JP2012154433A - Controlling system - Google Patents

Controlling system Download PDF

Info

Publication number
JP2012154433A
JP2012154433A JP2011014535A JP2011014535A JP2012154433A JP 2012154433 A JP2012154433 A JP 2012154433A JP 2011014535 A JP2011014535 A JP 2011014535A JP 2011014535 A JP2011014535 A JP 2011014535A JP 2012154433 A JP2012154433 A JP 2012154433A
Authority
JP
Japan
Prior art keywords
internal combustion
combustion engine
temperature
continuously variable
gear ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011014535A
Other languages
Japanese (ja)
Other versions
JP5669596B2 (en
Inventor
Masashi Sano
雅志 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihatsu Motor Co Ltd
Original Assignee
Daihatsu Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihatsu Motor Co Ltd filed Critical Daihatsu Motor Co Ltd
Priority to JP2011014535A priority Critical patent/JP5669596B2/en
Publication of JP2012154433A publication Critical patent/JP2012154433A/en
Application granted granted Critical
Publication of JP5669596B2 publication Critical patent/JP5669596B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Transmission Device (AREA)

Abstract

PROBLEM TO BE SOLVED: To further improve of fuel consumption performance of a vehicle provided with an internal combustion engine and a continuously variable transmission.SOLUTION: The speed change ratio of the continuously variable transmission is changed according to the temperature of the internal combustion engine, the speed change ratio is corrected such that as the temperature of the internal combustion engine falls, the number of rotations decreases and the torque increases, and the speed change ratio is corrected such that as the temperature of the internal combustion engine rises, the number of rotations increases and the torque decreases. That is, by focusing attention on that an equi-fuel consumption curve fluctuates in accordance with the temperature of the internal combustion engine, the speed change rate curve is changed corresponding to the fluctuation.

Description

本発明は、内燃機関及び無段変速機を備える車両の制御装置に関する。   The present invention relates to a control device for a vehicle including an internal combustion engine and a continuously variable transmission.

近時の自動車は、自動変速機を実装したAT車であることが少なくない。車両用の自動変速機として、トルクコンバータ及びベルト式連続可変変速機構(Continuously Variable Transmission)を具備してなる無段変速機が公知である(例えば、下記特許文献を参照)。   Recent automobiles are often AT cars equipped with automatic transmissions. As an automatic transmission for a vehicle, a continuously variable transmission including a torque converter and a belt-type continuously variable transmission mechanism is known (for example, refer to the following patent document).

無段変速機の変速比は、内燃機関の燃費率(燃料消費率)特性に合わせて最適な燃費を具現できるように制御する。図3に示しているように、エンジン回転数を横軸、エンジントルクを縦軸とおくと、エンジン回転数とエンジントルクとの積であるエンジン出力が一定となる等出力線(図中破線で示す)は双曲線の形で描かれる。さらに、燃費率が一定となるエンジン回転数とエンジントルクとの組が等燃費率線(図中細実線で示す)として表される。両者を組み合わせることで、あるエンジン出力を達成する場合に最も燃費がよくなる変速比を、様々なエンジン出力についてプロットすることができる。これが、図3に示している変速線(図中太実線で示す)である。車載の電子制御装置(Electronic Control Unit)は、運転者により指令される要求負荷(出力)の増減に応じ、変速線に沿って無段変速機の変速比を操作する。   The transmission ratio of the continuously variable transmission is controlled so as to realize the optimum fuel consumption in accordance with the fuel consumption rate (fuel consumption rate) characteristics of the internal combustion engine. As shown in FIG. 3, when the engine speed is set on the horizontal axis and the engine torque is set on the vertical axis, the engine output that is the product of the engine speed and the engine torque becomes constant. Is shown in the form of a hyperbola. Further, a set of the engine speed and the engine torque at which the fuel consumption rate is constant is represented as an equal fuel consumption rate line (indicated by a thin solid line in the figure). By combining the two, the gear ratio that provides the best fuel efficiency when achieving a certain engine output can be plotted for various engine outputs. This is the shift line shown in FIG. 3 (indicated by a thick solid line in the figure). An on-vehicle electronic control unit (Electronic Control Unit) operates the speed ratio of the continuously variable transmission along the shift line in accordance with the increase or decrease in the required load (output) commanded by the driver.

しかしながら、内燃機関の燃費率特性は常時不変ではない。等燃費率線が変動すれば当然に変速線も変化するべきであるが、従来は適合により定めた一意の変速線を基に無段変速機の変速比を制御しており、運転状態如何によっては燃費性能を最大限に引き出せないことがあった。   However, the fuel consumption rate characteristic of the internal combustion engine is not always constant. If the equal fuel consumption rate line fluctuates, the shift line should naturally change, but conventionally, the transmission ratio of the continuously variable transmission is controlled based on a unique shift line determined by conformance. May not be able to maximize fuel efficiency.

特開2010−071427号公報JP 2010-071427 A

本発明は、内燃機関及び無段変速機を備えた車両の燃費性能の一層の向上を図ることを所期の目的としている。   An object of the present invention is to further improve the fuel efficiency of a vehicle including an internal combustion engine and a continuously variable transmission.

本発明では、内燃機関及び無段変速機を備える車両の制御装置において、内燃機関の温度に応じて無段変速機の変速比を変化させるものとし、内燃機関の温度が低いほど低回転かつ高トルクとなるように変速比を補正し、内燃機関の温度が高いほど高回転かつ低トルクとなるように変速比を補正することとした。即ち、内燃機関の温度の高低により、メカニカルロスが増減する等して等燃費率線が変動することに着目し、その変動に対応して変速比線を変更するようにしたのである。   In the present invention, in a control device for a vehicle including an internal combustion engine and a continuously variable transmission, the transmission ratio of the continuously variable transmission is changed in accordance with the temperature of the internal combustion engine. The gear ratio is corrected so as to be torque, and the gear ratio is corrected so that the higher the temperature of the internal combustion engine, the higher the rotation speed and the lower the torque. That is, focusing on the fact that the equal fuel consumption rate line fluctuates due to the increase or decrease of the mechanical loss depending on the temperature of the internal combustion engine, the gear ratio line is changed in response to the fluctuation.

尤も、内燃機関の温度に応じて変速比を変化させると、内燃機関の温度によって減速時のエンジンブレーキの効き具合が変化し、運転者に違和感を与え、ドライバビリティの低下につながるおそれがある。そこで、減速時の燃料カット中は前記変速比の補正量を減じて、エンジンブレーキの効きを均一化することが好ましい。   However, if the gear ratio is changed according to the temperature of the internal combustion engine, the effectiveness of the engine brake during deceleration changes depending on the temperature of the internal combustion engine, which may give the driver a sense of incongruity and lead to a decrease in drivability. Therefore, it is preferable to reduce the gear ratio correction amount during fuel cut during deceleration to make the engine braking effect uniform.

本発明によれば、内燃機関及び無段変速機を備えた車両の燃費性能の一層の向上を図り得る。   According to the present invention, it is possible to further improve the fuel consumption performance of a vehicle including an internal combustion engine and a continuously variable transmission.

本発明の一実施形態における内燃機関の構成を示す図。The figure which shows the structure of the internal combustion engine in one Embodiment of this invention. 同実施形態における自動変速機の構成を示す図。The figure which shows the structure of the automatic transmission in the embodiment. 同実施形態の制御装置が実施する変速比制御の変速線を示す図。The figure which shows the shift line of the gear ratio control which the control apparatus of the embodiment implements. 機関温度が上昇した場合の遷移した変速線を示す図。The figure which shows the shift line which changed when engine temperature rose. 機関温度が下降した場合の遷移した変速線を示す図。The figure which shows the shift line which changed when the engine temperature fell.

本発明の一実施形態を、図面を参照して説明する。図1に一気筒の構成を概略的に示した内燃機関0は、例えば自動車に搭載されるものである。内燃機関0の吸気系1には、アクセルペダルの踏込量に応じて開閉するスロットルバルブ(特に、電子スロットルバルブ)11を設けており、スロットルバルブ11の下流にはサージタンク13を一体に有する吸気マニホルド12を取り付けている。サージタンク13には、吸気管内圧力(または、吸気負圧)を検出する圧力センサを配している。   An embodiment of the present invention will be described with reference to the drawings. The internal combustion engine 0 schematically showing the configuration of one cylinder in FIG. 1 is mounted on, for example, an automobile. The intake system 1 of the internal combustion engine 0 is provided with a throttle valve (in particular, an electronic throttle valve) 11 that opens and closes according to the amount of depression of the accelerator pedal, and an intake air that integrally has a surge tank 13 downstream of the throttle valve 11. A manifold 12 is attached. The surge tank 13 is provided with a pressure sensor for detecting the intake pipe pressure (or intake negative pressure).

排気系5には、排気マニホルド51を取り付け、排出ガス浄化用の三元触媒52を装着している。そして、触媒52の上流にフロントO2センサを、下流にリアO2センサを、それぞれ配している。O2センサ、54は、排出ガスに接触して反応することにより、排出ガス中の酸素濃度に応じた電圧信号を出力する。 An exhaust manifold 51 is attached to the exhaust system 5 and a three-way catalyst 52 for exhaust gas purification is attached. A front O 2 sensor is disposed upstream of the catalyst 52 and a rear O 2 sensor is disposed downstream. The O 2 sensor 54 outputs a voltage signal corresponding to the oxygen concentration in the exhaust gas by reacting in contact with the exhaust gas.

吸気系1と排気系5との間には、EGR装置6を介設する。EGR装置6は、始端が排気マニホルド51に連通し終端がサージタンク13に連通する外部EGR通路61と、EGR通路61上に設けた外部EGRバルブ62とを要素としてなる。EGRバルブ62を開放すれば、排出ガスを排気系5から吸気系1へと還流して吸気に混合する外部EGRを実現できる。   An EGR device 6 is interposed between the intake system 1 and the exhaust system 5. The EGR device 6 includes an external EGR passage 61 having a start end communicating with the exhaust manifold 51 and a terminal end communicating with the surge tank 13, and an external EGR valve 62 provided on the EGR passage 61. If the EGR valve 62 is opened, an external EGR that recirculates the exhaust gas from the exhaust system 5 to the intake system 1 and mixes it with the intake air can be realized.

気筒2上部に形成される燃焼室の天井部(シリンダヘッド)には、吸気バルブ21、排気バルブ22、インジェクタ3及び点火プラグ23を設ける。   An intake valve 21, an exhaust valve 22, an injector 3, and a spark plug 23 are provided on the ceiling portion (cylinder head) of the combustion chamber formed in the upper part of the cylinder 2.

図2に、自動変速機の一例を示す。この自動変速機は、トルクコンバータ7及びベルト式CVT9を具備する無段変速機である。内燃機関0が出力する駆動力は、トルクコンバータ7の入力側のポンプインペラ71に入力され、出力側のタービンランナ72に伝達される。タービンランナ72の回転は、遊星歯車機構を用いた前後進切換装置8を介してCVT9の駆動軸94に伝わり、CVT9における変速を経て従動軸95を回転させる。従動軸95には出力ギヤ101を固設してあり、この出力ギヤ101はデファレンシャル装置のリングギヤ102と噛合して車軸103ひいては駆動輪(図示せず)を回転させる。   FIG. 2 shows an example of an automatic transmission. This automatic transmission is a continuously variable transmission including a torque converter 7 and a belt type CVT 9. The driving force output from the internal combustion engine 0 is input to the pump impeller 71 on the input side of the torque converter 7 and transmitted to the turbine runner 72 on the output side. The rotation of the turbine runner 72 is transmitted to the drive shaft 94 of the CVT 9 via the forward / reverse switching device 8 using a planetary gear mechanism, and rotates the driven shaft 95 through a shift in the CVT 9. An output gear 101 is fixed to the driven shaft 95, and this output gear 101 meshes with the ring gear 102 of the differential device to rotate the axle 103 and thus the drive wheel (not shown).

トルクコンバータ7は、ロックアップ機構(図示せず)を備える。ロックアップ機構は、この分野では既知のもので、トルクコンバータ7の入力側と出力側とをロックアップするロックアップクラッチと、ロックアップクラッチを断接切替駆動するための油圧を制御するロックアップソレノイドバルブとを要素とする。ロックアップ機構は、自動変速機による変速比の変更を伴わない状況においてロックアップクラッチを接続、入力側と出力側とを締結する。   The torque converter 7 includes a lockup mechanism (not shown). The lockup mechanism is known in this field, and includes a lockup clutch that locks up the input side and the output side of the torque converter 7, and a lockup solenoid that controls the hydraulic pressure for driving the lockup clutch to connect and disconnect. A valve is an element. The lockup mechanism connects the lockup clutch and fastens the input side and the output side in a situation that does not involve a change in the gear ratio by the automatic transmission.

前後進切換装置8は、そのサンギア81が入力軸73を介してタービンランナ72と連絡し、リングギア82が駆動軸94と連絡している。プラネタリギア831を支持するプラネタリキャリア83と変速機ケースとの間には、断接切換可能な油圧クラッチたるフォワードブレーキ84を介設している。また、プラネタリキャリア83とサンギア81(または、入力軸73)との間にも、断接切換可能な油圧クラッチたるリバースクラッチ85を介設している
走行レンジのうちのDレンジでは、フォワードブレーキ84を締結し、リバースクラッチ85を切断する。これにより、入力軸73の回転が逆転されかつ減速されて駆動軸94に伝達され、前進走行となる。翻って、Rレンジでは、リバースクラッチ85を締結し、フォワードブレーキ84を切断する。これにより、サンギア81とプラネタリキャリア83とが一体的に回転し、入力軸73と駆動軸94とが直結して後進走行となる。非走行レンジであるNレンジ、Pレンジでは、リバースクラッチ84、フォワードブレーキ85をともに切断する。
In the forward / reverse switching device 8, the sun gear 81 communicates with the turbine runner 72 via the input shaft 73, and the ring gear 82 communicates with the drive shaft 94. Between the planetary carrier 83 that supports the planetary gear 831 and the transmission case, a forward brake 84 that is a hydraulic clutch that can be connected and disconnected is interposed. Further, a reverse clutch 85 that is a hydraulic clutch that can be connected and disconnected is also provided between the planetary carrier 83 and the sun gear 81 (or the input shaft 73). And the reverse clutch 85 is disconnected. As a result, the rotation of the input shaft 73 is reversed and decelerated and transmitted to the drive shaft 94 for forward travel. In turn, in the R range, the reverse clutch 85 is engaged and the forward brake 84 is disconnected. As a result, the sun gear 81 and the planetary carrier 83 rotate integrally, and the input shaft 73 and the drive shaft 94 are directly connected to perform reverse travel. In the N range and P range, which are non-traveling ranges, both the reverse clutch 84 and the forward brake 85 are disconnected.

CVT9は、駆動プーリ91及び従動プーリ92と、両プーリ91、92に巻き掛けられたベルト93とを要素とする。駆動プーリ91は、駆動軸94に固定した固定シーブ911と、駆動軸91上にローラスプラインを介して軸方向に変位可能に支持させた可動シーブ912と、可動シーブ912の後背に配設された液圧サーボ913とを有しており、液圧サーボ913を操作し可動シーブ912を変位させることを通じて変速比を無段階に変更できる。並びに、従動プーリ92は、従動軸95に固設した固定シーブ921と、従動軸95上にローラスプラインを介して軸方向に変位可能に支持させた可動シーブ922と、可動シーブ922の後背に配設された液圧サーボ923とを有しており、液圧サーボ923を操作し可動シーブ922を変位させることを通じてトルク伝達に必要なベルト推力を与える。   The CVT 9 includes a driving pulley 91 and a driven pulley 92, and a belt 93 wound around the pulleys 91 and 92 as elements. The drive pulley 91 is disposed behind the movable sheave 912, a fixed sheave 911 fixed to the drive shaft 94, a movable sheave 912 supported on the drive shaft 91 via a roller spline so as to be displaceable in the axial direction. A hydraulic servo 913 is provided, and the gear ratio can be changed steplessly by operating the hydraulic servo 913 and displacing the movable sheave 912. The driven pulley 92 is disposed on the back of the movable sheave 922, a fixed sheave 921 fixed to the driven shaft 95, a movable sheave 922 supported on the driven shaft 95 via a roller spline so as to be axially displaceable. A hydraulic servo 923 is provided, and a belt thrust necessary for torque transmission is applied by operating the hydraulic servo 923 and displacing the movable sheave 922.

内燃機関0及びCVT9の運転制御を司るECU4は、中央演算装置41、記憶装置42、入力インタフェース43、出力インタフェース44等を有するマイクロコンピュータシステムである。   The ECU 4 that controls operation of the internal combustion engine 0 and the CVT 9 is a microcomputer system having a central processing unit 41, a storage device 42, an input interface 43, an output interface 44, and the like.

入力インタフェース43には、吸気管内圧力を検出する圧力センサから出力される吸気圧信号a、エンジン回転数を検出する回転数センサから出力される回転数信号b、車速を検出する車速センサ73から出力される車速信号c、アクセルペダルの踏込量(または、スロットルバルブ11の開度)を検出するアクセル開度センサから出力されるアクセル開度信号d、シフトレバーの位置(シフトレンジ)を検出するシフトポジションスイッチから出力されるシフトポジション信号e、冷却水温を検出する水温センサから出力される水温信号f、吸気カムシャフト91の端部にあるタイミングセンサから出力されるクランク角度信号及び気筒判別用信号g、排気カムシャフト92の端部にあるタイミングセンサから240°CA(クランク角度)回転毎に出力される排気カム信号h、フロントO2センサから出力される上流側空燃比信号i、リアO2センサから出力される下流側空燃比信号j、ノッキングの発生状況を検出するノックセンサから出力されるノッキング信号k等が入力される。アクセルペダルの踏込量は、運転者によって指令される要求負荷を示す。また、冷却水温は、内燃機関0の温度を示す。 The input interface 43 outputs an intake pressure signal a output from a pressure sensor that detects the pressure in the intake pipe, a rotation speed signal b output from the rotation speed sensor that detects the engine speed, and a vehicle speed sensor 73 that detects the vehicle speed. Vehicle speed signal c, accelerator pedal position signal d output from an accelerator pedal position sensor that detects the amount of accelerator pedal depression (or throttle valve 11), and shift lever position (shift range). Shift position signal e output from the position switch, water temperature signal f output from the water temperature sensor for detecting the coolant temperature, crank angle signal output from the timing sensor at the end of the intake camshaft 91, and cylinder discrimination signal g , 240 ° CA (crank angle) from the timing sensor at the end of the exhaust camshaft 92 Exhaust cam signal h which is output every rotation, the front O 2 upstream air-fuel ratio signal i output from the sensor, downstream air-fuel ratio signal j outputted from the rear O 2 sensor, a knock sensor for detecting the occurrence of knocking The knocking signal k etc. output from is input. The amount of depression of the accelerator pedal indicates a required load commanded by the driver. The coolant temperature indicates the temperature of the internal combustion engine 0.

出力インタフェース44からは、インジェクタ3に対して燃料噴射信号n、点火プラグ8に対して点火信号m、EGRバルブ62に対してEGRバルブ開度信号o、CVT9に対して変速比信号p等を出力する。   From the output interface 44, a fuel injection signal n is output to the injector 3, an ignition signal m is output to the spark plug 8, an EGR valve opening signal o is output to the EGR valve 62, and a gear ratio signal p is output to the CVT 9. To do.

中央演算装置41は、記憶装置42に予め格納されているプログラムを解釈、実行して、内燃機関0の燃料噴射量や点火時期、EGRガスの還流量(吸気のEGR率)、変速比等の制御を遂行する。   The central processing unit 41 interprets and executes a program stored in the storage device 42 in advance, such as the fuel injection amount and ignition timing of the internal combustion engine 0, the EGR gas recirculation amount (intake EGR rate), the gear ratio, and the like. Carry out control.

内燃機関0の運転制御において、ECU4は、内燃機関0の運転制御に必要な各種情報a、b、c、d、e、f、g、h、i、j、kを入力インタフェース43を介して取得し、現状の吸気量及び吸気のEGR率を推定して、それらに基づいて制御入力である燃料噴射量、燃料噴射タイミング、点火タイミング、EGRバルブ62の開度(EGRステップ数)、CVT9の変速比等を演算する。そして、演算した制御入力に対応した制御信号m、n、o、pを、出力インタフェース44を介して印加する。上記制御入力の算定手法は、既知の内燃機関0の運転制御と同様とすることができるので、ここでは説明を割愛する。   In the operation control of the internal combustion engine 0, the ECU 4 sends various information a, b, c, d, e, f, g, h, i, j, k necessary for the operation control of the internal combustion engine 0 via the input interface 43. Obtain the current intake air amount and the EGR rate of the intake air, and control the fuel injection amount, the fuel injection timing, the ignition timing, the opening degree of the EGR valve 62 (the number of EGR steps), the CVT 9 Calculate the gear ratio and the like. Then, control signals m, n, o, and p corresponding to the calculated control input are applied via the output interface 44. Since the calculation method of the control input can be the same as the known operation control of the internal combustion engine 0, the description is omitted here.

本実施形態における制御装置たるECU4は、運転者によって指令される要求負荷即ち出力を達成しつつ燃費が最適化するように、CVT9の変速比を設定する。既に述べた通り、ある出力を実現するエンジン回転数及びトルクの組は等出力線上に無数に存在するが、そのうち最も燃費効率のよい組は内燃機関0の出力特性である等燃費線によって一意に定まる。様々な出力について、最も燃費効率のよいエンジン回転数及びトルクの組をプロットしたものが変速線である。ECU4は予め、所定の運転状態の下における変速線のマップデータを記憶装置42に記憶保持しており、要求負荷をキーとしてこのマップデータを検索し、変速線上にある変速比を知得、可動シーブ912、922を操作してCVT9をその変速比に制御する。   The ECU 4 as the control device in the present embodiment sets the gear ratio of the CVT 9 so that the fuel efficiency is optimized while achieving the required load, that is, the output commanded by the driver. As already mentioned, there are an infinite number of engine speed and torque groups that achieve a certain output, but the most fuel efficient group is uniquely determined by the iso-fuel line that is the output characteristic of the internal combustion engine 0. Determined. A shift line is a plot of a set of engine speed and torque with the highest fuel efficiency for various outputs. The ECU 4 stores in advance the map data of the shift line under a predetermined operating state in the storage device 42, searches the map data using the required load as a key, knows the gear ratio on the shift line, and is movable. The sheaves 912 and 922 are operated to control the CVT 9 to the gear ratio.

一方で、等燃費線は常時不変ではなく、内燃機関0の運転状態に応じて変化する。つまり、変速線もまた、内燃機関0の運転状態に応じて変化する。特に図4に示すように、内燃機関0の温度即ち冷却水温が上昇すると、あるべき変速線(図中太実線で示す)は高回転、低トルク側に変位する。あるいは、図5に示すように、冷却水温が低下すると、あるべき変速線は低回転、高トルク側に変位する。   On the other hand, the equal fuel consumption line is not always constant, and changes according to the operating state of the internal combustion engine 0. That is, the shift line also changes according to the operating state of the internal combustion engine 0. In particular, as shown in FIG. 4, when the temperature of the internal combustion engine 0, that is, the coolant temperature rises, the desired shift line (indicated by a thick solid line in the figure) is displaced to the high rotation and low torque side. Alternatively, as shown in FIG. 5, when the cooling water temperature decreases, the shift line that should be shifted to the low rotation and high torque side.

上記の事象に鑑み、本実施形態では、ある冷却水温を含む所定の運転状態の下における、基準となる変速線(図3の太実線、図4及び図5の鎖線)に沿って決定する変速比に、冷却水温の高低に応じた補正量を加味(乗算または加算)することにより、CVT9に与える変速比(図4及び図5の太実線)を決定する。具体的には、内燃機関0の実測水温が基準の冷却水温に対して高くなるほど低回転かつ高トルクとなるように変速比を補正し、低くなるほど程高回転かつ低トルクとなるように変速比を補正する。ECU4は予め、内燃機関0の実測水温(または、実測温度と基準の水温との差分)と変速比の補正量との関係を規定したマップデータを記憶装置42に記憶保持しており、実測水温をキーとしてこのマップデータを検索し、変速比の補正量を知得する。   In view of the above-described phenomenon, in the present embodiment, a shift determined along a reference shift line (a thick solid line in FIG. 3 and a chain line in FIGS. 4 and 5) under a predetermined operation state including a certain coolant temperature. The gear ratio to be given to the CVT 9 (thick solid line in FIGS. 4 and 5) is determined by adding a correction amount corresponding to the level of the cooling water temperature to the ratio (multiplication or addition). Specifically, the gear ratio is corrected such that the lower the rotation speed and the higher torque the lower the measured water temperature of the internal combustion engine 0 with respect to the reference cooling water temperature, and the higher the rotation speed and the lower torque the lower the gear temperature ratio. Correct. The ECU 4 stores in advance in the storage device 42 map data defining the relationship between the actually measured water temperature of the internal combustion engine 0 (or the difference between the actually measured temperature and the reference water temperature) and the gear ratio correction amount. The map data is searched using as a key to know the correction amount of the gear ratio.

変速線は直ちに変化させるのではなく、補正量の移動平均をとる等によりなまし処理して徐変させることも好ましい。   It is also preferable that the shift line is not changed immediately, but is gradually changed by a smoothing process such as by taking a moving average of the correction amount.

但し、内燃機関0の温度に応じて変速比を変化させるということは、内燃機関0の温度によって減速時のエンジンブレーキの効き具合が変化することを意味する。エンジンブレーキの効き具合の変化は、運転者に違和感を与え、ドライバビリティの低下につながるおそれがある。そこで、減速時の燃料カット中は前記変速比の補正量を減じ、エンジンブレーキの効き具合を一定に近づけることとする。具体的には、内燃機関0の温度が高いとき、平常はハイギア寄りにある変速比をエンジンブレーキ時にはローギア寄りに修正し、内燃機関0の温度が低いとき、平常はローギア寄りにある変速比をエンジンブレーキ時はハイギア寄りに修正する。   However, changing the gear ratio according to the temperature of the internal combustion engine 0 means that the effectiveness of engine braking during deceleration changes depending on the temperature of the internal combustion engine 0. Changes in the effectiveness of the engine brake may cause the driver to feel uncomfortable and lead to a decrease in drivability. Therefore, during the fuel cut at the time of deceleration, the correction amount of the gear ratio is reduced so that the effectiveness of the engine brake approaches a constant value. Specifically, when the temperature of the internal combustion engine 0 is high, the gear ratio that is normally close to the high gear is corrected to close to the low gear when the engine is braked, and when the temperature of the internal combustion engine 0 is low, the gear ratio that is normally close to the low gear is changed. When the engine is braked, correct it closer to the high gear.

一般的に、燃料カットは、所定の燃料カット条件(アクセルペダルの踏込量が0または0に近い閾値以下となり、かつエンジン回転数が一定以上ある等)が成立したときに開始され、所定の燃料カット終了条件(アクセルペダルの踏込量が閾値を上回った、またはエンジン回転数が所定の復帰回転数にまで低下した等)が成立したときに終了する。ECU4は、燃料カットの期間内においては、変速比の補正量を割り引くか、または補正量を0とする。換言すれば、燃料カット中は、水温に依存しない変速線に沿ってCVT9の変速比を決定する。   In general, a fuel cut is started when a predetermined fuel cut condition (accelerator pedal depression amount is 0 or below a threshold value close to 0 and the engine speed is equal to or higher than a certain value) is satisfied. The process ends when a cut end condition (such as when the accelerator pedal depression amount exceeds a threshold value or the engine speed has decreased to a predetermined return speed) is satisfied. The ECU 4 discounts the gear ratio correction amount or sets the correction amount to zero during the fuel cut period. In other words, during the fuel cut, the transmission ratio of the CVT 9 is determined along a transmission line that does not depend on the water temperature.

本実施形態によれば、内燃機関0及び無段変速機9を備える車両の制御装置において、内燃機関0の温度に応じて無段変速機9の変速比を変化させるものとし、内燃機関0の温度が低いほど低回転かつ高トルクとなるように変速比を補正し、内燃機関0の温度が高いほど高回転かつ低トルクとなるように変速比を補正することとしたため、メカニカルロスの増減等に対応して変速比線を変更でき、多様な運転状態に亘り燃費の向上を図ることが可能となる。   According to the present embodiment, in the vehicle control device including the internal combustion engine 0 and the continuously variable transmission 9, the transmission ratio of the continuously variable transmission 9 is changed according to the temperature of the internal combustion engine 0. The gear ratio is corrected so that the lower the temperature is, the lower the rotation speed and the higher torque is. The higher the temperature of the internal combustion engine 0 is, the higher the rotation speed is, and the lower the torque is, so the gear ratio is corrected. Accordingly, the gear ratio line can be changed to improve the fuel efficiency over various driving conditions.

また、減速時の燃料カット中は前記変速比の補正量を減じることとしているため、内燃機関0の温度によって減速時のエンジンブレーキの効き具合が変化してドライバビリティの低下につながる問題を緩和ないし解消することができる。   In addition, since the gear ratio correction amount is reduced during fuel cut during deceleration, the effect of engine braking during deceleration changes depending on the temperature of the internal combustion engine 0, which alleviates the problem that leads to lower drivability. Can be resolved.

なお、本発明は以上に詳述した実施形態に限られるものではない。例えば、上記実施形態では、制御装置が基準水温下における単一の変速線のマップデータと、実測水温に対応した変速比の補正量のマップデータとを記憶保持し、基準水温下での変速線に補正量を加味するとしていた。これに替えて、制御装置が複数の実測水温の各々に対応した複数の変速線のマップデータを記憶保持し、実測水温に応じて参照するマップデータを変えるという態様により、実効的に無断変速機に与える変速比を補正することとしてもよい。   The present invention is not limited to the embodiment described in detail above. For example, in the above-described embodiment, the control device stores and holds map data of a single shift line at the reference water temperature and map data of the correction amount of the gear ratio corresponding to the actually measured water temperature, and the shift line at the reference water temperature. The correction amount was taken into account. Instead, the control device stores and holds map data of a plurality of shift lines corresponding to each of the plurality of actually measured water temperatures, and effectively changes the map data to be referred to according to the actually measured water temperatures. It is good also as correcting the gear ratio given to.

上記実施形態における自動変速機は、ベルト式CVTを具備する無段変速機であったが、CVT以外の変速機構を採用したものであったとしても、当然に本発明を適用することができる。   The automatic transmission in the above embodiment is a continuously variable transmission having a belt type CVT, but the present invention can naturally be applied even if a transmission mechanism other than the CVT is adopted.

その他、各部の具体的構成や処理の手順等は、本発明の趣旨を逸脱しない範囲で種々変形が可能である。   In addition, the specific configuration of each unit, the processing procedure, and the like can be variously modified without departing from the spirit of the present invention.

本発明は、車両に搭載される内燃機関及び自動変速機の制御に利用することができる。   The present invention can be used to control an internal combustion engine and an automatic transmission mounted on a vehicle.

0…内燃機関
4…ECU(制御装置)
9…CVT(無段変速機)
0 ... Internal combustion engine 4 ... ECU (control device)
9 ... CVT (continuously variable transmission)

Claims (2)

内燃機関及び無段変速機を備える車両の制御装置であって、
内燃機関の温度に応じて無段変速機の変速比を変化させるものであり、内燃機関の温度が低いほど低回転かつ高トルクとなるように変速比を補正し、内燃機関の温度が高いほど高回転かつ低トルクとなるように変速比を補正することを特徴とする制御装置。
A control device for a vehicle including an internal combustion engine and a continuously variable transmission,
The transmission ratio of the continuously variable transmission is changed according to the temperature of the internal combustion engine. The lower the temperature of the internal combustion engine, the lower the rotation ratio and the higher the torque, so that the speed ratio is corrected. A control device that corrects a gear ratio so as to achieve high rotation and low torque.
減速時の燃料カット中は前記変速比の補正量を減じる請求項1記載の制御装置。 The control device according to claim 1, wherein the correction amount of the transmission ratio is reduced during fuel cut during deceleration.
JP2011014535A 2011-01-26 2011-01-26 Control device Expired - Fee Related JP5669596B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011014535A JP5669596B2 (en) 2011-01-26 2011-01-26 Control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011014535A JP5669596B2 (en) 2011-01-26 2011-01-26 Control device

Publications (2)

Publication Number Publication Date
JP2012154433A true JP2012154433A (en) 2012-08-16
JP5669596B2 JP5669596B2 (en) 2015-02-12

Family

ID=46836365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011014535A Expired - Fee Related JP5669596B2 (en) 2011-01-26 2011-01-26 Control device

Country Status (1)

Country Link
JP (1) JP5669596B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141483A (en) * 1996-11-14 1998-05-29 Toyota Motor Corp Shift control device for automatic transmission
JP2001193827A (en) * 1999-12-28 2001-07-17 Hyundai Motor Co Ltd Hydraulic control system for automatic transmission for vehicle and power train of automatic transmission for vehicle
JP2004150530A (en) * 2002-10-30 2004-05-27 Toyota Motor Corp Controller for vehicle

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10141483A (en) * 1996-11-14 1998-05-29 Toyota Motor Corp Shift control device for automatic transmission
JP2001193827A (en) * 1999-12-28 2001-07-17 Hyundai Motor Co Ltd Hydraulic control system for automatic transmission for vehicle and power train of automatic transmission for vehicle
JP2004150530A (en) * 2002-10-30 2004-05-27 Toyota Motor Corp Controller for vehicle

Also Published As

Publication number Publication date
JP5669596B2 (en) 2015-02-12

Similar Documents

Publication Publication Date Title
JP4174773B2 (en) Engine control apparatus and method
US10442436B2 (en) Vehicle driving device
US9194488B2 (en) Vehicle control device
JP5679186B2 (en) Control device
JP6289080B2 (en) Control device for internal combustion engine
JP5669596B2 (en) Control device
WO2014027505A1 (en) Control device and control method for vehicle
JP6338332B2 (en) Control device for internal combustion engine
JP2018071662A (en) Controller of vehicle
JP2012117407A (en) Control device of internal combustion engine
JP6196042B2 (en) Power unit controller
JP5946383B2 (en) Control device
JP7337452B2 (en) vehicle controller
JP2020045079A (en) Control device for vehicle
JP2007292245A (en) Holding pressure controller for belt type cvt
JP2016151327A (en) Control device of vehicle
JP2012193648A (en) Controller
JP2018003675A (en) Control device of internal combustion engine
JP2000248972A (en) Fuel injection control device for internal combustion engine
US10099698B2 (en) Control apparatus for vehicle and control method
JP2007298104A (en) Holding pressure control device for belt-type cvt
JP6292781B2 (en) Vehicle control device
JP6021548B2 (en) Idle stop vehicle control device
JP6030484B2 (en) Control device for continuously variable transmission
JP2014163510A (en) Control device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20131114

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140718

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141216

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141216

R150 Certificate of patent or registration of utility model

Ref document number: 5669596

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees