合剤の使用量は、ポリアミック酸樹脂又はポリアミック酸エステル樹脂骨格1molに対して、通常0.5mol、好ましくは1mol以上、一方、通常20mol以下、好ましくは10mol以下である。またこれらのイソイミド化剤はポリアミック酸樹脂又はポリアミック酸エステル樹脂を構成するテトラカルボン酸二無水物とジアミン化合物の種類に応じて適宜選択する。これらは単独で使用する事ができ、2種類以上を併用する事もできる。
また前記の脱水縮合剤に閉環触媒を併用して用いても良い。脱水縮合剤と閉環触媒を併用して使用すると、効率的にポリイソイミド樹脂化反応が進行するために好ましい。閉環触媒としては、トリメチルアミン、トリエチルアミン、トリ−n−ブチルアミン、N,N−ジメチルエタノールアミン、N,N−ジメチルドデシルアミン又はトリエチレンジアミン等の有機アミン化合物;ピリジン、ピコリン、2,6−ルチジン、2,4,6−コリジン、キノリン、ピラジン又は2−メチルピラジン等の複素環式化合物が挙げられる。その際、閉環触媒の使用量は、ポリアミック酸樹脂又はポリアミック酸エステル樹脂骨格1molに対して、通常0.001mol、好ましくは0.01mol以上、一方、通常10mol以下、好ましくは4mol以下である。
特に好ましい脱水縮合剤は、無水酢酸である。毒性及び副生成物が少なく好適に使用することができるため、好ましい。更に脱水閉環の反応を容易にするために、ピリジン等の閉環触媒を併用するのが好ましい。
この閉環によるポリイソイミド樹脂化反応は、ポリアミック酸樹脂又はポリアミック酸エステル樹脂と前記イソイミド化剤を反応させる事により、実施される。反応方法は従来公知いずれの方法でもよく、例えば、イソイミド化剤の添加やイソイミド化剤に浸漬させる方法が挙げられる。その際、イソイミド化剤は、そのまま用いても、有機溶媒で希釈した溶液として用いてもよい。
有機溶媒としては、例えば、ヘキサン、シクロヘキサン、ヘプタン、ベンゼン、トルエン又はキシレン等の炭化水素系溶媒;四塩化炭素、塩化メチレン、クロロホルム、ジクロロメタン、1,2−ジクロロエタン、クロロベンゼン、ジクロロベンゼン又はフルオロベンゼン等のハロゲン化炭化水素溶媒;ジエチルエーテル、テトラヒドロフラン、1、4−ジオキサン又はメトキシベンゼン等のエーテル系溶媒;ジエトキシエチレングリコール、ジメトキシエチレングリコール、ジエトキシジエチレングリコール又はジメトキシジエチレングリコール等のジエチレングリコール系溶媒;アセトン又はメチルエチルケトン等のケトン系溶媒;N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド又はN−メチル−2−ピロリドン等のアミド系溶媒;ジメチルスルホキシド等の非プロトン系溶媒;フェノ−ル、クレゾ−ル又はキシレノ−ル等のフェノール系溶媒等が挙げられる。これらの溶媒は単独で使用することができ、2種類以上を併用して用いる事もできる。溶媒の使用量に特に制限はないが、作業上の見地から、生成するポリイソイミド樹脂の濃度が、通常5重量%以上、好ましくは10重量%以上、一方、好ましくは80重量%以下、好ましくは50重量%以下となる様に調整する。
ポリイソイミド樹脂化の反応温度は、特段の制限は無いが、通常−30℃以上、好ましくは−20℃以上、一方、通常100℃以下、好ましくは60℃以下である。
ポリイソイミド樹脂化の反応時間は、特段の制限は無いが、通常15分以上、好ましく
は30分以上、一方、通常50時間以下、好ましくは24時間以下である。
このようにして得られた本発明のポリイソイミド樹脂を含有する溶液を、通常0℃以上80℃以下、かつ常圧又は減圧下にて、溶媒を除去することにより、目的とするポリイソイミド樹脂を得る事ができる。
また、貧溶媒中に本発明のポリイソイミド樹脂を含有する溶液を注いで行う再沈操作によっても、目的とするポリイソイミド樹脂を得る事ができる。
貧溶媒としては、ジエチルエーテル又はジイソプロピルエーテル等のエーテル;アセトン、メチルエチルケトン、イソブチルケトン又はメチルイソブチルケトン等のケトン;メタノール、エタノール又はイソプロピルアルコール等のアルコール等が挙げられる。
その際、必要に応じて、再沈前に副生成物を取り除くために、ろ過、遠心分離又は洗浄を実施してもよい。
また前記のポリイソイミド樹脂溶液は、溶液の状態で後工程であるポリイミド樹脂成形体の製造プロセスに送る事もできる。
<ポリイミド樹脂>
本発明のポリイソイミド樹脂を前駆体として得られるポリイミド樹脂は、通常、一般式(C)で表される構造を有する。
Figure 2012162619
一般式(C)中のRは、前記一般式(A1)等のRと同義である。
本発明により得られるポリイミド樹脂は透明で、着色が少なく耐熱性を有し、十分な機械強度を有することが特徴である。
本発明におけるポリイミド樹脂における無色および透明とは、目的とする成形体の形状において400nmの光線に対する透過率が60%以上、好適には70%以上、そのなかでも特に80%以上であるものをいう。
更に、前記ポリイミド樹脂の耐熱性に関しては、好適には、ガラス転移温度(Tg)が150℃以上であり、より好適には、200℃以上、さらに好ましくは250℃以上である。
ポリイミド樹脂の機械強度については、特段の制限はないが、具体的には以下のような項目が挙げられる。
引張強度は、特段の制限はないが、通常50Mpa以上、好ましくは70Mpa以上であり、一方、通常400Mpa以下、好ましくは300Mpa以下である。
引張り弾性率は、特段の制限はないが、通常1000MPa以上、好ましくは1500MPaであり、一方、通常20Gpa以下、好ましくは10Gpa以下である。
引張伸度が、特段の制限はないが、通常10%GL以上、好ましくは20%GLであり、一方、通常300%GL以下、好ましくは200%GL以下である。
また、ポリイミド樹脂中には所望に応じ、本発明の目的を損なわない範囲で、他の粉末状、粒状、板状又は繊維状等の無機系充填剤や、有機系充填剤を配合することができる。該無機系充填剤としては、例えばシリカ、ケイ藻土、バリウムフェライト、酸化ベリリウム、軽石又は軽石バルーン等の酸化物;水酸化アルミニウム、水酸化マグネシウム又は塩
基性炭酸マグネシウム等の水酸化物;炭酸カルシウム、炭酸マグネシウム、ドロマイト又はドーソナイト等の炭酸塩;硫酸カルシウム、硫酸バリウム、硫酸アンモニウム又は亜硫酸カルシウム等の硫酸塩及び亜硫酸塩;タルク、クレー、マイカ、アスベスト、ガラス繊維、ガラスバルーン、ガラスビーズ、ケイ酸カルシウム、モンモリロナイト又はベントナイト等のケイ酸塩;炭素繊維、カーボンブラック、グラファイト又は炭素中空球等の炭素類;硫化モリブデン、ホウ酸亜鉛、メタホウ酸バリウム、ホウ酸カルシウム、ホウ酸ナトリウム又はボロン繊維等の粉末状、粒状、板状、繊維状の無機質充填剤;金属元素、金属化合物、合金等の粉末状、粒状、繊維状、ウイスカー状の金属充填剤;炭化ケイ素、窒化ケイ素、ジルコニア、窒化アルミニウム、炭化チタン、チタン酸カリウム等の粉末状、粒状、繊維状、ウイスカー状のセラミックス充填剤等が挙げられる。
一方、有機系充填剤としては、例えばモミ殻等の殻繊維、カーボンナノチューブ、フラーレン、木粉、木綿、ジュート、紙細片、セロハン片、芳香族ポリアミド繊維、セルロース繊維、ナイロン繊維、ポリエステル繊維、ポリプロピレン繊維、熱硬化性樹脂粉末又はゴム等を挙げることができる。また、これら充填剤は不織布等平板状に加工したものを用いても良く、複数を混ぜて用いても良い。さらに所望に応じ、樹脂組成物に通常用いられている各種添加剤、例えば滑剤、着色剤、安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤又は離型剤等を配合することができる。これら各種充填剤及び添加成分はポリイミド樹脂を製造するどの工程のどの段階で添加しても良い。
<ポリイミド樹脂の製造方法>
本発明のポリイソイミド樹脂を転位することにより、ポリイミド樹脂を得ることができる。
ポリイソイミド樹脂は、例えば加熱する事により、脱水を伴うことなくポリイミド樹脂へ転位させることができる。加熱温度は転位温度より高い温度であれば特段の制限は無いが、通常100℃以上、より好ましくは150℃以上、一方、通常350℃以下、好ましくは300℃以下、より好ましくは250℃以下である。この時の反応時間は、特に限定されないが、通常30分以上、好ましくは1時間以上、一方、通常3時間以下、好ましくは、2時間以下である。ポリイソイミド樹脂からポリイミド樹脂を生成する際には脱水を伴わないので、ポリイソイミド樹脂からポリイミド樹脂に転位する際の成形体の収縮を抑制でき、水の発生とその揮発がないため、成形体の物性低下や欠陥を防ぐ事ができるために好ましい。具体的には、塗布法(例えば流延法)、押出成形法、圧縮成形法、射出成形法、インフレーション成形法等が挙げられる。その中でも、以下に述べる製造方法が好ましい。
<ポリイミド樹脂成形体の製造方法>
本発明のポリイソイミド樹脂を前駆体として、種々の方法でポリイミド樹脂成形体を得ることができる。なお、本発明において成形体とは、フィルム状、シート状、板状のものを含み、特に形状は限定されない。以下にポリイミド樹脂成形体の製造方法の好ましい例を示す。
本発明のポリイミド樹脂成形体の第1の製造方法は、下記工程の(1a)、(1b)及び(1c)の工程を含む製造方法である。
(1a)ポリアミック酸樹脂又はポリアミック酸エステル樹脂を含む溶液を塗布し成形体とする工程
(1b)得られた成形体のポリアミック酸樹脂又はポリアミック酸エステル樹脂を閉環反応させて、請求項1に記載のポリイソイミド樹脂の成形体とする工程
(1c)該ポリイソイミド樹脂成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
工程(1a)では、ポリアミック酸樹脂又はポリアミック酸エステル樹脂を含む溶液を
塗布する工程を伴い、ポリアミック酸樹脂又はポリアミック酸エステル樹脂溶液からポリアミック酸樹脂又はポリアミック酸エステル樹脂の成形体を得る。
ポリアミック酸樹脂又はポリアミック酸エステル樹脂を含む溶液の塗布する方法は、特段の制限は無いが、ダイ押し出しによる工法、アプリケーターを用いたキャスティング法、コーターを用いる方法、吹き付けによる方法、浸漬法、カレンダー法、流延法が挙げられる。その中でも流延法が好ましい。ポリアミック酸樹脂又はポリアミック酸エステル樹脂を流延する支持体としては、ガラス、金属製のベルト、キャスティングドラム、樹脂フィルム等を用いることができ、ポリアミック成形体を支持体から分離しても良いし、そのまま工程(1b)に送ることもできる。
支持体の分離方法としては、特段の制限はないが、例えば離型剤を用いて剥離する方法やレーザー剥離方法等が挙げられる。
ポリアミック酸樹脂又はポリアミック酸エステル樹脂を含む溶液には、前記のポリイソイミド樹脂化剤が混合していても良い。
工程(1b)は、得られた成形体のポリアミック酸樹脂又はポリアミック酸エステル樹脂を閉環反応させて、本発明のポリイソイミド樹脂の成形体とする工程である。
ポリイソイミド樹脂化の方法としては、特段の制限はないが、工程(1a)で得られたポリアミック酸樹脂又はポリアミック酸エステル樹脂の成形体を前記のイソイミド化剤溶液中に該支持体と一緒に浸漬した後に、加熱することにより、必要に応じて溶媒を蒸発させることにより、本発明のポリイソイミド樹脂の成形体を得る方法が挙げられる。
この方法を採用する場合、イソイミド化剤溶液は、そのまま用いても、有機溶媒の少なくとも1種類希釈したものを用いても良い。イソイミド化剤溶液中のイソイミド化剤濃度は特定するものではないが、通常5重量%以上、好ましくは10重量%以上であり、一方通常100重量%以下、好ましくは80重量%以下である。
加熱方法としては、特段の制限は無いが、熱風加熱、真空加熱、減圧乾燥、赤外線加熱、マイクロ波加熱の他、熱板、ホットロール等を用いた接触による加熱等が挙げられる。
また反応温度は、特段の制限は無いが、通常、−30℃以上、好ましくは−20℃以上であり、一方、通常100℃以下、好ましくは60℃以下である。
又は、工程(1a)でポリアミック酸樹脂又はポリアミック酸エステル樹脂を含む溶液に前記のイソイミド化剤が混合している場合には、得られたポリアミック酸樹脂又はポリアミック酸エステル樹脂の成形体を加熱することにより、本発明のポリイソイミド樹脂の成形体を得る方法が挙げられる。なお、工程(1a)中に、必要に応じて溶媒を蒸発させてもよい。
加熱方法としては、特段の制限は無いが、熱風加熱、真空加熱、減圧乾燥、赤外線加熱、マイクロ波加熱の他、熱板、ホットロール等を用いた接触による加熱等が挙げられる。
この時の反応温度は特に限定はないが、通常、−30℃以上、好ましくは−20℃以上であり、一方、通常100℃以下、60℃以下である。また、反応時間は通常10分以上、好ましくは30分以上であり、一方、通常180分以内、好ましくは120分以内である。
上記ポリイソイミド樹脂への転化する工程において、転化する工程が溶媒を除去する工程を兼ねても良く、別途溶媒除去する工程を設けても良い。
溶媒除去する工程は、具体的には、熱風加熱、真空加熱、減圧乾燥、赤外線加熱、マイクロ波加熱の他、熱板、ホットロール等を用いた接触による加熱等の熱処理方法が挙げられる。
溶媒除去温度は、適宜好適な温度を用いることができるが、通常40℃以上、好ましくは60℃以上であり、一方通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下である。
溶媒除去温度が40℃以上の場合、溶媒が十分揮発され、後述するポリイミド樹脂化工程の加熱の際に得られる成形体に気泡等が発生する可能性が低減するため、好ましい。また、溶媒除去温度が200℃以下であることにより、脱水縮合剤、閉環触媒又は有機溶媒の揮発が急激に起こらず、得られるポリイソイミド樹脂成形体に気泡等が発生せず、最終的に得られるポリイミド樹脂の外観や品質を著しく低下させる可能性が低減するため、好ましい。
支持体からの分離方法としては、特段の制限はないが、例えば、離型剤を用いて剥離する方法やレーザー剥離方法等が挙げられる。
工程(1c)では、該ポリイソイミド樹脂成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
ポリイソイミド樹脂をポリイミド樹脂に転位する方法には、熱的に転位させる加熱イミド化、化学的に転位させる化学イミド化が挙げられ、従来公知いずれの方法を用いても良い。その中でも、加熱イミド化が好ましい。
加熱イミド化の方法としては熱風加熱、真空加熱、赤外線加熱、マイクロ波加熱又は熱板若しくはホットロール等を用いた接触による加熱等が挙げられる。この場合、段階的に温度をあげることでイミド化を進行させることが好ましい。
加熱イミド化の反応温度は、特に限定されないが、通常100℃以上、好ましくは150℃以上であり、一方、通常350℃以下、好ましくは300℃以下である。
加熱イミド化の反応時間は、特に限定されないが、通常30分以上、好ましくは1時間以上であり、一方、通常3時間以下、好ましくは2時間以下である。
その際、空気下、不活性雰囲気下、真空下を問わないが、不活性雰囲気下で行う事が好ましい。
本発明のポリイミド樹脂成形体の第2の製造方法は、下記工程の(2a)及び(2b)の工程を含む製造方法である。
(2a)本発明のポリイソイミド樹脂の溶液を塗布しポリイソイミド成形体とする工程
(2b)得られた成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
工程(2a)は、本発明のポリイソイミド樹脂の溶液を塗布しポリイソイミド成形体とする工程である。すなわち、本発明のポリイソイミド樹脂を有機溶媒の少なくとも1種類に溶解しポリイソイミド樹脂溶液を調整し、該ポリイソイミド樹脂溶液を塗布する工程である。
本発明のポリイソイミド樹脂は融点以上に温度をかけることにより溶融させてもよく、溶媒に溶解させても、他の樹脂に混合させた状態で用いても良い。本発明のポリイソイミド樹脂溶融物や本発明のポリイソイミド樹脂の溶媒溶解物を、ポリイソイミド樹脂の溶液と記載する場合がある。
溶液中のポリイソイミド樹脂の濃度は、特段の制限は無いが、通常5重量%以上、好ましくは10重量%以上、一方、通常80重量%以下、好ましくは50重量%以下である。溶媒中のポリイソイミド樹脂の濃度を上記範囲内に調整することで、良好な塗工性を達成するために好ましい。
ポリイソイミド樹脂の溶液の粘度は、特段の制限は無いが、通常10mPas以上、好ましくは100mPas以上、一方、通常50000mPas以下、好ましくは20000mPas以下である。ポリイソイミド樹脂溶液の粘度を上記範囲内に調整することで、
良好な塗工性を達成するために点で好ましい。
本発明のポリイソイミド樹脂を溶解させる溶媒とは、特に限定はないが、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド又はN−メチル−2−ピロリドン等のアミド系溶媒やジメチルスルホキシド等の非プロトン系溶媒が挙げられる。この中でも特にN,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド又はN−メチル−2−ピロリドンが好ましい。これらは単独で使用することができ、2種類以上の混媒として使用する事もできる。
ポリイソイミド樹脂を溶解させる方法は従来公知のいずれの方法を用いても良い。溶解の際に、加熱を必要とする場合は、イミド転位温度以下の温度で実施するのが好ましい。ポリイソイミド樹脂溶液の塗布する方法は、特段の制限は無いが、ダイ押し出しによる工法、アプリケーターを用いたキャスティング法、コーターを用いる方法、吹き付けによる方法、浸漬法、カレンダー法、流延法が挙げられる。その中でも流延法が好ましい。
本発明のポリイソイミド樹脂の溶液を支持体上に流延し、必要に応じて溶媒を蒸発させることにより、ポリイソイミド樹脂の成形体を得る。
溶媒除去温度は、特段の制限はないが、通常40℃以上であり、一方、通常180℃以下、好ましくは150℃以下である。
溶媒除去する工程は、具体的には、熱風加熱、真空加熱、減圧乾燥、赤外線加熱、マイクロ波加熱の他、熱板、ホットロール等を用いた接触による加熱等の熱処理方法が挙げられる。
溶媒除去温度は、適宜好適な反応温度を用いることができるが、通常40℃以上、好ましくは60℃以上であり、一方通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下である。
溶媒除去温度が40℃以上の場合、溶媒が十分揮発され、後述するイミド化工程の加熱の際に得られる成形体に気泡等が発生する可能性が低減するため、好ましい。また、溶媒除去温度が200℃以下であることにより、脱水縮合剤、閉環触媒又は有機溶媒の揮発が急激に起こらず、得られるポリイソイミド樹脂成形体に気泡等が発生せず、最終的に得られるポリイミド樹脂の外観や品質を著しく低下させる可能性が低減するため、好ましい。この工程(2a)から工程(2b)の間に、支持体からポリイソイミド樹脂の成形体を分離する工程を含んでも含まなくても良い。支持体からポリイソイミド樹脂の成形体を分離する方法としては、従来公知いずれの方法を用いてもよい。
また、この工程(2a)から工程(2b)の間に、ポリイソイミド樹脂の成形体を洗浄する工程を含んでも含まなくても良い。洗浄を実施する際には、溶媒は特に限定されない。
さらにこの工程(2a)から工程(2b)の間には、支持体から分離したポリイソイミド樹脂の成形体を延伸する工程を含んでも含まなくてもよい。延伸温度は、延伸可能な程度に軟化する温度であればよく特に限定するものではない。なお、延伸は従来公知のいずれの方法を用いてもよく、例えば、逐次又は同時二軸延伸の方式が挙げられる。延伸は溶剤中、空気中又は不活性雰囲気中でも良く、また低温加熱した状態でもよい。
工程(2b)は、得られた成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程である。
詳細は、第1の製造方法の工程(1c)の記載と同様である。
本発明のポリイミド樹脂成形体の第3の製造方法は、下記工程の(3a)及び(3b)の工程を含む製造方法である。
(3a)本発明のポリイソイミド樹脂の溶液中でポリイソイミド樹脂を転位し、ポリイミド樹脂溶液を得る工程
(3b)得られたポリイミド樹脂溶液を塗布しポリイミド樹脂成形体を得る工程
工程(3a)は、本発明のポリイソイミド樹脂の溶液中でポリイソイミド樹脂を転位し、ポリイミド樹脂溶液を得る工程である。
ポリイソイミド樹脂溶液を得る方法は、特段の制限はないが、例えば、下記の(3a−1)又は(3a−2)の方法が挙げられる。
(3a−1)本発明のポリイソイミド樹脂を有機溶媒の少なくとも1種類に溶解し、ポリイソイミド樹脂溶液を得る方法である。
詳細は、第2の製造方法の工程(2b)の記載と同様である。
(3a−2)イソイミド化剤をポリアミック酸樹脂又はポリアミック酸エステル樹脂溶液に添加し、溶液中でポリアミック酸樹脂又はポリアミック酸エステル樹脂をイソイミド化して得たポリイソイミド樹脂溶液を得る方法である。
イソイミド化剤をポリアミック酸樹脂又はポリアミック酸エステル樹脂溶液に添加条件は、工程(1a)の記載と同様である。溶液中でポリアミック酸樹脂又はポリアミック酸エステル樹脂をイソイミド化する条件は、工程(1a)の記載と同様である。
続いて、上記の方法等で得られたポリイソイミド樹脂溶液中でポリイソイミド樹脂を転位し、ポリイミド樹脂溶液を得る工程を説明する。ポリイソイミド樹脂をポリイミド樹脂に転位する方法には、熱的に転位させる加熱イミド化、化学的に転位する化学イミド化が挙げられ、従来公知いずれの方法を用いても良い。例えば、下記の(3a−3)〜(3a−5)の方法が挙げられるが、これらの方法に限定されない。
(3a−3)ポリイソイミド樹脂溶液を加熱して、ポリイミド樹脂溶液を得ることができる。
その際、必要に応じて、水と共沸するトルエン又はキシレン等の溶媒を添加して、生成した水を共沸により系外へ除きながら脱水反応を行ってもよい。
(3a−4)イソイミド化剤の入っていない本発明のポリイソイミド樹脂溶液に、無水酢酸等の脱水剤を加えてイミド化した後、ポリイミド樹脂に対する溶解能の乏しい有機溶剤を添加、又は有機溶剤中にポリイミド樹脂溶液を添加して、ポリイミド樹脂を沈殿させる。ろ過・洗浄・乾燥することにより固体として分離した後、N,N−ジメチルアセトアミド等のポリイミド樹脂が溶ける溶媒に溶解することにより、ポリイミド樹脂溶液を得ることができる。またポリイミド樹脂が溶剤可溶型である場合は、再沈、ろ過、洗浄、乾燥工程は含まなくてもよい。
(3a−5)イソイミド化剤の入っている本発明のポリイソイミド樹脂溶液を、加熱又は長時間反応させる事によりポリイミド樹脂化した後、ポリイミド樹脂に対する溶解能の乏しい有機溶剤を添加又は有機溶剤中にポリイミド樹脂溶液を添加して、ポリイミド樹脂を沈殿させる。ろ過・洗浄・乾燥することにより固体として分離した後、N,N−ジメチルアセトアミド等のポリイミド樹脂が溶ける溶媒に溶解することにより、ポリイミド樹脂溶液を得ることができる。またポリイミド樹脂が溶剤可溶型である場合は、再沈、ろ過、洗浄、乾燥工程は含まなくてもよい。
工程(3b)についてより詳細に説明する。工程(3b)は、工程(3a)で得られたポリイミド樹脂溶液を塗布しポリイミド樹脂成形体を得る工程である。
ポリイミド樹脂溶液を支持体上に塗布するには、特段の制限は無いが、ダイ押し出しによる工法、アプリケーターを用いたキャスティング法、コーターを用いる方法、吹き付けによる方法、浸漬法、カレンダー法、流延法が挙げられる。
ポリイミド樹脂溶液を塗布する支持体としては、例えば、ガラス、金属製のベルト、キャスティングドラム又は樹脂フィルム等を用いることができる。
得られたポリイミド樹脂の成形体を支持体と一緒に加熱し、溶媒を除去することにより、ポリイミド樹脂成形体が得られる。
溶媒除去温度は、適宜好適な反応温度を用いることができるが、通常40℃以上、好ましくは60℃以上であり、一方通常250℃以下、好ましくは200℃以下、より好ましくは180℃以下である。
溶媒除去温度が40℃以上の場合、溶媒が十分揮発され、後述するイミド化工程の加熱の際に得られる成形体に気泡等が発生する可能性が低減するため、好ましい。また、溶媒除去温度が200℃以下であることにより、脱水縮合剤、閉環触媒又は有機溶媒の揮発が急激に起こらず、得られるポリイソイミド樹脂成形体に気泡等が発生せず、最終的に得られるポリイミド樹脂の外観や品質を著しく低下させる可能性が低減するため、好ましい。さらにこの溶媒除去の前工程は、支持体からポリイソイミド樹脂の成形体を分離する工程を含んでも含まなくても良い。支持体からポリイソイミド樹脂の成形体を分離する方法としては、従来公知いずれの方法を用いてもよい。
また、この溶媒除去の前工程に、ポリイミド樹脂の成形体を洗浄する工程を含んでも含まなくても良い。洗浄を実施する際には、溶媒は特に限定されない。
さらにこの溶媒除去の前工程には、支持体から分離したポリイミド樹脂の成形体を延伸する工程を含んでも含まなくてもよい。延伸温度は、延伸可能な程度に軟化する温度であればよく特に限定するものではない。なお、延伸は従来公知のいずれの方法を用いてもよく、例えば、逐次あるいは同時二軸延伸の方式が挙げられる。延伸は溶剤中、空気中又は不活性雰囲気中でも良く、また低温加熱した状態でもよい。
本発明のポリイミド樹脂成形体の第4の製造方法は、下記工程の(4a)及び(4b)の工程を含む製造方法である。
(4a)本発明のポリイソイミド樹脂を溶融し、成形してポリイソイミド樹脂成形体を得る工程
(4b)得られた成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
工程(4a)は、本発明のポリイソイミド樹脂を溶融し、成形してポリイソイミド樹脂成形体を得る工程である。
まず、本発明のポリイソイミド樹脂を溶融する工程について、説明する。
溶融温度は、本発明のポリイソイミド樹脂の融点以上ポリイソイミド樹脂の分解温度未満であれば特に制限されるものではないが、融点以上ポリイミド樹脂転位温度以下で行うことが好ましい。ポリイミド樹脂化転位反応が急速に進行せず、成形が容易となるために好ましい。
また、所望に応じ、本発明の目的を損なわない範囲で、無機系充填剤、有機系充填剤、金属充填剤、滑剤、着色剤、安定剤、酸化防止剤、紫外線吸収剤、帯電防止剤、難燃剤、可塑剤、離型剤等を配合することができる。本発明ポリイソイミド樹脂を熱可塑性樹脂とし、上記の充填剤および所望に応じて用いられる各種添加成分を混合して、混練機で混練することにより調製してもよいし、又はあらかじめ熱可塑性樹脂及び所望に応じて用いられる添加成分を押出機に定量供給して混練を行い、樹脂が溶融した部分に、充填剤をサイドフィードして混練することにより調製してもよい。このように調整されたものをポリイソイミド樹脂組成物と呼ぶことがある。
さらに充填剤を不織布等平板状に加工したものを軟化した本発明ポリイソイミド樹脂でラミネートしても良い。混練機については、ポリイソイミド樹脂と充填剤、添加剤とを混練しうるものであればよく、特に制限されず、例えば単軸押出機、多軸押出機等のスクリ
ュー押出機、エラスチック押出機、ハイドロダイナミック押出機、ラム式連続押出機、ロール式押出機又はギア式押出機等の非スクリュー押出機等を挙げることができる。
次に、ポリイソイミド樹脂溶融物を成形する工程について、説明する。上記で得られた本発明のポリイソイミド樹脂又はポリイソイミド樹脂組成物は、射出成形法、押出成形法、中空成形法、圧縮成形法、積層成形法、ロール加工法、延伸加工法、スタンプ加工法、熱プレス法又はT−ダイ法等の種々の成形法により、所望の成形品に成形される。その際の反応温度は特に制限されないが、通常融点以上であり、一方、通常分解温度以下であり、好ましくはポリイミド樹脂転位温度以下である。また、成形は空気中、不活性雰囲気中又は真空中を問わない。
工程(4b)は、上記(4a)で得られた成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程である。
ポリイソイミド樹脂をポリイミド樹脂に転位する工程は、成形体を熱的に転位させる加熱イミド化、化学的に転位させる化学イミド化が挙げられる。
加熱イミド化の方法としては熱風加熱、真空加熱、赤外線加熱、マイクロ波加熱の他、熱板、ホットロールを用いた接触による加熱等が挙げられる。この場合、段階的に温度をあげることでイミド化を進行させることが好ましい。
加熱イミド化の反応温度は、特に限定されないが、通常100℃以上、好ましくは150℃以上であり、一方、通常350℃以下、好ましくは300℃以下である。
加熱イミド化の反応時間は、特に限定されないが、通常30分以上、好ましくは1時間以上であり、一方、通常3時間以下、好ましくは2時間以下である。
その際、空気下、不活性雰囲気下、真空下を問わないが、不活性雰囲気下で行う事が好ましい。
化学イミド化は、触媒を用いて行うことができる。化学イミド化の触媒としては一般的に用いられているものを使うことができるが、例えば三級アミン類を挙げることができる。化学イミド化触媒の添加方法は特に限定されず、成形途中で加えることもできるし、成形体を化学イミド化触媒溶液に浸漬する方法でも良い。
上記ポリイミド樹脂化の前工程には、ポリイソイミド樹脂の成形体を洗浄する工程を含んでも含まなくても良く、洗浄を実施する際には、溶媒は特に限定されない。さらにこのイミド化の前工程には、支持体から分離したポリイソイミド樹脂の成形体を延伸する工程を含んでも含まなくてもよい。延伸温度は、特に限定するものではないが、ポリイソイミド樹脂が融解しておりかつイミドに転位しない温度、つまり延伸性が低下しない程度であればよく、例えば通常−20℃以上170℃以下である。なお、延伸は逐次あるいは同時二軸延伸のいずれの方式で行ってもよい。延伸は溶剤中、空気中又は不活性雰囲気中でも良く、また低温加熱した状態でもよい。
<ポリイミド樹脂の用途>
本発明で得られるポリイソイミド樹脂は上記の多彩な成形方法により様々な形状のほとんど無色透明なポリイミド樹脂成形体とすることができる。このことにより、ポリイミド樹脂の代表的な用途であるフィルム用途だけでなく、幅広い用途への応用が可能である。例えばフレキシブル太陽電池用部材、ディスプレイ用部材、IC包装用トレー、IC製造工程用トレー、ICソケット、ウェハーキャリア、コネクター、ソケット、ハードディスクキャリア、液晶ディスプレイキャリア、水晶発振器製造用トレー、コピー機用分離爪、コピー機用断熱軸受け、コピー機用ギア、スラストワッシャー、トランスミッションリング、ピストンリング、オイルシールリング、ベアリングリテーナー、ポンプギア、コンベアチェーン、ストレッチマシン用スライドブッシュ、耐熱絶縁テープ、耐熱粘着テープ、高密度磁気記録ベース、又はコンデンサー若しくはフレキシブルプリント基板用のフィル
ム等の製造に用いることができる。また、例えばガラス繊維や炭素繊維等で補強した構造部材、小型コイルのボビン又は端末絶縁用チューブの成型品の製造にも用いられる。
また、絶縁スペーサー、磁気ヘッドスペーサー又はトランスのスペーサー等の積層材の製造に用いることができる。また、電線・ケーブル絶縁被覆材、低温貯蔵タンク、宇宙断熱材又は集積回路等のエナメルコーティング材の製造に用いることができる。さらに耐熱性を有する糸、織物又は不織布等の製造にも用いることができる。
以下実施例により本発明を詳細に説明するが、本発明はこれらの実施例により制限されるものではない。
なお、以下実施例中において述べるイソイミド骨格含有量は以下の方法で決定した。イソイミド骨格含有量はフーリエ変換赤外分光計(日本分光社製 FT/IR−230)を使用し、KBr錠剤としたサンプルを透過法で測定した。イソイミド骨格由来のピークの面積(=Siso)とイミド骨格由来のピークの面積(=Sim)から、イソイミド骨格含有量=Siso/(Siso+Sim)と定義した。ここで、Sisoとはイソイミドに由来する1820cm−1付近のピークの面積であり、Simとはイミドに由来する1780m−1のピーク面積を表す。
また、融点、転位点はセイコーインスツル社製示差走査熱量計(DSC220CU)を用いて空気気流中昇温温度10℃/minで−20℃から350℃の範囲で測定した。
<合成例1>
1,1’−ビシクロヘキサン−3,3’,4,4’−テトラカルボン酸−3,3’,4,4’−二無水物(H−BPDA)の合成
Figure 2012162619
(H−BPDA)
1,1‘−ビフェニル−3,3‘,4,4’−テトラカルボン酸二無水物150gを水593gと水酸化ナトリウム83.3gの溶液に溶解して得られる1,1‘−ビフェニル−3,3‘,4,4’−テトラカルボン酸四ナトリウム塩の水溶液をRu/C触媒を用いて10MPaG、120℃で核水素化し、次いで49%硫酸水溶液429gを滴下して析出、濾過してジシクロヘキシル−3,3’,4,4’−テトラカルボン酸157g(収率81%)を得た。
温度計、攪拌機、ジムロート冷却管を備えた300mlの3つ口フラスコに、窒素下にて上記で得られたジシクロヘキシル−3,3’,4,4’−テトラカルボン酸(H−BTC)33.7g(0.98mol)、無水酢酸90gを添加した。これを攪拌下、昇温して還流温度(130℃〜140℃)で3時間反応させた。反応後、10℃まで冷却し、濾過を行い、白色の結晶を得た。得られた結晶をトルエンにて洗浄し、減圧乾燥機にて乾燥を実施して、1,1’−ビシクロヘキサン−3,3’,4,4’−テトラカルボン酸−3,3’,4,4’−二無水物(H−BPDA)含有組成物23.5g(収率78%)を得た。
[実施例1] ポリイソイミド樹脂の合成例
(1)ポリアミック酸エステル樹脂溶液の作成
合成例1で得られた1,1’−ビシクロヘキサン−3,3’,4,4’−テトラカルボン酸−3,3’,4,4’−二無水物(H−BPDA)12.3g(40.0mmol)をN,N−ジメチルアセトアミド(53.4g)に加え、窒素気流下、室温で攪拌した。それにメタノール0.065g(2.02mmol)、ジメチルアミノエタノール0.0037g(0.04mmol)をN,N−ジメチルアセトアミド 3.0gに溶解させたものを加え、70℃で2時間攪拌した。その後、2,2−ビス[4−(4−アミノフェノキシ)フェニル]プロパン(東京化成工業社製)をN,N−ジメチルアセトアミド 23gに溶解したものを加え、70℃で2時間、80℃で4時間過熱攪拌し、目的とするポリアミック酸エステル樹脂溶液を得た。
(2)ポリイソイミド樹脂の合成
得られたポリアミック酸エステル樹脂溶液に末端封止剤として1,2−シクロヘキサンジカルボン酸無水物(東京化成工業社製)1.51g(9.8mmol)をN,N−ジメチルアセトアミド 5gに溶かしたものを加え、80℃で2時間攪拌した。その後反応溶液を氷冷し、ジシクロヘキシルカルボジイミド 18.16g(88mmol)をN,N−ジメチルアセトアミド 5gに溶解させて加え、室温まで昇温した後に12時間反応させた。析出したジシクロヘキシル尿素を吸引ろ過で除去した後、ろ液をイソプロピルアルコールに加えて析出させ、ろ過してポリイソイミド樹脂の固体を得た。得られたポリイソイミド樹脂の固体はIRスペクトルの測定からイソイミド骨格含有量(=Siso/(Siso+Sim))は0.96と算出された。またDSC測定から100℃付近に融解に由来する吸熱ピークが観察され、180℃付近からポリイソイミド樹脂からポリイミド樹脂への骨格転位に伴う発熱ピークが観察された。
(3)イミド化(流延+加熱)
上記ポリイソイミド樹脂を固形分濃度が20%となるようにN,N−ジメチルアセトアミドに溶解させ、この溶液をフィルムアプリケーターを用いてガラス板上に300μmの厚みで流延し、減圧下80℃で30分乾燥した。乾燥後、窒素雰囲気下、230℃で1時間、さらに300℃で1時間加熱しイミド化を行った。得られたフィルムのIR測定を行った結果、イソイミド骨格に由来する1820cm−1のピークが消失し、イミド骨格を示す1780cm−1のピークが観察され、完全にイミド化が進行したことが確認された。
[実施例2]
(1)イミド化(熱可塑成形)
実施例1の工程(2)で得られたポリイソイミド樹脂粉末0.02gをフッ素樹脂製の成形枠に入れ、加熱プレス(井元製作所製 小型加熱プレス180E)で約2分間150℃で加熱後ポリイソイミド樹脂を溶融した。その後、30MPaの圧力で150℃、約5分間加熱圧縮し、成形枠の形に成形されたポリイソイミド樹脂の透明シートを得た。
得られた透明シートを窒素雰囲気下、230℃で1時間、300℃で1時間加熱イミド化を行った。得られたシートのIR測定を行った結果、イソイミド骨格に由来する1820cm−1のピークが消失し、イミド骨格を示す1780cm−1のピークが観察され、完全にイミド化が進行したことが確認された。
[比較例1]
(1)ポリアミック酸エステル樹脂調製
実施例1の工程(1)と同様にして得られたポリアミック酸エステル樹脂溶液をイソプロパノールに加えて析出させ、ろ過してポリアミック酸エステル樹脂粉末を得た。得られたポリアミック酸エステル樹脂粉末のIR測定を行ったところ、イソイミド骨格に由来する1820cm−1のピークが消失し、イミド骨格を示す1780cm−1のピークとも
に観測されなかった。得られたポリアミック酸エステル樹脂のDSC測定を行ったところ、極めてブロードな吸熱ピークが観測され、明瞭な融点は観察されなかった。
(2)イミド化(熱可塑成形)
実施例1の工程(2)で得られたポリイソイミド樹脂粉末に代えて比較例1の工程(1)で得られたポリアミック酸エステル樹脂粉末を用いた以外は、実施例2の工程(1)と同様に加熱成形したところ、十分な溶融変形は観察されず、成形型に対応する成形体は得られなかった。
[比較例2] 単環テトラカルボン酸のポリイソイミド樹脂の合成例
(1)ポリアミック酸エステル樹脂溶液の作成
1,1’−ビシクロヘキサン−3,3’,4,4’−テトラカルボン酸−3,3’,4,4’−二無水物(H−BPDA)を1,2,4,5−シクロヘキサンテトラカルボン酸二無水物(H−PMDA)(岩谷瓦斯社製)に変えた以外は実施例1の工程(1)と同様に、ポリアミック酸エステル樹脂溶液を作製した。
(2)ポリイソイミド樹脂の合成
比較例2の工程(1)で得られたポリアミック酸エステル樹脂溶液を用いた以外は実施例1の工程(2)と同様に合成した。得られたポリイソイミド樹脂の固体はIRスペクトルの測定からイソイミド骨格含有量(=Siso/(Siso+Sim))は0.95と算出された。またDSC測定から200℃付近からポリイソイミド樹脂からポリイミド樹脂への骨格転位に伴う発熱ピークが観察されたが、融解を示す明瞭な吸熱ピークは確認されなかった。
(3)イミド化(熱可塑成型)
実施例1の工程(2)で得られたポリイソイミド樹脂粉末に代えて比較例2の工程(2)で得られたポリイソイミド樹脂粉末を用いた以外は、実施例2の工程(1)と同様に加熱成形したところ、十分な溶融変形は観察されず、成形型に対応する成形体は得られなかった。
以上の結果より、本発明のポリイソイミド樹脂は各種溶媒への溶解性をもち、かつ熱可塑性を有することから、従来の溶液流延法のみならず、熱可塑成形等の多様な成形手法を用いて、ポリイミド樹脂成形体を得る事ができることが判る。

Claims (7)

  1. 下記式(A1)、(A2)及び(A3)で表される繰り返し単位の少なくとも1種を含むポリイソイミド樹脂であって、示差走査熱量測定法(DSC法)による融点が300℃以下であり、かつ示差走査熱量測定法(DSC法)によるポリイソイミド樹脂からポリイミド樹脂への転位温度が該融点より高いことを特徴とするポリイソイミド樹脂。
    Figure 2012162619
    (式(A1)、(A2)及び(A3)中、Rは下記式(1)で表される基を示す。
    Figure 2012162619
    式(1)中、環A、環Bは各々独立して、置換基を有していても良い芳香族環又は置換基を有していても良い脂肪族環を示し、p、qは各々独立して、1〜10の整数を示す。Xは単結合、酸素原子、硫黄原子、置換基を有していても良いアルキレン基、スルホニル基、スルフィド基、カルボニル基、芳香族基又は−O−CnH2n−O−を示す。但し、nは1〜5の整数を示す。Y、Yは各々独立して、単結合、酸素原子、硫黄原子、置換基を有していても良いアルキレン基、スルホニル基、スルフィド基又はカルボニル基を示す。)
  2. 請求項1に記載のポリイソイミド樹脂を転位してポリイミド樹脂を得ることを特徴とする、ポリイミド樹脂の製造方法。
  3. 下記各工程を含むことを特徴とする、ポリイミド樹脂成形体の製造方法。
    (1a)ポリアミック酸樹脂又はポリアミック酸エステル樹脂を含む溶液を塗布し成形体とする工程
    (1b)得られた成形体のポリアミック酸樹脂又はポリアミック酸エステル樹脂を閉環反応させて、請求項1に記載のポリイソイミド樹脂の成形体とする工程
    (1c)該ポリイソイミド樹脂成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
  4. 下記各工程を含むことを特徴とする、ポリイミド樹脂成形体の製造方法。
    (2a)請求項1に記載のポリイソイミド樹脂の溶液を塗布しポリイソイミド成形体とす
    る工程
    (2b)得られた成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
  5. 下記各工程を含むことを特徴とする、ポリイミド樹脂成形体の製造方法。
    (3a)請求項1に記載のポリイソイミド樹脂の溶液中でポリイソイミド樹脂を転位し、ポリイミド樹脂溶液を得る工程
    (3b)得られたポリイミド樹脂溶液を塗布しポリイミド樹脂成形体を得る工程
  6. 下記各工程を含むことを特徴とする、ポリイミド樹脂成形体の製造方法。
    (4a)請求項1に記載のポリイソイミド樹脂を溶融し、成形してポリイソイミド樹脂成形体を得る工程
    (4b)得られた成形体のポリイソイミド樹脂を転位してポリイミド樹脂成形体を得る工程
  7. 下記式(B1)、(B2)及び(B3)で表される繰り返し単位の少なくとも1種を含むポリアミック酸樹脂又はポリアミック酸エステル樹脂を閉環反応させることにより請求項1に記載のポリイソイミド樹脂を得ること特徴とするポリイソイミド樹脂の製造方法。
    Figure 2012162619
    (式(B1)、(B2)及び(B3)中、Rは水素原子又は置換基を有していてもよい炭素数1〜14のアルキル基を示す。)
JP2011022957A 2011-02-04 2011-02-04 新規ポリイソイミド樹脂及びその製造方法並びにポリイミド樹脂の製造方法。 Withdrawn JP2012162619A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011022957A JP2012162619A (ja) 2011-02-04 2011-02-04 新規ポリイソイミド樹脂及びその製造方法並びにポリイミド樹脂の製造方法。

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011022957A JP2012162619A (ja) 2011-02-04 2011-02-04 新規ポリイソイミド樹脂及びその製造方法並びにポリイミド樹脂の製造方法。

Publications (1)

Publication Number Publication Date
JP2012162619A true JP2012162619A (ja) 2012-08-30

Family

ID=46842341

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011022957A Withdrawn JP2012162619A (ja) 2011-02-04 2011-02-04 新規ポリイソイミド樹脂及びその製造方法並びにポリイミド樹脂の製造方法。

Country Status (1)

Country Link
JP (1) JP2012162619A (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018053156A (ja) * 2016-09-30 2018-04-05 コニカミノルタ株式会社 ポリイミド樹脂組成物、ポリイミド樹脂組成物の製造方法、透明基板及びディスプレイ用フィルム
JP2019070074A (ja) * 2017-10-10 2019-05-09 Jnc株式会社 イソイミド結合を有する重合体およびその製造方法、ならびにイミド結合を有する重合体
JPWO2018042999A1 (ja) * 2016-08-31 2019-06-24 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2018042999A1 (ja) * 2016-08-31 2019-06-24 株式会社カネカ ポリアミド酸、ポリアミド酸溶液、ポリイミド、ポリイミド膜、積層体およびフレキシブルデバイス、ならびにポリイミド膜の製造方法
US11260636B2 (en) 2016-08-31 2022-03-01 Kaneka Corporation Polyamide acid, polyamide acid solution, polyimide, polyimide film, laminate, flexible device, and method of manufacturing polyimide film
JP2018053156A (ja) * 2016-09-30 2018-04-05 コニカミノルタ株式会社 ポリイミド樹脂組成物、ポリイミド樹脂組成物の製造方法、透明基板及びディスプレイ用フィルム
JP2019070074A (ja) * 2017-10-10 2019-05-09 Jnc株式会社 イソイミド結合を有する重合体およびその製造方法、ならびにイミド結合を有する重合体

Similar Documents

Publication Publication Date Title
TWI591099B (zh) 聚醯亞胺樹脂
EP3031844B1 (en) Method for producing polyimide resin powder, and thermoplastic polyimide resin powder
JP7347415B2 (ja) 樹脂成形体
JPWO2015163314A1 (ja) テトラカルボン酸二無水物、ポリアミド酸、ポリイミド、及び、それらの製造方法、並びに、ポリアミド酸溶液
JP2014118463A (ja) ポリイミド樹脂成型体及びフィルム
KR102422752B1 (ko) 신규 테트라카르복시산 이무수물, 및 산이무수물로부터 얻어지는 폴리이미드 및 폴리이미드 공중합체
JP6365307B2 (ja) 熱可塑性ポリイミド
JP2012233083A (ja) デバイス製造方法
US9051430B2 (en) Resin-transfer-moldable terminal-modified imide oligomer using 2-phenyl-4,4′diaminodiphenyl ether and having excellent moldability, mixture thereof, varnish containing same, and cured resin thereof and fiber-reinforced cured resin thereof made by resin transfer molding and having excellent heat resistance
WO2020179391A1 (ja) ポリイミド樹脂組成物
JP2012162619A (ja) 新規ポリイソイミド樹脂及びその製造方法並びにポリイミド樹脂の製造方法。
TWI544006B (zh) 難燃化之脂環式聚醯亞胺樹脂組成物及其薄壁成型體
KR20170092925A (ko) 열적, 기계적 특성이 개선된 투명 폴리이미드 필름 및 이의 제조방법
KR101780447B1 (ko) 가압 조건 하에서 수행되는 폴리이미드 복합체 제조방법
TW202219121A (zh) 聚醯胺酸組合物、聚醯亞胺、聚醯亞胺膜、積層體、積層體之製造方法及電子裝置
TW202003697A (zh) 聚醯亞胺樹脂組成物
JP2013014759A (ja) ポリイミド樹脂成形体及びその製造方法
JPH0347837A (ja) ポリイミドの製造方法
KR101709378B1 (ko) 가압 조건 하에서 수행되는 폴리이미드 제조방법
TW202100628A (zh) 無色透明樹脂薄膜之製造方法
KR20240011147A (ko) 용융 가공용 재료 및 용융 가공품
JP2012092262A (ja) 結晶性ポリイミドの製造方法
TW202411350A (zh) 熱塑性樹脂組成物、成形體、金屬箔疊層板、接合片、纖絲、及三維造形用材料
JP5386797B2 (ja) フレキシブルポリイミドフィルムおよびその製造法
JP2022021887A (ja) イミドオリゴマー、ワニス、それらの硬化物、並びにそれらを用いたプリプレグ及び繊維強化複合材料

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513