JP2012159720A - Optical system - Google Patents

Optical system Download PDF

Info

Publication number
JP2012159720A
JP2012159720A JP2011019797A JP2011019797A JP2012159720A JP 2012159720 A JP2012159720 A JP 2012159720A JP 2011019797 A JP2011019797 A JP 2011019797A JP 2011019797 A JP2011019797 A JP 2011019797A JP 2012159720 A JP2012159720 A JP 2012159720A
Authority
JP
Japan
Prior art keywords
optical system
antireflection structure
reflectance
incident angle
antireflection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011019797A
Other languages
Japanese (ja)
Inventor
Takeharu Okuno
丈晴 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2011019797A priority Critical patent/JP2012159720A/en
Publication of JP2012159720A publication Critical patent/JP2012159720A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To provide an optical system which suppresses occurrence of a ghost.SOLUTION: In an optical system having a plurality of optical surfaces, at least two surfaces includes antireflection structures having fine uneven structure whose average pitch is equal to or less than 400 nm. An average height of the fine uneven structure is different between an antireflection structure A formed on one surface and an antireflection structure B formed on the other surface.

Description

本発明は,光学系に関し,特にゴーストの発生を抑制した光学系に関するものである。   The present invention relates to an optical system, and more particularly to an optical system that suppresses the generation of ghosts.

従来より,ガラスやプラスチックなどの透明性媒質(透明性部材)を用いたレンズにおいては,透過光の損失を低減させるために,光入出射面に反射防止膜を設けるなどの表面処理を施している。例えば,可視光に対する反射防止膜としては,誘電体薄膜を複数層積層した,多層膜(マルチコート)が知られている。この多層膜は,透明性の基板表面に,金属酸化物を真空蒸着等により成膜することで形成されている。   Conventionally, lenses using a transparent medium (transparent member) such as glass or plastic have been subjected to surface treatment such as providing an antireflection film on the light incident / exit surface in order to reduce the loss of transmitted light. Yes. For example, as an antireflection film for visible light, a multilayer film (multicoat) in which a plurality of dielectric thin films are stacked is known. This multilayer film is formed by depositing a metal oxide on a transparent substrate surface by vacuum deposition or the like.

近年,デジタルカメラ用レンズなどの光学系においては,高い光学性能を有し,かつ光学系全体が小型・軽量であることが求められている。そして,これに対応して口径の大きなレンズや曲率半径の小さな面を有するレンズが多く使用されるようになってきている。   In recent years, optical systems such as lenses for digital cameras are required to have high optical performance and to be small and light as a whole. In response to this, a lens having a large aperture or a lens having a surface with a small radius of curvature has been increasingly used.

このようなレンズを光学系に用いると,レンズ周辺部では光線が大きな角度で入射する。このため誘電体薄膜を単層ないし多層積層した反射防止膜では入射角が広範囲となるため,反射を十分に抑制することができず,ゴーストやフレアなどの有害光が発生する原因となっている。   When such a lens is used in an optical system, light rays are incident at a large angle around the lens. For this reason, an antireflection film in which a dielectric thin film is laminated in a single layer or multiple layers has a wide angle of incidence, so that reflection cannot be sufficiently suppressed, causing harmful light such as ghosts and flares. .

そうした状況を鑑みて,ゴーストの原因となる2面以上の反射境界面に,それぞれ互いに相補する関係の反射特性を有する反射防止コートを施した光学系が特許文献1に開示されている。   In view of such a situation, Patent Document 1 discloses an optical system in which two or more reflective boundary surfaces that cause a ghost are provided with antireflection coatings having reflective properties that are complementary to each other.

特開平5−323226号公報JP-A-5-323226

特許文献1では,ゴーストの原因となる2面以上の反射境界面に,それぞれ互いに相補する関係の反射特性を有する反射防止コートを施すことで,ゴーストの発生を抑制している。特に,ゴーストの原因となる2面以上の反射境界面における媒質の屈折率をn,光の入射角をθとしたとき,n・sinθの小さい方の面に,短波長域より長波長域での反射防止特性に優れた反射防止コートを施すことが好ましい,としている。   In Patent Document 1, generation of ghosts is suppressed by applying antireflection coatings having reflection characteristics complementary to each other to two or more reflection boundary surfaces that cause ghosts. In particular, when the refractive index of the medium at the reflection boundary surface of two or more surfaces that cause ghost is n and the incident angle of light is θ, the surface with the smaller n · sin θ is longer than the short wavelength region. It is preferable to apply an antireflection coating having excellent antireflection properties.

しかしながら,2面の反射境界面でゴーストの発生する特定の入射角度においては,その反射率の積が小さく,ゴーストを有効に抑制しているが,それ以外の入射角(例えば0°)での反射率を犠牲にしたものとなっている。このような反射防止膜を,レンズ枚数の多い光学系(例えば高倍率ズームレンズなど)に用いたい場合,ゴーストは抑制できても撮像光の光量損失が大きくなり,透過率性能が低下してしまう,という課題があった。   However, at a specific incident angle where a ghost is generated at the two reflection boundary surfaces, the product of the reflectance is small and the ghost is effectively suppressed, but at other incident angles (for example, 0 °) This is at the expense of reflectivity. When such an anti-reflection film is used in an optical system with a large number of lenses (for example, a high-power zoom lens), even if ghosts can be suppressed, the loss of the amount of imaged light increases and the transmittance performance decreases. There was a problem.

平均ピッチが使用波長以下の微細凹凸構造からなる反射防止構造体,とくに構造の空間占有率が連続的に変化しているような形状では,屈折率が徐々に変化する膜が無数に存在することと実質等価となる。このとき,各部位(膜)から振幅の小さな反射光が無数に発生することになり,これが一定以上の位相(例えば360°以上)にわたってずれて発生した場合,干渉した波の振幅は非常に小さなものとなり,高い反射防性能が得られることとなる。   An antireflection structure consisting of a fine concavo-convex structure whose average pitch is less than or equal to the working wavelength, especially in a shape where the space occupancy of the structure is continuously changing, there are an infinite number of films whose refractive index changes gradually. Is substantially equivalent to At this time, an infinite number of reflected lights with small amplitudes are generated from each part (film). If this occurs with a phase shift exceeding a certain level (for example, 360 ° or more), the amplitude of the interfered wave is very small. As a result, high antireflection performance can be obtained.

したがって,設計波長や設計入射角とは異なる入射光に対しても,反射光を打ち消す干渉条件が維持されるため,波長帯域特性,入射角特性に優れた反射防止構造体が得られることとなる。   Therefore, the interference condition that cancels the reflected light is maintained even for incident light that is different from the design wavelength and the design incident angle, so that an antireflection structure excellent in wavelength band characteristics and incident angle characteristics can be obtained. .

本発明は,複数の光学面を有する光学系において,少なくとも2面に,平均ピッチが400nm以下の微細凹凸構造を有する反射防止構造体を有して構成されている。そして,一方の面に形成された反射防止構造体Aと,もう一方の面に形成された反射防止構造体Bとで微細凹凸構造の平均高さを異ならせることにより,上記課題を解決している。   The present invention is an optical system having a plurality of optical surfaces, and has an antireflection structure having a fine concavo-convex structure with an average pitch of 400 nm or less on at least two surfaces. Then, the above problem is solved by making the average height of the fine concavo-convex structure different between the antireflection structure A formed on one surface and the antireflection structure B formed on the other surface. Yes.

さらに,もう一つの方法として,一方の面に形成された反射防止構造体Aと,もう一方の面に形成された反射防止構造体Bとで反射率特性を異ならせることにより,上記課題を解決している。   Furthermore, as another method, the above problem is solved by making the reflectance characteristics different between the antireflection structure A formed on one surface and the antireflection structure B formed on the other surface. is doing.

本発明によれば,光学系内部の光学面における複数回反射によるゴースト光の発生を抑制し,かつ撮像光の光量損失も少ない光学系が得られる。   According to the present invention, it is possible to obtain an optical system that suppresses the generation of ghost light due to multiple reflections on the optical surface inside the optical system and that reduces the loss of light quantity of imaging light.

本発明の実施例1の光学系の要部断面図Sectional drawing of the principal part of the optical system of Example 1 of this invention 平均ピッチが使用波長以下の微細凹凸構造を有する反射防止構造体A1の模式断面図Schematic cross-sectional view of antireflection structure A1 having a fine concavo-convex structure whose average pitch is equal to or less than the operating wavelength 平均ピッチの説明図((a)周期配列の場合,(b)非周期配列の場合)Explanatory drawing of average pitch ((a) In case of periodic arrangement, (b) In case of non-periodic arrangement) 反射防止構造体A1の反射率特性((a)入射角:0°,(b)入射角:60°)Reflectivity characteristics of the antireflection structure A1 ((a) incident angle: 0 °, (b) incident angle: 60 °) 平均ピッチが使用波長以下の微細凹凸構造を有する反射防止構造体B1の模式断面図Schematic cross-sectional view of antireflection structure B1 having a fine concavo-convex structure with an average pitch equal to or less than the operating wavelength 反射防止構造体B1の反射率特性((a)入射角:0°,(b)入射角:60°)Reflectivity characteristics of the antireflection structure B1 ((a) incident angle: 0 °, (b) incident angle: 60 °) 反射防止構造体A1の反射率と反射防止構造体B1の反射率の積((a)入射角:0°,(b)入射角:60°)Product of reflectance of antireflection structure A1 and reflectance of antireflection structure B1 ((a) incident angle: 0 °, (b) incident angle: 60 °) 本発明の実施例2の光学系の要部断面図Sectional drawing of the principal part of the optical system of Example 2 of this invention 平均ピッチが使用波長以下の微細凹凸構造を有する反射防止構造体A2の模式断面図Schematic cross-sectional view of antireflection structure A2 having a fine concavo-convex structure whose average pitch is equal to or less than the operating wavelength 反射防止構造体A2の反射率特性((a)入射角:0°,(b)入射角:60°)Reflectivity characteristics of the antireflection structure A2 ((a) incident angle: 0 °, (b) incident angle: 60 °) 平均ピッチが使用波長以下の微細凹凸構造を有する反射防止構造体B2の模式断面図Schematic cross-sectional view of antireflection structure B2 having a fine concavo-convex structure whose average pitch is equal to or less than the operating wavelength 反射防止構造体B2の反射率特性((a)入射角:0°,(b)入射角:60°)Reflectivity characteristics of the antireflection structure B2 ((a) incident angle: 0 °, (b) incident angle: 60 °) 反射防止構造体A2の反射率と反射防止構造体B2の反射率の積((a)入射角:0°,(b)入射角:60°)Product of reflectance of antireflection structure A2 and reflectance of antireflection structure B2 ((a) incident angle: 0 °, (b) incident angle: 60 °)

以下,図を用いて本発明の光学系について説明する。本発明の光学系は,光学面のうち少なくとも2面に,平均高さが異なり,平均ピッチが400nm以下の微細凹凸構造を有する反射防止構造体を有するように構成されている。   Hereinafter, the optical system of the present invention will be described with reference to the drawings. The optical system of the present invention is configured to have an antireflection structure having a fine concavo-convex structure in which at least two of the optical surfaces have different average heights and an average pitch of 400 nm or less.

本発明の平均ピッチが400nm以下の微細凹凸構造からなる反射防止構造体は,どのような方法で作製されたものでも構わない。   The antireflection structure having a fine concavo-convex structure with an average pitch of 400 nm or less according to the present invention may be produced by any method.

例えば,レンズ表面にアルミニウムを含有する溶液を塗布することで皮膜を形成し,該皮膜を温水処理することで微細凹凸構造を形成する方法を用いることができる。また,アルミニウムあるいはアルミニウム合金を陽極酸化する際に形成される細孔を金型表面に形成し,該細孔をレプリカ法やモールド法などでレンズ表面に転写するなどの方法を用いても良い。これらの方法を用いれば,安価に大面積のレンズ表面にも,平均ピッチが使用波長以下の微細凹凸構造を形成することができて好適である。   For example, a method can be used in which a film is formed by applying a solution containing aluminum on the lens surface, and a fine uneven structure is formed by performing hot water treatment on the film. Also, a method may be used in which pores formed when anodizing aluminum or an aluminum alloy are formed on the mold surface, and the pores are transferred to the lens surface by a replica method or a molding method. If these methods are used, it is possible to form a fine concavo-convex structure having an average pitch equal to or less than the operating wavelength on a lens surface having a large area at low cost.

それ以外にも,フォトリソグラフィー法や干渉露光法,エッチング法,微粒子の配列パターンなどを用いて形成しても良い。   In addition, it may be formed by using a photolithography method, an interference exposure method, an etching method, an array pattern of fine particles, or the like.

図2に本発明実施例1に用いられる反射防止構造体A1の模式断面図を示す。屈折率(nd)が,1.69680,屈折率分散(νd)が55.5の基板(レンズ)22の上に酸化アルミニウムを含有する材料からなり,平均ピッチが400nm以下の微細凹凸構造体23を平均高さ270nmとなるように形成した。   FIG. 2 shows a schematic cross-sectional view of the antireflection structure A1 used in Example 1 of the present invention. A fine concavo-convex structure 23 made of a material containing aluminum oxide on a substrate (lens) 22 having a refractive index (nd) of 1.696680 and a refractive index dispersion (νd) of 55.5 and having an average pitch of 400 nm or less. Was formed to have an average height of 270 nm.

使用波長が単波長ではなく,ある範囲にわたっているのであれば,平均ピッチを使用波長範囲の最短波長以下とすればよく,ここでは可視域の場合を適用し,平均ピッチを400nm以下としている。   If the used wavelength is not a single wavelength but covers a certain range, the average pitch may be set to be equal to or shorter than the shortest wavelength in the used wavelength range. Here, the case of the visible range is applied, and the average pitch is set to 400 nm or less.

これは,使用波長の最短波長よりも大きな平均ピッチを用いると,回折による有害光が発生してしまうためである。   This is because, if an average pitch larger than the shortest wavelength used is used, harmful light due to diffraction is generated.

ここで,平均ピッチと,平均高さについて,図3を用いて説明する。図3(a)(b)はそれぞれ,使用波長以下の微細凹凸構造体を上から見た図である。微細凹凸形状は,模式的に丸としている。   Here, the average pitch and the average height will be described with reference to FIG. 3 (a) and 3 (b) are views of the fine concavo-convex structure having a wavelength shorter than the use wavelength as viewed from above. The fine irregular shape is typically round.

図3(a)は,微細凹凸が三角格子状に周期的に配列している例を示している。この場合,平均ピッチは,一つの微細凹凸と隣接する微細凹凸の間隔と等しい。   FIG. 3A shows an example in which fine irregularities are periodically arranged in a triangular lattice pattern. In this case, the average pitch is equal to the interval between one fine unevenness and the adjacent fine unevenness.

図3(b)は,微細凹凸が非周期的に配列している例を示している。このような場合,平均ピッチは,(1)一つの微細凹凸から近い順に6つの微細凹凸を選定し,その間隔の平均値を算出し,(2)すべての微細凹凸に関して(1)を算出し,その平均値を算出する,などの方法で定義すればよい。ただし,光学面に設けられたすべての微細凹凸構造に対して測定することは実質困難なので,光学面の一箇所あるいは数箇所を走査型電子顕微鏡などで観察し,ある領域内で計算した値で代用してもよい。   FIG. 3B shows an example in which fine irregularities are arranged aperiodically. In such a case, the average pitch is: (1) Select six fine irregularities in order from one fine irregularity, calculate the average value of the intervals, (2) Calculate (1) for all fine irregularities And calculating the average value. However, since it is practically difficult to measure all the fine concavo-convex structures provided on the optical surface, one or several points on the optical surface are observed with a scanning electron microscope and the values calculated within a certain area are used. You may substitute.

平均高さについては,すべての微細凹凸について,設けられた面の面法線方向の高さを測定し,平均値を算出すればよい。   For the average height, the height in the surface normal direction of the provided surface may be measured for all fine irregularities and the average value calculated.

この反射防止構造体A1が形成された基板(レンズ)21の入射角0°の反射率RA1(0°),入射角60°の反射率RA1(60°)を,図4(a),(b)に示す。平均ピッチが使用波長以下の微細凹凸構造からなる反射防止構造体は、入射角特性が優れているため,入射角0°では可視域全域で反射率0.3%以下,入射角60°でも可視域全域でほぼ反射率2.0%以下を達成している。   The reflectance RA1 (0 °) at an incident angle of 0 ° and the reflectance RA1 (60 °) at an incident angle of 60 ° of the substrate (lens) 21 on which the antireflection structure A1 is formed are shown in FIGS. Shown in b). The anti-reflection structure consisting of a fine concavo-convex structure with an average pitch equal to or less than the working wavelength has excellent incident angle characteristics. Therefore, when the incident angle is 0 °, the reflectance is 0.3% or less over the entire visible range, and even when the incident angle is 60 °. The reflectivity is almost 2.0% or less over the entire region.

図5に本発明実施例1に用いられる反射防止構造体B1の模式断面図を示す。53は、屈折率(nd)が,1.60311,屈折率分散(νd)が60.7の基板(レンズ)である。この基板53の上に,シリカを含有する材料からなる薄膜54を介して,酸化アルミニウムを含有する材料からなり,平均ピッチが400nm以下の微細凹凸構造体53を平均高さ280nmとなるように形成した。   FIG. 5 shows a schematic cross-sectional view of the antireflection structure B1 used in Example 1 of the present invention. Reference numeral 53 denotes a substrate (lens) having a refractive index (nd) of 1.60311 and a refractive index dispersion (νd) of 60.7. A fine concavo-convex structure 53 made of a material containing aluminum oxide and having an average pitch of 400 nm or less is formed on the substrate 53 through a thin film 54 made of a material containing silica so as to have an average height of 280 nm. did.

この反射防止構造体B1が形成された基板(レンズ)51の入射角0°の反射率RB1(0°),入射角60°の反射率RB1(60°)を,図6(a),(b)に示す。平均ピッチが使用波長以下の微細凹凸構造からなる反射防止構造体は、入射角特性が優れているため,450nmから650nmにわたる波長領域全域で入射角0°では反射率0.3%以下,入射角60°でも反射率1.5%以下を達成している。   The reflection rate RB1 (0 °) at an incident angle of 0 ° and the reflectance RB1 (60 °) at an incident angle of 60 ° of the substrate (lens) 51 on which the antireflection structure B1 is formed are shown in FIGS. Shown in b). Since the antireflection structure having a fine concavo-convex structure with an average pitch of not more than the working wavelength has excellent incident angle characteristics, the reflectance is 0.3% or less at an incident angle of 0 ° over the entire wavelength range from 450 nm to 650 nm. Even at 60 °, the reflectance is 1.5% or less.

反射防止構造体A1の入射角0°における反射率RA1(0°)と,反射防止構造体B1の入射角0°における反射率RB1(0°)の積を,図7(a)に示す。RA1(0°)×RB1(0°)は,RA1(0°)とRB1(0°)の特性が異なるために非常に小さなものとなっており,450nmから650nmにわたる波長領域全域で3.0×10−4%以下となっている。 FIG. 7A shows the product of the reflectance RA1 (0 °) at an incident angle of 0 ° of the antireflection structure A1 and the reflectance RB1 (0 °) at an incident angle of 0 ° of the antireflection structure B1. RA1 (0 °) × RB1 (0 °) is very small because the characteristics of RA1 (0 °) and RB1 (0 °) are different, and is 3.0 over the entire wavelength region from 450 nm to 650 nm. × 10 -4 % or less.

さらに,反射防止構造体A1の入射角60°における反射率RA1(60°)と,反射防止構造体B1の入射角60°における反射率RB1(60°)の積を,図7(b)に示す。RA1(60°)×RB1(60°)は,450nmから650nmにわたる波長領域全域で3.0×10−2%以下の値である。 Furthermore, the product of the reflectance RA1 (60 °) at an incident angle of 60 ° of the antireflection structure A1 and the reflectance RB1 (60 °) at an incident angle of 60 ° of the antireflection structure B1 is shown in FIG. Show. RA1 (60 °) × RB1 (60 °) is a value of 3.0 × 10 −2 % or less over the entire wavelength region from 450 nm to 650 nm.

これは,平均ピッチが使用波長以下の微細凹凸構造からなる反射防止構造体A1と,反射防止構造体A1とは平均高さが異なる微細凹凸構造体からなる反射防止構造体B1とを用いたことで達成できた性能である。そして,誘電体薄膜を単層ないし多層積層した反射防止膜では,達成が困難な性能である。   This is because the antireflection structure A1 made of a fine concavo-convex structure having an average pitch equal to or less than the use wavelength and the antireflection structure B1 made of a fine concavo-convex structure having an average height different from that of the antireflection structure A1 are used. This is the performance that can be achieved. In addition, it is difficult to achieve with an antireflection film in which a dielectric thin film is laminated in a single layer or multiple layers.

図1は,本発明実施例1の光学系の要部断面図である。図1において,1は光学系であり,焦点距離が14mmのカメラ用広画角レンズである。この光学系において,r02面には平均ピッチが400nm以下の微細凹凸構造を有する反射防止構造体A1を形成している。また,r03面には同じく平均ピッチが400nm以下の微細凹凸構造を有する反射防止構造体B1を形成している。そのことで,入射角0°でも入射角60°でも2回反射の反射率は極めて低いので,ゴーストの発生を良好に抑制し,かつ撮像光(透過光)の光量損失も少ない高性能な光学系を実現している。   FIG. 1 is a cross-sectional view of an essential part of the optical system according to Embodiment 1 of the present invention. In FIG. 1, reference numeral 1 denotes an optical system, which is a wide-angle lens for a camera having a focal length of 14 mm. In this optical system, an antireflection structure A1 having a fine concavo-convex structure with an average pitch of 400 nm or less is formed on the r02 surface. Similarly, an antireflection structure B1 having a fine uneven structure with an average pitch of 400 nm or less is formed on the r03 surface. As a result, the reflectivity of the double reflection is extremely low at both an incident angle of 0 ° and an incident angle of 60 °, so that high-performance optics that suppresses the occurrence of ghosts well and reduces the loss of the amount of imaging light (transmitted light). The system is realized.

図9に本発明実施例2に用いられる反射防止構造体A2の模式断面図を示す。屈折率(nd)が,1.69680,屈折率分散(νd)が55.5の基板(レンズ)92の上に,同じ材料からなり,ピッチが400nm以下の微細凹凸構造体93を平均高さ315nmとなるように形成した。   FIG. 9 shows a schematic cross-sectional view of the antireflection structure A2 used in Example 2 of the present invention. On a substrate (lens) 92 having a refractive index (nd) of 1.696680 and a refractive index dispersion (νd) of 55.5, a fine uneven structure 93 made of the same material and having a pitch of 400 nm or less has an average height. It formed so that it might become 315 nm.

この反射防止構造体A2が形成された基板(レンズ)91の入射角0°の反射率RA2(0°),入射角60°の反射率RA2(60°)を,図10(a),(b)に示す。ピッチが使用波長以下の微細凹凸構造からなる反射防止構造体は、入射角特性が優れているため,入射角0°では可視域全域で反射率0.3%以下,入射角60°でも可視域全域で反射率1.5%以下を達成している。   The reflectance RA2 (0 °) at an incident angle of 0 ° and the reflectance RA2 (60 °) at an incident angle of 60 ° of the substrate (lens) 91 on which the antireflection structure A2 is formed are shown in FIGS. Shown in b). The anti-reflection structure consisting of a fine concavo-convex structure with a pitch less than the working wavelength has excellent incident angle characteristics. Therefore, the reflectance is 0.3% or less over the entire visible region at an incident angle of 0 °, and the visible region even at an incident angle of 60 °. Reflectance of 1.5% or less is achieved in the entire area.

図11に本発明実施例2に用いられる反射防止構造体B2の模式断面図を示す。屈折率(nd)が,1.67790,屈折率分散(νd)が55.3の基板(レンズ)112の上に酸化アルミニウムを含有する材料からなり,ピッチが400nm以下の微細凹凸構造体113を平均高さ750nmとなるように形成した。   FIG. 11 is a schematic cross-sectional view of the antireflection structure B2 used in Embodiment 2 of the present invention. A fine concavo-convex structure 113 made of a material containing aluminum oxide on a substrate (lens) 112 having a refractive index (nd) of 1.67790 and a refractive index dispersion (νd) of 55.3 and having a pitch of 400 nm or less. It was formed to have an average height of 750 nm.

この反射防止構造体B2が形成された基板(レンズ)111の入射角0°の反射率RB2(0°),入射角60°の反射率RB2(60°)を,図12(a),(b)に示す。ピッチが使用波長以下の微細凹凸構造からなる反射防止構造体は、入射角特性が優れているため,入射角0°では可視域全域で反射率0.3%以下,入射角60°でも可視域全域で反射率1.5%以下を達成している。   The reflectance RB2 (0 °) at an incident angle of 0 ° and the reflectance RB2 (60 °) at an incident angle of 60 ° of the substrate (lens) 111 on which the antireflection structure B2 is formed are shown in FIGS. Shown in b). The anti-reflection structure consisting of a fine concavo-convex structure with a pitch less than the working wavelength has excellent incident angle characteristics. Therefore, the reflectance is 0.3% or less over the entire visible region at an incident angle of 0 °, and the visible region even at an incident angle of 60 °. Reflectance of 1.5% or less is achieved in the entire area.

反射防止構造体A2の入射角0°における反射率RA2(0°)と,反射防止構造体B2の入射角0°における反射率RB2(0°)の積を,図13(a)に示す。RA2(0°)×RB2(0°)は,RA2(0°)とRB2(0°)の特性が異なるために非常に小さなものとなっており,可視域全域で2.0×10−4%以下の値である。 FIG. 13A shows the product of the reflectance RA2 (0 °) at an incident angle of 0 ° of the antireflection structure A2 and the reflectance RB2 (0 °) at an incident angle of 0 ° of the antireflection structure B2. RA2 (0 °) × RB2 (0 °) is very small because the characteristics of RA2 (0 °) and RB2 (0 °) are different, and is 2.0 × 10 −4 over the entire visible range. % Or less.

さらに,反射防止構造体A2の入射角60°における反射率RA2(60°)と,反射防止構造体B2の入射角60°における反射率RB2(60°)の積を,図13(b)に示す。RA2(60°)×RB2(60°)は,可視域全域で2.0×10−2%以下の値である。 Furthermore, the product of the reflectance RA2 (60 °) at an incident angle of 60 ° of the antireflection structure A2 and the reflectance RB2 (60 °) at an incident angle of 60 ° of the antireflection structure B2 is shown in FIG. Show. RA2 (60 °) × RB2 (60 °) is a value of 2.0 × 10 −2 % or less over the entire visible range.

これは,平均ピッチが使用波長以下の微細凹凸構造からなる反射防止構造体A2と,反射防止構造体A2とは平均高さが異なる微細凹凸構造体からなる反射防止構造体B2とを用いたことで達成できた性能である。そして,誘電体薄膜を単層ないし多層積層した反射防止膜では,達成が困難な性能である。   This is because the antireflection structure A2 made of a fine concavo-convex structure having an average pitch equal to or less than the use wavelength and the antireflection structure B2 made of a fine concavo-convex structure having an average height different from that of the antireflection structure A2 are used. This is the performance that can be achieved. In addition, it is difficult to achieve with an antireflection film in which a dielectric thin film is laminated in a single layer or multiple layers.

図8は,本発明実施例2の光学系の要部断面図である。図8において,1は光学系であり,焦点距離が24mmのカメラ用広画角レンズである。この光学系において,r04面に平均ピッチが使用波長以下の微細凹凸構造を有する反射防止構造体A2を,r05面に同じく平均ピッチが使用波長以下の微細凹凸構造を有する反射防止構造体B2を形成した。これにより,入射角0°でも入射角60°でも2回反射の反射率は極めて低いので,ゴーストの発生を良好に抑制し,かつ撮像光(透過光)の光量損失も少ない高性能な光学系を実現している。   FIG. 8 is a sectional view of an essential part of the optical system according to the second embodiment of the present invention. In FIG. 8, reference numeral 1 denotes an optical system, which is a camera wide-angle lens having a focal length of 24 mm. In this optical system, an antireflection structure A2 having a fine concavo-convex structure with an average pitch equal to or less than the use wavelength is formed on the r04 surface, and an antireflection structure B2 having a fine concavo-convex structure with an average pitch equal to or less than the use wavelength is formed on the r05 surface. did. As a result, the reflectivity of the double reflection is extremely low at both an incident angle of 0 ° and an incident angle of 60 °, so that a high-performance optical system that suppresses the occurrence of ghosts well and reduces the loss of the amount of imaging light (transmitted light). Is realized.

このように,平均ピッチが使用波長以下の微細凹凸構造からなり,平均高さが異なる反射防止構造体を複数の光学面を有する光学系において,少なくとも2面以上に用いる。すると,反射率が入射角0°のみならず入射角60°でも非常に小さいために,入射角の大きな光線の2回反射によって発生するゴーストを有効に抑制することができ,かつ撮像光(透過光)の光量損失も少ない高性能な光学系を実現することができる。   As described above, an antireflection structure having a fine uneven structure with an average pitch equal to or less than the use wavelength and having a different average height is used for at least two or more surfaces in an optical system having a plurality of optical surfaces. Then, since the reflectance is very small not only at an incident angle of 0 ° but also at an incident angle of 60 °, it is possible to effectively suppress a ghost generated by twice reflection of a light beam having a large incident angle, and to obtain imaging light (transmission). It is possible to realize a high-performance optical system with little light loss.

本実施例では光学系を,カメラレンズ用の広角レンズとしたが,本発明はこれに限定されるものではなく,焦点距離の長い望遠レンズでも良く,さらには双眼鏡などの観察光学系や走査光学系に用いてもよい。   In this embodiment, the optical system is a wide-angle lens for a camera lens. However, the present invention is not limited to this, and a telephoto lens having a long focal length may be used. Furthermore, an observation optical system such as binoculars or a scanning optical system may be used. It may be used in the system.

A1,A2:反射防止構造体A
B1,B2:反射防止構造体B
1:光学系
2:絞り
3:撮像素子又はフィルム
21,51,91,111:反射防止構造体A又はBが形成された基板(レンズ)
22,52,92,112:基板(レンズ)
23,53,93,113:平均ピッチが使用波長以下の微細凹凸構造
54:シリカを含有する材料からなる薄膜
A1, A2: Antireflection structure A
B1, B2: Antireflection structure B
1: Optical system 2: Diaphragm 3: Imaging element or film 21, 51, 91, 111: Substrate (lens) on which antireflection structure A or B is formed
22, 52, 92, 112: Substrate (lens)
23, 53, 93, 113: Fine concavo-convex structure with an average pitch equal to or smaller than the operating wavelength 54: A thin film made of a material containing silica

Claims (18)

複数の光学面を有する光学系であって,該光学面のうち少なくとも2面には,平均ピッチが400nm以下の微細凹凸構造を有する反射防止構造体Aと,前記反射防止構造体Aとは微細凹凸構造の平均高さが異なり,平均ピッチが400nm以下の微細凹凸構造を有する反射防止構造体Bとが形成されていることを特徴とする光学系。   An optical system having a plurality of optical surfaces, wherein at least two of the optical surfaces have an antireflection structure A having a fine concavo-convex structure with an average pitch of 400 nm or less, and the antireflection structure A is fine. An optical system comprising an antireflection structure B having a fine concavo-convex structure in which the average height of the concavo-convex structure is different and an average pitch is 400 nm or less. 前記反射防止構造体Aの微細凹凸構造の平均高さをHAave,
前記反射防止構造体Bの微細凹凸構造の平均高さをHBave
としたとき,
5(mm)≦|HAave−HBave|≦500(mm)
なる関係式を満たすことを特徴とする請求項1に記載の光学系。
The average height of the fine concavo-convex structure of the antireflection structure A is defined as HAave,
The average height of the fine concavo-convex structure of the antireflection structure B is defined as HBave
When
5 (mm) ≦ | HAave−HBave | ≦ 500 (mm)
The optical system according to claim 1, wherein the following relational expression is satisfied.
複数の光学面を有する光学系であって,該光学面のうち少なくとも2面には,平均ピッチが400nm以下の微細凹凸構造を有する反射防止構造体Aと,反射防止構造体Aとは反射率特性が異なり,平均ピッチが400nm以下の微細凹凸構造を有する反射防止構造体Bとが形成されていることを特徴とする光学系。   An optical system having a plurality of optical surfaces, wherein at least two of the optical surfaces have an antireflection structure A having a fine concavo-convex structure with an average pitch of 400 nm or less, and the antireflection structure A has a reflectance. An optical system characterized in that an antireflection structure B having a fine uneven structure with different characteristics and an average pitch of 400 nm or less is formed. 前記反射防止構造体Aが形成された光学面に,入射角0°で入射した光線の反射率をRA(0°),
前記反射防止構造体Bが形成された光学面に,入射角0°で入射した光線の反射率をRB(0°)としたとき,
RA(0°)×RB(0°)≦1×10−3(%)
なる関係式を波長450nmから650nmにわたる波長領域全域で満たしていることを特徴とする請求項3に記載の光学系。
The reflectance of light incident at an incident angle of 0 ° on the optical surface on which the antireflection structure A is formed is RA (0 °),
When the reflectance of light incident on the optical surface on which the antireflection structure B is formed at an incident angle of 0 ° is RB (0 °),
RA (0 °) × RB (0 °) ≦ 1 × 10 −3 (%)
The optical system according to claim 3, wherein the following relational expression is satisfied over the entire wavelength region ranging from a wavelength of 450 nm to 650 nm.
前記反射防止構造体Aが形成された光学面に,入射角60°で入射した光線の反射率をRA(60°),
前記反射防止構造体Bが形成された光学面に,入射角60°で入射した光線の反射率をRB(60°)としたとき,
RA(60°)×RB(60°)≦1×10−1(%)
なる関係式を波長450nmから650nmにわたる波長領域全域で満たしていることを特徴とする請求項3に記載の光学系。
The reflectance of light incident at an incident angle of 60 ° on the optical surface on which the antireflection structure A is formed is RA (60 °),
When the reflectance of a light beam incident on the optical surface on which the antireflection structure B is formed at an incident angle of 60 ° is RB (60 °),
RA (60 °) × RB (60 °) ≦ 1 × 10 −1 (%)
The optical system according to claim 3, wherein the following relational expression is satisfied over the entire wavelength region ranging from a wavelength of 450 nm to 650 nm.
前記反射防止構造体Aが形成された光学面に,入射角0°で入射した光線の反射率をRA(0°),入射角60°で入射した光線の反射率をRA(60°),
前記反射防止構造体Bが形成された光学面に,入射角0°で入射した光線の反射率をRB(0°),入射角60°で入射した光線の反射率をRB(60°)としたとき,
RA(0°)×RB(0°)≦1×10−3(%)
および
RA(60°)×RB(60°)≦1×10−1(%)
なる2つの関係式を波長450nmから650nmにわたる波長領域全域で満たしていることを特徴とする請求項3に記載の光学系。
On the optical surface on which the antireflection structure A is formed, the reflectance of light incident at an incident angle of 0 ° is RA (0 °), the reflectance of light incident at an incident angle of 60 ° is RA (60 °),
The reflectance of light incident on the optical surface on which the antireflection structure B is formed at an incident angle of 0 ° is RB (0 °), and the reflectance of the light incident at an incident angle of 60 ° is RB (60 °). When
RA (0 °) × RB (0 °) ≦ 1 × 10 −3 (%)
And RA (60 °) × RB (60 °) ≦ 1 × 10 −1 (%)
The optical system according to claim 3, wherein the following two relational expressions are satisfied over the entire wavelength region ranging from a wavelength of 450 nm to 650 nm.
前記反射防止構造体Aが形成された光学面に,入射角0°で入射した光線の反射率をRA(0°),
前記反射防止構造体Bが形成された光学面に,入射角0°で入射した光線の反射率をRB(0°)としたとき,
|RA(0°)−RB(0°)|≧0.05(%)
なる関係式を波長400nmから700nmにわたる波長領域の少なくとも一部で満たしていることを特徴とする請求項3に記載の光学系。
The reflectance of light incident at an incident angle of 0 ° on the optical surface on which the antireflection structure A is formed is RA (0 °),
When the reflectance of light incident on the optical surface on which the antireflection structure B is formed at an incident angle of 0 ° is RB (0 °),
| RA (0 °) -RB (0 °) | ≧ 0.05 (%)
The optical system according to claim 3, wherein the following relational expression is satisfied in at least a part of a wavelength region ranging from a wavelength of 400 nm to 700 nm.
前記反射防止構造体Aが形成された光学面に,入射角60°で入射した光線の反射率をRA(60°),
前記反射防止構造体Bが形成された光学面に,入射角60°で入射した光線の反射率をRB(60°)としたとき,
|RA(60°)−RB(60°)|≧0.2(%)
なる関係式を波長400nmから700nmにわたる波長領域の少なくとも一部で満たしていることを特徴とする請求項3に記載の光学系。
The reflectance of light incident at an incident angle of 60 ° on the optical surface on which the antireflection structure A is formed is RA (60 °),
When the reflectance of a light beam incident on the optical surface on which the antireflection structure B is formed at an incident angle of 60 ° is RB (60 °),
| RA (60 °) −RB (60 °) | ≧ 0.2 (%)
The optical system according to claim 3, wherein the following relational expression is satisfied in at least a part of a wavelength region ranging from a wavelength of 400 nm to 700 nm.
前記反射防止構造体Aが形成された光学面に,入射角0°で入射した光線の反射率をRA(0°),入射角60°で入射した光線の反射率をRA(60°),
前記反射防止構造体Bが形成された光学面に,入射角0°で入射した光線の反射率をRB(0°),入射角60°で入射した光線の反射率をRB(60°)としたとき,
|RA(0°)−RB(60°)|≧0.05(%)
および
|RA(60°)−RB(60°)|≧0.2(%)
なる2つの関係式を波長400nmから700nmにわたる波長領域の少なくとも一部で満たしていることを特徴とする請求項3に記載の光学系。
On the optical surface on which the antireflection structure A is formed, the reflectance of light incident at an incident angle of 0 ° is RA (0 °), the reflectance of light incident at an incident angle of 60 ° is RA (60 °),
The reflectance of light incident on the optical surface on which the antireflection structure B is formed at an incident angle of 0 ° is RB (0 °), and the reflectance of the light incident at an incident angle of 60 ° is RB (60 °). When
| RA (0 °) -RB (60 °) | ≧ 0.05 (%)
And | RA (60 °) −RB (60 °) | ≧ 0.2 (%)
The optical system according to claim 3, wherein the two relational expressions are satisfied in at least a part of a wavelength region ranging from a wavelength of 400 nm to 700 nm.
前記反射防止構造体Aおよび前記反射防止構造体Bのうち,いずれか一方乃至は両方が,該構造体が形成されている基板と同材料からなることを特徴とする請求項1〜9の何れか一項に記載の光学系。   Either one or both of the antireflection structure A and the antireflection structure B are made of the same material as the substrate on which the structure is formed. An optical system according to claim 1. 前記反射防止構造体Aおよび前記反射防止構造体Bのうち,いずれか一方乃至は両方が,アルミニウム又は酸化アルミニウムを含有する材料からなることを特徴とする請求項1〜9の何れか一項に記載の光学系。   One or both of the antireflection structure A and the antireflection structure B are made of a material containing aluminum or aluminum oxide. The optical system described. 前記反射防止構造体Aおよび前記反射防止構造体Bのうち,いずれか一方が,該構造体が形成されている基板と同材料からなり,もう一方が,アルミニウム又は酸化アルミニウムを含有する材料からなることを特徴とする請求項1〜9の何れか一項に記載の光学系。   One of the antireflection structure A and the antireflection structure B is made of the same material as the substrate on which the structure is formed, and the other is made of a material containing aluminum or aluminum oxide. The optical system according to claim 1, wherein the optical system is an optical system. 前記反射防止構造体Aおよび前記反射防止構造体Bのうち,いずれか一方乃至は両方が,アルミニウム又は酸化アルミニウムを含有する材料からなる微細凹凸構造体および該微細凹凸構造体と該凹凸構造体が設けられる光学面との間に設けられたシリカを含有する材料からなる薄膜の積層構造体からなることを特徴とする請求項1〜9の何れか一項に記載の光学系。   Of the antireflection structure A and the antireflection structure B, one or both of the fine concavo-convex structure body made of a material containing aluminum or aluminum oxide, the fine concavo-convex structure body, and the concavo-convex structure body The optical system according to any one of claims 1 to 9, wherein the optical system comprises a laminated structure of a thin film made of a material containing silica provided between the optical surface. 前記反射防止構造体Aおよび前記反射防止構造体Bは,いずれか一方ないしは両方のピッチが非周期であり,平均ピッチが30nm以上でかつ400nm以下であることを特徴とする請求項1〜13の何れか一項に記載の光学系。   14. The antireflection structure A and the antireflection structure B have one or both pitches that are non-periodic, and an average pitch of 30 nm or more and 400 nm or less. The optical system according to any one of the above. 前記光学系は,結像光学系であることを特徴とする請求項1〜14の何れか一項に記載の光学系。   The optical system according to claim 1, wherein the optical system is an imaging optical system. 前記光学系は,観察光学系であることを特徴とする請求項1〜14の何れか一項に記載の光学系。   The optical system according to claim 1, wherein the optical system is an observation optical system. 前記光学系は,走査光学系であることを特徴とする請求項1〜14の何れか一項に記載の光学系。   The optical system according to claim 1, wherein the optical system is a scanning optical system. 請求項15乃至請求項17の何れか一項に記載の光学系光学系を一つ以上有していることを特徴とする光学機器。   An optical apparatus comprising one or more optical systems according to any one of claims 15 to 17.
JP2011019797A 2011-02-01 2011-02-01 Optical system Pending JP2012159720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011019797A JP2012159720A (en) 2011-02-01 2011-02-01 Optical system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011019797A JP2012159720A (en) 2011-02-01 2011-02-01 Optical system

Publications (1)

Publication Number Publication Date
JP2012159720A true JP2012159720A (en) 2012-08-23

Family

ID=46840283

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011019797A Pending JP2012159720A (en) 2011-02-01 2011-02-01 Optical system

Country Status (1)

Country Link
JP (1) JP2012159720A (en)

Similar Documents

Publication Publication Date Title
TWI432770B (en) Optical system
JP5936444B2 (en) Optical element, optical system and optical apparatus using the same
JP2010078803A (en) Optical element and optical system having it
US9715044B2 (en) Antireflection film, and optical element and optical system that include the same
JP2008276059A (en) Optical element and optical system having the same
JP2015004919A (en) Anti-reflection film and optical element having the same
JP2010281876A (en) Optical element and optical system including the same
JP6445129B2 (en) Antireflection film and optical member
JP2010079274A (en) Optical element and optical system
JP2014021146A (en) Optical film, optical element, optical system and optical instrument
US9405044B2 (en) Antireflection coating film, and optical element, optical system, and optical apparatus having the same
JP5294584B2 (en) Optical element and optical apparatus
JP2017173593A (en) Optical member and manufacturing method of the same
JP5213424B2 (en) Optical system and optical apparatus having the same
JP2010066704A (en) Optical element, optical system, and optical apparatus
JP2009128844A (en) Optical system and optical instrument having same
JP6692342B2 (en) Antireflection film, manufacturing method thereof, and optical member
TW202225733A (en) Optical lens assembly, imaging apparatus and electronic device
JP2012159720A (en) Optical system
JP2015135445A (en) Antireflection film, optical element, optical system, and optical equipment
JP2010048896A (en) Optical system
JP2002062419A (en) Diffractive optical device and optical appliance having the diffractive optical device
JP2018185394A (en) Anti-reflection film and optical element having the same, optical system, and optical device
JP2017097137A (en) Anti-reflection film, optical element having the same, optical system, and optical device
JP2009042472A (en) Optical element