JP2012159088A - Rotary compressor - Google Patents

Rotary compressor Download PDF

Info

Publication number
JP2012159088A
JP2012159088A JP2012122721A JP2012122721A JP2012159088A JP 2012159088 A JP2012159088 A JP 2012159088A JP 2012122721 A JP2012122721 A JP 2012122721A JP 2012122721 A JP2012122721 A JP 2012122721A JP 2012159088 A JP2012159088 A JP 2012159088A
Authority
JP
Japan
Prior art keywords
piston
upper bearing
oil
end surface
recess
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012122721A
Other languages
Japanese (ja)
Other versions
JP5360264B2 (en
Inventor
Masao Nakano
雅夫 中野
Daisuke Funakoshi
大輔 船越
Yu Haraki
雄 原木
Tsutomu Tsujimoto
力 辻本
Takeshi Karino
健 苅野
Noboru Iida
飯田  登
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Original Assignee
Panasonic Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp filed Critical Panasonic Corp
Priority to JP2012122721A priority Critical patent/JP5360264B2/en
Publication of JP2012159088A publication Critical patent/JP2012159088A/en
Application granted granted Critical
Publication of JP5360264B2 publication Critical patent/JP5360264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Applications Or Details Of Rotary Compressors (AREA)

Abstract

PROBLEM TO BE SOLVED: To solve problems of a conventional configuration that an oil amount is increased if a clearance between a piston and a cylinder is increased in a height direction in order to increase an oil amount from a piston inner face, but leakage of refrigerant gas from a compression chamber to a suction chamber is increased simultaneously, and performance is deteriorated, and that if an excessive oil amount is supplied to the compression chamber, oil discharge into a refrigerating cycle is increased, and performance of the refrigerating cycle is deteriorated.SOLUTION: As recesses 11 are configured toward the outer periphery from the upper bearing inner face 2a on the end face of an upper bearing 2, oil can be positively supplied to the compression chamber.

Description

本発明は、ルームエアコン、冷蔵庫、空気調和装置に組み込まれるロータリ圧縮機の性能向上および信頼性向上に関する。   The present invention relates to an improvement in performance and reliability of a rotary compressor incorporated in a room air conditioner, a refrigerator, and an air conditioner.

従来のこの種のロータリ圧縮機のピストンはシャフトの回転と共にシリンダー内を回転して吸入および圧縮を行うように構成されている(例えば、特許文献1参照)。   The piston of this type of conventional rotary compressor is configured to perform suction and compression by rotating in the cylinder as the shaft rotates (see, for example, Patent Document 1).

図9は、特許文献1に記載された従来のロータリ圧縮機の上軸受側より見た横断面図である。シリンダー91の内面にピストン93aが挿入されシャフト92の回転と共に回転しベーン94で仕切られた吸入室97および圧縮室98で冷媒ガスを吸入および圧縮する構成になっている。また上軸受け95の端面に窪み96が設けられピストン93bの状態では窪み96はピストン内周にあるためピストン93b内周にある油が供給され、ピストン93aの状態になればピストン93aの外周にあるため窪みに溜まっていた油が圧縮室に顔を出す構成になっている。ピストン93a内周に溜められた油は高圧(圧縮圧力)であるためピストン93aとシリンダー91の高さ方向の隙間より、実線矢印で示すように吸入室97、圧縮室98に供給されている。また圧縮室98から吸入室97にピストン93aとシリンダー91の高さ方向の隙間から破線矢印で示すように圧縮冷媒ガスも同時に漏れている。   FIG. 9 is a cross-sectional view of the conventional rotary compressor described in Patent Document 1 as seen from the upper bearing side. A piston 93a is inserted into the inner surface of the cylinder 91, rotates with the rotation of the shaft 92, and sucks and compresses refrigerant gas in a suction chamber 97 and a compression chamber 98 partitioned by a vane 94. In addition, a recess 96 is provided on the end surface of the upper bearing 95. In the state of the piston 93b, the recess 96 is in the inner periphery of the piston, so that oil in the inner periphery of the piston 93b is supplied, and in the piston 93a state, it is in the outer periphery of the piston 93a. For this reason, the oil accumulated in the recesses is exposed to the compression chamber. Since the oil accumulated in the inner periphery of the piston 93a is high pressure (compression pressure), it is supplied to the suction chamber 97 and the compression chamber 98 through the gap in the height direction between the piston 93a and the cylinder 91 as shown by solid line arrows. In addition, compressed refrigerant gas leaks from the compression chamber 98 to the suction chamber 97 through a gap in the height direction between the piston 93a and the cylinder 91 as indicated by a broken line arrow.

特開平6−74170号公報JP-A-6-74170

しかしながら、前記特許文献1の構成では上軸受け窪みに蓄えられた油はピストン回転と共に圧縮室に顔を出すが、油は液体であるためガスのように旨く圧縮室に拡散されづらい。また窪みの大きさも規制されるため十分な油量を得られない欠点があった。また、ピストン内面からの油量を増加させるためには、ピストンとシリンダーの高さ方向のすきまを大きくすれば油量は増加するが、同時に圧縮室から吸入室への冷媒ガスの漏れが大きくなり性能が低下する問題があった。また、圧縮室に供給される油量が多くなり過ぎると冷凍サイクル内への油吐出が増加し、冷凍サイクルの性能が低下する問題もあった。   However, in the configuration of Patent Document 1, the oil stored in the upper bearing recess is exposed to the compression chamber with the rotation of the piston. However, since the oil is a liquid, it is not easily diffused into the compression chamber like gas. Moreover, since the size of the depression is restricted, there is a drawback that a sufficient amount of oil cannot be obtained. In order to increase the amount of oil from the inner surface of the piston, increasing the clearance in the height direction of the piston and cylinder increases the amount of oil, but at the same time increases the leakage of refrigerant gas from the compression chamber to the suction chamber. There was a problem that performance deteriorated. In addition, when the amount of oil supplied to the compression chamber becomes too large, oil discharge into the refrigeration cycle increases, and the performance of the refrigeration cycle is degraded.

そこで、前記従来の課題を解決するために、請求項1に係る発明のロータリ圧縮機は、シリンダーの両端面に、上軸受けと下軸受けを配し前記シリンダー内を回転するピストンと、前記ピストンを駆動するシャフトと、前記シリンダー内を吸入室と吐出口が開口する圧縮室に仕切るベーンを有し、前記ピストン上端面にリング溝を構成したロータリ圧縮機において、前記上軸受け端面に前記上軸受け内面より外周に向かって窪みを構成し、前記窪みの存在範囲の角度は前記ベーン上死点を0°とする前記シャフト回転角度座標において吸入孔締め切りの角度をθsとし前記窪みの開始角度をθ1とするとθs+180°<θ1また前記窪みの終了角度をθ2とするとθ2<360°で規定され、また前記窪みの前記上軸受け中心からの距離Lは前記ピストンの半径をRp、シリンダーの半径をRcとするとL<2Rp−Rcで規定され前記ピストン上端面のリング溝に連通し油の供給を行う構成としたものである。   Therefore, in order to solve the conventional problem, a rotary compressor according to a first aspect of the present invention includes a piston that is provided with an upper bearing and a lower bearing on both end surfaces of a cylinder and rotates in the cylinder, and the piston. In a rotary compressor having a driving shaft and a vane for partitioning the inside of the cylinder into a compression chamber having a suction chamber and a discharge port, and having a ring groove in the upper end surface of the piston, the upper bearing inner surface is formed on the upper bearing end surface. A depression is formed toward the outer periphery, and the angle of the existence range of the depression is the shaft rotation angle coordinate where the vane top dead center is 0 °, and the suction hole closing angle is θs, and the depression start angle is θ1. Then, if θs + 180 ° <θ1 and the end angle of the recess is θ2, then it is defined as θ2 <360 °, and the distance L from the center of the upper bearing of the recess is It is obtained by the radius of the piston Rp, the configuration defined radius of the cylinder at When Rc L <2Rp-Rc to supply the communicating oil ring groove of the piston upper surface.

請求項2に係る発明のロータリ圧縮機は、請求項1に係る発明のロータリ圧縮機において、前記上軸受け端面に設けた窪みを2箇所に分割にしたものである。   A rotary compressor according to a second aspect of the present invention is the rotary compressor according to the first aspect of the present invention, wherein a recess provided in the upper bearing end face is divided into two parts.

請求項3に係る発明のロータリ圧縮機は、シリンダーの両端面に、上軸受けと下軸受けを配し前記シリンダー内を回転するピストンと、前記ピストンを駆動するシャフトと、前記シリンダー内を吸入室と吐出口が開口する圧縮室に仕切るベーンを有し、前記ピストン上端面にリング溝を構成したロータリ圧縮機において、前記上軸受け端面に縦穴を構成し、前記縦穴の角度θhは前記ベーン上死点を0°とする前記シャフト回転角度座標において吸入孔締め切りの角度をθsとするとθs+180°<θh<360°で規定され、また前記上軸受け中心からの距離Lhは前記ピストンの半径をRp、シリンダーの半径をRcとするとLh<2Rp−Rcで規定され前記上軸受け内面と前記端面の穴を連通するように前記上軸受け内面の下端角部より斜め穴を設け前記ピストン上端面のリング溝に連通し油の供給を行う構成としたものである。   According to a third aspect of the present invention, there is provided a rotary compressor including an upper bearing and a lower bearing on both end faces of the cylinder, a piston that rotates in the cylinder, a shaft that drives the piston, and a suction chamber that is disposed in the cylinder. In a rotary compressor having a vane partitioning into a compression chamber in which a discharge port opens and having a ring groove on the piston upper end surface, a vertical hole is formed on the upper bearing end surface, and the angle θh of the vertical hole is the vane top dead center In the shaft rotation angle coordinate where 0 is 0 °, θs + 180 ° <θh <360 ° is defined as θs + 180 ° <θh <360 °, and the distance Lh from the center of the upper bearing is Rp, and the radius of the piston is Rp. When the radius is Rc, the lower end corner of the inner surface of the upper bearing is defined by Lh <2Rp-Rc and communicates with the hole of the upper bearing inner surface and the end surface. The ring groove of the piston upper surface provided with an oblique bore in which has a configuration for supplying communicating oil.

本発明のロータリ圧縮機の給油方法は吸入室ではなく圧縮室に主に油を給油できるため給油された油の熱で吸入冷媒ガスが暖められるような性能の低下が少なく、また信頼性向上と油吐出量を両立できる適正な油量の調整は、上軸受け端面の窪みの大きさを変化させることでピストン上端面のリング溝に供給している時間を調整することができるので可能である。圧縮室の油量を増加させることでベーン先端とピストン外周部の接触部やピストン端面と軸受け端面との接触部の摺動状態が良くなるため信頼性が向上する。   Since the oil supply method of the rotary compressor of the present invention can mainly supply oil to the compression chamber instead of the suction chamber, there is little decrease in performance such that the intake refrigerant gas is warmed by the heat of the supplied oil, and the reliability is improved. Adjustment of an appropriate oil amount that can achieve both oil discharge amounts is possible because the time of supplying the ring groove on the piston upper end surface can be adjusted by changing the size of the recess on the upper bearing end surface. By increasing the amount of oil in the compression chamber, the sliding state of the contact portion between the vane tip and the piston outer peripheral portion and the contact portion between the piston end surface and the bearing end surface is improved, thereby improving the reliability.

さらにピストン上端面と上軸受け端面との高さ方向のすき間とピストン外周とシリンダー内周との円周方向のすき間に対する油によるシール性が向上するため漏れ損失が減少し圧縮効率も向上することが出来る。   In addition, the sealing performance by oil against the clearance in the height direction between the piston upper end surface and the upper bearing end surface and the circumferential clearance between the piston outer periphery and the cylinder inner periphery is improved, so that leakage loss is reduced and compression efficiency is also improved. I can do it.

本発明の実施の形態1にかかるロータリ圧縮機のメカ部の縦断面図1 is a longitudinal sectional view of a mechanical part of a rotary compressor according to a first embodiment of the present invention. 本発明の実施の形態1にかかるロータリ圧縮機の下軸受けから見たメカ部の横断面図The cross-sectional view of the mechanical part seen from the lower bearing of the rotary compressor concerning Embodiment 1 of this invention 本発明の実施の形態1にかかるロータリ圧縮機の上軸受け端面の窪みの平面の位置関係を示した下軸受けから見たメカ部の横断面図The cross-sectional view of the mechanical part seen from the lower bearing which showed the plane positional relationship of the hollow of the upper bearing end surface of the rotary compressor concerning Embodiment 1 of this invention 本発明の実施の形態1にかかるロータリ圧縮機の上軸受け端面の窪みの平面の位置関係を示した下軸受けから見たメカ部の横断面図The cross-sectional view of the mechanical part seen from the lower bearing which showed the plane positional relationship of the hollow of the upper bearing end surface of the rotary compressor concerning Embodiment 1 of this invention 本発明の実施の形態1にかかるロータリ圧縮機上軸受け端面の2箇所の窪みの位置関係を示した下軸受けから見たメカ部の横断面図The cross-sectional view of the mechanical part seen from the lower bearing which showed the positional relationship of two hollows of the rotary compressor upper bearing end surface concerning Embodiment 1 of this invention. 本発明の実施の形態1にかかるロータリ圧縮機上軸受け端面の縦穴の縦断面詳細図と平面の位置関係を示した下軸受けから見たメカ部の縦断面図The longitudinal cross-sectional view of the mechanical part seen from the lower bearing which showed the vertical cross-sectional detail figure of the vertical hole of the rotary compressor upper bearing end surface concerning Embodiment 1 of this invention, and the plane positional relationship 本発明の実施の形態1にかかるロータリ圧縮機上軸受け端面の縦穴の縦断面詳細図と平面の位置関係を示した下軸受けから見たメカ部の横断面図1 is a cross-sectional view of a mechanical part viewed from a lower bearing showing a positional relationship between a vertical cross-sectional detail view of a vertical hole on an upper bearing end face of a rotary compressor according to a first embodiment of the present invention and a plane. 本発明の実施の形態1にかかるピストン上端面のリング溝深さと効率の関係を示した特性図The characteristic view which showed the relationship between the ring groove depth of the piston upper end surface and efficiency concerning Embodiment 1 of this invention 従来のロータリ圧縮機の上軸受けから見たメカ部の横断面図Cross section of mechanical part viewed from the upper bearing of a conventional rotary compressor

第1の発明は上軸受け端面に上軸受け内面より外周に向かって窪みを構成し、窪みの存在範囲角度はベーン上死点を0°とするシャフト回転角度座標において吸入孔締め切りの角度をθsとし窪みの開始角度をθ1とするとθs+180°<θ1また、窪みの終了角度をθ2とするとθ2<360°で規定され、また上軸受け中心からの距離Lはピストンの半径をRp、シリンダーの半径をRcとするとL<2Rp−Rcで規定されピストン上
端面のリング溝に連通し油の供給を行う構成になっており窪みが圧縮室側に面しているため圧縮室側に主体的に十分な油の供給を行うことが可能となる。また油量の調整は上軸受け端面の窪みの角度θを変化させることでピストン上端面のリング溝に供給している時間を調整することができるので可能である。
In the first aspect of the present invention, a depression is formed on the upper bearing end face from the inner surface of the upper bearing toward the outer periphery, and the existence range angle of the depression is the shaft rotation angle coordinate where the vane top dead center is 0 °, and the suction hole cutoff angle is θs. Θs + 180 ° <θ1 when the start angle of the recess is θ1, and θ2 <360 ° when the end angle of the recess is θ2, and the distance L from the center of the upper bearing is the piston radius Rp and the cylinder radius Rc Then, L <2Rp−Rc is defined, and the oil is supplied to the ring groove on the upper end surface of the piston so that the depression faces the compression chamber side. Can be supplied. Further, the amount of oil can be adjusted because the time during which the oil is supplied to the ring groove on the upper end surface of the piston can be adjusted by changing the angle θ of the depression on the upper bearing end surface.

第2の発明は第1の発明の上軸受け端面に設けた窪みを2分割にした構成にすることにより圧縮の始めに先ず圧縮室に給油を行い漏れ損失を低減し、次に吐出工程の始まる前に圧縮に油を給油して主にベーン先端とピストン外周の摩擦を軽減する効果がある。窪みを2箇所に分割しているので少ない給油量でそれぞれの効果を得ることができる。   In the second aspect of the invention, the recess provided in the upper bearing end face of the first aspect of the invention is divided into two parts, so that at the beginning of compression, first the oil is supplied to the compression chamber to reduce leakage loss, and then the discharge process starts. It has the effect of reducing the friction between the tip of the vane and the outer periphery of the piston mainly by supplying oil for compression. Since the dent is divided into two locations, each effect can be obtained with a small amount of oil supply.

第3の発明は上軸受け端面に縦穴を構成し、縦穴の角度θhはベーン上死点を0°とするシャフト回転角度座標において吸入孔締め切りの角度をθsとするとθs+180°<θh<360°で規定され、また縦穴の上軸受け中心からの距離Lhはピストンの半径をRp、シリンダーの半径をRcとするとLh<2Rp−Rcで規定され上軸受け内面と端面の縦穴を連通するように上軸受け内面の下端角部より斜め穴を設けピストン上端面のリング溝に連通し油の供給を行うことにより給油の必要な場所にスポット的に油を圧縮室に入れ信頼性を向上し、給油量を少なくして油吐出の増加を押えることができる。また、上軸受け内面の下端角部より斜め穴をあけるのでドリル加工で可能になるので加工コストを下げることが出来る。   In the third aspect of the present invention, a vertical hole is formed in the upper bearing end face, and the angle θh of the vertical hole is θs + 180 ° <θh <360 ° where θs is the suction hole cutoff angle in the shaft rotation angle coordinate where the vane top dead center is 0 °. The distance Lh from the upper bearing center of the vertical hole is defined as Lh <2Rp−Rc where the radius of the piston is Rp and the radius of the cylinder is Rc, and the inner surface of the upper bearing is communicated with the inner surface of the upper bearing and the vertical hole of the end face. By providing a slanted hole from the lower end corner of the cylinder and communicating with the ring groove on the upper end surface of the piston to supply oil, the oil is spotted into the compression chamber where it is needed to improve reliability and reduce the amount of oil Thus, the increase in oil discharge can be suppressed. In addition, since an oblique hole is formed from the lower end corner of the inner surface of the upper bearing, drilling is possible, so the processing cost can be reduced.

以下、本発明の実施の形態について、図面を参照しながら説明する。なお、この実施の形態によって本発明が限定されるものではない。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. Note that the present invention is not limited to the embodiments.

(実施の形態1)
図1は、本発明の第1の実施の形態にかかるロータリ圧縮機の縦断面図を示している。
(Embodiment 1)
FIG. 1 is a longitudinal sectional view of a rotary compressor according to a first embodiment of the present invention.

図1に示されるように、シリンダー1の上部には上軸受け2、下部には下軸受け3が取り付けられそれぞれに囲まれた空間内にシャフト4により回転するピストン5が設けられている。またシャフト4の内部は中空で遠心ポンプ構造になっておりシリンダー1の下方に溜められた油6をシャフト4の回転と共に下穴7より吸い込み、横穴8a、8bよりピストン内側の空間9に給油され満たされる。ピストン内側の空間9は高圧(吐出圧力)になっているため、ピストン5の端面と上軸受け2の端面とのすき間hより吸入室および圧縮室に油が給油される。ピストン5の上端面の中心部にリング溝10が構成されている。また、上軸受け2の端面に内面より外周に向かって窪み11が設けられピストン上端面のリング溝10と特定の位置で連通するようになっている。リング状のリング溝10の深さは10μmから30μmに設定されている。   As shown in FIG. 1, an upper bearing 2 is attached to the upper portion of the cylinder 1, and a lower bearing 3 is attached to the lower portion, and a piston 5 that rotates by a shaft 4 is provided in a space surrounded by the upper bearing 2. The shaft 4 is hollow and has a centrifugal pump structure, and the oil 6 accumulated below the cylinder 1 is sucked from the lower hole 7 along with the rotation of the shaft 4 and supplied to the space 9 inside the piston from the lateral holes 8a and 8b. It is filled. Since the space 9 inside the piston is at a high pressure (discharge pressure), oil is supplied to the suction chamber and the compression chamber through a gap h between the end surface of the piston 5 and the end surface of the upper bearing 2. A ring groove 10 is formed at the center of the upper end surface of the piston 5. A recess 11 is provided on the end surface of the upper bearing 2 from the inner surface toward the outer periphery so as to communicate with the ring groove 10 on the upper end surface of the piston at a specific position. The depth of the ring-shaped ring groove 10 is set to 10 μm to 30 μm.

図2は、本発明の第1の実施の形態にかかるロータリ圧縮機の下軸受け3から見たメカ部の横断面図である。シリンダー1のベーン溝にベーン12が挿入されている。シリンダー1には吸入孔13および吐出切り欠き14が設けられている。シリンダー室はベーン12により仕切られ吸入室15および圧縮室16が構成されている。上軸受け2の端面に内面より外周に向かって窪み11(斜線部)が設けられピストン上端面のリング溝10と特定の位置で連通するようになっている。   FIG. 2 is a cross-sectional view of the mechanical part viewed from the lower bearing 3 of the rotary compressor according to the first embodiment of the present invention. A vane 12 is inserted into the vane groove of the cylinder 1. The cylinder 1 is provided with a suction hole 13 and a discharge notch 14. The cylinder chamber is partitioned by a vane 12 to form a suction chamber 15 and a compression chamber 16. A recess 11 (shaded portion) is provided on the end surface of the upper bearing 2 from the inner surface toward the outer periphery so as to communicate with the ring groove 10 on the upper end surface of the piston at a specific position.

以上のように構成されたロータリ圧縮機について、以下その動作、作用を説明する。   About the rotary compressor comprised as mentioned above, the operation | movement and an effect | action are demonstrated below.

まず、吸入孔13より冷媒ガスが吸入室15に吸入される。また、圧縮室16にある冷媒ガスはピストン5の左方向の回転(矢印方向)とともに圧縮され吐出切り欠き14を通って吐出口(図示せず)より吐出される。ピストン内側の空間9に溜められた油はピストン上端面に構成されたリング溝10に一旦溜められその後ピストン上端面と上軸受け端面
のすき間hを通って矢印G1方向の吸入室15へ、また矢印G2方向の圧縮室16へそれぞれ給油される。圧縮室16の冷媒ガスもピストン上端面と上軸受け端面のすき間hを通って矢印Q1,Q2のように吸入室15に漏れて圧縮機効率を低下させる。次に油の流れに関して説明すると、上軸受け端面に設けられた窪み11にピストン内側の空間9に溜められた油が流れ、窪み11とピストン上端面のリング溝10が重なった時に油がリング溝10に供給される。またリング溝10に油が供給される位置は必ず圧縮室16に面した方向に設定されているので主に圧縮室側に油が供給される構成になっている。さらにリング溝10に溜まった油の働きで圧縮室16から吸入室15に漏れこむ冷媒ガスの流れQ1,Q2の流量を減少することができるので圧縮効率を向上させることができる。圧縮室に供給された油は摩擦の厳しいピストン5の外周とベーン先端やピストン下端面と下軸受端面に供給され信頼性向上に役立つ。また、吸入室に供給された油はピストン5の外周とシリンダー1の内周との円周方向すき間に供給され、この円周方向すき間から圧縮室16の冷媒ガスが吸入室15に漏れこむのを低減することができ圧縮効率を向上することが出来る。
First, the refrigerant gas is sucked into the suction chamber 15 through the suction hole 13. Further, the refrigerant gas in the compression chamber 16 is compressed along with the leftward rotation (in the direction of the arrow) of the piston 5 and is discharged from a discharge port (not shown) through the discharge notch 14. The oil stored in the space 9 inside the piston is once stored in the ring groove 10 formed on the upper end surface of the piston, and then passes through the gap h between the upper end surface of the piston and the upper bearing end surface to the suction chamber 15 in the direction of the arrow G1, and the arrow. Oil is supplied to the compression chambers 16 in the G2 direction. The refrigerant gas in the compression chamber 16 also leaks into the suction chamber 15 as indicated by arrows Q1 and Q2 through the gap h between the piston upper end surface and the upper bearing end surface, thereby reducing the compressor efficiency. Next, the oil flow will be described. The oil stored in the space 9 inside the piston flows into the recess 11 provided in the upper bearing end surface, and when the recess 11 and the ring groove 10 on the upper end surface of the piston overlap, the oil flows into the ring groove. 10 is supplied. Further, since the position where oil is supplied to the ring groove 10 is always set in the direction facing the compression chamber 16, the oil is mainly supplied to the compression chamber side. Furthermore, the flow rate of the refrigerant gas flows Q1 and Q2 leaking from the compression chamber 16 into the suction chamber 15 by the action of the oil accumulated in the ring groove 10 can be reduced, so that the compression efficiency can be improved. The oil supplied to the compression chamber is supplied to the outer periphery of the piston 5 where the friction is severe, the tip of the vane, the lower end surface of the piston, and the end surface of the lower bearing, thereby improving the reliability. Further, the oil supplied to the suction chamber is supplied to the circumferential gap between the outer periphery of the piston 5 and the inner circumference of the cylinder 1, and the refrigerant gas in the compression chamber 16 leaks into the suction chamber 15 from this circumferential gap. Can be reduced, and the compression efficiency can be improved.

図3、図4は本発明の上軸受け2の端面に内面より外周に向かって構成された窪み11の平面の位置関係を示した下軸受け3から見たメカ部の横断面図である。   3 and 4 are cross-sectional views of the mechanical part viewed from the lower bearing 3 showing the positional relationship of the recess 11 formed on the end face of the upper bearing 2 of the present invention from the inner surface toward the outer periphery.

図3はピストン5が吸入孔13を過ぎた後の少しの間に窪み11がピストン上端面のリング溝10と重なりピストン内側の空間9の油を供給する形状の一例を示している。図4は本発明の窪み11の最大範囲を示した図であり窪み11の開始角度θ1はθs+180°近辺であり、終了角度θ2が360°近辺である。窪み11の終了角度θ2とピストン上端面のリング溝10が連通する時のピストンの位置はシャフト回転角度が180°近辺になる。そのため圧縮室16の圧力はまだ吐出圧力に達していない状態にあり窪み11からピストン上端面のリング溝10に供給された油はほぼ吐出圧力であるためリング溝10と圧縮室16との差圧が確保され圧縮室16に流入することが出来る。   FIG. 3 shows an example of a shape in which the recess 11 overlaps the ring groove 10 on the upper end surface of the piston and supplies oil in the space 9 inside the piston for a short time after the piston 5 passes the suction hole 13. FIG. 4 is a diagram showing the maximum range of the depression 11 of the present invention. The starting angle θ1 of the depression 11 is around θs + 180 °, and the end angle θ2 is around 360 °. The position of the piston when the end angle θ2 of the recess 11 and the ring groove 10 on the upper end surface of the piston communicate with each other is such that the shaft rotation angle is around 180 °. Therefore, the pressure in the compression chamber 16 has not yet reached the discharge pressure, and the oil supplied from the recess 11 to the ring groove 10 on the upper end surface of the piston is almost the discharge pressure, so that the differential pressure between the ring groove 10 and the compression chamber 16 is reached. Is secured and can flow into the compression chamber 16.

窪み11の存在範囲の角度は前記ベーン12上死点を0°とする前記シャフト4の回転角度座標において吸入孔締め切りの角度をθsとし前記窪みの開始角度をθ1とするとθs+180°<θ1また前記窪みの終了角度をθ2とするとθ2<360°で規定される。また前記上軸受け中心からの距離Lは前記ピストンの半径をRp、シリンダーの半径をRcとするとL<2Rp−Rcで規定される。上記位置関係により窪み11とピストン上端面のリング溝10が重なり合いピストン内側の空間9の油が供給されるのはシャフト4の反偏心側になり圧縮室16に面した方向になる。その結果、リング溝10に供給された油は主に圧縮室16側に供給され吸入室15側にはあまり供給されないため漏れ出した温度の高い油により吸入冷媒ガスが加熱されて圧縮効率が低下することを避けることが出来る。また、リング溝10から圧縮室16側に供給された油により摺動条件の厳しいピストン外周とベーン先端の摺動条件が良くなり信頼性を向上することが出来る。窪み11の深さは0.1から0.5mm程度に設定されている。   The angle of the presence range of the depression 11 is θs + 180 ° <θ1 when the suction hole cutoff angle is θs and the depression start angle is θ1 in the rotation angle coordinate of the shaft 4 where the top dead center of the vane 12 is 0 °. When the end angle of the depression is θ2, it is defined as θ2 <360 °. The distance L from the center of the upper bearing is defined by L <2Rp−Rc where Rp is the radius of the piston and Rc is the radius of the cylinder. Due to the above positional relationship, the recess 11 and the ring groove 10 on the upper end surface of the piston overlap and the oil in the space 9 inside the piston is supplied in the direction facing the compression chamber 16 on the side opposite to the shaft 4. As a result, the oil supplied to the ring groove 10 is mainly supplied to the compression chamber 16 side and not supplied to the suction chamber 15 side. Therefore, the suction refrigerant gas is heated by the leaked oil and the compression efficiency is lowered. You can avoid doing that. Further, the oil supplied from the ring groove 10 to the compression chamber 16 side improves the sliding conditions of the piston outer periphery and the vane tip having severe sliding conditions, thereby improving the reliability. The depth of the recess 11 is set to about 0.1 to 0.5 mm.

図5は本発明の上軸受け2の端面に内面より外周に向かって構成された2箇所に分割された窪み11a、11bの位置関係を示した図である。窪み11aはシャフトの回転角度が吸入孔を過ぎた近辺(θ1>θs+180°)でピストン上端面のリング溝10と窪み11aが重なる位置にあり圧縮の始めに圧縮室に給油を行いピストン外周とシリンダー内周の円周方向からの冷媒ガスの漏れ損失を低減する。また窪み11bはシャフトの回転角度が180°を過ぎる手前(θ2<360°)までのピストン上端面のリング溝10と窪み11aが重なる位置にあり圧縮室が吐出圧力になる前まで圧縮室に給油を行い主に摺動状態の厳しいベーン先端とピストン外周の摩擦を軽減する効果がある。このように窪みを11a、11bの2箇所に分けることにより、より少ない給油量でそれぞれの効果を得ることができる。給油量が少ないと冷凍サイクル内への油吐出を押えることができ冷凍サイ
クルの性能向上ができる。
FIG. 5 is a view showing the positional relationship between the end face of the upper bearing 2 of the present invention and the dents 11a and 11b divided into two portions formed from the inner surface toward the outer periphery. The recess 11a is located in the vicinity of the shaft rotation angle past the suction hole (θ1> θs + 180 °) where the ring groove 10 on the upper end surface of the piston and the recess 11a overlap each other, and oil is supplied to the compression chamber at the beginning of compression, and the piston outer periphery and cylinder Reduce leakage loss of refrigerant gas from the circumferential direction of the inner circumference. Further, the recess 11b is in a position where the ring groove 10 on the upper end surface of the piston and the recess 11a overlap each other until the shaft rotation angle exceeds 180 ° (θ2 <360 °), and lubricates the compression chamber until the compression chamber reaches the discharge pressure. This has the effect of reducing the friction between the tip of the vane and the outer periphery of the piston that are mainly slid. Thus, by dividing the depression into two portions 11a and 11b, the respective effects can be obtained with a smaller amount of oil supply. When the amount of oil supply is small, oil discharge into the refrigeration cycle can be suppressed and the performance of the refrigeration cycle can be improved.

図6、図7は上軸受け端面に窪みではなく縦穴17をあけてピストン上端面のリング溝10に油をスポット的に供給する本発明の詳細図である。   6 and 7 are detailed views of the present invention in which oil is spot-fed to the ring groove 10 on the upper end surface of the piston by making a vertical hole 17 instead of a recess in the upper bearing end surface.

図6に示されるように上軸受け2の端面に縦穴17があけられ、上軸受け2の内面2aの下端角部より斜め穴18を縦穴17に貫通するようにあけられている。次に縦穴17の平面上の位置関係を図7を参照して説明する。縦穴17の角度θhは前記ベーン上死点を0°とする前記シャフト回転角度座標において吸入孔締め切りの角度をθsとすると、θs+180°<θh<360°で規定され、また前記縦穴の前記上軸受け中心からの距離Lhは前記ピストンの半径をRp、シリンダーの半径をRcとすると、Lh<2Rp−Rcで規定される。給油の必要な場所にスポット的に油を圧縮室に入れ信頼性を向上し、給油量を少なくして油吐出の増加を押えることができる。また、前記上軸受け内面の下端角部より斜め穴をあけるのでドリル加工で可能になるので加工コストを下げることが出来る。   As shown in FIG. 6, a vertical hole 17 is formed in the end surface of the upper bearing 2, and an oblique hole 18 is formed through the vertical hole 17 from the lower end corner of the inner surface 2 a of the upper bearing 2. Next, the positional relationship of the vertical holes 17 on the plane will be described with reference to FIG. The angle θh of the vertical hole 17 is defined as θs + 180 ° <θh <360 °, where θs is the suction hole cutoff angle in the shaft rotation angle coordinate where the vane top dead center is 0 °, and the upper bearing of the vertical hole The distance Lh from the center is defined by Lh <2Rp−Rc, where Rp is the radius of the piston and Rc is the radius of the cylinder. The oil can be spotted into the compression chamber at a place where oil supply is required to improve the reliability, and the oil supply can be reduced to suppress the increase in oil discharge. Further, since an oblique hole is formed from the lower end corner of the inner surface of the upper bearing, drilling is possible, so that the processing cost can be reduced.

図8はピストン上端面にリング溝を設け前記リング溝の深さを変化した場合の効率(COP)を示す特性図である。リング溝深さが10μmから30μmで効果があることが分かる。   FIG. 8 is a characteristic diagram showing efficiency (COP) when a ring groove is provided on the upper end surface of the piston and the depth of the ring groove is changed. It can be seen that the ring groove depth is effective when the depth is 10 μm to 30 μm.

以上のように、本実施の形態においてはロータリ圧縮機の上軸受け端面に前記上軸受け内面より外周に向かって窪みを構成し、前記窪みの存在範囲の角度は前記ベーン上死点を0°とする前記シャフト回転角度座標において吸入孔締め切りの角度をθsとし前記窪みの開始角度をθ1とすると、θs+180°<θ1また、前記窪みの終了角度をθ2とすると、θ2<360°で規定され、また前記上軸受け中心からの距離Lは前記ピストンの半径をRp、シリンダーの半径をRcとすると、L<2Rp−Rcで規定され前記ピストン上端面のリング溝に連通し油の供給を行う構成であるため圧縮室側に主体的に十分な油の供給を行うことが可能となる。また油量の調整は前記上軸受け端面の窪みの角度θを変化させることで可能であり、圧縮室に供給された油は摩擦の厳しいピストンの外周とベーン先端やピストン下端面と下軸受端面に供給され信頼性向上に役立つ。また、吸入室に供給された油はピストンの外周とシリンダーの内周との円周方向のすき間に供給され、このすき間から圧縮室の冷媒ガスが吸入室に漏れこむのを低減することができ圧縮効率を向上することが出来る。   As described above, in the present embodiment, a recess is formed in the upper bearing end surface of the rotary compressor from the inner surface of the upper bearing toward the outer periphery, and the angle of the existence range of the recess is 0 ° at the vane top dead center. In the shaft rotation angle coordinates, θs + 180 ° <θ1 where θs is the suction hole closing angle and θ1 is the start angle of the recess, and θ2 <360 ° is defined as θ2 is the end angle of the recess. The distance L from the center of the upper bearing is defined as L <2Rp−Rc, where Rp is the radius of the piston and Rc is the radius of the cylinder, and oil is supplied to the ring groove on the upper end surface of the piston. Therefore, it becomes possible to supply sufficient oil to the compression chamber side. The amount of oil can be adjusted by changing the angle θ of the recess on the upper bearing end face. The oil supplied to the compression chamber is applied to the outer periphery of the piston, vane tip, piston lower end face, and lower bearing end face where friction is severe. Supplied to help improve reliability. In addition, the oil supplied to the suction chamber is supplied to the circumferential gap between the outer periphery of the piston and the inner circumference of the cylinder, and the refrigerant gas in the compression chamber can be prevented from leaking into the suction chamber from this gap. Compression efficiency can be improved.

上述したように、本発明にかかるロータリ圧縮機は、圧縮効率を向上することができるため、給湯器用CO圧縮機、空気圧縮の用途にも適用できる。 As described above, since the rotary compressor according to the present invention can improve the compression efficiency, it can also be applied to CO 2 compressors for hot water heaters and air compression applications.

1 シリンダー
2 上軸受け
3 下軸受け
4 シャフト
5 ピストン
6 油
7 下穴
8a、8b 横穴
9 ピストン内側の空間
10 リング溝
11、11a、11b 窪み
12 ベーン
13 吸入孔
14 吐出切り欠き
15 吸入室
16 圧縮室
17 縦穴
18 斜め穴
DESCRIPTION OF SYMBOLS 1 Cylinder 2 Upper bearing 3 Lower bearing 4 Shaft 5 Piston 6 Oil 7 Lower hole 8a, 8b Side hole 9 Piston inner space 10 Ring groove 11, 11a, 11b Depression 12 Vane 13 Suction hole 14 Discharge notch 15 Suction chamber 16 Compression chamber 17 Vertical hole 18 Diagonal hole

Claims (3)

シリンダーの両端面に、上軸受けと下軸受けを配し前記シリンダー内を回転するピストンと、前記ピストンを駆動するシャフトと、前記シリンダー内を吸入室と吐出口が開口する圧縮室に仕切るベーンを有し、前記ピストン上端面にリング溝を構成したロータリ圧縮機において、前記上軸受け端面に前記上軸受け内面より外周に向かって窪みを構成し、前記窪みの存在範囲の角度は前記ベーン上死点を0°とする前記シャフト回転角度座標において吸入孔締め切りの角度をθsとし前記窪みの開始角度をθ1とするとθs+180°<θ1また前記窪みの終了角度をθ2とするとθ2<360°で規定され、また前記窪みの前記上軸受け中心からの距離Lは前記ピストンの半径をRp、シリンダーの半径をRcとするとL<2Rp−Rcで規定され前記ピストン上端面のリング溝に連通し油の供給を行う構成のロータリ圧縮機。 On both end faces of the cylinder, there are provided a piston that rotates with the upper and lower bearings, a shaft that drives the piston, and a vane that partitions the inside of the cylinder into a compression chamber with an inlet and a discharge port. In the rotary compressor having a ring groove on the piston upper end surface, a recess is formed on the upper bearing end surface from the inner surface of the upper bearing toward the outer periphery, and the angle of the existence range of the recess is the vane top dead center. In the shaft rotation angle coordinate set to 0 °, θs + 180 ° <θ1 when θs is the suction hole closing angle and θ1 is the start angle of the recess, and θ2 <360 ° when the end angle of the recess is θ2. The distance L from the center of the upper bearing of the recess is defined by L <2Rp−Rc where Rp is the radius of the piston and Rc is the radius of the cylinder. Rotary compressor arrangement for supplying communicating oil ring groove of the serial piston upper surface. 前記上軸受け端面に設けた窪みを2箇所に分割にした請求項1記載のロータリ圧縮機。 The rotary compressor according to claim 1, wherein a recess provided in the upper bearing end face is divided into two portions. シリンダーの両端面に、上軸受けと下軸受けを配し前記シリンダー内を回転するピストンと、前記ピストンを駆動するシャフトと、前記シリンダー内を吸入室と吐出口が開口する圧縮室に仕切るベーンを有し、前記ピストン上端面にリング溝を構成したロータリ圧縮機において、前記上軸受け端面に縦穴を構成し、前記縦穴の角度θhは前記ベーン上死点を0°とする前記シャフト回転角度座標において吸入孔締め切りの角度をθsとするとθs+180°<θh<360°で規定され、また前記上軸受け中心からの距離Lhは前記ピストンの半径をRp、シリンダーの半径をRcとするとLh<2Rp−Rcで規定され前記上軸受け内面と前記端面の穴を連通するように前記上軸受け内面の下端角部より斜め穴を設け前記ピストン上端面のリング溝に連通し油の供給を行う構成のロータリ圧縮機。 On both end faces of the cylinder, there are provided a piston that rotates with the upper and lower bearings, a shaft that drives the piston, and a vane that partitions the inside of the cylinder into a compression chamber with an inlet and a discharge port. In the rotary compressor in which a ring groove is formed on the piston upper end surface, a vertical hole is formed on the upper bearing end surface, and the angle θh of the vertical hole is sucked in the shaft rotation angle coordinate where the vane top dead center is 0 °. Θs + 180 ° <θh <360 ° is defined as θs when the hole cut-off angle is θs, and the distance Lh from the center of the upper bearing is defined as Lh <2Rp−Rc when the radius of the piston is Rp and the radius of the cylinder is Rc. An oblique hole is provided at the lower end corner of the upper bearing inner surface so that the upper bearing inner surface communicates with the hole on the end surface. Rotary compressor arrangement for supplying communicating oil groove.
JP2012122721A 2012-05-30 2012-05-30 Rotary compressor Expired - Fee Related JP5360264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012122721A JP5360264B2 (en) 2012-05-30 2012-05-30 Rotary compressor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012122721A JP5360264B2 (en) 2012-05-30 2012-05-30 Rotary compressor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2008112359A Division JP2009264164A (en) 2008-04-23 2008-04-23 Rotary compressor

Publications (2)

Publication Number Publication Date
JP2012159088A true JP2012159088A (en) 2012-08-23
JP5360264B2 JP5360264B2 (en) 2013-12-04

Family

ID=46839808

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012122721A Expired - Fee Related JP5360264B2 (en) 2012-05-30 2012-05-30 Rotary compressor

Country Status (1)

Country Link
JP (1) JP5360264B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108799129A (en) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 Air cylinder structure, pump body structure and turn cylinder compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159694U (en) * 1980-04-28 1981-11-28
JPH0250087U (en) * 1988-09-27 1990-04-06
JPH02147880U (en) * 1989-05-19 1990-12-14
JPH08159070A (en) * 1994-12-07 1996-06-18 Daikin Ind Ltd Rotary compressor
JP2006258001A (en) * 2005-03-17 2006-09-28 Toshiba Kyaria Kk Hermetic compressor and refrigeration cycle device using the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56159694U (en) * 1980-04-28 1981-11-28
JPH0250087U (en) * 1988-09-27 1990-04-06
JPH02147880U (en) * 1989-05-19 1990-12-14
JPH08159070A (en) * 1994-12-07 1996-06-18 Daikin Ind Ltd Rotary compressor
JP2006258001A (en) * 2005-03-17 2006-09-28 Toshiba Kyaria Kk Hermetic compressor and refrigeration cycle device using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108799129A (en) * 2018-07-18 2018-11-13 珠海格力电器股份有限公司 Air cylinder structure, pump body structure and turn cylinder compressor
CN108799129B (en) * 2018-07-18 2023-10-03 珠海格力电器股份有限公司 Cylinder structure, pump body structure and rotary cylinder compressor

Also Published As

Publication number Publication date
JP5360264B2 (en) 2013-12-04

Similar Documents

Publication Publication Date Title
JPWO2013057946A1 (en) Rotary compressor with two cylinders
US10233930B2 (en) Rotary compressor having two cylinders
KR101484538B1 (en) Scoroll compressor and refrigsrator having the same
JP2009264164A (en) Rotary compressor
JP5040934B2 (en) Hermetic compressor
JP3724495B1 (en) Rotary fluid machine
JP5516798B2 (en) Rotary compressor
KR20110006181A (en) Scoroll compressor and refrigerator having the same
KR20110064663A (en) Scoroll compressor and refrigerator having the same
CN113446215A (en) Vortex disc assembly and vortex compressor
JP2014240634A (en) Rotary type fluid machine
JP5360264B2 (en) Rotary compressor
JP2009215894A (en) Hermetic compressor
JP5363486B2 (en) Rotary compressor
JP2011163257A (en) Hermetic compressor
WO2013080519A1 (en) Rotary compressor
JP2008121623A (en) Scroll compressor
WO2018173362A1 (en) Screw type fluid machine
JP6350916B2 (en) Rotary compressor
JP2011179452A (en) Rotary compressor
JP2008002422A (en) Scroll compressor
JP2015214908A (en) Screw fluid machine
JP6176577B2 (en) Compressor
JP2020125716A (en) Rotary compressor
JP4106223B2 (en) Gas compressor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120621

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121218

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130514

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130516

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130704

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130806

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130819

LAPS Cancellation because of no payment of annual fees