JP2012161294A - Alga culturing reactor - Google Patents

Alga culturing reactor Download PDF

Info

Publication number
JP2012161294A
JP2012161294A JP2011025100A JP2011025100A JP2012161294A JP 2012161294 A JP2012161294 A JP 2012161294A JP 2011025100 A JP2011025100 A JP 2011025100A JP 2011025100 A JP2011025100 A JP 2011025100A JP 2012161294 A JP2012161294 A JP 2012161294A
Authority
JP
Japan
Prior art keywords
cylindrical member
culture solution
culture
gas
algae
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2011025100A
Other languages
Japanese (ja)
Inventor
Hiroaki Fukuda
裕章 福田
Hitoshi Kuno
斉 久野
Norihide Kurano
憲秀 藏野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
Denso Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denso Corp filed Critical Denso Corp
Priority to JP2011025100A priority Critical patent/JP2012161294A/en
Publication of JP2012161294A publication Critical patent/JP2012161294A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M21/00Bioreactors or fermenters specially adapted for specific uses
    • C12M21/02Photobioreactors
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/06Stirrer or mobile mixing elements with horizontal or inclined stirrer shaft or axis
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Zoology (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biomedical Technology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an alga culturing reactor 1 capable of reducing energy costs.SOLUTION: The alga culturing reactor 1 for circulating a culture solution includes: a cylindrical member 19 having both axial sides 19a and 19b opened, and attached at a position at which at least part thereof is immersed in the culture solution; and a rotary member 21 including a rotation shaft 23 and a blade 25 attached to the rotation shaft 23, and further includes: a rotary member 21 in which at least part of the blade 25 is inserted into the cylindrical member 19; driving units 17, 11, and 13 rotationally driving the rotary member 21; and a gas supplier 30 for supplying gas containing COgas in the cylindrical member 19.

Description

本発明は、藻の培養に用いられる藻培養リアクターに関する。   The present invention relates to an algae culture reactor used for culturing algae.

培養液中で藻を培養する場合、培養液にCO2を溶解させる必要がある。培養液にCO2を溶解させる方法として、培養容器に水深が深い部分を設け、その部分の底付近からCO2ガスを供給する方法が開示されている(特許文献1参照)。この方法は、エアリフト効果により、CO2ガスを培養液に溶解させようとするものである。 When culturing algae in a culture solution, it is necessary to dissolve CO 2 in the culture solution. As a method for dissolving CO 2 in a culture solution, a method is disclosed in which a portion having a deep water depth is provided in a culture vessel and CO 2 gas is supplied from the vicinity of the bottom of the portion (see Patent Document 1). This method is intended to dissolve the CO 2 gas in the culture solution by the air lift effect.

特開平10−57745号公報。Japanese Patent Laid-Open No. 10-57745.

しかしながら、特許文献1記載の方法では、水深が深いところまでCO2ガスを送り込む必要があるので、CO2ガス供給用ポンプの負荷が増大し、エネルギーコストが増大してしまう。 However, in the method described in Patent Document 1, it is necessary to feed the CO 2 gas to a deep water depth, so that the load of the CO 2 gas supply pump increases and the energy cost increases.

本発明は以上の点に鑑みなされたものであり、エネルギーコストを低減できる藻培養リアクターを提供することを目的とする。   This invention is made | formed in view of the above point, and it aims at providing the algal culture reactor which can reduce energy cost.

本発明の藻培養リアクターは、培養液を循環可能であって、軸方向における両側が開口し、少なくとも一部が前記培養液に浸漬される位置に取り付付けられた筒状部材と、回転軸及び前記回転軸に取り付けられた翼を備え、少なくとも前記翼の一部が前記筒状部材に内挿された回転部材と、前記回転部材を回転駆動する駆動手段と、前記筒状部材内にCO2ガスを含むガスを供給するガス供給手段とを備える。 The algae culture reactor of the present invention can circulate a culture solution, and has a cylindrical member attached to a position where both sides in the axial direction are open and at least a part is immersed in the culture solution, and a rotating shaft And a wing attached to the rotating shaft, at least a part of the wing being inserted into the cylindrical member, a driving means for rotationally driving the rotating member, and a CO in the cylindrical member Gas supply means for supplying a gas containing two gases.

本発明の藻培養リアクターは、筒状部材を備えており、その内部にCO2ガスを含むガスが供給される。筒状部材の内部では、翼が回転するため、CO2ガスと培養液との接触時間が長くなり、供給されたCO2ガスが培養液に効率的に溶け込む。 The algae culture reactor of the present invention includes a cylindrical member, and a gas containing CO 2 gas is supplied into the inside thereof. Since the blades rotate inside the cylindrical member, the contact time between the CO 2 gas and the culture solution becomes long, and the supplied CO 2 gas is efficiently dissolved in the culture solution.

そのため、特許文献1の技術のように、CO2ガスを深い水深の部分まで送り込む必要が無く、CO2ガス供給用ポンプの負荷が軽くなるので、エネルギーコストを低減できる。 Therefore, unlike the technique of Patent Document 1, it is not necessary to send the CO 2 gas to a deep water depth, and the load of the CO 2 gas supply pump becomes light, so that the energy cost can be reduced.

前記ガス供給手段は、筒状部材内にCO2ガスを供給できる場所であれば、任意の場所に設けることができるが、前記筒状部材のうち、前記培養液の循環方向における上流側から前記ガスを供給することが好ましい。この場合、CO2ガスと培養液とが、筒状部材と回転部材とにより攪拌される経路が長くなるので、CO2ガスを培養液に一層効率的に溶け込ませることができる。 The gas supply means can be provided at any location as long as it can supply CO 2 gas into the cylindrical member, but among the cylindrical members, the gas supply means can be provided from the upstream side in the circulation direction of the culture solution. It is preferable to supply gas. In this case, CO 2 gas and the culture medium, since the route of stirring is prolonged by the cylindrical member and the rotating member, it is possible to dissolve the CO 2 gas more efficient in culture.

前記筒状部材及び/又は回転部材は、少なくともその一部が透明又は半透明の材料により形成されていることが好ましい。この場合、上方から照射された光は筒状部材や回転部材の下方にも到達するので、藻の増殖が促進される。   It is preferable that at least a part of the cylindrical member and / or the rotating member is formed of a transparent or translucent material. In this case, the light irradiated from above reaches the lower part of the cylindrical member and the rotating member, so that the growth of algae is promoted.

前記筒状部材の軸方向は特に限定されないが、前記培養液の循環方向と略平行であることが好ましい。この場合、筒状部材が培養液の循環を妨げないので、培養液の滞留を防止できる。また、培養液が循環しやすくなるので、培養液を循環させる手段(例えばパドル)の回転負荷を低減できる。   The axial direction of the cylindrical member is not particularly limited, but is preferably substantially parallel to the circulation direction of the culture solution. In this case, since the cylindrical member does not hinder the circulation of the culture solution, the retention of the culture solution can be prevented. In addition, since the culture solution is easily circulated, the rotational load on the means for circulating the culture solution (for example, a paddle) can be reduced.

前記翼としては、回転により、筒状部材を通過する培養液の流れを生み出すことができる形状のものを広く使用できる。このような翼として、例えば、アルキメデスの螺旋形状を有するものが好ましい。この場合、筒状部材内において、培養液の流速を高め、結果として、CO2ガスを培養液に一層効率的に溶け込ませることができる。 As the wing, those having a shape capable of producing a flow of the culture solution passing through the cylindrical member by rotation can be widely used. As such a wing, for example, one having an Archimedean spiral shape is preferable. In this case, in the tubular member, the flow rate of the culture solution can be increased, and as a result, the CO 2 gas can be more efficiently dissolved in the culture solution.

本発明の藻培養リアクターは、前記培養液を循環させるパドルを備え、前記駆動手段は、前記パドルの駆動力により、前記回転部材を駆動することが好ましい。この場合、回転部材の駆動源を別途設ける必要がない。   The algae culture reactor of the present invention preferably includes a paddle for circulating the culture solution, and the driving means drives the rotating member by the driving force of the paddle. In this case, it is not necessary to provide a separate drive source for the rotating member.

前記CO2ガスとしては、例えば、コジェネプラントの排CO2ガスが挙げられる。
前記培養液は特に限定されず、酸性の培養液でも、アルカリ性の培養液でもよい。酸性の培養液を用いれば、コンタミを防止しやすい。なお、酸性の培養液の場合、アルカリ性の培養液に比べて、一般に、CO2ガスを溶解させ難くなるが、本発明によれば、酸性の培養液でも、CO2ガスを溶解させることができる。
Examples of the CO 2 gas include exhaust CO 2 gas from a cogeneration plant.
The culture solution is not particularly limited, and may be an acidic culture solution or an alkaline culture solution. If an acidic culture solution is used, it is easy to prevent contamination. In the case of an acidic culture solution, it is generally difficult to dissolve CO 2 gas compared to an alkaline culture solution. However, according to the present invention, CO 2 gas can be dissolved even in an acidic culture solution. .

前記藻は特に限定されないが、CO2ガスを吸収し、バイオ燃料を生産する公知の藻が好ましい。 The algae is not particularly limited, but known algae that absorb CO 2 gas and produce biofuel are preferable.

藻培養リアクター1の全体を上方から見た図である。It is the figure which looked at the whole algal culture reactor 1 from the upper part. 攪拌部9及びその周辺を上方から見た図である。It is the figure which looked at the stirring part 9 and its periphery from upper direction. 攪拌部9及びその周辺を側方から見た図である。It is the figure which looked at the stirring part 9 and its periphery from the side. 駆動機構11の一部及びその周辺を側方から見た図である。It is the figure which looked at a part of drive mechanism 11, and its circumference from the side. 藻培養リアクター1の全体を上方から見た図である。It is the figure which looked at the whole algal culture reactor 1 from the upper part.

本発明の実施形態を図面に基づいて説明する。
<第1の実施形態>
1.藻培養リアクター1の構成
本発明を適用した藻培養リアクター1の構成を図1〜図4に基づいて説明する。図1は、藻培養リアクター1の全体を上方から見た図である。図2は、後述する攪拌部9及びその周辺を上方から見た図である。図3は、後述する攪拌部9及びその周辺を側方から見た図である。図4は、後述する駆動機構11の一部及びその周辺を側方から見た図である。
Embodiments of the present invention will be described with reference to the drawings.
<First Embodiment>
1. Configuration of Algae Culture Reactor 1 The configuration of the algae culture reactor 1 to which the present invention is applied will be described with reference to FIGS. FIG. 1 is a view of the entire algal culture reactor 1 as viewed from above. FIG. 2 is a view of the stirring unit 9 and its surroundings, which will be described later, as viewed from above. FIG. 3 is a view of a stirring unit 9 and its periphery, which will be described later, as viewed from the side. FIG. 4 is a side view of a part of the drive mechanism 11 described later and the periphery thereof.

図1に示すように、藻培養リアクター1は、上方が開口した平底容器3と、その底面の中央部に立設された仕切り壁5と、パドル回転機構7と、3個の攪拌部9と、3個の攪拌部9にそれぞれ駆動力を伝達する駆動機構(駆動手段)11とを備えるレースウェイ型リアクターである。   As shown in FIG. 1, the algae culture reactor 1 includes a flat-bottomed container 3 having an open top, a partition wall 5 erected at the center of the bottom surface, a paddle rotation mechanism 7, and three stirring units 9. This is a raceway reactor that includes a driving mechanism (driving means) 11 that transmits a driving force to each of the three stirring sections 9.

パドル回転機構7は、平底容器3の一方の側壁3aと仕切り壁5とにより、回転可能に軸支された回転軸13と、その回転軸13に外挿され、回転軸13とともに回転するパドル15と、回転軸13を回転駆動するモータ17とから構成される。平底容器3に、パドル15の攪拌翼の一部が浸漬するまで培養液を入れ、パドル15を回転させると、培養液は、図1に示す矢印の方向に循環する。以下では、この循環の方向を循環方向とする。   The paddle rotation mechanism 7 includes a rotation shaft 13 rotatably supported by one side wall 3 a and the partition wall 5 of the flat bottom container 3, and a paddle 15 that is extrapolated to the rotation shaft 13 and rotates together with the rotation shaft 13. And a motor 17 that rotationally drives the rotary shaft 13. When the culture solution is put in the flat bottom container 3 until a part of the stirring blade of the paddle 15 is immersed, and the paddle 15 is rotated, the culture solution circulates in the direction of the arrow shown in FIG. Hereinafter, this circulation direction is referred to as a circulation direction.

3個の攪拌部9は、それぞれが同じ構造を有する。攪拌部9は、図2及び図3に示すように、筒状部材19と、回転部材21とから構成される。筒状部材19は、その軸方向における両端19a、19bが開口した円筒状の中空部材である。筒状部材19は、平底容器3の側壁3bと仕切り壁5との間に掛け渡された一対の板状部材である支持壁27、29に対し、筒固定部材31、33、35、37により固定されている。筒状部材19が固定された位置は、平底容器3に通常量(液面のレベルLが図3に示すものとなる量)の培養液を入れたとき、筒状部材19の全体が培養液に浸漬される位置である。また、筒状部材19の向きは、その軸方向が水平となり、且つ図1に示す培養液の循環方向と平行となる向きである。筒状部材19及び後述する翼25は透明な樹脂により形成されており、光(特に藻の培養に有用な波長の光)を透過することができる。   The three stirring units 9 each have the same structure. As shown in FIGS. 2 and 3, the stirring unit 9 includes a cylindrical member 19 and a rotating member 21. The cylindrical member 19 is a cylindrical hollow member having both ends 19a and 19b opened in the axial direction. The cylindrical member 19 is supported by cylindrical fixing members 31, 33, 35, and 37 with respect to support walls 27 and 29 that are a pair of plate-like members that are spanned between the side wall 3 b of the flat bottom container 3 and the partition wall 5. It is fixed. The position where the cylindrical member 19 is fixed is that when the normal amount of the culture solution (the amount at which the level L of the liquid level is as shown in FIG. 3) is put in the flat bottom container 3, the entire cylindrical member 19 is the culture solution. It is a position immersed in. The cylindrical member 19 is oriented so that its axial direction is horizontal and parallel to the culture medium circulation direction shown in FIG. The cylindrical member 19 and the wing 25 described later are made of a transparent resin, and can transmit light (especially light having a wavelength useful for algae culture).

なお、上述した支持壁27、29には、メッシュ状の孔が多数形成されている。そのため、支持壁27、29は培養液の循環方向を横切っているが、培養液の循環を妨げることがない。   Note that a large number of mesh holes are formed in the support walls 27 and 29 described above. Therefore, the support walls 27 and 29 cross the circulation direction of the culture solution, but do not hinder the circulation of the culture solution.

筒状部材19の下面であって、培養液の循環方向における上流側(以下では単に上流側とする)の端部付近には、筒状部材19の内部にCO2ガスを供給するノズル(ガス供給手段)30が設けられている。ノズル30には、図示しないCO2ガスの供給元から、パイプ32を通してCO2ガスが供給される。 A nozzle (gas) for supplying CO 2 gas to the inside of the cylindrical member 19 is located on the lower surface of the cylindrical member 19 and in the vicinity of the upstream end (hereinafter simply referred to as upstream) in the culture medium circulation direction. Supply means) 30 is provided. The nozzle 30 is supplied with CO 2 gas through a pipe 32 from a CO 2 gas supply source (not shown).

3個の攪拌部9は、図1に示すとおり、それぞれの軸方向が互いに平行となるように、並列配置されている。
回転部材21は、回転軸23とその回転軸23の外周面に取付けられた、アルキメデスの螺旋形状を有する翼25とから構成される。回転部材21のうち、翼25が取り付けられた部分は、回転軸23と筒状部材19の軸方向とが平行となるように、筒状部材19に内挿されている。また、回転軸23の両端は、支持壁27、29より、回転可能に軸支されている。
As shown in FIG. 1, the three stirring units 9 are arranged in parallel so that their axial directions are parallel to each other.
The rotating member 21 includes a rotating shaft 23 and a blade 25 having an Archimedean spiral shape attached to the outer peripheral surface of the rotating shaft 23. A portion of the rotating member 21 to which the blades 25 are attached is inserted into the cylindrical member 19 so that the rotating shaft 23 and the axial direction of the cylindrical member 19 are parallel to each other. Further, both ends of the rotating shaft 23 are rotatably supported by support walls 27 and 29.

回転軸23のうち、筒状部材19よりも上流側には、傘歯車(ベベルギア)39が取り付けられている。傘歯車39には、後に詳述する駆動機構11から駆動力が伝えられ、その駆動力により回転部材21が回転する。回転部材21の回転方向は、翼25により作り出す培養液の流れの方向が、培養液の循環方向と一致する方向である。   A bevel gear (bevel gear) 39 is attached upstream of the cylindrical member 19 in the rotating shaft 23. A driving force is transmitted to the bevel gear 39 from a driving mechanism 11 described in detail later, and the rotating member 21 is rotated by the driving force. The rotation direction of the rotating member 21 is a direction in which the flow direction of the culture solution created by the blades 25 coincides with the circulation direction of the culture solution.

駆動機構11は、図4に示すように、平底容器3の側壁3bと仕切り壁5とにより回転可能に軸支された回転軸41と、回転軸41にそれぞれ取り付けられた3個の傘歯車43、43、43、及び平歯車45を備えている。平歯車45は、パドル回転機構7の回転軸13に取り付けられた平歯車47と噛み合っている。そのことにより、回転軸41は、パドル回転機構7から駆動力を伝達され、回転する。3個の傘歯車43、43、43は、それぞれ、3個の攪拌部9における傘歯車39と噛み合っており、回転軸41が回転するとき、回転部材21も回転する。よって、駆動機構11は、パドル回転機構7の駆動力により、回転部材21を回転駆動する。   As shown in FIG. 4, the drive mechanism 11 includes a rotary shaft 41 that is rotatably supported by the side wall 3 b and the partition wall 5 of the flat bottom container 3, and three bevel gears 43 that are respectively attached to the rotary shaft 41. , 43 and 43 and a spur gear 45. The spur gear 45 meshes with a spur gear 47 attached to the rotary shaft 13 of the paddle rotation mechanism 7. As a result, the rotating shaft 41 receives the driving force from the paddle rotating mechanism 7 and rotates. The three bevel gears 43, 43, and 43 are meshed with the bevel gears 39 in the three stirring units 9, respectively, and the rotating member 21 rotates when the rotating shaft 41 rotates. Therefore, the drive mechanism 11 rotationally drives the rotation member 21 by the driving force of the paddle rotation mechanism 7.

2.藻培養リアクター1が奏する効果
(1)藻培養リアクター1は、3個の攪拌部9を備えている。攪拌部9における筒状部材19の内部には、ノズル30によってCO2ガスが供給される。筒状部材19の内部では、翼25を備える回転部材21が回転するため、CO2ガスと培養液との接触時間が長くなり、供給されたCO2ガスが培養液に効率的に溶け込む。そのため、CO2ガスを深い水深の部分まで送り込む必要が無く、エネルギーコストを低減できる。
(2)ノズル30は、筒状部材19のうち、培養液の循環方向における上流側からCO2ガスを供給する。そのため、CO2ガスと培養液とが、筒状部材19と回転部材21とにより攪拌される経路が長くなるので、CO2ガスを培養液に一層効率的に溶け込ませることができる。
(3)筒状部材19と、回転部材21の翼25とは透明の材料により形成されている。そのため、上方から照射された光は筒状部材19や回転部材21の下方にも到達するので、藻の増殖が促進される。
(4)筒状部材19の軸方向と、培養液の循環方向とは平行である。そのことにより、筒状部材19が培養液の循環を妨げないので、培養液の滞留を防止できる。また、培養液が循環しやすくなるので、パドル15の回転負荷を低減できる。
(5)翼25は、アルキメデスの螺旋形状を有している。そのことにより、筒状部材19内において、培養液の流速を高め、結果として、CO2ガスを培養液に一層効率的に溶け込ませることができる。
(6)回転部材21は、パドル回転機構7の駆動力により回転駆動される。そのため、回転部材21の駆動源を別途設ける必要がない。
2. Effects of the algae culture reactor 1 (1) The algae culture reactor 1 includes three stirring sections 9. CO 2 gas is supplied to the inside of the cylindrical member 19 in the stirring unit 9 by the nozzle 30. Since the rotating member 21 including the blades 25 rotates inside the cylindrical member 19, the contact time between the CO 2 gas and the culture solution becomes long, and the supplied CO 2 gas is efficiently dissolved in the culture solution. Therefore, it is not necessary to send the CO 2 gas to a deep water portion, and the energy cost can be reduced.
(2) The nozzle 30 supplies CO 2 gas from the upstream side of the tubular member 19 in the circulation direction of the culture solution. Therefore, the CO 2 gas and the culture solution, the path is agitated by the tubular member 19 and the rotary member 21 becomes long, it is possible to dissolve the CO 2 gas more efficiently to the culture medium.
(3) The cylindrical member 19 and the blades 25 of the rotating member 21 are formed of a transparent material. Therefore, since the light irradiated from the upper part also reaches the lower part of the cylindrical member 19 and the rotating member 21, the growth of algae is promoted.
(4) The axial direction of the cylindrical member 19 is parallel to the circulation direction of the culture solution. As a result, the cylindrical member 19 does not interfere with the circulation of the culture solution, so that the retention of the culture solution can be prevented. In addition, since the culture fluid is easily circulated, the rotational load on the paddle 15 can be reduced.
(5) The wing 25 has an Archimedean spiral shape. As a result, the flow rate of the culture solution is increased in the cylindrical member 19, and as a result, the CO 2 gas can be more efficiently dissolved in the culture solution.
(6) The rotating member 21 is rotationally driven by the driving force of the paddle rotating mechanism 7. Therefore, it is not necessary to provide a separate drive source for the rotating member 21.

3.藻培養リアクター1が奏する効果を確認するための試験
(1)藻培養リアクター1にCO2ガスを1時間供給した直後に、培養液中の溶存CO2濃度を測定したところ、1%を維持していた。
3. Test for confirming the effect of the algae culture reactor 1 (1) Immediately after supplying the algae culture reactor 1 with CO 2 gas for 1 hour, the dissolved CO 2 concentration in the culture solution was measured and maintained at 1%. It was.

なお、その他の実験の条件は下記のとおりである。
平底容器3の底面の面積:20m2
培養液の水深:20cm
筒状部材19の直径と軸長:Φ20cm、長さ30cm
攪拌部9の数:3個
筒状部材19内における培養液の流速:4m2/h(エアー含む体積)
CO2ガスにおけるCO2濃度:5%
CO2ガスの流速:15L/min
(2)基本的には上述した藻培養リアクター1と同様の構成を有するが、攪拌部9の数を5個に増やして、同様の実験を行った。5個の攪拌部9は、3個の攪拌部9の場合と同様に、それぞれの軸方向が循環方向と平行になるように並列配置されている。この場合も、培養液中の溶存CO2濃度は0.94%を維持していた。
The other experimental conditions are as follows.
Area of the bottom surface of the flat bottom container 3: 20 m 2
Culture water depth: 20cm
Diameter and axial length of cylindrical member 19: Φ20 cm, length 30 cm
Number of stirring portions 9: 3 Flow rate of the culture solution in the cylindrical member 19: 4 m 2 / h (volume including air)
CO 2 concentration in the CO 2 gas: 5%
CO 2 gas flow rate: 15 L / min
(2) Basically, it has the same configuration as the algae culture reactor 1 described above, but the same experiment was performed by increasing the number of the agitating units 9 to five. As in the case of the three stirring units 9, the five stirring units 9 are arranged in parallel so that their axial directions are parallel to the circulation direction. Also in this case, the dissolved CO 2 concentration in the culture broth was maintained at 0.94%.

なお、その他の実験の条件は下記のとおりである。
平底容器3の底面の面積:20m2
培養液の水深:20cm
筒状部材19の直径と軸長:Φ15cm、長さ30cm
攪拌部9の数:5個
筒状部材19内における培養液の流速:3.7m2/h(エアー含む体積)
CO2ガスにおけるCO2濃度:5%
CO2ガスの流速:15L/min
<第2の実施形態>
1.藻培養リアクター1の構成
本実施形態の藻培養リアクター1の構成は、基本的には前記第1の実施形態と同じである。ただし、図5に示すように、3個の攪拌部9の軸方向は、培養液の循環方向と直交している。攪拌部9の構成自体は前記第1の実施形態と同様である。
The other experimental conditions are as follows.
Area of the bottom surface of the flat bottom container 3: 20 m 2
Culture water depth: 20cm
Diameter and axial length of cylindrical member 19: Φ15 cm, length 30 cm
Number of stirring portions 9: 5 Flow rate of culture solution in cylindrical member 19: 3.7 m 2 / h (volume including air)
CO 2 concentration in the CO 2 gas: 5%
CO 2 gas flow rate: 15 L / min
<Second Embodiment>
1. Configuration of Algae Culture Reactor 1 The configuration of the algae culture reactor 1 of this embodiment is basically the same as that of the first embodiment. However, as shown in FIG. 5, the axial direction of the three stirring parts 9 is orthogonal to the circulation direction of a culture solution. The configuration itself of the stirring unit 9 is the same as that of the first embodiment.

本実施形態の駆動機構11は、上記のように配置された攪拌部9に駆動力を伝達するため、以下のように構成される。
駆動機構11は、支持壁27、29により回転可能に軸支された回転軸49と、回転軸49にそれぞれ取り付けられた4個の傘歯車51、53、55、57を備えている。傘歯車51は、パドル回転機構7の回転軸13に取り付けられた傘歯車59と噛み合っている。そのことにより、回転軸49は、パドル回転機構7から駆動力を伝達され、回転する。3個の傘歯車53、55、57は、それぞれ、3個の攪拌部9における傘歯車39と噛み合っており、回転軸49が回転するとき、回転部材21も回転する。よって、駆動機構11は、パドル回転機構7の駆動力により、回転部材21を回転駆動する。
The drive mechanism 11 of the present embodiment is configured as follows in order to transmit the drive force to the stirring unit 9 arranged as described above.
The drive mechanism 11 includes a rotation shaft 49 that is rotatably supported by support walls 27 and 29, and four bevel gears 51, 53, 55, and 57 attached to the rotation shaft 49, respectively. The bevel gear 51 is meshed with a bevel gear 59 attached to the rotation shaft 13 of the paddle rotation mechanism 7. As a result, the rotation shaft 49 receives the driving force from the paddle rotation mechanism 7 and rotates. The three bevel gears 53, 55, and 57 mesh with the bevel gears 39 in the three stirring units 9, respectively, and the rotating member 21 also rotates when the rotating shaft 49 rotates. Therefore, the drive mechanism 11 rotationally drives the rotation member 21 by the driving force of the paddle rotation mechanism 7.

筒状部材19は、平底容器3の側壁3bと仕切り壁5に対し固定されている。筒状部材19が固定された位置は、平底容器3に通常量の培養液を入れたとき、筒状部材19の全体が培養液に浸漬される位置である。また、筒状部材19の向きは、その軸方向が水平となり、且つ培養液の循環方向と直交する向きである。CO2ガスを供給するノズル30は、筒状部材19の下面であって、軸方向における中央に取り付けられる。 The cylindrical member 19 is fixed to the side wall 3 b and the partition wall 5 of the flat bottom container 3. The position where the cylindrical member 19 is fixed is a position where the entire cylindrical member 19 is immersed in the culture solution when a normal amount of the culture solution is put into the flat bottom container 3. The cylindrical member 19 is oriented so that its axial direction is horizontal and perpendicular to the direction of circulation of the culture medium. The nozzle 30 for supplying the CO 2 gas is attached to the lower surface of the cylindrical member 19 and in the center in the axial direction.

回転部材21の両端は、側壁3bと仕切り壁5により、回転可能に軸支されている。
回転部材21の回転により作り出す培養液の流れの方向は、図5における下方向であってもよいし、図5における上方向であってもよい。
Both ends of the rotating member 21 are rotatably supported by the side wall 3 b and the partition wall 5.
The direction of the flow of the culture medium created by the rotation of the rotating member 21 may be the downward direction in FIG. 5 or the upward direction in FIG.

2.藻培養リアクター1が奏する効果
本実施形態の藻培養リアクター1は、前記第1の実施形態と略同様の効果を奏することができる(ただし、筒状部材19の軸方向が培養液の循環方向に平行であることに起因する効果は除く)。
2. Effects produced by the algae culture reactor 1 The algae culture reactor 1 according to the present embodiment can produce substantially the same effects as those of the first embodiment (however, the axial direction of the tubular member 19 is in the circulation direction of the culture solution). Excluding effects due to being parallel).

3.藻培養リアクター1が奏する効果を確認するための試験
(1)藻培養リアクター1にCO2ガスを1時間供給した直後に、培養液中の溶存CO2濃度を測定したところ、1%を維持していた。
3. Test for confirming the effect of the algae culture reactor 1 (1) Immediately after supplying the algae culture reactor 1 with CO 2 gas for 1 hour, the dissolved CO 2 concentration in the culture solution was measured and maintained at 1%. It was.

なお、その他の実験の条件は下記のとおりである。
平底容器3の底面の面積:20m2
培養液の水深:20cm
筒状部材19の直径と軸長:Φ20cm、長さ30cm
攪拌部9の数:3個
筒状部材19内における培養液の流速:4m2/h(エアー含む体積)
CO2ガスにおけるCO2濃度:5%
CO2ガスの流速:15L/min
尚、本発明は前記実施形態になんら限定されるものではなく、本発明を逸脱しない範囲において種々の態様で実施しうることはいうまでもない。
The other experimental conditions are as follows.
Area of the bottom surface of the flat bottom container 3: 20 m 2
Culture water depth: 20cm
Diameter and axial length of cylindrical member 19: Φ20 cm, length 30 cm
Number of stirring portions 9: 3 Flow rate of the culture solution in the cylindrical member 19: 4 m 2 / h (volume including air)
CO 2 concentration in the CO 2 gas: 5%
CO 2 gas flow rate: 15 L / min
In addition, this invention is not limited to the said embodiment at all, and it cannot be overemphasized that it can implement with a various aspect in the range which does not deviate from this invention.

例えば、筒状部材19の軸方向は、上方から見たとき、循環方向に対し斜めであってもよい。また、前記第1の実施形態において、筒状部材19の軸方向は、水平方向に対し、斜めであってもよい。この場合、筒状部材19の上流側が高くなっていてもよし、下流側が高くなっていてもよい。   For example, the axial direction of the cylindrical member 19 may be oblique to the circulation direction when viewed from above. Moreover, in the said 1st Embodiment, the axial direction of the cylindrical member 19 may be diagonal with respect to a horizontal direction. In this case, the upstream side of the cylindrical member 19 may be high, or the downstream side may be high.

また、翼25の形状は、アルキメデスの螺旋形状には限定されず、任意の翼形状でよい。翼25の形状は、回転により、筒状部材19を通過する培養液の流れを生み出すことができる形状であることが好ましく、例えば、船舶用のスクリューの形状等が挙げられる。このスクリューは、単独で回転軸23に取り付けられてもよいし、所定の間隔をおいて複数取り付けられてもよい。   Moreover, the shape of the wing | blade 25 is not limited to the spiral shape of Archimedes, Arbitrary wing | blade shape may be sufficient. It is preferable that the shape of the wing | blade 25 is a shape which can produce the flow of the culture solution which passes the cylindrical member 19 by rotation, for example, the shape of the screw for ships, etc. are mentioned. This screw may be attached to the rotating shaft 23 alone, or a plurality of screws may be attached at a predetermined interval.

また、筒状部材19は、その側面にも開口部を有していてもよい。
また、攪拌部9の数は、3個又は5個に限定されず、その他の数(例えば、1個、2個、4個、6個・・・・)でもよい。また、複数の攪拌部9の一部が前記第1の実施形態の向きに配置され、残りの攪拌部9が前記第2の実施形態の向きに配置されてもよい。また、複数の攪拌部9を、循環方向に沿って、直列に配列してもよい。
Moreover, the cylindrical member 19 may have an opening part also in the side surface.
Moreover, the number of the stirring parts 9 is not limited to 3 or 5, Other numbers (for example, 1, 2, 4, 6, ...) may be sufficient. A part of the plurality of stirring units 9 may be arranged in the direction of the first embodiment, and the remaining stirring units 9 may be arranged in the direction of the second embodiment. Moreover, you may arrange the some stirring part 9 in series along a circulation direction.

また、回転部材21は、パドル回転機構7以外の駆動力により駆動されるものであてもよい。
また、筒状部材19、翼25のうちの一方又は両方は、不透明な材料(例えば不透明な樹脂、金属、ガラス)又は半透明な材料(例えば半透明の樹脂、ガラス)により形成されていてもよい。
The rotating member 21 may be driven by a driving force other than the paddle rotating mechanism 7.
Further, one or both of the cylindrical member 19 and the wing 25 may be formed of an opaque material (for example, opaque resin, metal, glass) or a translucent material (for example, translucent resin, glass). Good.

また、ノズル30の位置は、筒状部材19内にCO2ガスを供給できさえすれば、前記第1又は第2の実施形態の位置に限定されない。 Further, the position of the nozzle 30 is not limited to the position of the first or second embodiment as long as the CO 2 gas can be supplied into the cylindrical member 19.

1・・・藻培養リアクター、3・・・平底容器、3a、3b・・・側壁、
5・・・仕切り壁、7・・・パドル回転機構、9・・・攪拌部、11・・・駆動機構、
13・・・回転軸、15・・・パドル、17・・・モータ、19・・・筒状部材、
19a、19b・・・端、21・・・回転部材、23・・・回転軸、25・・・翼、
27、29・・・支持壁、30・・・ノズル、
31、33、35、37・・・筒固定部材、32・・・パイプ、
39、43、51、53、55、57、59・・・傘歯車、41・・・回転軸、
45、47・・・平歯車、49・・・回転軸
DESCRIPTION OF SYMBOLS 1 ... Algae culture reactor, 3 ... Flat bottom container, 3a, 3b ... Side wall,
5 ... partition wall, 7 ... paddle rotation mechanism, 9 ... stirring unit, 11 ... drive mechanism,
13 ... rotating shaft, 15 ... paddle, 17 ... motor, 19 ... cylindrical member,
19a, 19b ... end, 21 ... rotating member, 23 ... rotating shaft, 25 ... wing,
27, 29 ... support wall, 30 ... nozzle,
31, 33, 35, 37 ... cylinder fixing member, 32 ... pipe,
39, 43, 51, 53, 55, 57, 59 ... bevel gears, 41 ... rotating shaft,
45, 47 ... spur gear, 49 ... rotating shaft

Claims (6)

培養液を循環可能な藻培養リアクターであって、
軸方向における両側が開口し、少なくとも一部が前記培養液に浸漬される位置に取り付付けられた筒状部材と、
回転軸及び前記回転軸に取り付けられた翼を備え、少なくとも前記翼の一部が前記筒状部材に内挿された回転部材と、
前記回転部材を回転駆動する駆動手段と、
前記筒状部材内にCO2ガスを含むガスを供給するガス供給手段と、
を備えることを特徴とする藻培養リアクター。
An algal culture reactor capable of circulating the culture solution,
A cylindrical member attached to a position where both sides in the axial direction are open and at least a part is immersed in the culture solution;
A rotating member including a rotating shaft and a blade attached to the rotating shaft, and at least a part of the blade is inserted into the cylindrical member;
Drive means for rotationally driving the rotating member;
Gas supply means for supplying a gas containing CO 2 gas into the cylindrical member;
An algae culture reactor comprising:
前記ガス供給手段は、前記筒状部材のうち、前記培養液の循環方向における上流側から前記ガスを供給することを特徴とする請求項1記載の藻培養リアクター。   The algae culture reactor according to claim 1, wherein the gas supply means supplies the gas from an upstream side of the cylindrical member in a circulation direction of the culture solution. 前記筒状部材及び/又は回転部材は、少なくともその一部が透明又は半透明の材料により形成されていることを特徴とする請求項1又は2記載の藻培養リアクター。   The algal culture reactor according to claim 1 or 2, wherein at least a part of the cylindrical member and / or the rotating member is made of a transparent or translucent material. 前記筒状部材の軸方向が、前記培養液の循環方向と略平行であることを特徴とする請求項1〜3のいずれか1項に記載の藻培養リアクター。   The algae culture reactor according to any one of claims 1 to 3, wherein an axial direction of the cylindrical member is substantially parallel to a circulation direction of the culture solution. 前記翼が、アルキメデスの螺旋形状を有することを特徴とする請求項1〜4のいずれか1項に記載の藻培養リアクター。   The alga culture reactor according to any one of claims 1 to 4, wherein the wing has an Archimedean spiral shape. 前記培養液を循環させるパドルを備え、
前記駆動手段は、前記パドルの駆動力により、前記回転部材を駆動することを特徴とする請求項1〜5のいずれか1項に記載の藻培養リアクター。
A paddle for circulating the culture solution,
The algae culture reactor according to any one of claims 1 to 5, wherein the driving means drives the rotating member by a driving force of the paddle.
JP2011025100A 2011-02-08 2011-02-08 Alga culturing reactor Withdrawn JP2012161294A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011025100A JP2012161294A (en) 2011-02-08 2011-02-08 Alga culturing reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011025100A JP2012161294A (en) 2011-02-08 2011-02-08 Alga culturing reactor

Publications (1)

Publication Number Publication Date
JP2012161294A true JP2012161294A (en) 2012-08-30

Family

ID=46841371

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011025100A Withdrawn JP2012161294A (en) 2011-02-08 2011-02-08 Alga culturing reactor

Country Status (1)

Country Link
JP (1) JP2012161294A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020195360A (en) * 2019-06-04 2020-12-10 广州華爵生物科技有限公司 Microbe fermentation system with solid liquid separation function

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020195360A (en) * 2019-06-04 2020-12-10 广州華爵生物科技有限公司 Microbe fermentation system with solid liquid separation function

Similar Documents

Publication Publication Date Title
ES2674695T3 (en) Gas powered mixing system and procedure
KR100965784B1 (en) Water circulation device for water-bloom prevention using sunlight
JP5977108B2 (en) Water purification device
KR101899444B1 (en) high performance water circulation apparatus using solar
JP2000317488A (en) Device for underwater aeration and agitation
JP2011041896A (en) Stirring vessel
JP2007167708A (en) Submerged agitation apparatus
JP2010178734A (en) Agitator
CN108275771A (en) A kind of aeration tank using clockwork spring store power rotation
KR20140020592A (en) Aeration equipment for water quality and green algae improvement using wind power
WO2015087858A1 (en) Algae culturing apparatus and algae culturing system
WO2022075830A1 (en) Multi-media anaerobic bioreactor with high biomass content and contact factor
TW201902345A (en) Surge-type aerator with direct-driving motor
JP4716039B2 (en) Rectangular stirred reaction tank
JP2012125690A (en) Through-flow pump aeration apparatus
WO2011065445A1 (en) Microalgae cultivation device
JP2012161294A (en) Alga culturing reactor
JP7396624B2 (en) Micro bubble generator
KR20120067394A (en) A device for dissolving gas and a apparatus for dissolving oxygen which used it
JP6345545B2 (en) Aeration stirrer
WO2017056323A1 (en) Device for dissolving oxygen in water and method for dissolving oxygen in water using same
KR100988361B1 (en) apparatus for dissolving oxygen
CN108083571A (en) A kind of ecological running water purifier in situ
ES2524728T3 (en) Wastewater treatment system
KR101231318B1 (en) Solution mixer

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20140513