JP2012153907A - Method of producing expandable polylactic acid-based resin particle - Google Patents

Method of producing expandable polylactic acid-based resin particle Download PDF

Info

Publication number
JP2012153907A
JP2012153907A JP2012118251A JP2012118251A JP2012153907A JP 2012153907 A JP2012153907 A JP 2012153907A JP 2012118251 A JP2012118251 A JP 2012118251A JP 2012118251 A JP2012118251 A JP 2012118251A JP 2012153907 A JP2012153907 A JP 2012153907A
Authority
JP
Japan
Prior art keywords
polylactic acid
particles
foaming agent
foamed
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012118251A
Other languages
Japanese (ja)
Other versions
JP5366276B2 (en
Inventor
Hiroki Shinozaki
広輝 篠崎
Hidehiro Sasaki
秀浩 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JSP Corp
Original Assignee
JSP Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JSP Corp filed Critical JSP Corp
Priority to JP2012118251A priority Critical patent/JP5366276B2/en
Publication of JP2012153907A publication Critical patent/JP2012153907A/en
Application granted granted Critical
Publication of JP5366276B2 publication Critical patent/JP5366276B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a method of producing expandable polylactic acid-based resin particles, by which the expandable polylactic acid-based resin particles excellent in mutual adhesiveness of expandable particles are obtained without using an adhesiveness-improving agent.SOLUTION: In the expandable polylactic acid-based resin particles, a polylactic acid-based resin that has an endothermic energy amount of 10 J/g, measured by differential scanning calorimetry at heating rate of 2°C/min, is used as a base resin. The method of producing the expandable polylactic acid-based resin particles includes: an impregnation step of impregnating 100 pts.wt of polylactic acid-based resin particles with 1 pt.wt or more of physical foaming agent; and a dissipation step of exposing the polylactic acid-based resin particles that is impregnated with the physical foaming agent under the condition of the temperature of 0 to 40°C to dissipate 10-60 wt.% of the physical foaming agent thus impregnated, thereby obtaining the expandable polylactic acid-based resin particles having a foaming agent content of 3.9 wt.% or lower.

Description

本発明は、包装用緩衝材、農産箱、魚箱、自動車部材、建築材料、土木材料等のポリ乳酸系樹脂発泡粒子成形体の製造に使用可能な型内成形時の二次発泡性、融着性に優れる発泡粒子を得ることができる発泡性ポリ乳酸系樹脂粒子の製造方法に関する。 The present invention relates to secondary foaming and melting during molding that can be used for the production of molded foams of polylactic acid-based resin particles such as cushioning materials for packaging, agricultural boxes, fish boxes, automobile parts, building materials, and civil engineering materials. The present invention relates to a method for producing expandable polylactic acid-based resin particles capable of obtaining expanded particles having excellent adhesion.

従来、ポリエチレン樹脂、ポリプロピレン樹脂、ポリスチレン樹脂等の汎用樹脂からなる発泡体は、軽量性、断熱性、緩衝性に優れていることから、多分野にわたって使用されてきた。一方、近年地球環境に対する意識が高まっており、石油資源の枯渇などの環境問題がクローズアップされる中、従来の石油資源を原料とする上記の汎用樹脂に変わって、植物由来のポリ乳酸系樹脂が注目されている。該ポリ乳酸系樹脂は、とうもろこし等の植物を出発原料として作られ、カーボンニュートラルの考え方から環境低負荷型の熱可塑性樹脂である。かかるポリ乳酸系樹脂は、今後汎用性が高まることが予想される。同様に、ポリ乳酸系樹脂は、環境に優しい植物由来の発泡用汎用樹脂として用いられることが期待されており、ポリ乳酸系樹脂を原料とする発泡体の研究が行なわれ、その一つとして形状的な制約を比較的受けずに所望の形状の発泡体を得ることができる発泡粒子成形体の開発が行なわれている。 Conventionally, foams made of general-purpose resins such as polyethylene resin, polypropylene resin, and polystyrene resin have been used in many fields because they are excellent in lightness, heat insulation, and buffering properties. On the other hand, in recent years, awareness of the global environment has increased, and environmental problems such as the exhaustion of petroleum resources have been raised. Instead of the above-mentioned general-purpose resins made from petroleum resources, plant-derived polylactic acid-based resins Is attracting attention. The polylactic acid-based resin is made from a plant such as corn as a starting material, and is an environment-friendly thermoplastic resin from the viewpoint of carbon neutral. Such polylactic acid-based resin is expected to increase versatility in the future. Similarly, polylactic acid-based resins are expected to be used as environmentally friendly plant-derived general-purpose foaming resins. Research has been conducted on foams made from polylactic acid-based resins. Development of a foamed particle molded body capable of obtaining a foam having a desired shape without being relatively restricted.

ポリ乳酸系樹脂からなる発泡体に関する先行技術として、ポリ乳酸等の脂肪族ポリエステルの結晶化度が0〜20%の範囲となるような温度範囲で揮発型発泡剤を吸収させる発泡性樹脂粒子の製造方法(特許文献1)、乳酸成分単位を50モル%以上含み、熱流束示差走査熱量測定における吸熱量と発熱量との差が0J/g以上30J/g未満であり、且つ該吸熱量が15J/g以上である発泡粒子(特許文献2)、融着改良剤を含有してなるポリ乳酸系樹脂発泡粒子(特許文献3)、及び発泡粒子相互の融着性に優れ、低温(低圧スチーム)で型内成形が可能なポリ乳酸系樹脂発泡粒子及びその発泡粒子を用いて得られるポリ乳酸系樹脂発泡粒子成形体(特許文献4)が知られている. As a prior art related to a foam made of a polylactic acid-based resin, an expandable resin particle that absorbs a volatile foaming agent in a temperature range where the degree of crystallinity of an aliphatic polyester such as polylactic acid is in the range of 0 to 20%. Production method (Patent Document 1), containing 50 mol% or more of lactic acid component units, the difference between the endothermic amount and the calorific value in heat flux differential scanning calorimetry is 0 J / g or more and less than 30 J / g, and the endothermic amount is 15 J / g or more of expanded particles (Patent Document 2), polylactic acid resin expanded particles containing a fusion improver (Patent Document 3), and excellent fusibility between expanded particles, and low temperature (low pressure steam) ) And polylactic acid resin foamed particles (Patent Document 4) obtained by using the foamed polylactic acid resin particles are known.

特開2000−136261号公報JP 2000-136261 A 特開2004−83890号公報JP 2004-83890 A 特開2006−282750号公報JP 2006-282750 A 特開2006−282753号公報JP 2006-282755 A

しかし、特許文献1等に記載のポリ乳酸系樹脂からなる発泡粒子成形体は発泡性樹脂粒子を金型内に充填し熱風により該樹脂粒子を発泡させると同時に粒子同士を相互に融着せしめる方法であるため、発泡粒子成形体内の部分における密度ばらつきが比較的大きく、発泡粒子同士の融着性、寸法安定性が不充分で、機械的物性も不充分であるという問題点を有していた。 However, the foamed particle molded body made of a polylactic acid resin described in Patent Document 1 is a method in which foamable resin particles are filled in a mold and the resin particles are foamed with hot air, and at the same time, the particles are fused together. Therefore, the density variation in the part within the foamed particle molded body is relatively large, the fusion property between the foamed particles, the dimensional stability is insufficient, and the mechanical properties are also insufficient. .

上記特許文献1等に記載の発泡粒子成形体の問題点を解決し、発泡粒子同士の融着性、寸法安定性等を改良することを目的として、本発明者等は特許文献2において、結晶性のポリ乳酸系樹脂を用いて、該ポリ乳酸系樹脂が結晶化していない状態の発泡粒子を製造し、該発泡粒子を用いて発泡粒子成形体を得ることを試みた。しかしながら、特許文献2に記載のポリ乳酸系樹脂発泡粒子は、型内成形時の発泡粒子相互の融着性、二次発泡性の点で改良が認められるものであったが、成形容易性を高めるために型内成形時に良好な成形体が得られる加熱温度範囲を広げることが望まれる。
更に本発明者らは、特許文献3、特許文献4において、ポリ乳酸系発泡樹脂粒子に特定の融着性改良剤を含有させることによって、低い成形温度での型内成形が可能となることを見出した。しかしながら、発泡粒子成形体の形状が複雑であると発泡粒子相互の融着が不十分になる、厚みが大きいと発泡粒子成形体の中心部の発泡粒子相互の融着が不十分になるなど、融着性の点で改善すべき余地を残すものであった。
In order to solve the problems of the foamed particle molded article described in Patent Document 1 and the like and to improve the fusion property between the foamed particles, dimensional stability, etc., the present inventors disclosed a crystal An attempt was made to produce foamed particles in a state where the polylactic acid-based resin was not crystallized using a functional polylactic acid-based resin, and to obtain a foamed particle molded body using the foamed particles. However, the polylactic acid-based resin expanded particles described in Patent Document 2 have been found to be improved in terms of the mutual fusing property and secondary expandability of the expanded particles during in-mold molding. In order to increase the temperature, it is desired to widen the heating temperature range in which a good molded product can be obtained at the time of in-mold molding.
Furthermore, the present inventors have found that in Patent Document 3 and Patent Document 4, in-mold molding at a low molding temperature is possible by adding a specific fusing property improving agent to the polylactic acid-based foamed resin particles. I found it. However, if the shape of the foamed particle molded body is complicated, the fusion between the foamed particles becomes insufficient, and if the thickness is large, the fusion between the foamed particles at the center of the foamed particle molded body becomes insufficient. This left room for improvement in terms of fusibility.

本発明は、融着性改良剤を使用しなくとも発泡粒子相互の融着性に優れるポリ乳酸系樹脂発泡粒子を得ることができる発泡性ポリ乳酸系樹脂粒子の製造方法を提供することを目的とする。 An object of the present invention is to provide a process for producing expandable polylactic acid resin particles, which can obtain polylactic acid resin expanded particles having excellent fusion properties between expanded particles without using a fusing property improving agent. And

本発明者らは上記課題に鑑みて鋭意検討した結果、ポリ乳酸系樹脂粒子に物理発泡剤を含浸後その表層部に存在する発泡剤の少なくとも一部を逸散させた発泡性ポリ乳酸系樹脂粒子の発泡を行う製造方法により得られるポリ乳酸系樹脂発泡粒子は型内成形性に優れる発泡粒子となることを見出し、本発明に到達した。
即ち、本発明によれば、以下の(1)ないし(3)に示す発泡性ポリ乳酸系樹脂粒子の製造方法、及び該製造方法により得られる発泡性ポリ乳酸系樹脂粒子が提供される。
(1)JIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)が10J/g以上であるポリ乳酸系樹脂を基材樹脂とする発泡性ポリ乳酸系樹脂粒子の製造方法であって、
(i)該ポリ乳酸系樹脂粒子100重量部に対し物理発泡剤を1重量部以上含浸させる含浸工程と、
(ii)該物理発泡剤が含浸されたポリ乳酸系樹脂粒子を温度0〜40℃の条件下にて、含浸させた物理発泡剤の10〜60重量%を逸散させて発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子とする逸散工程、
とを含むことを特徴とする発泡性ポリ乳酸系樹脂粒子の製造方法。
(2)前記逸散工程が相対湿度40%以上の条件にて行なわれることを特徴とする、前記(1)に記載の発泡性ポリ乳酸系樹脂粒子の製造方法。
(3)前記物理発泡剤の主成分が炭酸ガスである、前記(1)又は(2)に記載の発泡性ポリ乳酸系樹脂粒子の製造方法。
As a result of intensive studies in view of the above problems, the present inventors have found that a foamable polylactic acid-based resin in which at least a part of the foaming agent present in the surface layer portion of the polylactic acid-based resin particles is impregnated with a physical foaming agent is diffused. The present inventors have found that polylactic acid-based resin foamed particles obtained by a production method for foaming particles become foamed particles having excellent in-mold moldability, and have reached the present invention.
That is, according to the present invention, the following methods (1) to (3) for producing expandable polylactic acid resin particles and expandable polylactic acid resin particles obtained by the production method are provided.
(1) Based on the heat flux differential scanning calorimetry described in JIS K7122 (1987), the mixture was heated to 30 ° C. higher than the end of the melting peak and melted, and kept at that temperature for 10 minutes. After cooling to 110 ° C. at a cooling rate of 2 ° C./min and keeping at that temperature for 120 minutes, after heat treatment to cool to 40 ° C. at a cooling rate of 2 ° C./min, melting again at a heating rate of 2 ° C./min Expandable polylactic acid resin particles having a base resin of polylactic acid resin having an endotherm (Rendo) in a DSC curve of 10 J / g or more obtained when heated to 30 ° C. higher than the end of the peak and melted A manufacturing method of
(I) an impregnation step of impregnating 100 parts by weight of the polylactic acid-based resin particles with 1 part by weight or more of a physical foaming agent;
(Ii) 10-60% by weight of the physical foaming agent impregnated with the polylactic acid resin particles impregnated with the physical foaming agent is diffused under a temperature of 0 to 40 ° C. A dissipation step for producing 3.9 wt% or less of expandable polylactic acid resin particles;
A process for producing expandable polylactic acid-based resin particles.
(2) The method for producing expandable polylactic acid-based resin particles according to (1), wherein the dissipation step is performed under a condition of a relative humidity of 40% or more.
(3) The method for producing expandable polylactic acid resin particles according to (1) or (2), wherein the main component of the physical foaming agent is carbon dioxide.

尚、発泡性ポリ乳酸系樹脂粒子において、樹脂粒子表面部近傍を表層部(S)(又は単に表層部)ということがあり、樹脂粒子中心部近傍を中央部(C)(又は単に中央部)ということがある。 Note that in expandable polylactic acid resin particles, may the surface vicinity resin particles of the surface layer portion (S B) (or simply the surface layer portion), the central portion of the central portion near the resin particles (C B) (or simply center Part).

本発明の製造方法により製造される発泡性ポリ乳酸系樹脂粒子は、物理発泡剤含浸後の逸散において、表層部(S)の方が中央部(C)よりも相対的に多くの物理発泡剤が逸散されるので、該発泡性ポリ乳酸系樹脂粒子を発泡させると、発泡粒子の表層部(S)の結晶化度が中央部(C)よりも低いポリ乳酸系樹脂発泡粒子が得られ、該発泡粒子の型内成形によりポリ乳酸系樹脂発泡粒子相互の融着性に優れたポリ乳酸系樹脂発泡粒子成形体を得ることができる。さらに、吸熱量(Rendo)が10J/g以上であるポリ乳酸系樹脂を基材樹脂とするため、結晶化し得る成分が多いので、本発明の製造方法により得られる発泡性ポリ乳酸系樹脂粒子を発泡して得られるポリ乳酸系樹脂発泡粒子の中央部と表層部の結晶化度の差を広げることができ上記の型内成形時の十分な融着性改善効果が期待できる。また、本発明の製法で製造された発泡性ポリ乳酸系樹脂粒子を発泡させて得られるポリ乳酸系樹脂発泡粒子をさらに型内成形して得られる発泡粒子成形体は高温養生などにより結晶化度が高められることによって耐熱性の高いものとなる。 In the foamable polylactic acid resin particles produced by the production method of the present invention, the surface layer portion (S B ) has a relatively larger amount than the center portion (C B ) in the dissipation after impregnation with the physical blowing agent. Since the physical foaming agent is dissipated, when the expandable polylactic acid-based resin particles are expanded, the polylactic acid-based resin in which the crystallinity of the surface layer portion (S B ) of the expanded particles is lower than that of the central portion (C B ). Foamed particles are obtained, and a polylactic acid-based resin expanded particle molded body having excellent fusion property between the polylactic acid-based resin expanded particles can be obtained by in-mold molding of the expanded particles. Furthermore, since a polylactic acid resin having an endotherm (Rendo) of 10 J / g or more is used as a base resin, there are many components that can be crystallized. Therefore, the expandable polylactic acid resin particles obtained by the production method of the present invention The difference in crystallinity between the central part and the surface layer part of the polylactic acid-based resin foamed particles obtained by foaming can be widened, and a sufficient effect of improving the fusing property at the time of in-mold molding can be expected. Further, the foamed particle molded body obtained by further in-mold molding the polylactic acid resin foamed particles obtained by foaming the expandable polylactic acid resin particles produced by the production method of the present invention has a crystallinity by high temperature curing or the like. Increased heat resistance is high.

更に、逸散工程が相対湿度40%以上の条件にて行なわれる本発明の方法によって製造された発泡性ポリ乳酸系樹脂粒子を発泡させて得られた、ポリ乳酸系樹脂発泡粒子は表層厚みが、より一層厚いものとなるためポリ乳酸系樹脂発泡粒子の耐熱性が高まるため、型内成形時の良好な発泡粒子成形体が得られる加熱温度範囲を広げることができる。
更に、物理発泡剤が炭酸ガスを主成分とするものであれば、オゾン層の破壊がなく且つ安価であり、また、発泡性ポリ乳酸系樹脂粒子の基材樹脂であるポリ乳酸系樹脂への溶解性が高いので見かけ密度の小さい発泡粒子を得るのに適した発泡性ポリ乳酸系樹脂粒子となり、かつ発泡剤が含浸されたポリ乳酸系樹脂粒子からの発泡剤の逸散速度が発泡剤逸散量の調整、特に表層部の発泡剤逸散量の調整において適度な速度を示すものであるため、本発明の製造方法において好適なものである。
Furthermore, the polylactic acid-based resin foam particles obtained by foaming the expandable polylactic acid-based resin particles produced by the method of the present invention in which the dissipation step is performed under conditions of relative humidity of 40% or more have a surface layer thickness. Since the thickness becomes even thicker, the heat resistance of the polylactic acid-based resin expanded particles is increased, so that the heating temperature range in which a good expanded particle molded body can be obtained during in-mold molding can be expanded.
Furthermore, if the physical foaming agent is mainly composed of carbon dioxide gas, the ozone layer is not destroyed and is inexpensive, and the foamed polylactic acid resin particles can be used as a base resin for a polylactic acid resin. Because of its high solubility, it becomes foamable polylactic acid resin particles suitable for obtaining expanded particles with a low apparent density, and the dissipation rate of the foaming agent from the polylactic acid resin particles impregnated with the foaming agent is It is suitable for the production method of the present invention because it exhibits an appropriate speed in the adjustment of the amount of dispersion, particularly the amount of foaming agent escape in the surface layer portion.

熱流束示差走査熱量計により測定された基材樹脂の吸熱量(Rendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the endothermic quantity (Rendo) of base-material resin measured with the heat flux differential scanning calorimeter. 熱流束示差走査熱量計により測定された基材樹脂の吸熱量(Rendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the endothermic quantity (Rendo) of base-material resin measured with the heat flux differential scanning calorimeter. 熱流束示差走査熱量計により測定された発泡粒子の発熱量(Bexo)及び吸熱量(Bendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the emitted-heat amount (Bexo) and the endothermic amount (Bendo) of the expanded particle measured with the heat flux differential scanning calorimeter. 熱流束示差走査熱量計により測定された発泡粒子の発熱量(Bexo)及び吸熱量(Bendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the emitted-heat amount (Bexo) and the endothermic amount (Bendo) of the expanded particle measured with the heat flux differential scanning calorimeter. 熱流束示差走査熱量計により測定された発泡粒子の発熱量(Bexo)及び吸熱量(Bendo)を示すDSC曲線の例である。It is an example of the DSC curve which shows the emitted-heat amount (Bexo) and the endothermic amount (Bendo) of the expanded particle measured with the heat flux differential scanning calorimeter. 実施例1で得られたポリ乳酸発泡粒子を略二分割した断面の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of a cross-section obtained by dividing the polylactic acid foamed particles obtained in Example 1 into approximately two parts. 実施例1で得られたポリ乳酸発泡粒子を略二分割した断面における表層部の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of a surface layer portion in a cross section obtained by dividing the polylactic acid foamed particles obtained in Example 1 into approximately two parts. 比較例1で得られたポリ乳酸発泡粒子を略二分割した断面の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of a cross-section obtained by dividing the polylactic acid foamed particles obtained in Comparative Example 1 into approximately two parts. 比較例1で得られたポリ乳酸発泡粒子を略二分割した断面における表層部の一部の走査型電子顕微鏡写真である。2 is a scanning electron micrograph of a part of a surface layer portion in a cross-section obtained by dividing a polylactic acid foamed particle obtained in Comparative Example 1 into approximately two parts.

以下、本発明の発泡性ポリ乳酸系樹脂粒子の製造方法及び該方法により得られる発泡性ポリ乳酸系樹脂粒子について説明する。
本発明の発泡性ポリ乳酸系樹脂粒子(以下、単に発泡性樹脂粒子ということもある。)の製造方法は、
JIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)が10J/g以上であるポリ乳酸系樹脂を基材樹脂とする発泡性ポリ乳酸系樹脂粒子の製造方法であって、
(i)該ポリ乳酸系樹脂粒子100重量部に対し物理発泡剤を1重量部以上含浸させる含浸工程と、
(ii)該物理発泡剤が含浸されたポリ乳酸系樹脂粒子を温度0〜40℃の条件下にて、含浸させた物理発泡剤の10〜60重量%を逸散させて発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子とする逸散工程、
とを含むことを特徴とする。
以下に本発明の「発泡性ポリ乳酸系樹脂粒子の製造方法」について詳しく説明する。
Hereinafter, the manufacturing method of the expandable polylactic acid-type resin particle of this invention and the expandable polylactic acid-type resin particle obtained by this method are demonstrated.
The method for producing expandable polylactic acid-based resin particles of the present invention (hereinafter sometimes simply referred to as expandable resin particles) includes:
Based on the heat flux differential scanning calorimetry described in JIS K7122 (1987), the mixture was heated to 30 ° C. higher than the end of the melting peak and melted, maintained at that temperature for 10 minutes, and then cooled at a cooling rate of 2 After cooling at 110 ° C / min to 110 ° C and keeping at that temperature for 120 minutes, after heat treatment cooling to 40 ° C at a cooling rate of 2 ° C / min, again at the end of the melting peak at a heating rate of 2 ° C / min Method for producing expandable polylactic acid-based resin particles using a polylactic acid-based resin having a heat absorption (Rendo) of 10 J / g or more in a DSC curve obtained when heated to a temperature higher than 30 ° C. as a base resin Because
(I) an impregnation step of impregnating 100 parts by weight of the polylactic acid-based resin particles with 1 part by weight or more of a physical foaming agent;
(Ii) 10-60% by weight of the physical foaming agent impregnated with the polylactic acid resin particles impregnated with the physical foaming agent is diffused under a temperature of 0 to 40 ° C. A dissipation step for producing 3.9 wt% or less of expandable polylactic acid resin particles;
It is characterized by including.
Hereinafter, the “method for producing expandable polylactic acid resin particles” of the present invention will be described in detail.

〔1〕ポリ乳酸系樹脂粒子について
(1)基材樹脂
(イ)基材樹脂について
本発明の発泡性ポリ乳酸系樹脂粒子の製造に用いられる、ポリ乳酸系樹脂粒子(以下、単に樹脂粒子ということもある。)の基材樹脂であるポリ乳酸系樹脂は、樹脂中に乳酸に由来する単位を50モル%以上含むポリマーである。該ポリ乳酸系樹脂には、例えば、(a)乳酸の重合体、(b)乳酸と他の脂肪族ヒドロキシカルボン酸とのコポリマー、(c)乳酸と脂肪族多価アルコールと脂肪族多価カルボン酸とのコポリマー、(d)乳酸と他の脂肪族多価カルボン酸とのコポリマー、(e)乳酸と脂肪族多価アルコールとのコポリマー、(f)前記(a)〜(e)の何れかの組み合わせによる混合物等が包含される。尚、上記乳酸の具体例としては、L−乳酸、D−乳酸、DL−乳酸又はそれらの環状2量体であるL−ラクチド、D−ラクチド、DL−ラクチド又はそれらの混合物を挙げることができる。
[1] Polylactic acid resin particles (1) Base resin (a) Base resin Polylactic acid resin particles (hereinafter simply referred to as resin particles) used in the production of the expandable polylactic acid resin particles of the present invention The polylactic acid-based resin which is a base resin is a polymer containing 50 mol% or more of units derived from lactic acid in the resin. Examples of the polylactic acid resin include (a) a polymer of lactic acid, (b) a copolymer of lactic acid and another aliphatic hydroxycarboxylic acid, and (c) lactic acid, an aliphatic polyhydric alcohol, and an aliphatic polyvalent carboxylic acid. A copolymer of an acid, (d) a copolymer of lactic acid and another aliphatic polyvalent carboxylic acid, (e) a copolymer of lactic acid and an aliphatic polyhydric alcohol, (f) any one of (a) to (e) above The mixture by the combination of these, etc. is included. Specific examples of the lactic acid include L-lactic acid, D-lactic acid, DL-lactic acid or their cyclic dimer L-lactide, D-lactide, DL-lactide, or a mixture thereof. .

前記(b)における他の脂肪族ヒドロキシカルボン酸としては、グリコール酸、ヒドロキシ酪酸、ヒドロキシ吉草酸、ヒドロキシカプロン酸、ヒドロキシヘプタン酸等が挙げられる。また、前記(c)及び(e)における脂肪族多価アルコールとしては、エチレングリコール、1,4−ブタンジオール、1,6−ヘキサンジオール、1,4−シクロヘキサンジメタノール、ネオペンチルグリコール、デカメチレングリコール、グリセリン、トリメチロールプロパン、ペンタエリトリット等が挙げられる。また、前記(c)及び(d)における脂肪族多価カルボン酸としては、コハク酸、アジピン酸、スベリン酸、セバシン酸、ドデカンジカルボン酸、無水コハク酸、無水アジピン酸、トリメシン酸、プロパントリカルボン酸、ピロメリット酸、無水ピロメリット酸等が挙げられる。 Examples of the other aliphatic hydroxycarboxylic acid in (b) include glycolic acid, hydroxybutyric acid, hydroxyvaleric acid, hydroxycaproic acid, and hydroxyheptanoic acid. Examples of the aliphatic polyhydric alcohol in (c) and (e) include ethylene glycol, 1,4-butanediol, 1,6-hexanediol, 1,4-cyclohexanedimethanol, neopentyl glycol, decamethylene. Examples include glycol, glycerin, trimethylolpropane, and pentaerythritol. Examples of the aliphatic polyvalent carboxylic acid in (c) and (d) include succinic acid, adipic acid, suberic acid, sebacic acid, dodecanedicarboxylic acid, succinic anhydride, adipic anhydride, trimesic acid, and propanetricarboxylic acid. , Pyromellitic acid, pyromellitic anhydride and the like.

前記ポリ乳酸系樹脂の製造方法の具体例としては、例えば、乳酸又は乳酸と脂肪族ヒドロキシカルボン酸の混合物を原料として、直接脱水重縮合する方法(例えば、米国特許第5,310,865号明細書に開示されている製造方法)、乳酸の環状二量体(ラクチド)を重合する開環重合法(例えば、米国特許2,758,987号明細書に開示されている製造方法)、乳酸と脂肪族ヒドロキシカルボン酸の環状2量体、例えば、ラクチドやグリコリドとε−カプロラクトンを、触媒の存在下、重合する開環重合法(例えば、米国特許4,057,537号明細書に開示されている製造方法)、乳酸と脂肪族二価アルコールと脂肪族二塩基酸の混合物を、直接脱水重縮合する方法(例えば、米国特許第5,428,126号明細書に開示されている製造方法)、乳酸と脂肪族二価アルコールと脂肪族二塩基酸とポリマーを、有機溶媒存在下に縮合する方法(例えば、欧州特許出願公開第0712880号明細書に開示されている製造方法)、乳酸重合体を触媒の存在下、脱水重縮合反応を行うことによりポリエステル重合体を製造するに際し、少なくとも一部の工程で、固相重合を行う方法、等を挙げることができるが、その製造方法は、特に限定されない。また、少量のグリセリンのような脂肪族多価アルコール、ブタンテトラカルボン酸のような脂肪族多塩基酸、多糖類等のような多価アルコール類を共存させて、共重合させても良く、又ポリイソシアネート化合物等のような結合剤(高分子鎖延長剤)を用いて分子量を上げてもよい。また、ペンタエリスリトール等の多価脂肪族アルコールに代表される分岐化剤にて分岐化させたものであってもよい。 Specific examples of the method for producing the polylactic acid resin include, for example, a method of direct dehydration polycondensation using lactic acid or a mixture of lactic acid and aliphatic hydroxycarboxylic acid as a raw material (for example, US Pat. No. 5,310,865). And a ring-opening polymerization method for polymerizing a cyclic dimer (lactide) of lactic acid (for example, a production method disclosed in US Pat. No. 2,758,987), lactic acid and A ring-opening polymerization method (for example, disclosed in US Pat. No. 4,057,537) in which a cyclic dimer of an aliphatic hydroxycarboxylic acid, for example, lactide or glycolide and ε-caprolactone is polymerized in the presence of a catalyst. And a method of directly dehydrating polycondensation of a mixture of lactic acid, an aliphatic dihydric alcohol and an aliphatic dibasic acid (for example, disclosed in US Pat. No. 5,428,126). Production method), a method in which lactic acid, an aliphatic dihydric alcohol, an aliphatic dibasic acid and a polymer are condensed in the presence of an organic solvent (for example, the production method disclosed in European Patent Application No. 071880). In the production of a polyester polymer by performing a dehydration polycondensation reaction in the presence of a lactic acid polymer in the presence of a catalyst, a method of performing solid phase polymerization in at least a part of the steps can be mentioned. The method is not particularly limited. In addition, a small amount of an aliphatic polyhydric alcohol such as glycerin, an aliphatic polybasic acid such as butanetetracarboxylic acid, a polyhydric alcohol such as a polysaccharide may be coexisted and copolymerized. The molecular weight may be increased by using a binder (polymer chain extender) such as a polyisocyanate compound. Further, it may be branched with a branching agent typified by a polyhydric aliphatic alcohol such as pentaerythritol.

本発明における基材樹脂は、結晶性ポリ乳酸系樹脂(m)20〜100重量部と、非結晶性ポリ乳酸系樹脂(n)0〜80重量部とからなることが好ましい(但し、(m)と(n)との重量部の合計は100重量部である)。
基材樹脂中の結晶性ポリ乳酸系樹脂(m)の割合が20重量部未満の場合には、発泡性ポリ乳酸系樹脂粒子(A)を発泡後、得られるポリ乳酸系樹脂発泡粒子をさらに型内成形して得られる発泡粒子成形体の結晶性成分を高温養生などにより十分に結晶化させたとしても機械的物性と耐熱性が不十分となる虞がある。かかる観点から、基材樹脂中の結晶性ポリ乳酸系樹脂(m)の含有量は30重量部以上が好ましく、40重量部以上がより好ましい。
なお、本発明における基材樹脂は、結晶性ポリ乳酸系樹脂(m)20〜90重量部と非結晶性ポリ乳酸系樹脂(n)10〜80重量部の混合物であることが好ましく、結晶性ポリ乳酸系樹脂(m)30〜80重量部と非結晶性ポリ乳酸系樹脂(n)20〜70重量部の混合物であることが上記した観点から更に好ましく、結晶性ポリ乳酸系樹脂(m)40〜80重量部と非結晶性ポリ乳酸系樹脂(n)20〜60重量部の混合物であることが上記した観点から特に好ましい(但し、(m)と(n)との重量部の合計は100重量部である)。上記した範囲であれば、樹脂粒子を発泡後、得られる発泡粒子をさらに型内成形して得られる発泡粒子成形体の結晶性成分を高温養生などにより十分に結晶化させた場合に、十分な耐熱性を有する発泡粒子成形体とすることが可能となり、かつ非結晶性ポリ乳酸系樹脂も有するため、樹脂粒子を発泡後、得られる発泡粒子は融着性の高いものとなり、さらに二次発泡性を調整しやすいものとなる。
The base resin in the present invention is preferably composed of 20 to 100 parts by weight of a crystalline polylactic acid resin (m) and 0 to 80 parts by weight of an amorphous polylactic acid resin (n) (provided that (m ) And (n) are 100 parts by weight.
When the ratio of the crystalline polylactic acid-based resin (m) in the base resin is less than 20 parts by weight, the foamed polylactic acid-based resin particles (A) are expanded, and the obtained polylactic acid-based resin expanded particles are further Even if the crystalline component of the foamed particle molded body obtained by in-mold molding is sufficiently crystallized by high-temperature curing or the like, the mechanical properties and heat resistance may be insufficient. From this viewpoint, the content of the crystalline polylactic acid resin (m) in the base resin is preferably 30 parts by weight or more, and more preferably 40 parts by weight or more.
The base resin in the present invention is preferably a mixture of 20 to 90 parts by weight of a crystalline polylactic acid resin (m) and 10 to 80 parts by weight of an amorphous polylactic acid resin (n). From the above viewpoint, the polylactic acid resin (m) is preferably a mixture of 30 to 80 parts by weight of the polylactic acid resin (m) and 20 to 70 parts by weight of the noncrystalline polylactic acid resin (n). It is particularly preferable from the above-mentioned viewpoint that it is a mixture of 40 to 80 parts by weight and an amorphous polylactic acid-based resin (n) 20 to 60 parts by weight (however, the total of parts by weight of (m) and (n) is 100 parts by weight). If it is in the above-mentioned range, it is sufficient when the crystalline component of the foamed particle molded body obtained by foaming the resin particles and further molding the obtained foamed particles in a mold is sufficiently crystallized by high-temperature curing or the like. Since it is possible to make a foamed particle molded body having heat resistance and also has an amorphous polylactic acid resin, the foamed particles obtained after foaming the resin particles become highly fusible, and further secondary foamed It becomes easy to adjust the sex.

(ロ)基材樹脂の示差走査熱量測定における吸熱量
該基材樹脂であるポリ乳酸系樹脂は、上述したポリ乳酸系樹脂の中でも、後述する加熱速度2℃/minでの示差走査熱量測定における吸熱量(Rendo)が10J/g以上のものである。
吸熱量が10J/g以上であれば、発泡性ポリ乳酸系樹脂粒子を発泡後、更に型内成形して得られる発泡粒子成形体は結晶化されることによって加熱雰囲気下での変形を起こし難くするための耐熱性、また剛性等を有する発泡粒子成形体を得ることができ、かつ後述する該基材樹脂から得られるポリ乳酸系樹脂発泡粒子の中央部と表層部の結晶化度の差を広げることが容易となる。かかる観点から、前記吸熱量が15J/g以上のものが好ましく、20J/g以上のものがより好ましい。一方、該吸熱量の上限は特に限定する必要はないが、通常の基材樹脂の性状から、一般に70J/gである。
(B) Endothermic amount in differential scanning calorimetry of base resin The polylactic acid-based resin that is the base resin is the above-mentioned polylactic acid-based resin in differential scanning calorimetry at a heating rate of 2 ° C./min described later. The endothermic amount (Rendo) is 10 J / g or more.
If the endothermic amount is 10 J / g or more, the foamed particle molded body obtained by foaming the expandable polylactic acid-based resin particles and then further molded in the mold is less likely to be deformed in a heated atmosphere by crystallization. To obtain a foamed particle molded body having heat resistance, rigidity and the like, and the difference in crystallinity between the central part and the surface layer part of the polylactic acid resin foamed particles obtained from the base resin described later It becomes easy to spread. From this viewpoint, the endothermic amount is preferably 15 J / g or more, and more preferably 20 J / g or more. On the other hand, the upper limit of the endothermic amount is not particularly limited, but is generally 70 J / g from the properties of a normal base resin.

本明細書において、ポリ乳酸系樹脂の示差走査熱量測定における吸熱量(Rendo)は、JIS K7122(1987年)に記載されている熱流束示差走査熱量測定法によって求められる値とする。但し、ポリ乳酸系樹脂1〜4mgを試験片とし、試験片の状態調節及びDSC曲線の測定は以下の手順にて行う。試験片をDSC装置の容器に入れ、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線を得る。
尚、ポリ乳酸系樹脂の吸熱量(Rendo)は、図1に示すように、該DSC曲線の吸熱ピークの低温側のベースラインから吸熱ピークが離れる点を点aとし、吸熱ピークが高温側のベースラインへ戻る点を点bとして、点aと点bとを結ぶ直線と、DSC曲線に囲まれる部分の面積から求められる値とする。また、ベースラインはできるだけ直線になるように装置を調節することとし、図2に示すようにベースラインが湾曲してしまう場合は、吸熱ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから吸熱ピークが離れる点を点a、吸熱ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ吸熱ピークが戻る点を点bとする。
In the present specification, the endothermic amount (Rendo) in the differential scanning calorimetry of the polylactic acid-based resin is a value obtained by the heat flux differential scanning calorimetry described in JIS K7122 (1987). However, 1 to 4 mg of polylactic acid resin is used as a test piece, and the condition adjustment of the test piece and the measurement of the DSC curve are performed according to the following procedure. Place the test piece in the container of the DSC apparatus, heat and melt to a temperature 30 ° C. higher than the end of the melting peak, hold at that temperature for 10 minutes, cool to 110 ° C. at a cooling rate of 2 ° C./min, After maintaining the temperature for 120 minutes, after heat treatment to cool to 40 ° C. at a cooling rate of 2 ° C./min, when again heating and melting to a temperature 30 ° C. higher than the end of the melting peak at a heating rate of 2 ° C./min To obtain the DSC curve obtained.
The endothermic amount (Rendo) of the polylactic acid resin, as shown in FIG. 1, is a point a where the endothermic peak departs from the low-temperature base line of the endothermic peak of the DSC curve, and the endothermic peak is on the high-temperature side. A point returning to the base line is a point b, and a value obtained from a straight line connecting the point a and the point b and an area of a portion surrounded by the DSC curve. Also, the device should be adjusted so that the baseline is as straight as possible. If the baseline is curved as shown in FIG. 2, the curved baseline on the low temperature side of the endothermic peak is the curved state of the curve. The point where the endothermic peak moves away from the curved low-temperature base line is point a, and the curved base line on the high-temperature side of the endothermic peak is maintained in the curved state of the curve. The point where the endothermic peak returns to the curved high temperature side baseline is drawn as point b.

なお、上記吸熱量(Rendo)の測定において、試験片の状態調節およびDSC曲線の測定条件として、110℃での120分間の保持、2℃/minの冷却速度および2℃/minの加熱速度を採用する理由は、ポリ乳酸試験片の結晶化を極力進ませて、完全に結晶化した状態、或いは、それに近い状態に調整されたものの吸熱量(Rendo)を該測定にて求めることを目的としている為である。以上、試験片としてポリ乳酸系樹脂を用いた場合について説明したが、発泡粒子を試験片として同様の手順にて発泡粒子の吸熱量を測定すると基材樹脂の吸熱量(Rendo)と同様の値となる。
本明細書における結晶性ポリ乳酸系樹脂とは、前述のポリ乳酸系樹脂の吸熱量の測定手順により得られるDSC曲線において10J/gを超える吸熱ピークが現れるものとする。なお、結晶性ポリ乳酸系樹脂の吸熱量は通常30〜70J/gである。また、本明細書における非結晶性ポリ乳酸系樹脂とは、前述のポリ乳酸系樹脂の吸熱量の測定手順により得られるDSC曲線において2J/g以下の吸熱ピークが現れるもの或いは吸熱ピークが現れないものである。
In the measurement of the endothermic amount (Rendo), the condition of the test piece and the measurement conditions of the DSC curve were as follows: holding at 110 ° C. for 120 minutes, cooling rate of 2 ° C./min and heating rate of 2 ° C./min The reason for adopting it is to obtain the endotherm (Rendo) of the polylactic acid test piece that has been adjusted to a fully crystallized state or a state close to it by crystallization as much as possible. Because it is. As described above, the case where the polylactic acid resin is used as the test piece has been described. When the endothermic amount of the expanded particle is measured in the same procedure using the expanded particle as the test piece, the same value as the endothermic amount (Rendo) of the base resin is obtained. It becomes.
In the present specification, the crystalline polylactic acid-based resin has an endothermic peak exceeding 10 J / g in the DSC curve obtained by the above-described procedure for measuring the endothermic amount of the polylactic acid-based resin. The endothermic amount of the crystalline polylactic acid resin is usually 30 to 70 J / g. In addition, the non-crystalline polylactic acid resin in the present specification means that an endothermic peak of 2 J / g or less appears in the DSC curve obtained by the above-described procedure for measuring the endothermic amount of the polylactic acid resin, or no endothermic peak appears. Is.

(2)他の樹脂成分及び添加剤
本発明の発泡性ポリ乳酸系樹脂粒子の製造に使用する基材樹脂には、本発明の目的、効果を阻害しない範囲において他の樹脂成分を配合することができる。ポリ乳酸系樹脂と他の樹脂との混合樹脂中にはポリ乳酸系樹脂が50重量%以上含まれることが好ましく、より好ましくは70重量%以上、更に好ましくは90重量%以上である。
尚、ポリ乳酸系樹脂と混合できる他の樹脂としては、ポリエチレン系樹脂、ポリプロピレン系樹脂、ポリスチレン系樹脂、ポリエステル系樹脂等が挙げられ、中でも脂肪族エステル成分単位を少なくとも35モル%含む生分解性脂肪族ポリエステル系樹脂が好ましい。この場合の脂肪族ポリエステル系樹脂としては、上記ポリ乳酸系樹脂以外のヒドロキシ酸重縮合物、ポリカプロラクトン等のラクトンの開環重合物、及びポリブチレンサクシネート、ポリブチレンアジペート,ポリブチレンサクシネートアジペート、ポリ(ブチレンアジペート/テレフタレート)等の脂肪族多価アルコールと脂肪族多価カルボン酸との重縮合物等が挙げられる。
本発明の基材樹脂は、例えば、黒、灰色、茶色、青色、緑色等の着色顔料又は染料を添加して着色したものであってもよい。着色した基材樹脂より得られた着色樹脂粒子を用いれば、着色された発泡粒子及びその成形体を得ることができる。
着色剤としては、有機系、無機系の顔料、染料などが挙げられる。このような、顔料及び染料としては、従来公知の各種のものを用いることができる。
(2) Other resin components and additives The base resin used in the production of the expandable polylactic acid-based resin particles of the present invention is blended with other resin components within a range that does not impair the object and effects of the present invention. Can do. The mixed resin of the polylactic acid resin and other resin preferably contains 50% by weight or more of polylactic acid resin, more preferably 70% by weight or more, and further preferably 90% by weight or more.
Examples of other resins that can be mixed with the polylactic acid-based resin include polyethylene-based resins, polypropylene-based resins, polystyrene-based resins, polyester-based resins, etc. Among them, biodegradable containing at least 35 mol% of aliphatic ester component units. Aliphatic polyester resins are preferred. Examples of the aliphatic polyester resin in this case include hydroxy acid polycondensates other than the polylactic acid resin, ring-opening polymerization products of lactones such as polycaprolactone, polybutylene succinate, polybutylene adipate, and polybutylene succinate adipate. And polycondensates of aliphatic polyhydric alcohols such as poly (butylene adipate / terephthalate) and aliphatic polycarboxylic acids.
For example, the base resin of the present invention may be colored by adding a coloring pigment or dye such as black, gray, brown, blue, or green. If colored resin particles obtained from the colored base resin are used, colored foamed particles and molded articles thereof can be obtained.
Examples of the colorant include organic and inorganic pigments and dyes. As such pigments and dyes, various conventionally known pigments can be used.

また、基材樹脂には、気泡調整剤として、例えばタルク、炭酸カルシウム、ホウ砂、ほう酸亜鉛、水酸化アルミニウム、ステアリン酸カルシウム等の無機物や、ポリエチレンワックス、ポリプロピレンワックス等の有機物をあらかじめ配合することができる。
上記基材樹脂に着色顔料、染料又は無機物等の添加剤を配合する場合は、添加剤をそのまま基材樹脂にペレタイズ工程や発泡剤含浸工程において含有させることができるが、通常は分散性等を考慮して添加剤のマスターバッチを作り、それと基材樹脂とをペレタイズ工程において混練して基材樹脂中に添加剤を均一に含有させることが好ましい。着色顔料又は染料の配合量は着色の色によっても異なるが、通常、基材樹脂100重量部に対して0.001〜5重量部とするのが好ましい。また、無機物の配合量は、基材樹脂100重量部に対して0.001〜5重量部、更に0.02〜1重量部とすることが好ましい。上記無機物やポリエチレンワックス等の有機物を基材樹脂に配合することにより、発泡倍率の向上効果、気泡径の均一性向上や気泡径調整効果が期待できる。
また、前記方法では、難燃剤、帯電防止剤、耐候剤、増粘剤等の添加剤の混合も本発明の製造方法の効果を妨げない範囲内で可能である。
In addition, the base resin may be premixed with an inorganic substance such as talc, calcium carbonate, borax, zinc borate, aluminum hydroxide, calcium stearate, or an organic substance such as polyethylene wax or polypropylene wax, as a foam regulator. it can.
When an additive such as a color pigment, dye, or inorganic substance is added to the base resin, the additive can be added to the base resin as it is in the pelletizing step or the blowing agent impregnation step. It is preferable to make a master batch of the additive in consideration and knead it and the base resin in a pelletizing step so that the additive is uniformly contained in the base resin. The blending amount of the color pigment or dye varies depending on the color of the color, but it is usually preferably 0.001 to 5 parts by weight with respect to 100 parts by weight of the base resin. Moreover, it is preferable that the compounding quantity of an inorganic substance shall be 0.001-5 weight part with respect to 100 weight part of base resin, and also 0.02-1 weight part. By blending an organic material such as the above inorganic material or polyethylene wax into the base resin, it is possible to expect an effect of improving the expansion ratio, an improvement in the uniformity of the cell diameter, and an effect of adjusting the cell diameter.
Moreover, in the said method, mixing of additives, such as a flame retardant, an antistatic agent, a weathering agent, and a thickener, is also possible in the range which does not interfere with the effect of the manufacturing method of this invention.

(3)ポリ乳酸系樹脂粒子の製造
ポリ乳酸系樹脂粒子の製造においては、結晶性ポリ乳酸系樹脂を含有するポリ乳酸系樹脂で構成される基材樹脂を原料としてストランドカット法、アンダーウォーターカット法など周知のペレタイズ法を採用することにより得られる。その具体例としては、基材樹脂又は必要に応じて添加剤が配合された樹脂組成物を押出機に供給して、溶融、混練してストランド状に押出し、該ストランド状の押出物を水冷により冷却した後、所定の長さに切断するか、又は押出されたストランドを所定の長さに切断後または切断と同時に、冷却して、樹脂粒子を得ることができる。その他の樹脂粒子を製造する方法としては、基材樹脂を押出機を用いて溶融、混練した後、板状または塊状に押出し、該押出物を冷却プレス等により冷却した後、該冷却樹脂を破砕したり、格子状に破断することによっても得る方法など、周知の方法を採用することができる。尚、上記の樹脂粒子を製造する際の冷却は、以降の工程にて得られる発泡粒子の発熱量(Bexo)及び発泡粒子の吸熱量(Bendo)についての比(Bexo/Bendo)の調整の容易さの点から水没させる等により急冷することが好ましい。
(3) Production of polylactic acid-based resin particles In the production of polylactic acid-based resin particles, a strand cut method and underwater cut are performed using a base resin composed of a polylactic acid-based resin containing a crystalline polylactic acid-based resin as a raw material. It is obtained by adopting a well-known pelletizing method such as a method. As a specific example, a base resin or a resin composition containing additives as necessary is supplied to an extruder, melted, kneaded, extruded into a strand, and the strand-shaped extrudate is cooled with water. After cooling, the resin particles can be obtained by cutting to a predetermined length or cooling the extruded strand after cutting to a predetermined length or simultaneously with the cutting. Other resin particles can be produced by melting and kneading the base resin using an extruder, then extruding it into a plate or lump, cooling the extrudate with a cooling press or the like, and then crushing the cooling resin. For example, a well-known method such as a method obtained by breaking in a lattice shape can be employed. In addition, the cooling at the time of manufacturing the above resin particles is easy to adjust the ratio (Bexo / Bendo) of the heat generation amount (Bexo) of the foamed particles and the heat absorption amount (Bendo) of the foamed particles obtained in the subsequent steps. From this point, it is preferable to quench by submerging.

前記ストランド状の押出物を切断して得られる樹脂粒子平均直径(D)、及び[樹脂粒子平均長さ(L)/樹脂粒子平均直径(D)]は発泡方法、型形状等の条件により適宜、選択される。Dは、好ましくは0.1〜5mm、より好ましくは0.3〜4mmであり、L/Dは、好ましくは1.0〜1.5である。
また、樹脂粒子1個当りの平均重量は、生産性、発泡剤含浸性の観点から好ましくは0.05〜10mg、より好ましくは0.1〜4mgである。また該樹脂粒子の形状は特に制約されず、柱状(ペレット状)の他、球形状、棒状等の各種の形状にすることが可能である。
The resin particle average diameter (D) and [resin particle average length (L) / resin particle average diameter (D)] obtained by cutting the strand-like extrudate are appropriately determined depending on conditions such as foaming method and mold shape. Selected. D is preferably 0.1 to 5 mm, more preferably 0.3 to 4 mm, and L / D is preferably 1.0 to 1.5.
Moreover, the average weight per resin particle is preferably 0.05 to 10 mg, more preferably 0.1 to 4 mg from the viewpoints of productivity and foaming agent impregnation properties. The shape of the resin particles is not particularly limited, and can be various shapes such as a spherical shape and a rod shape in addition to a columnar shape (pellet shape).

基材樹脂を上記した通り押出機で溶融混練しストランド状等に押出す際に、基材樹脂が吸湿性を有する場合、該基材樹脂を予め乾燥させておくことが好ましい。多量の水分を吸収している樹脂を押出機に供給すると、樹脂粒子中に気泡が混入して得られた樹脂粒子を後工程で発泡して得られる発泡粒子の気泡の均一性に悪影響を及ぼしたり、樹脂粒子を得るために基材樹脂を押出機中で溶融混練する際に基材樹脂のメルトフローレイト(MFR)が極端に大きくなるなど物性低下が生じるおそれがある。
また、基材樹脂の劣化を抑制するために、ベント口付き押出し機を使用して、真空吸引して基材樹脂から水分を除去する方法も採用できる。また、基材樹脂の物性低下が生じないように、前記押出温度条件の上限温度を設定することも可能である。また、得られた樹脂粒子は高温、高湿条件下を避けて加水分解が進行しないような環境下で保存することが好ましい。
When the base resin is hygroscopic when the base resin is melt kneaded and extruded into a strand or the like as described above, it is preferable to dry the base resin in advance. If a resin that absorbs a large amount of water is supplied to the extruder, it will adversely affect the uniformity of the foamed foam bubbles obtained by foaming the resin particles obtained in the subsequent process. When the base resin is melt-kneaded in an extruder in order to obtain resin particles, the physical properties may be lowered, for example, the melt flow rate (MFR) of the base resin becomes extremely large.
In order to suppress deterioration of the base resin, a method of removing moisture from the base resin by vacuum suction using an extruder with a vent port can be employed. Moreover, it is also possible to set the upper limit temperature of the extrusion temperature condition so that the physical properties of the base resin do not deteriorate. The obtained resin particles are preferably stored in an environment where hydrolysis does not proceed by avoiding high temperature and high humidity conditions.

〔2〕発泡性ポリ乳酸系樹脂粒子の製造方法
発泡性ポリ乳酸系樹脂粒子の製造方法は、
(i)上記ポリ乳酸系樹脂粒子100重量部に対し物理発泡剤を1重量部以上含浸させる含浸工程と、
(ii)該物理発泡剤が含浸されたポリ乳酸系樹脂粒子を温度0〜40℃の条件下に曝して、含浸させた物理発泡剤の10〜60重量%を逸散させて発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子とする逸散工程、
とを含むことを特徴とする。
以下に発泡性ポリ乳酸系樹脂発泡粒子の製造方法について記載する。
[2] Method for producing expandable polylactic acid-based resin particles
(I) an impregnation step of impregnating 100 parts by weight of the polylactic acid-based resin particles with 1 part by weight or more of a physical foaming agent;
(Ii) The polylactic acid resin particles impregnated with the physical foaming agent are exposed to a temperature of 0 to 40 ° C. to dissipate 10 to 60% by weight of the impregnated physical foaming agent, and the amount of the foaming agent impregnated A process of dissipating foamed polylactic acid resin particles having a weight of 3.9% by weight or less,
It is characterized by including.
The production method of expandable polylactic acid-based resin expanded particles will be described below.

(1)物理発泡剤の含浸工程
物理発泡剤の含浸工程は、上記ポリ乳酸系樹脂粒子100重量部に対し物理発泡剤を1重量部以上含浸させる工程である。
(イ)物理発泡剤
物理発泡剤としては、従来公知のもの、プロパン、イソブタン、ノルマルブタン、イソヘキサン、ノルマルヘキサン、シクロブタン、シクロヘキサン、イソペンタン、ノルマルペンタン、シクロペンタン、トリクロロフロロメタン、ジクロロジフロロメタン、クロロフロロメタン、トリフロロメタン、1,1,1,2−テトラフロロエタン、1−クロロ−1,1−ジフロロエタン、1,1−ジフロロエタン、1−クロロ−1,2,2,2−テトラフルオロエタン等の有機系物理発泡剤、もしくは窒素、炭酸ガス、アルゴン、空気、水等の無機系物理発泡剤、又はそれらから選択される2種以上の混合物が挙げられるが、なかでもオゾン層の破壊がなく且つ安価な無機系物理発泡剤が好ましく、その観点から、さらに窒素、空気、又は炭酸ガスを主成分とすることがさらに好ましい。
本発明においては、物理発泡剤の主成分が炭酸ガスであることが最も好ましい。物理発泡剤の主成分が炭酸ガスであれば、発泡性ポリ乳酸系樹脂粒子の基材樹脂であるポリ乳酸系樹脂との相溶性が高いので見かけ密度の小さい発泡粒子を得るのに適した発泡性ポリ乳酸系樹脂粒子となる。
また、含浸された炭酸ガスは発泡性ポリ乳酸系樹脂粒子から適度な速度で逸散するので、本発明において物理発泡剤を逸散させるのに適しており、発泡性ポリ乳酸系樹脂粒子を発泡させて得られるポリ乳酸系樹脂発泡粒子の表層部と中央部の結晶化度を調整しやすくなる。前記「物理発泡剤の主成分が炭酸ガスである」とは、物理発泡剤の60mol%以上が炭酸ガスであることを意味し、より好ましくは、70mol%以上、さらに好ましくは80mol%以上である。
(1) Physical foaming agent impregnation step The physical foaming agent impregnation step is a step of impregnating 100 parts by weight of the polylactic acid resin particles with 1 part by weight or more of a physical foaming agent.
(I) Physical foaming agent As the physical foaming agent, conventionally known ones, propane, isobutane, normal butane, isohexane, normal hexane, cyclobutane, cyclohexane, isopentane, normal pentane, cyclopentane, trichlorofluoromethane, dichlorodifluoromethane, Chlorofluoromethane, trifluoromethane, 1,1,1,2-tetrafluoroethane, 1-chloro-1,1-difluoroethane, 1,1-difluoroethane, 1-chloro-1,2,2,2-tetrafluoro Examples include organic physical foaming agents such as ethane, or inorganic physical foaming agents such as nitrogen, carbon dioxide, argon, air, and water, or a mixture of two or more selected from them. And an inexpensive inorganic physical foaming agent is preferable. , Or it is further preferable that the carbon dioxide as a main component.
In the present invention, the main component of the physical foaming agent is most preferably carbon dioxide. If the main component of the physical foaming agent is carbon dioxide, it is highly compatible with the polylactic acid resin, which is the base resin of the expandable polylactic acid resin particles, so it is suitable for obtaining expanded particles with a low apparent density. Polylactic acid resin particles.
Further, since the impregnated carbon dioxide gas escapes from the foamable polylactic acid resin particles at an appropriate rate, it is suitable for dissipating the physical foaming agent in the present invention, and the foamable polylactic acid resin particles are foamed. It becomes easy to adjust the crystallinity of the surface layer part and the center part of the polylactic acid-based resin foamed particles obtained by the treatment. The phrase “the main component of the physical foaming agent is carbon dioxide” means that 60 mol% or more of the physical foaming agent is carbon dioxide, more preferably 70 mol% or more, and even more preferably 80 mol% or more. .

(ロ)物理発泡剤の含浸方法
次に、前記ポリ乳酸系樹脂粒子に物理発泡剤を含浸させる含浸例について説明する。
物理発泡剤の含浸方法としては、ポリ乳酸系樹脂粒子を押出機によるペレタイズ工程にて製造する際に押出機中に物理発泡剤を圧入する方法により、ポリ乳酸系樹脂粒子の製造と該発泡剤の含浸を1つの工程で行うことも可能であるが、物理発泡剤の含浸量の調整、物理発泡剤の含浸温度の調整、発泡性樹脂粒子の後述する結晶化度の調整などの観点から、水性媒体中でポリ乳酸系樹脂粒子に物理発泡剤を含浸させる方法が好ましい。この場合、密閉容器内に水性媒体と樹脂粒子とを入れて、次いで密閉容器内に物理発泡剤を圧入して攪拌することにより樹脂粒子に物理発泡剤を含浸させることができる。
上記水性媒体としては、好ましくは水が使用され、より好ましくはイオン交換水が使用されるが、水に限らずポリ乳酸系樹脂を溶解せず且つ樹脂粒子の分散が可能な水性媒体であれば使用することができる。水以外の水性媒体としては、例えば、エチレングリコール、グリセリン、メタノール、エタノール等が挙げられる。水性媒体には、水と有機溶媒、例えば前記アルコールとの混合液が包含される。
物理発泡剤の含浸温度は、好ましくは10〜50℃、更に好ましくは20〜40℃である。含浸の操作性と効率を考慮すると前記温度範囲が好ましい。また前記温度範囲であれば、樹脂粒子の結晶化度を適度に促進させることができ、結晶化の調整が容易である。
また、樹脂粒子への物理発泡剤を含浸させる際における気相含浸時の樹脂粒子雰囲気、或いは液層含浸時の密閉容器気層部の物理発泡剤の圧力は、目的とする発泡粒子の見かけ密度(発泡倍率)によっても変わってくるが、通常は0.5〜5.0MPa(G)であり、含浸時間は0.2〜7時間程度である。
(B) Impregnation method of physical foaming agent Next, an impregnation example in which the polylactic acid resin particles are impregnated with a physical foaming agent will be described.
As the impregnation method of the physical foaming agent, when the polylactic acid resin particles are produced in the pelletizing process by an extruder, the physical foaming agent is pressed into the extruder to produce the polylactic acid resin particles and the foaming agent. It is also possible to perform the impregnation in one step, but from the viewpoint of adjusting the impregnation amount of the physical foaming agent, adjusting the impregnation temperature of the physical foaming agent, adjusting the crystallinity of the foamable resin particles described later, and the like. A method in which polylactic acid resin particles are impregnated with a physical foaming agent in an aqueous medium is preferred. In this case, the resin particles can be impregnated with the physical foaming agent by placing the aqueous medium and the resin particles in the airtight container, and then pressing the physical foaming agent into the airtight container and stirring.
As the aqueous medium, water is preferably used, and more preferably ion-exchanged water. However, the aqueous medium is not limited to water, and any aqueous medium that does not dissolve the polylactic acid resin and can disperse the resin particles. Can be used. Examples of the aqueous medium other than water include ethylene glycol, glycerin, methanol, ethanol, and the like. The aqueous medium includes a mixed solution of water and an organic solvent such as the alcohol.
The impregnation temperature of the physical foaming agent is preferably 10 to 50 ° C, more preferably 20 to 40 ° C. Considering the operability and efficiency of impregnation, the above temperature range is preferable. Moreover, if it is the said temperature range, the crystallinity degree of the resin particle can be accelerated | stimulated moderately, and adjustment of crystallization is easy.
The pressure of the physical foaming agent in the gas phase impregnation during the gas phase impregnation when impregnating the resin particles with the physical foaming agent or the liquid layer impregnation is the apparent density of the target foamed particles. Although it varies depending on (foaming ratio), it is usually 0.5 to 5.0 MPa (G), and the impregnation time is about 0.2 to 7 hours.

(ハ)発泡剤の含浸量
物理発泡剤の含浸量は、次の工程である物理発泡剤の逸散による逸散分も考慮した量を含浸させておく必要がある。物理発泡剤の含浸量はポリ乳酸系樹脂粒子100重量部に対して1重量部以上、好ましくは2重量部以上、更に好ましくは3重量部以上である。
なお、含浸量の上限は、本願請求項1に記載の通り物理発泡剤の10〜60重量%を逸散させて樹脂粒子の発泡剤含浸量が3.9重量%以下とすることから、ポリ乳酸樹脂100重量部に対して概ね10重量部である。含浸量が1重量部未満の場合には、物理発泡剤逸散後に加熱発泡させる際に発泡性樹脂粒子を十分に発泡させられないおそれがあり、一方、多すぎる場合には、物理発泡剤の逸散の際に処理時間が長くかかったり、或いは樹脂粒子の結晶化が進行し易くなるため得られた発泡粒子の型内成形時の融着性が不十分になる虞がある。
樹脂粒子100重量部に対する物理発泡剤の含浸量(重量部)は下記(3)式により求められる。
物理発泡剤含浸量(重量部)=[(物理発泡剤含浸後のポリ乳酸系樹脂粒子重量−物理発泡剤含浸前のポリ乳酸系樹脂粒子重量)/物理発泡剤含浸前のポリ乳酸系樹脂粒子重量]×100(重量部)・・・(3)
上記(3)式における物理発泡剤含浸後のポリ乳酸系樹脂粒子の重量とは、物理発泡剤が含浸されて大気圧中に取り出されてから10分経過後に測定される物理発泡剤含浸ポリ乳酸系樹脂粒子の重量をいう。なお、密閉容器内にて水性媒体中でポリ乳酸系樹脂粒子に物理発泡剤を含浸させた場合の物理発泡剤含浸後のポリ乳酸系樹脂粒子の重量は、物理発泡剤含浸後、大気圧中に取り出して樹脂粒子表面の水分をエアーや遠心分離機などにて除去してから測定される物理発泡剤含浸ポリ乳酸系樹脂粒子の重量であり、大気圧中に取り出されてから10分経過後に測定される。
(C) Impregnation amount of foaming agent The impregnation amount of the physical foaming agent needs to be impregnated in an amount that also takes into account the dissipation due to the dissipation of the physical foaming agent in the next step. The impregnation amount of the physical foaming agent is 1 part by weight or more, preferably 2 parts by weight or more, and more preferably 3 parts by weight or more with respect to 100 parts by weight of the polylactic acid resin particles.
The upper limit of the impregnation amount is 10 to 60% by weight of the physical foaming agent as described in claim 1 of the present invention, so that the resin particle foaming agent impregnation amount is 3.9% by weight or less. The amount is approximately 10 parts by weight with respect to 100 parts by weight of the lactic acid resin. If the impregnation amount is less than 1 part by weight, the foamable resin particles may not be sufficiently foamed when heated and foamed after dissipation of the physical foaming agent. There is a possibility that the treatment time takes a long time during the dissipation or the crystallization of the resin particles is easy to proceed, so that the fusion property at the time of in-mold molding of the obtained foamed particles may be insufficient.
The amount of impregnation (parts by weight) of the physical foaming agent with respect to 100 parts by weight of the resin particles is obtained by the following equation (3).
Physical foaming agent impregnation amount (parts by weight) = [(polylactic acid resin particle weight after physical foaming agent impregnation−polylactic acid resin particle weight before physical foaming agent impregnation) / polylactic acid resin particles before physical foaming agent impregnation Weight] × 100 (parts by weight) (3)
The weight of the polylactic acid-based resin particles impregnated with the physical foaming agent in the above formula (3) is the physical foaming agent-impregnated polylactic acid measured 10 minutes after the physical foaming agent is impregnated and taken out to the atmospheric pressure This refers to the weight of resin particles. The weight of the polylactic acid resin particles after impregnation with the physical foaming agent when the polylactic acid resin particles are impregnated with the physical foaming agent in an aqueous medium in an airtight container is the atmospheric pressure after impregnation with the physical foaming agent. It is the weight of the physical foaming agent impregnated polylactic acid resin particles measured after removing the moisture on the surface of the resin particles with air or a centrifuge, and after 10 minutes have passed since being taken out to atmospheric pressure. Measured.

(ニ)物理発泡剤として炭酸ガスの使用をした場合
以下、物理発泡剤として炭酸ガスを使用する場合について説明する。
炭酸ガスの含浸量は、上記したのと同様に、ポリ乳酸系樹脂100重量部に対して1重量部以上、好ましくは2重量部以上、更に好ましくは3重量部以上である。含浸量が前記1重量部未満の場合には、発泡剤逸散後の発泡の際に十分に樹脂粒子を発泡させられない虞があり、一方、含浸量が多すぎる場合には、次の発泡剤逸散の際に処理時間が長くかかったり、或いはポリ乳酸系樹脂中に炭酸ガスが含浸されるとガラス転移温度が低下する結果、相対的に結晶化速度が速くなるので、結晶化が過度に進行して後工程で得られる発泡粒子の型内成形時の融着性が不十分となる虞がある。
(D) When carbon dioxide gas is used as the physical foaming agent Hereinafter, the case where carbon dioxide gas is used as the physical foaming agent will be described.
The amount of carbon dioxide impregnation is 1 part by weight or more, preferably 2 parts by weight or more, and more preferably 3 parts by weight or more with respect to 100 parts by weight of the polylactic acid resin, as described above. When the impregnation amount is less than 1 part by weight, there is a possibility that the resin particles may not be sufficiently foamed during foaming after dissipation of the foaming agent. When the agent escapes, the treatment time takes a long time, or if carbon dioxide gas is impregnated into the polylactic acid resin, the glass transition temperature is lowered, resulting in a relatively high crystallization speed. There is a possibility that the fusibility at the time of in-mold molding of the foamed particles obtained in the subsequent process will be insufficient.

炭酸ガスの含浸温度は、上記したと同様に、好ましくは10〜50℃、更に好ましくは20〜40℃である。含浸の操作性と効率を考慮すると前記温度範囲が好ましい。また前記温度範囲であれば、樹脂粒子の結晶化を抑制するように調整することが容易である。
特に、発泡剤に炭酸ガスを使用する場合の含浸温度は、炭酸ガスの樹脂粒子に対する含浸量をX(重量%)とすると、(−0.6X+50)℃以下の温度であることが好ましい。(−0.6X+50)℃を超えると、特に結晶性の高いポリ乳酸系樹脂では結晶化が極端に進行して所定の発泡倍率が得られなくなる場合がある。また、後工程で得られる発泡粒子を型内成形する際に、発泡粒子の膨張性、発泡粒子相互の融着性が低下する場合にはより高温で成形しなければならず、それにより表面が凹凸状の発泡粒子成形体となる場合がある。
また、樹脂粒子に炭酸ガスを含浸させる際の気相含浸時の樹脂粒子雰囲気、或いは液層含浸時の密閉容器気層部の炭酸ガス発泡剤の圧力は、目的とする発泡粒子の見かけ密度(発泡倍率)によっても変わってくるが、通常は0.5〜5.0MPa(G)であり、含浸時間は0.2〜7時間程度である。
The carbon dioxide impregnation temperature is preferably 10 to 50 ° C., more preferably 20 to 40 ° C., as described above. Considering the operability and efficiency of impregnation, the above temperature range is preferable. Moreover, if it is the said temperature range, it will be easy to adjust so that crystallization of a resin particle may be suppressed.
In particular, when carbon dioxide is used as the foaming agent, the impregnation temperature is preferably (−0.6X + 50) ° C. or lower, where X (weight%) represents the amount of carbon dioxide impregnated with respect to the resin particles. When the temperature exceeds (−0.6X + 50) ° C., the crystallization is extremely advanced particularly in a highly crystalline polylactic acid resin, and a predetermined foaming ratio may not be obtained. In addition, when foamed particles obtained in a subsequent process are molded in the mold, if the expandability of the foamed particles and the fusion property between the foamed particles are reduced, the foamed particles must be molded at a higher temperature. In some cases, it may be an uneven foamed particle molded body.
Further, the pressure of the carbon dioxide foaming agent in the gas phase impregnation at the time of gas phase impregnation when impregnating the resin particles with carbon dioxide or the gas phase impregnation in the liquid container impregnation is determined by the apparent density ( Usually, it is 0.5 to 5.0 MPa (G), and the impregnation time is about 0.2 to 7 hours.

(ホ)融着性改良剤の使用
発泡剤を含浸させる際にポリ乳酸系樹脂中に融着性改良剤が含有されていなくとも、本発明の製法により得られた発泡性ポリ乳酸系樹脂粒子を発泡させて得られたポリ乳酸系樹脂発泡粒子を成形する際に、融着性の高い発泡粒子成形体を製造することが可能であるが、本発明の発泡性ポリ乳酸系樹脂粒子に発泡剤を含浸させる際に、更なる融着性向上を目的としてポリ乳酸系樹脂中に融着性改良剤を含有させることもできる。
融着性改良剤を含有する発泡性樹脂粒子を用いる場合、表層部近傍の融着性改良剤の含有量が発泡粒子中央部近傍の含有量より多いことがより好ましく、表層部近傍のみに融着性改良剤が存在することが更に好ましい。
ここで融着性改良剤とは、ポリ乳酸系樹脂に含有させることによりポリ乳酸系樹脂のガラス転移温度を低下させる機能を有するものをいう。具体的なガラス転移温度の低下度合は、使用する融着性改良剤の種類と量にもよるが、中間点ガラス転移温度を0.5〜20℃低下させるものが好ましく、1〜15℃低下させるものがより好ましい。尚、前記中間点ガラス転移温度は、後述する測定方法により測定される値である。
融着性改良剤としては、ポリ乳酸系樹脂の可塑剤として用いられているものが挙げられ、グリセリン脂肪酸エステル等のグリセリン誘導体、エーテルエステル誘導体、グリコール酸誘導体、クエン酸誘導体、アジピン酸誘導体、ロジン誘導体、テトラヒドロフルフリルアルコール誘導体から選ばれた単一または複数の混合物が好ましく挙げられる。
(E) Use of fusibility improver Expandable polylactic acid resin particles obtained by the production method of the present invention even when no fusibility improver is contained in the polylactic acid resin when impregnating the foaming agent When foaming polylactic acid resin foamed particles obtained by foaming a foam, it is possible to produce a foamed molded article with high fusibility, but the foamed polylactic acid resin particles of the present invention are foamed. When the agent is impregnated, a fusion improver may be contained in the polylactic acid resin for the purpose of further improving the fusion property.
When using expandable resin particles containing a fusibility improver, it is more preferable that the content of the fusibility improver in the vicinity of the surface layer portion is larger than the content in the vicinity of the center portion of the foamed particle, and only in the vicinity of the surface layer portion. More preferably, an adhesion improver is present.
Here, the fusing property improving agent means one having a function of lowering the glass transition temperature of the polylactic acid resin by being contained in the polylactic acid resin. The specific degree of decrease in the glass transition temperature depends on the type and amount of the fusibility improver used, but it is preferable to decrease the midpoint glass transition temperature by 0.5 to 20 ° C., and decrease by 1 to 15 ° C. What is made to do is more preferable. In addition, the said midpoint glass transition temperature is a value measured by the measuring method mentioned later.
Examples of the fusibility improver include those used as plasticizers for polylactic acid resins. Glycerin derivatives such as glycerin fatty acid esters, ether ester derivatives, glycolic acid derivatives, citric acid derivatives, adipic acid derivatives, rosin Preferred examples include single or plural mixtures selected from derivatives and tetrahydrofurfuryl alcohol derivatives.

ポリ乳酸系樹脂粒子に融着改良剤を含有させる方法としては、例えば、発泡剤の含浸の際に、或いは含浸前やその後に融着改良剤を樹脂粒子に含有させる方法が挙げられる。
また後述する発泡性樹脂粒子の発泡の際に、樹脂粒子を発泡機を用いて加熱媒体にて発泡させる場合、例えば、融着性改良剤を発泡機中の樹脂粒子の表面に付着させるように霧状に吹付けると同時に或いは霧状に吹付けた後に加熱媒体を発泡機に導入して発泡させる方法や、融着性改良剤を添加した加熱媒体を発泡機に導入して発泡させながら、融着改良剤を樹脂粒子の表面に吹き付ける方法が挙げられる。更には、発泡終了後に発泡粒子の表面に付着させるように霧状に吹付けても良い。
Examples of the method for incorporating the fusion improver into the polylactic acid resin particles include a method of incorporating the fusion improver into the resin particles at the time of impregnation with the foaming agent, or before or after the impregnation.
Also, when foaming resin particles, which will be described later, is foamed with a heating medium using a foaming machine, for example, a fusing improver is adhered to the surface of the resin particles in the foaming machine. While spraying in the form of mist or after spraying in the form of mist, the heating medium is introduced into the foaming machine and foamed, or the heating medium added with the fusing property improving agent is introduced into the foaming machine and foamed. The method of spraying a fusion improving agent on the surface of the resin particle is mentioned. Furthermore, you may spray in the shape of a mist so that it may adhere to the surface of a foamed particle after completion | finish of foaming.

(2)物理発泡剤の逸散工程
物理発泡剤の逸散工程は、物理発泡剤を含浸させたポリ乳酸系樹脂粒子中の物理発泡剤の一部を逸散させる工程である。該逸散により、含浸樹脂粒子の表層部近傍の発泡剤濃度が発泡粒子中央部近傍の発泡剤濃度より低くなる結果、後工程で発泡性樹脂粒子を発泡させた際に中央部近傍の結晶化が表層部近傍よりも相対的に進んでいる発泡粒子が得られる。そのため該逸散後に発泡性樹脂粒子を発泡して得られる発泡粒子の表層部(S)の結晶化度は、比較的低く維持することができる為、発泡粒子が型内成形において加熱された際に、発泡粒子が相互に融着し易いものとなり、融着性に優れた発泡粒子を得ることが可能になる。
(2) Dissipation process of physical foaming agent The physical foaming agent dissipation process is a process of dissipating a part of the physical foaming agent in the polylactic acid resin particles impregnated with the physical foaming agent. As a result of the dissipation, the foaming agent concentration in the vicinity of the surface layer portion of the impregnated resin particles becomes lower than the foaming agent concentration in the vicinity of the center portion of the foamed particles. Is obtained, which is relatively advanced from the vicinity of the surface layer portion. Therefore, since the crystallinity of the surface layer portion (S B ) of the expanded particles obtained by expanding the expandable resin particles after the dissipation can be maintained relatively low, the expanded particles were heated in the in-mold molding. At this time, the foamed particles are easily fused to each other, and it is possible to obtain foamed particles having excellent meltability.

物理発泡剤の逸散方法を以下に例示する。
樹脂粒子への発泡剤含浸操作終了後に密閉容器から、発泡剤含浸樹脂粒子を取り出して水性媒体を除去乾燥後、大気圧下又は減圧下に静置する方法、水性媒体を除去後容器に発泡剤含浸樹脂粒子を投入してその容器の一端から不活性ガス等の置換気体を導入し発泡剤を強制的に逸散させる方法、発泡剤含浸終了後に密閉容器から発泡剤含浸樹脂粒子を取り出さずに密閉容器の圧力を開放し又は発泡剤含浸終了後に密閉容器から発泡剤含浸樹脂粒子を取り出して他の容器に移した後に、水性媒体中に懸濁させた状態で発泡剤を逸散させる方法等が挙げられる。発泡剤含浸樹脂粒子の表層部近傍の発泡剤をより効率良く逸散するためには、大気圧下に静置する方法、又は不活性ガス等の置換気体を容器内に導入して発泡剤を逸散させる方法が好ましい。
The method for escaping the physical foaming agent is illustrated below.
After the operation of impregnating the foaming agent into the resin particles, the foaming agent-impregnated resin particles are taken out from the sealed container, the aqueous medium is removed and dried, and then left to stand under atmospheric pressure or reduced pressure. After the aqueous medium is removed, the foaming agent is removed from the container. A method of introducing impregnated resin particles and introducing a replacement gas such as an inert gas from one end of the container to forcibly disperse the foaming agent, without removing the foaming agent-impregnated resin particles from the sealed container after the impregnation of the foaming agent A method of releasing the foaming agent in a suspended state in an aqueous medium after releasing the pressure of the airtight container or after taking out the foaming agent-impregnated resin particles from the airtight container and transferring it to another container Is mentioned. In order to dissipate the foaming agent in the vicinity of the surface layer of the foaming agent-impregnated resin more efficiently, the foaming agent is introduced by introducing a replacement gas such as a method of standing under atmospheric pressure or an inert gas into the container. A method of dissipating is preferred.

物理発泡剤を逸散させる際の雰囲気温度は、0℃から40℃であることが好ましい。逸散温度が0℃以上であれば、工業的に短時間で逸散することが可能であり、一方、40℃以下であれば、目的とする発泡剤の逸散量が調整しやすいので、後工程にて得られる本発明のポリ乳酸系樹脂発泡粒子の表層部の発熱量(Bs:J/g)が中央部の発熱量(Bc:J/g)より大きくなるように、発泡剤含浸樹脂粒子の表層部に存在する発泡剤の濃度を内部に存在する発泡剤の濃度より効率的に低くすることができる。より好ましい発泡剤の逸散温度は10℃から30℃である。
また、逸散処理の圧力は、物理発泡剤含浸時の物理発泡剤の分圧よりも低い必要があるが、その圧力は物理発泡剤含浸時の発泡剤分圧の半分以下が好ましく、より好ましくは大気圧以下である。また、これらの条件で含浸させた物理発泡剤の10〜60重量%を逸散させて発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子とする。発泡剤逸散率が10〜60重量%で、発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子であれば、発泡剤逸散工程を経たポリ乳酸系樹脂粒子の表層部近傍の発泡剤の量が中央部近傍の発泡剤の量より濃度が低く維持され、その結果、表層部の結晶化が進行しづらいものとなることにより、後工程にて得られる発泡粒子の表層部の結晶化が抑制され、該発泡粒子を型内成形する際、発泡粒子は相互に融着しやすいものとなる。かかる観点から、発泡剤逸散率は20重量%から50重量%がより好ましい。
なお、ポリ乳酸系樹脂粒子に含浸させた物理発泡剤のうち逸散させた物理発泡剤の割合を表す「発泡剤逸散率」は以下、下記(4)式で求められる値である。
発泡剤逸散率(重量%)=[(物理発泡剤含浸量(g)−逸散後の物理発泡剤含浸量(g))/(物理発泡剤含浸量(g))]×100・・(4)
式(4)において、物理発泡剤含浸量とは逸散工程に使用する物理発泡剤含浸樹脂粒子重量(g)から、物理発泡剤含浸前の樹脂粒子重量(g)を引いた値である。逸散後の物理発泡剤含浸量とは逸散後の物理発泡剤含浸樹脂粒子重量(g)から、物理発泡剤含浸前の樹脂粒子重量(g)を引いた値である。ここでいう逸散後とは、逸散工程終了時から10分経過後を意味する。なお、水性媒体中に懸濁させた状態で物理発泡剤を逸散させる方法により、物理発泡剤を逸散させた場合は、樹脂粒子を逸散工程終了後、直ちに大気圧中に取り出し樹脂粒子表面の水分をエアーなどにて除去したものを対象に、大気圧中に取り出されてから10分経過後の樹脂粒子重量を測定して逸散後の樹脂粒子重量(g)を求めることとする。
The ambient temperature when the physical foaming agent is dispersed is preferably 0 ° C to 40 ° C. If the dissipation temperature is 0 ° C or higher, it is possible to dissipate industrially in a short time. On the other hand, if it is 40 ° C or lower, the amount of dissipation of the target foaming agent is easy to adjust. Impregnated with a foaming agent so that the calorific value (Bs: J / g) of the surface layer portion of the polylactic acid-based resin foamed particles of the present invention obtained in the subsequent step is larger than the calorific value (Bc: J / g) of the central portion. The density | concentration of the foaming agent which exists in the surface layer part of the resin particle can be efficiently made lower than the density | concentration of the foaming agent which exists inside. More preferably, the dissipation temperature of the blowing agent is 10 ° C to 30 ° C.
Further, the pressure for the dissipation treatment needs to be lower than the partial pressure of the physical foaming agent when impregnated with the physical foaming agent, but the pressure is preferably less than half of the partial pressure of the foaming agent when impregnated with the physical foaming agent, more preferably Is below atmospheric pressure. Further, 10 to 60% by weight of the physical foaming agent impregnated under these conditions is dissipated to obtain expandable polylactic acid resin particles having a foaming agent impregnation amount of 3.9% by weight or less. If the foamable polylactic acid resin particles have a foaming agent dissipation rate of 10 to 60% by weight and a foaming agent impregnation amount of 3.9% by weight or less, the surface layer of the polylactic acid resin particles after the foaming agent dissipation step The amount of the foaming agent in the vicinity of the part is kept lower than the amount of the foaming agent in the vicinity of the central part, and as a result, the crystallization of the surface layer part becomes difficult to proceed, so that the foamed particles obtained in the subsequent step Crystallization of the surface layer portion is suppressed, and when the foamed particles are molded in the mold, the foamed particles are easily fused to each other. From this viewpoint, the foaming agent dissipation rate is more preferably 20% by weight to 50% by weight.
The “foaming agent dissipation rate” representing the proportion of the physical foaming agent dissipated among the physical foaming agents impregnated in the polylactic acid resin particles is a value determined by the following formula (4).
Foaming agent dissipation rate (% by weight) = [(physical foaming agent impregnation amount (g) −physical foaming agent impregnation amount (g)) / (physical foaming agent impregnation amount (g))] × 100 (4)
In the formula (4), the physical foaming agent impregnation amount is a value obtained by subtracting the resin particle weight (g) before impregnating the physical foaming agent from the physical foaming agent impregnated resin particle weight (g) used in the dissipation step. The amount of physical foaming agent impregnation after dissipation is a value obtained by subtracting the weight (g) of resin particles before impregnation with the physical foaming agent from the weight (g) of physical foaming agent impregnation resin particles after dissipation. The term “after dissipating” here means that 10 minutes have elapsed since the end of the dissipating process. In addition, when the physical foaming agent is dissipated by the method of dissipating the physical foaming agent in a state of being suspended in an aqueous medium, the resin particles are immediately taken out to the atmospheric pressure after the dissipation process is finished. Measure the resin particle weight (g) after evacuation by measuring the weight of the resin particles after 10 minutes from the removal of the surface moisture with air etc. .

発泡剤を逸散させる際の湿度条件は、好ましくは40%相対湿度(RH)以上、より好ましくは50%RH以上である。湿度条件が40%RH以上であると逸散処理後に得られる発泡性樹脂粒子の含水率を例えば0.5重量%以上の高い値に維持することができ、このような発泡性樹脂粒子を発泡して得られたポリ乳酸系樹脂発泡粒子は表層厚みのより大きいものとなるため、ポリ乳酸系樹脂発泡粒子の耐熱性が向上するので発泡粒子の型内成形時において良好な発泡粒子成形体が得られる加熱温度範囲を広げることができる。かかる観点から、発泡剤を逸散させる際の湿度条件は、より好ましくは50%RH以上である。尚、ポリ乳酸系樹脂組成物の常態における含水率は0.5重量%未満である。
上記した物理発泡剤の逸散温度と逸散率にするには、発泡剤の逸散処理時間は、概ね30分以上6時間以下であることが好ましく、より好ましくは1時間以上5時間以下である。処理時間が30分以上6時間以下であれば、発泡剤の逸散が行なわれるのに十分であり、また、発泡に十分な発泡剤を残すことができる。
The humidity condition for dissipating the foaming agent is preferably 40% relative humidity (RH) or more, more preferably 50% RH or more. When the humidity condition is 40% RH or more, the moisture content of the expandable resin particles obtained after the dissipation treatment can be maintained at a high value of 0.5% by weight or more, for example. Since the polylactic acid resin foam particles obtained in this way have a larger surface layer thickness, the heat resistance of the polylactic acid resin foam particles is improved. The heating temperature range obtained can be expanded. From this point of view, the humidity condition when the foaming agent is dissipated is more preferably 50% RH or more. In addition, the water content in the normal state of a polylactic acid-type resin composition is less than 0.5 weight%.
In order to obtain the dissipation temperature and dissipation rate of the physical foaming agent described above, the dissipation treatment time of the foaming agent is preferably approximately 30 minutes to 6 hours, more preferably 1 hour to 5 hours. is there. If the treatment time is 30 minutes or more and 6 hours or less, it is sufficient to dissipate the foaming agent, and sufficient foaming agent can be left for foaming.

また、逸散処理温度(℃)と処理時間(時間)の積が、10(℃・時間)以上200(℃・時間)以下となる様な温度と時間の条件が好ましく、更には20(℃・時間)以上150(℃・時間)以下となる様な温度と時間の条件が好ましく、30(℃・時間)以上100(℃・時間)以下となる様な温度と時間の条件が最も好ましい。 The temperature and time conditions are preferably such that the product of the dissipation treatment temperature (° C.) and the treatment time (hour) is 10 (° C. · hour) or more and 200 (° C. · hour) or less, more preferably 20 (° C. The temperature and time conditions are preferably such that the time is not less than 150 (° C./hour), and the temperature and time conditions are most preferably not less than 30 (° C. · hour) and not more than 100 (° C. · hour).

(3)発泡性ポリ乳酸系樹脂粒子について
発泡性ポリ乳酸系樹脂粒子は、ポリ乳酸系樹脂粒子100重量部に対し物理発泡剤を1重量部以上含浸後、該物理発泡剤が含浸された発泡性ポリ乳酸系樹脂粒子を温度0〜40℃の条件下に曝して物理発泡剤の一部を逸散させて物理発泡剤の逸散率を10〜60重量%で発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子とすることにより得られる。このことにより、発泡性ポリ乳酸系樹脂粒子の表層部近傍からの逸散が必然的に多くなり、樹脂粒子の表層部近傍の発泡剤濃度は中央部近傍の発泡剤濃度より低くなる。
また、有機系物理発泡剤や炭酸ガス等の無機系物理発泡剤等が含有されるとポリ乳酸系の樹脂組成物は、ガラス転移温度が低下するため結晶化が進みやすい状態となる。その結果、逸散工程を経ることによって発泡性ポリ乳酸系樹脂粒子の表層部近傍は中央部近傍よりも結晶化が進みにくい状態となり、後の発泡工程を経て得られる発泡粒子において、発泡粒子中央部近傍の結晶化度は表層部近傍の結晶化度よりは相対的に高くなる。このことは、発泡性ポリ乳酸系樹脂粒子の粒子が小さいために物理発泡剤の濃度分布を直接確認することは困難であるが、発泡性ポリ乳酸系樹脂粒子を発泡して得られるポリ乳酸系樹脂発泡粒子の中央部と表層部との後述する発熱量の対比により確認することが可能である。
(3) Expandable polylactic acid resin particles Expandable polylactic acid resin particles are foamed by impregnating 100 parts by weight of polylactic acid resin particles with at least 1 part by weight of a physical foaming agent and then impregnating the physical foaming agent. The polylactic acid-based resin particles are exposed to a temperature of 0 to 40 ° C. to dissipate a part of the physical foaming agent, the dissipation factor of the physical foaming agent is 10 to 60% by weight, and the amount of foaming agent impregnation is 3. It can be obtained by using expandable polylactic acid resin particles of 9% by weight or less. This inevitably increases the dissipation from the vicinity of the surface layer portion of the expandable polylactic acid-based resin particles, and the concentration of the blowing agent in the vicinity of the surface layer portion of the resin particles is lower than the concentration of the blowing agent in the vicinity of the central portion.
In addition, when an inorganic physical foaming agent such as an organic physical foaming agent or carbon dioxide gas is contained, the polylactic acid resin composition is in a state in which crystallization is likely to proceed because the glass transition temperature is lowered. As a result, by passing through the dissipation step, the vicinity of the surface layer portion of the expandable polylactic acid-based resin particles becomes more difficult to crystallize than the vicinity of the center portion, and in the expanded particle obtained through the subsequent expansion step, the center of the expanded particle The crystallinity in the vicinity of the portion is relatively higher than the crystallinity in the vicinity of the surface layer portion. This is because it is difficult to directly check the concentration distribution of the physical foaming agent because the foamable polylactic acid resin particles are small, but the polylactic acid resin obtained by foaming the foamable polylactic acid resin particles. It can be confirmed by comparing the calorific value described later between the central portion and the surface layer portion of the resin foam particles.

本発明の該逸散工程後に発泡性ポリ乳酸系樹脂粒子を発泡して得られる発泡粒子の表層部(S)の結晶化度は、比較的低く維持されているため、発泡粒子相互の融着性が高い発泡粒子を得ることが可能になる。さらに、厚みの厚い発泡粒子成形体、或いは複雑な形状の発泡粒子成形体を成形したとしても、中心部の発泡粒子まで相互に融着されている発泡粒子成形体を得ることも可能となる。尚、該発泡粒子を用いることにより、融着率が高い発泡粒子成形体を成形できるメカニズムは定かではないが、発泡粒子の表層部(S)の発熱量が低下しないことによると考えられる。つまり、発泡粒子表層部(S)の結晶化が進んでいないため、発泡粒子表層部が軟化しやすい状態にあり、発泡粒子同士の融着がしやすい状態となっているためと考えられる。従って、発泡粒子における表層部(S)の発熱量(Bs)が中央部(C)の発熱量(Bc)よりも大きければ、表層部(S)の結晶化が進んでいないことを示すので発泡粒子同士の融着がしやすいものとなる。また、中央部(C)の結晶化が進んでいることで、発泡粒子自体の耐熱性は向上し、型内成形による発泡粒子の収縮を抑制することができ、良好な発泡粒子成形体を得ることができる型内成形加熱温度条件の幅を広げることができる。 Since the degree of crystallinity of the surface layer portion (S B ) of the expanded particles obtained by expanding the expandable polylactic acid resin particles after the dissipation step of the present invention is maintained relatively low, It becomes possible to obtain expanded particles having high adherence. Further, even if a foamed particle molded body having a large thickness or a foamed particle molded body having a complicated shape is molded, it is also possible to obtain a foamed particle molded body in which the foamed particles at the center are mutually fused. Incidentally, by using the expanded beads, but not the mechanism is uncertain can be molded fusion rate is high foamed bead molded article, the heating value of the surface layer portion of the expanded beads (S B) is believed to be due to not decrease. That is, it is considered that since the crystallization of the foam particle surface layer portion (S B ) has not progressed, the foam particle surface layer portion is in a state of being easily softened and the foam particles are easily fused. Therefore, if the calorific value (Bs) of the surface layer part (S B ) in the expanded particles is larger than the calorific value (Bc) of the central part (C B ), it means that the crystallization of the surface layer part (S B ) has not progressed. As shown, it becomes easy to fuse the expanded particles. In addition, since the crystallization of the central portion (C B ) has progressed, the heat resistance of the expanded particles themselves can be improved, and shrinkage of the expanded particles due to in-mold molding can be suppressed. The range of in-mold molding heating temperature conditions that can be obtained can be widened.

〔3〕ポリ乳酸系樹脂発泡粒子の製造方法
ポリ乳酸系樹脂発泡粒子の製造方法は、上記発泡性ポリ乳酸系樹脂粒子の製造方法において記載した、(i)前記ポリ乳酸系樹脂粒子100重量部に対し物理発泡剤を1重量部以上含浸させる含浸工程と、(ii)該物理発泡剤が含浸されたポリ乳酸系樹脂粒子を温度0〜40℃の条件下に曝して、含浸させた物理発泡剤の10〜60重量%を逸散させて発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子とする逸散工程に続いて、(iii)発泡性ポリ乳酸系樹脂粒子を発泡させて、
ポリ乳酸系樹脂発泡粒子を得ることができる。
以下に発泡性ポリ乳酸系樹脂粒子を発泡させる工程について説明する。
[3] Method for Producing Polylactic Acid Resin Expanded Particles The method for producing polylactic acid resin foam particles is described in the above method for producing expandable polylactic acid resin particles. (I) 100 parts by weight of the polylactic acid resin particles An impregnation step of impregnating at least 1 part by weight of a physical foaming agent with respect to the liquid, and (ii) exposing the polylactic acid resin particles impregnated with the physical foaming agent to a temperature of 0 to 40 ° C. to impregnate the physical foaming (Iii) Expandable polylactic acid resin particles following the dissipation step of dispersing 10 to 60% by weight of the agent to obtain expandable polylactic acid resin particles having a foaming agent impregnation amount of 3.9% by weight or less Foam
Polylactic acid-based resin expanded particles can be obtained.
The process of foaming expandable polylactic acid resin particles will be described below.

(1)発泡工程
発泡工程では、前記物理発泡剤の逸散工程を終了した発泡性樹脂粒子を加熱し発泡させる。発泡性粒子を加熱し発泡させる方法としては、従来公知の方法が採用できる。その中でも密閉容器内に発泡性樹脂粒子を充填し水蒸気又は水蒸気と空気の混合熱媒体を導入して発泡させる方法が好ましい。又、温水に一定時間浸漬させ発泡させる方法も温水の温度調節が比較的容易なため工業的に好ましい。尚、密閉容器には、加熱媒体を排気させる開孔弁が備わっていると、密閉容器内の雰囲気温度を容易に一定に保つことができ、見かけ密度が均一な発泡粒子が得られ易い。
(1) Foaming Step In the foaming step, the foamable resin particles that have finished the physical foaming agent dissipation step are heated and foamed. As a method of heating and foaming the expandable particles, a conventionally known method can be employed. Among them, a method in which foamed resin particles are filled in a sealed container and foamed by introducing water vapor or a mixed heat medium of water vapor and air is preferable. Also, the method of foaming by immersing in warm water for a certain time is industrially preferable because the temperature of the warm water is relatively easy to adjust. In addition, if the airtight container is provided with an opening valve for exhausting the heating medium, the atmospheric temperature in the airtight container can be easily maintained constant, and it is easy to obtain expanded particles having a uniform apparent density.

前記方法において、発泡剤が含浸されている発泡性樹脂粒子を加熱する際の温度条件、すなわち発泡温度は、基材樹脂の中間点ガラス転移温度をTgとすると、通常、基材樹脂の(Tg−50)℃〜(Tg+50)℃が好ましく、(Tg−40)℃〜(Tg+40)℃がより好ましい。発泡温度が(Tg−50)℃未満であると、十分な発泡が起こり難く、また(Tg+50)℃を超えると発泡粒子の独立気泡率が低下してしまい良好な型内成形性を示す発泡粒子が得られづらいという問題が生ずる。発泡剤が基材樹脂に含浸することにより基材樹脂の中間点ガラス転移温度以下においても発泡する。特に、発泡剤が炭酸ガスの場合には、発泡温度は基材樹脂の(Tg−40)℃〜(Tg+40)℃が好ましく、(Tg−30)℃〜(Tg+30)℃がより好ましい。 In the above method, the temperature condition for heating the foamable resin particles impregnated with the foaming agent, that is, the foaming temperature is usually (Tg of the base resin, where Tg is the midpoint glass transition temperature of the base resin. −50) ° C. to (Tg + 50) ° C. is preferable, and (Tg−40) ° C. to (Tg + 40) ° C. is more preferable. When the foaming temperature is less than (Tg-50) ° C., sufficient foaming is difficult to occur, and when it exceeds (Tg + 50) ° C., the closed cell ratio of the foamed particles is reduced and the foamed particles exhibit good moldability. This causes a problem that it is difficult to obtain. When the foaming agent is impregnated into the base resin, foaming occurs even at a temperature equal to or lower than the midpoint glass transition temperature of the base resin. In particular, when the foaming agent is carbon dioxide, the foaming temperature is preferably (Tg-40) ° C to (Tg + 40) ° C, more preferably (Tg-30) ° C to (Tg + 30) ° C.

尚、本明細書において基材樹脂の中間点ガラス転移温度(Tg)の測定はJIS K 7121(1987年)に基づく熱流束示差走査熱量測定により得られるDSC曲線の中間点ガラス転移温度として求められる値である。より具体的には、中間点ガラス転移温度(Tg)の測定は、JIS K7121(1987年)の3.試験片の状態調節(3)記載の「一定の熱処理を行った後、ガラス転移温度を測定する場合」に準拠して試験片をDSC装置の容器に入れ、融解ピーク終了時より30℃高い温度まで加熱速度10℃/minにて昇温して加熱溶解させ、その温度に10分保持した後、0℃まで冷却速度10℃/minにて冷却する状態調整を行ない、次に加熱速度10℃/minにて0℃から融解ピーク終了時より30℃高い温度まで昇温したときに得られるDSC曲線から求められる。 In the present specification, the measurement of the midpoint glass transition temperature (Tg) of the base resin is obtained as the midpoint glass transition temperature of the DSC curve obtained by heat flux differential scanning calorimetry based on JIS K 7121 (1987). Value. More specifically, the midpoint glass transition temperature (Tg) is measured according to 3 of JIS K7121 (1987). Condition of test piece (3) According to “When measuring glass transition temperature after performing a certain heat treatment”, put the test piece into the vessel of the DSC apparatus, and a temperature 30 ° C. higher than the end of the melting peak. The temperature was raised at a heating rate of 10 ° C./min until it was dissolved by heating, held at that temperature for 10 minutes, then adjusted to 0 ° C. at a cooling rate of 10 ° C./min, and then heated at a rate of 10 ° C. It is obtained from a DSC curve obtained when the temperature is raised from 0 ° C. to 30 ° C. higher than the end of the melting peak at / min.

(2)ポリ乳酸系樹脂発泡粒子について
上記発泡により得られるポリ乳酸系樹脂発泡粒子は、見かけ密度が0.02g/cm〜0.65g/cmであり、熱流束示差走査熱量測定法にて、熱処理をおこなわず、常温から融解ピーク終了時より30℃高い温度まで加熱速度2℃/minにて加熱して溶融させる際に得られるDSC曲線における該樹脂発泡粒子の吸熱量(Bendo:J/g)と発熱量(Bexo:J/g)との比[(Bexo)/(Bendo)]が0.3超で、かつ表層部の発熱量(Bs:J/g)が中央部の発熱量(Bc:J/g)より大きいものである。
なお、ポリ乳酸系樹脂発泡粒子は、高温、多湿条件下を避けて加水分解しないような条件下で保存することが好ましい。
(2) polylactic acid resin foamed polylactic acid-based resin foamed particles obtained by the foaming for particles has an apparent density of 0.02g / cm 3 ~0.65g / cm 3 , the heat flux differential scanning calorimetry Thus, the endothermic amount of the expanded resin particles (Bendo: J) in the DSC curve obtained when heating at a heating rate of 2 ° C / min from room temperature to a temperature 30 ° C higher than the end of the melting peak without heat treatment. / G) and the calorific value (Bexo: J / g) [(Bexo) / (Bendo)] is more than 0.3, and the calorific value (Bs: J / g) of the surface layer part is the calorific value of the central part. It is larger than the amount (Bc: J / g).
In addition, it is preferable to preserve | save polylactic acid-type resin expanded particles on the conditions which do not hydrolyze avoiding high temperature and humid conditions.

(イ)見かけ密度
ポリ乳酸系樹脂発泡粒子の見かけ密度は、0.02g/cm〜0.65g/cmが好ましい。すなわち、ポリ乳酸系樹脂発泡粒子の見かけ密度は、型内成形後の収縮率が大きくなる虞を避ける観点から0.03g/cm以上が好ましく、0.04g/cm以上がより好ましい。一方、その上限は発泡粒子の密度のばらつきが大きくなり易く、型内成形にて得られる発泡粒子成形体の物性ばらつきの虞を避ける観点から0.45g/cm以下が好ましく、0.20g/cm以下がより好ましい。
尚、ポリ乳酸系樹脂発泡粒子の見かけ密度は次のように測定する。
23℃の水の入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて2日放置した500個以上の発泡粒子(発泡粒子群の重量W1)を金網などを使用して沈めて、水位上昇分より読みとられる発泡粒子群の容積V1(cm)にてメスシリンダーに入れた発泡粒子群の重量W1(g)を割り算(W1/V1)することにより求める。
(B) Apparent Density Apparent density expanded polylactic acid resin particles, 0.02g / cm 3 ~0.65g / cm 3 are preferred. That is, the apparent density of the polylactic acid-based resin expanded particles is preferably 0.03 g / cm 3 or more, and more preferably 0.04 g / cm 3 or more from the viewpoint of avoiding a possibility that the shrinkage rate after in-mold molding is increased. On the other hand, the upper limit is preferably 0.45 g / cm 3 or less from the viewpoint of avoiding the possibility of variation in physical properties of the foamed particle molded body obtained by in-mold molding, since the density variation of the expanded particles tends to be large. More preferred is cm 3 or less.
The apparent density of the polylactic acid-based resin expanded particles is measured as follows.
Prepare a measuring cylinder containing water at 23 ° C, and wire over 500 expanded foam particles (weight W1 of the expanded particle group) left in the measuring cylinder at a relative humidity of 50%, 23 ° C and 1 atm for 2 days. Divide (W1 / V1) the weight W1 (g) of the expanded particles placed in the graduated cylinder by the volume V1 (cm 3 ) of the expanded particles read from the rise in the water level. Ask for.

(ロ)示差走査熱量測定における発泡粒子の吸熱量と該発泡粒子の発熱量との関係
ポリ乳酸系樹脂発泡粒子は、加熱速度2℃/minでの示差走査熱量測定における発泡粒子の吸熱量(Bendo:J/g)と該発泡粒子の発熱量(Bexo:J/g)との関係が下記(1)式を満足する。
(Bexo)/(Bendo)>0.3 (1)
(Bexo)/(Bendo)比が0.3を超える値であれば、発泡粒子中で結晶化しうる領域に対して、未結晶である領域を多く有しているため、型内成形時の発泡粒子の相互の融着性に優れるものとなる。また、高温養生などの後工程にて結晶化させて、発泡粒子成形体の耐熱性、機械的物性を高めることができる。上記(1)式において(Bexo)/(Bendo)の値の上限は1であり、好ましくは0.8、更に好ましくは0.7である。
尚、上記発泡粒子の発熱量(Bexo)および吸熱量(Bendo)は、JIS K7122(1987年)に記載されている熱流束示差走査熱量測定により求められる値とする。但し、発泡粒子1〜4mgの試験片とし、該試験片の状態調節およびDSC曲線の測定は以下の手順にて行う。
(B) Relationship between the endothermic amount of the expanded particles in the differential scanning calorimetry and the calorific value of the expanded particles The polylactic acid resin expanded particles have an endothermic amount of the expanded particles in the differential scanning calorimetry at a heating rate of 2 ° C./min ( The relationship between Bendo (J / g) and the calorific value (Bexo: J / g) of the expanded particles satisfies the following formula (1).
(Bexo) / (Bendo)> 0.3 (1)
If the (Bexo) / (Bendo) ratio is greater than 0.3, foaming during in-mold molding has many regions that are uncrystallized compared to regions that can be crystallized in the foamed particles. The particles are excellent in mutual fusion property. Moreover, it can crystallize in post processes, such as high temperature curing, and can improve the heat resistance of a foamed particle molded object, and a mechanical physical property. In the above formula (1), the upper limit of the value of (Bexo) / (Bendo) is 1, preferably 0.8, and more preferably 0.7.
The exothermic amount (Bexo) and endothermic amount (Bendo) of the expanded particles are values determined by heat flux differential scanning calorimetry described in JIS K7122 (1987). However, the test piece is 1 to 4 mg of expanded particles, and the condition adjustment and DSC curve measurement of the test piece are performed according to the following procedure.

試験片をDSC装置の容器に入れ、熱処理を行わず、2℃/minの加熱速度にて常温から融解ピーク終了時より30℃高い温度まで昇温する際のDSC曲線を得る。この場合、上記常温とはおおむね23℃程度の温度をいう(以下同じ。)。
尚、発泡粒子の発熱量(Bexo)は該DSC曲線の発熱ピークの低温側のベースラインから発熱ピークが離れる点を点cとし、発熱ピークが高温側のベースラインへ戻る点を点dとして、点cと点dとを結ぶ直線と、DSC曲線に囲まれる部分の面積から求められる値とする。また、発泡粒子の吸熱量(Bendo)は、該DSC曲線の吸熱ピークの低温側のベースラインから吸熱ピークが離れる点を点eとし、吸熱ピークが高温側のベースラインへ戻る点を点fとして、点eと点fとを結ぶ直線と、DSC曲線に囲まれる部分の面積から求められる値とする。
A test piece is put in a container of a DSC apparatus, and a DSC curve is obtained when the temperature is raised from room temperature to 30 ° C. higher than the end of the melting peak at a heating rate of 2 ° C./min without heat treatment. In this case, the room temperature generally means a temperature of about 23 ° C. (hereinafter the same).
The exothermic amount (Bexo) of the expanded particles is defined as a point c where the exothermic peak is separated from the low temperature side baseline of the DSC curve, and a point d where the exothermic peak returns to the high temperature side baseline. A value obtained from a straight line connecting the points c and d and the area of the portion surrounded by the DSC curve. Further, the endothermic amount (Bendo) of the expanded particles is defined as a point e where the endothermic peak is separated from the low-temperature base line of the endothermic peak of the DSC curve, and a point f where the endothermic peak returns to the high-temperature base line. , And a value obtained from a straight line connecting the points e and f and the area of the portion surrounded by the DSC curve.

但し、該DSC曲線におけるベースラインはできるだけ直線になるように装置を調節することする。また、どうしてもベースラインが湾曲してしまう場合は、発熱ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから発熱ピークが離れる点を点c、発熱ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ発熱ピークが戻る点を点dとする。更に、吸熱ピークの低温側の湾曲したベースラインをその曲線の湾曲状態を維持して高温側へ延長する作図を行い、該湾曲した低温側のベースラインから吸熱ピークが離れる点を点e、吸熱ピークの高温側の湾曲したベースラインをその曲線の湾曲状態を維持して低温側へ延長する作図を行い、該湾曲した高温側ベースラインへ吸熱ピークが戻る点を点fとする。 However, the apparatus is adjusted so that the baseline in the DSC curve is as straight as possible. If the baseline is inevitably curved, the curved baseline on the low temperature side of the exothermic peak is extended to the high temperature side while maintaining the curved state of the curve. The point at which the exothermic peak deviates from the point c, and the curved base line on the high temperature side of the exothermic peak is extended to the low temperature side while maintaining the curved state of the curve, and the exothermic peak appears on the curved high temperature side baseline Let the point to return be a point d. Further, the base line curved at the low temperature side of the endothermic peak is extended to the high temperature side while maintaining the curved state of the curve, and the point at which the endothermic peak moves away from the curved base line at the low temperature side is the endothermic point. Drawing is performed to extend the curved base line on the high temperature side of the peak to the low temperature side while maintaining the curved state of the curve, and the point where the endothermic peak returns to the curved high temperature side baseline is defined as a point f.

例えば、図3に示す場合には、上記の通り定められる点cと点dとを結ぶ直線とDSC曲線に囲まれる部分の面積から発泡粒子の発熱量(Bexo)を求め、上記の通り定められる点eと点fとを結ぶ直線とDSC曲線に囲まれる部分の面積から発泡粒子の吸熱量(Bendo)を求める。また、図4に示すような場合には、上記のように点dと点eを定めることが困難である為、上記の通り定められる点cと点fとを結ぶ直線とDSC曲線との交点を点d(点e)と定めることにより、発泡粒子の発熱量(Bexo)及び吸熱量(Bendo)を求める。また、図5に示すように、吸熱ピークの低温側に小さな発熱ピークが発生するような場合には、発泡粒子の発熱量(Bexo)は、図5中の第1の発熱ピークの面積Aと第2の発熱ピークの面積Bとの和から求められる。即ち、該面積Aは第1の発熱ピークの低温側のベースラインから発熱ピークが離れる点を点cとし、第1の発熱ピークが高温側のベースラインへ戻る点を点dとして、点cと点dとを結ぶ直線とDSC曲線に囲まれる部分の面積Aとする。そして、該面積Bは第2の発熱ピークの低温側のベースラインから第2の発熱ピークが離れる点を点gとし、吸熱ピークが高温側のベースラインへ戻る点を点fとして、点gと点fとを結ぶ直線とDSC曲線との交点を点eと定め、点gと点eとを結ぶ直線とDSC曲線に囲まれる部分の面積Bとする。一方、図5において、発泡粒子の吸熱量(Bendo)は点eと点fとを結ぶ直線とDSC曲線に囲まれる部分の面積から求められる値とする。
なお、上記発熱量(Bexo)および吸熱量(Bendo)の測定において、DSC曲線の測定条件として、2℃/minの加熱速度を採用する理由は、発熱ピークと吸熱ピークとをなるべく分離し、正確な吸熱量(Bendo)および(Bexo/Bendo)を熱流束示差走査熱量測定にて求める際に、2℃/minの加熱速度が好適であるという発明者の知見に基づくものである。
For example, in the case shown in FIG. 3, the heat generation amount (Bexo) of the expanded particles is obtained from the area surrounded by the straight line connecting the points c and d and the DSC curve determined as described above, and determined as described above. The endothermic amount (Bendo) of the expanded particles is obtained from the area surrounded by the straight line connecting the points e and f and the DSC curve. In the case shown in FIG. 4, since it is difficult to determine the points d and e as described above, the intersection of the straight line connecting the points c and f determined as described above and the DSC curve. Is determined as a point d (point e) to determine the heat generation amount (Bexo) and the heat absorption amount (Bendo) of the expanded particles. In addition, as shown in FIG. 5, when a small exothermic peak occurs on the low temperature side of the endothermic peak, the exothermic amount (Bexo) of the foamed particles is the first exothermic peak area A in FIG. It is determined from the sum of the area B of the second exothermic peak. That is, the area A is defined as a point c where the exothermic peak moves away from the low temperature side baseline of the first exothermic peak, and a point d where the first exothermic peak returns to the high temperature side baseline. It is assumed that the area A is a portion surrounded by a straight line connecting the point d and the DSC curve. The area B is defined as a point g where the second exothermic peak is separated from the low temperature side baseline of the second exothermic peak, a point f where the endothermic peak returns to the high temperature side baseline, and a point g. The intersection of the straight line connecting the point f and the DSC curve is defined as a point e, and the area B of the portion surrounded by the straight line connecting the point g and the point e and the DSC curve is defined. On the other hand, in FIG. 5, the endothermic amount (Bendo) of the expanded particles is a value obtained from the area surrounded by the straight line connecting the point e and the point f and the DSC curve.
In the measurement of the exothermic amount (Bexo) and endothermic amount (Bendo), the reason for adopting a heating rate of 2 ° C./min as the measurement condition of the DSC curve is that the exothermic peak and the endothermic peak are separated as much as possible. This is based on the inventor's knowledge that a heating rate of 2 ° C./min is suitable when determining the endothermic amounts (Bendo) and (Bexo / Bendo) by heat flux differential scanning calorimetry.

(ハ)発泡粒子の表層部(S)の発熱量と中央部(C)の発熱量との関係
発泡性ポリ乳酸系樹脂粒子を発泡して得られるポリ乳酸系樹脂発泡粒子は、その表層部(S)の発熱量(Bs)と該発泡粒子の中央部(C)の発熱量(Bc)との関係が下記(2)式を満足するので、表層部は中央部よりも未結晶部分を多く有しており、成形時の発泡粒子相互の融着性に優れるものとなり、厚みが大きくとも或いは形状が複雑なものであっても発泡粒子相互の融着性に優れた発泡粒子成形体を得ることも可能となる。また、中央部が表層部よりも結晶化の進んだ状態であるので、発泡粒子全体としては耐熱性が向上しているので、型内成型時の成形温度範囲を高めることができる。結果的に、本発明の発泡粒子によれば、成形圧力の範囲を広げることができる。
(Bs)>(Bc) (2)
上記発熱量(Bs)、(Bc)は、それぞれ表層部(S)、中央部(C)1〜4mgを試験片とする以外は、発泡粒子の発熱量(Bexo)の測定方法と同様にして求めることができる。尚、発泡粒子の表層部(S)とは、発泡粒子の表面全面から、切り出し前の発泡粒子の重量の5分の1から3分の1の重量となるように、できるだけ均一な厚みで切り出される部分をいう。それに対して中央部(C)は、発泡粒子の表面全面を、できるだけ均一な厚みで切り取り除去し、切り取り前の発泡粒子の重量の5分の1から3分の1の重量となる発泡粒子残部をいう。
(C) a surface layer portion (S B) heating value and the central portion (C B) polylactic acid-based resin foamed particles obtained relationships expandable polylactic acid resin particles and foaming the heat value of the expanded beads, the Since the relationship between the calorific value (Bs) of the surface layer part (S B ) and the calorific value (Bc) of the central part (C B ) of the expanded particles satisfies the following formula (2), the surface layer part is more than the central part. Foam with many uncrystallized parts, excellent fusion between foam particles during molding, and excellent fusion between foam particles even if the thickness is large or the shape is complicated It is also possible to obtain a particle compact. In addition, since the central part is more crystallized than the surface layer part, the heat resistance of the expanded foam as a whole is improved, so that the molding temperature range during in-mold molding can be increased. As a result, according to the expanded particles of the present invention, the range of molding pressure can be expanded.
(Bs)> (Bc) (2)
The calorific values (Bs) and (Bc) are the same as the measurement method of the calorific value (Bexo) of the expanded particles, except that the surface layer part (S B ) and the central part (C B ) are 1 to 4 mg. Can be obtained. The surface layer portion (S B ) of the expanded particles is as uniform as possible from the entire surface of the expanded particles to a weight that is 1/5 to 1/3 of the weight of the expanded particles before cutting. The part that is cut out. On the other hand, the center part (C B ) is a foamed particle that cuts and removes the entire surface of the foamed particle with a uniform thickness as much as possible, and has a weight of 1/5 to 1/3 of the weight of the foamed particle before cutting. Say the rest.

上記の発泡粒子の表層部(S)のサンプルとしては、表面を含む表層部(S)をカッターナイフ、ミクロトーム等を用いて切削処理を行い表層部(S)を集めて測定に供すればよい。但し、この際の留意点としては1個の発泡粒子の表面全面を必ず切除し且つ1個の発泡粒子から切除した表層部(S)の合計重量が元の発泡粒子の粒子重量の5分の1から3分の1となるように切除する。切除した表層部(S)の重量が元の発泡粒子の粒子重量の5分の1から3分の1であれば、粒子内部の発泡層を多量に含有することがないので表層部の発熱量を正確に測定することができる。更に1個の発泡粒子から得られる表層部が1〜4mgに満たない場合は上記操作を繰り返し複数個の発泡粒子について行う必要がある。
一方、中央部(C)の発泡層のサンプル調製の方法としては、表層部(S)を含まない中央部(C)の発泡層を残すことを目的にカッターナイフ等で切削処理を行い測定に供する必要がある。中央部(C)の発泡層のサンプルを調製する際の留意点としては、1個の発泡粒子の表面全面を必ず切除した上、切り出し面からできるだけ均一の厚みとなる厚さの発泡層を切除するようにして中央部(C)の発泡層を残す。この際、切除作業にて残された中央部(C)の発泡層の重量は、元の発泡粒子の粒子重量の5分の1から3分の1とする必要があり、且つ元の発泡粒子の形状とできる限り相似の関係にあることが好ましい。更に1個の発泡粒子から得られる中央部(C)の発泡層が1〜4mgに満たない場合は上記操作を繰り返し複数個の発泡粒子を用いる必要がある。
The samples of the surface layer portion of the expanded beads (S B), subjected the surface layer portion (S B) a cutter knife, the collecting and measuring surface section (S B) performs a cutting process using a microtome or the like including a surface do it. However, 5 minutes total weight of the particle weight of the original foamed particles of the surface layer portion excised from always excised and one expanded beads entire surface of one of the expanded particles as noted point for the (S B) Excise so that it is 1 to 1/3 of the above. If the weight of the excised surface layer part (S B ) is 1/5 to 1/3 of the original foam particle weight, it will not contain a large amount of the foam layer inside the particle. The amount can be measured accurately. Furthermore, when the surface layer part obtained from one expanded particle is less than 1-4 mg, it is necessary to repeat the said operation about several expanded particle.
On the other hand, the foam layer method sample preparation in the central portion (C B), a cutting process with a cutter knife or the like for the purpose of leaving the foam layer of the central portion which does not include the surface layer portion (S B) (C B) It is necessary to conduct and measure. When preparing a sample of the foam layer in the center (C B ), the foam layer should have a thickness that is as uniform as possible from the cut surface after the entire surface of one foam particle is always cut out. Leave the foamed layer in the center (C B ) so that it is excised. At this time, the weight of the foam layer in the central portion (C B ) left in the excision operation needs to be set to one fifth to one third of the particle weight of the original foam particles, and the original foam. It is preferable that the particle shape is as similar as possible. Furthermore, when the foamed layer of the center part (C B ) obtained from one expanded particle is less than 1 to 4 mg, it is necessary to repeat the above operation and use a plurality of expanded particles.

元の発泡粒子の重量の5分の1から3分の1となるように切り出される発泡粒子の表層部の厚みの算出方法は下記の通りである。
まず、発泡粒子の重量(g)は下記の式により導かれる。
W=(4/3)π(Rρ
但し、Wは発泡粒子の重量(g)、Rは発泡粒子を球と仮定した球の半径(cm)、ρは発泡粒子の見かけ密度が全体的に一定であると仮定した見かけ密度(g/cm)である。
次いで、発泡粒子の表層部が元の発泡粒子の粒子重量の3分の1となるように切り出される発泡粒子の表層からの厚みSは、以下のように算出される。
(2/3)×(4/3)π(Rρ=(4/3)π(Rρ
=0.873R
=R−R=0.127R
但し、RはWの2/3の重量となる球の半径である。
The calculation method of the thickness of the surface layer portion of the expanded particles cut out to be 1/5 to 1/3 of the weight of the original expanded particles is as follows.
First, the weight (g) of the expanded particles is derived from the following equation.
W = (4/3) π (R 1 ) 3 ρ
Where W is the weight of the expanded particle (g), R 1 is the radius of the sphere assuming the expanded particle is a sphere (cm), and ρ is the apparent density assuming that the expanded density of the expanded particle is generally constant (g / Cm 3 ).
Next, the thickness S 1 from the surface layer of the expanded particles cut out so that the surface layer portion of the expanded particles becomes one third of the particle weight of the original expanded particles is calculated as follows.
(2/3) × (4/3) π (R 1 ) 3 ρ = (4/3) π (R 2 ) 3 ρ
R 2 = 0.873R 1
S 1 = R 1 −R 2 = 0.127R 1
Where R 2 is the radius of a sphere that is 2/3 the weight of W.

同様にして、発泡粒子の表層部が5分の1となるように切り出される発泡粒子の表層からの厚みSは、0.072Rとなる。よって、発泡粒子の表層部(S)が、元の発泡粒子の粒子重量の5分の1から3分の1以下となるためには、発泡粒子の表層部(S)からできるだけ均一の厚みとなるように、表層から0.072R〜0.127Rcmの厚みで切り出されることになる。
次に、中央部(C)は、発泡粒子表面全面を、できるだけ均一の厚みとなるように切り出して除去し、元の発泡粒子の粒子重量の5分の1から3分の1となる残部の発泡粒子をいうが、そのように切り出された元の発泡粒子の粒子重量の3分の1となる残部の発泡粒子中央部の半径R(cm)は次のように導かれる。
(1/3)×(4/3)π(Rρ=(4/3)π(Rρ
=0.693R
同様にして、発泡粒子の中央部が元の発泡粒子の粒子重量の5分の1となる残部の発泡粒子中央部の半径R(cm)は、R=0.585Rとなる。
Similarly, the thickness S 2 from the surface of the expanded beads to be cut out as a surface layer portion of the expanded beads is 1/5 becomes 0.072R 1. Therefore, in order for the surface layer portion (S B ) of the expanded particles to be 1/5 to 1/3 or less of the particle weight of the original expanded particles, the surface layer portion (S B ) of the expanded particles is as uniform as possible. It will be cut out from the surface layer with a thickness of 0.072R 1 to 0.127R 1 cm so as to have a thickness.
Next, the central part (C B ) is cut out and removed so that the entire surface of the foamed particles has a uniform thickness as much as possible, and the remaining part becomes one fifth to one third of the particle weight of the original foamed particles. The remaining radius R 3 (cm) of the center of the expanded particle, which is one third of the particle weight of the original expanded particle thus cut out, is derived as follows.
(1/3) × (4/3) π (R 1 ) 3 ρ = (4/3) π (R 3 ) 3 ρ
R 3 = 0.693R 1
Similarly, the radius R 4 (cm) of the remaining foamed particle central part in which the central part of the foamed particle is 1/5 of the particle weight of the original foamed particle is R 4 = 0.585R 1 .

よって、発泡粒子の中央部(C)が、元の発泡粒子の粒子重量の5分の1から3分の1となるように発泡粒子を切除するためには、中央部の半径が0.585R〜0.693Rcmとなるように切除作業を行うことになる。
ここで、見かけ密度0.15g/cm、直径0.3cmのほぼ球形である発泡粒子を例として示すと、上記の方法にて表層部(S)と中央部(C)に切り出した際の、発泡粒子の重量(g)、表層から切り出される厚みS、S、中央部の半径R、Rは、それぞれ、0.019cm、0.011cm、0.104cm、0.088cmとなる。
Therefore, in order to cut out the foamed particles so that the center part (C B ) of the foamed particles is 1/5 to 1/3 of the particle weight of the original foamed particles, the radius of the center part is set to 0. The excision work is performed so as to be 585R 1 to 0.693R 1 cm.
Here, as an example, a substantially spherical expanded particle having an apparent density of 0.15 g / cm 3 and a diameter of 0.3 cm was cut into a surface layer portion (S B ) and a central portion (C B ) by the above method. At that time, the weight (g) of the expanded particles, the thicknesses S 1 and S 2 cut out from the surface layer, and the radii R 3 and R 4 of the central part are 0.019 cm, 0.011 cm, 0.104 cm, and 0.088 cm, respectively. It becomes.

よって、見かけ密度0.15g/cm、直径0.3cmのほぼ球形である発泡粒子の場合、発泡粒子の表層部(S)は、発泡粒子の表層部(S)からできるだけ均一の厚みとなるように発泡粒子の表面全面を切り出し、切り出された表層部(S)の合計重量が元の発泡粒子の重量の5分の1から3分の1となる部分であり、発泡粒子表面から0.11mm〜0.19mmまでの部分をいう。それに対して中央部(C)は、発泡粒子の表面全面を、できるだけ均一の厚みとなるように切り出して除去し、元の発泡粒子の粒子重量の5分の1から3分の1となる残部であり、発泡粒子の中心部からの半径が0.88mm以上1.04mm以下の部分をいう。
さらに、他の発泡粒子を同様に切り出して、測定のために表層部(S)および中央部(C)を1mg〜4mgにする。
このようにして得られるサンプルから、示差走査熱量測定にて表層部(S)の発熱量(Bs)と該発泡粒子の中央部(C)の発熱量(Bc)が測定される。
Thus, apparent density 0.15 g / cm 3, when the expanded beads are generally spherical diameter 0.3 cm, the surface layer portion of the expanded beads (S B) is as uniform as possible in thickness from the surface layer portion of the expanded beads (S B) cut out the entire surface of the expanded beads so that a cut-out surface portion 5 minutes 1 to become part of one third of the weight of the total weight the original expanded beads (S B), the foamed particle surface To 0.11 mm to 0.19 mm. On the other hand, the central portion (C B ) cuts out and removes the entire surface of the foamed particles so as to have a uniform thickness as much as possible, and becomes 1/5 to 1/3 of the particle weight of the original foamed particles. It is the remaining part and refers to a part having a radius from the center of the foamed particle of 0.88 mm or more and 1.04 mm or less.
Further, other expanded particles are cut out in the same manner, and the surface layer portion (S B ) and the central portion (C B ) are 1 mg to 4 mg for measurement.
From the sample thus obtained, the calorific value (Bs) of the surface layer portion (S B ) and the calorific value (Bc) of the center portion (C B ) of the expanded particles are measured by differential scanning calorimetry.

(ニ)ポリ乳酸系樹脂発泡粒子の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比
上記発泡性ポリ乳酸系樹脂粒子を発泡して得られる発泡粒子は、ポリ乳酸系樹脂発泡粒子の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比(Ts/Tm)が、5.0〜40.0、好ましくは6.0〜25.0、更に好ましくは7.0〜18.0であり、このような状態のポリ乳酸系樹脂発泡粒子は、平均気泡膜厚み(Tm)に対する平均表層厚み(Ts)の値が従来のものに比べて大きいものであるので、丈夫な表皮に覆われていることにより発泡粒子の見かけの耐熱性が高いものとなり、型内成形時のスチーム、熱風などの加熱媒体による加熱時において発泡粒子の収縮、破泡を防ぐことができ、良好な発泡粒子成形体が得られる成形温度範囲が広がり、良好なポリ乳酸系樹脂発泡粒子成形体を成形するのにさらに適したものとなる。
(D) Ratio of average surface layer thickness (Ts) and average cell membrane thickness (Tm) of foamed polylactic acid resin particles Foamed particles obtained by foaming the expandable polylactic acid resin particles are polylactic acid resin foams. The ratio (Ts / Tm) of the average surface layer thickness (Ts) to the average bubble film thickness (Tm) of the particles is 5.0 to 40.0, preferably 6.0 to 25.0, more preferably 7.0. The polylactic acid-based resin expanded particles in such a state are durable because the average surface layer thickness (Ts) with respect to the average cell membrane thickness (Tm) is larger than that of the conventional one. Covered with a smooth skin, the foam particles have a high apparent heat resistance, and when heated with a heating medium such as steam or hot air during molding, the foam particles can be prevented from shrinking or breaking. Molding temperature range for obtaining good expanded particle compacts Spreads, and those more suitable for forming a good polylactic acid-based resin foamed bead molded article.

(ニ−1)発泡粒子の平均表層厚み(Ts)の測定
発泡粒子の平均表層厚み(Ts)は次のように測定される。
発泡粒子を略二分割し切断面を走査型電子顕微鏡にて写真を撮影する。得られた断面写真において、発泡粒子の最外に位置し円周方向に連接する気泡と発泡粒子表面との間の長さが最小値となる値をそれぞれ全ての写真上の該連接する気泡に対して測定し、それらの値の算術平均値を発泡粒子の表層厚みとする。この操作を多数(少なくとも30個以上)の発泡粒子について行い各発泡粒子の表層厚みの算術平均値を平均表層厚み(Ts)とする。
尚、該連接する気泡より外側に独立して、あるいは数個連続して気泡が存在することがあるが、これらは発泡粒子を形成する気泡群とは別に稀に存在するものであることから無視できるものとする。表層厚みを正確に測定するためには表皮部が捲れないように発泡粒子を略二分割する必要がある。
(D-1) Measurement of average surface layer thickness (Ts) of expanded particles The average surface layer thickness (Ts) of expanded particles is measured as follows.
The foamed particles are roughly divided into two, and the cut surface is photographed with a scanning electron microscope. In the obtained cross-sectional photograph, the value at which the length between the bubble located on the outermost side of the expanded particle and connected in the circumferential direction and the surface of the expanded particle becomes the minimum value is set to the connected bubble on all the photos. The arithmetic average value of these values is taken as the surface layer thickness of the expanded particles. This operation is performed for a large number (at least 30 or more) of expanded particles, and the arithmetic average value of the surface layer thickness of each expanded particle is defined as the average surface layer thickness (Ts).
In addition, there are cases where bubbles exist independently or several times continuously outside the connected bubbles, but these are rarely present separately from the group of bubbles forming the expanded particles, and are ignored. It shall be possible. In order to accurately measure the surface layer thickness, it is necessary to divide the expanded particles substantially in half so that the skin portion is not wrinkled.

(ニ−2)発泡粒子の平均気泡径の測定
発泡粒子の平均気泡径は次のように測定される。
発泡粒子を略二分割し切断面を走査型電子顕微鏡にて写真を撮影する。得られた断面写真において、発泡粒子切断面の中心付近から八方向に等間隔に直線を引き、その直線と交わる気泡の数を全てカウントし、該直線の合計長さをカウントされた気泡数で除して得られた値を発泡粒子の気泡径とする。この操作を多数(少なくとも30個以上)の発泡粒子について行い各発泡粒子の気泡径の算術平均値を平均気泡径とする。
尚、上記各発泡粒子の気泡径の測定において、該直線と一部でも交わる気泡もカウントすることとする。また、上記測定において発泡粒子切断面の中心付近から八方向に等間隔に直線を引く理由としては、直線が発泡粒子切断面の中心付近から八方向に等間隔に引かれるものであれば測定される気泡の形状が、仮に発泡粒子切断面上で方向によって異なるものであっても、安定した気泡径の値が得られるからである。
(D-2) Measurement of average cell diameter of expanded particles The average cell diameter of expanded particles is measured as follows.
The foamed particles are roughly divided into two, and the cut surface is photographed with a scanning electron microscope. In the obtained cross-sectional photograph, draw straight lines at equal intervals in the eight directions from the vicinity of the center of the foamed particle cut surface, count all the number of bubbles intersecting the straight line, the total length of the straight line is the number of counted bubbles The value obtained by dividing is taken as the cell diameter of the expanded particles. This operation is performed for a large number (at least 30 or more) of foamed particles, and the arithmetic average value of the bubble diameters of the foamed particles is defined as the average bubble diameter.
In the measurement of the bubble diameter of each expanded particle, the bubbles that intersect even part of the straight line are counted. Further, in the above measurement, the reason why the straight lines are drawn at equal intervals in the eight directions from the vicinity of the center of the expanded surface of the foamed particle is measured if the straight lines are drawn at equal intervals in the eight directions from the vicinity of the center of the expanded surface of the expanded particle. This is because a stable bubble diameter value can be obtained even if the shape of the bubbles varies depending on the direction on the expanded particle cut surface.

(ニ−3)発泡粒子の平均気泡膜厚み(Tm)の算出
発泡粒子の平均気泡膜厚み(Tm)は、上記の方法で測定された平均気泡径dから以下の式(5)を使って算出される。
=(ρf−ρg)/(ρs−ρg)=[(d+Tm)−d]/(d+Tm)・・(5)
但し、Vは基材樹脂の容積分率、ρfは発泡粒子の見かけ密度(g/cm)、ρsは基材樹脂の密度(g/cm)、ρgは気泡内のガス密度(g/cm)、dは平均気泡径(μm)、Tmは平均気泡膜厚み(μm)である。なお、(5)式における(ρfおよびρs)>>ρgであることからρgを0(g/cm)とし、Vs=ρf/ρsとなる。従って、平均気泡膜厚みTm(μm)は、Tm=d〔(X/(X−1))1/3−1〕の式(但し、X=ρs/ρf。)にて算出することができる。この式によって、発泡粒子の平均気泡径dが定まれば、発泡粒子の平均気泡膜厚み(Tm)が定まる。
上記(5)式は、気泡の形状を球とみなした際の平均気泡径と平均気泡膜厚みとの関係式であり、「プラスチックフォームハンドブック」(発行所:日刊工業新聞社、昭和48年2月28日発行)、222頁目の「1.3.2の項」に記載されている。
(D-3) Calculation of average cell membrane thickness (Tm) of expanded particles The average cell membrane thickness (Tm) of the expanded particles is calculated from the average cell diameter d measured by the above method using the following formula (5). Calculated.
V S = (ρf−ρg) / (ρs−ρg) = [(d + Tm) 3 −d 3 ] / (d + Tm) 3 ... (5)
Where V S is the volume fraction of the base resin, ρf is the apparent density (g / cm 3 ) of the expanded particles, ρs is the density of the base resin (g / cm 3 ), and ρg is the gas density (g / Cm 3 ), d is the average bubble diameter (μm), and Tm is the average bubble film thickness (μm). Since (ρf and ρs) >> ρg in the equation (5), ρg is set to 0 (g / cm 3 ), and Vs = ρf / ρs. Accordingly, the average bubble film thickness Tm (μm) can be calculated by the equation Tm = d [(X / (X−1)) 1/3 −1] (where X = ρs / ρf). . If the average cell diameter d of the expanded particles is determined by this formula, the average cell thickness (Tm) of the expanded particles is determined.
The above equation (5) is a relational expression between the average bubble diameter and the average bubble film thickness when the bubble shape is regarded as a sphere. “Plastic Foam Handbook” Issued on May 28), page 222, section “1.3.2”.

これらの発泡粒子を用いると、広い範囲の型内成形温度条件にて発泡粒子相互の融着性に優れた発泡粒子成形体を成形できる。尚、該発泡粒子を用いることにより、発泡粒子相互の融着性に優れる発泡粒子成形体を成形できる理由は定かではないが、発泡粒子表層部(S)の結晶化が進んでいないため、発泡粒子表層部が軟化しやすい状態にあり、発泡粒子同士の融着がしやすい状態となっていること、更に、高湿条件化で物理発泡剤の逸散を行った発泡性樹脂粒子から得られる発泡粒子は、従来のものよりも厚い表皮が形成されて型内成形時において発泡粒子の収縮、破泡が防がれることに起因すると考えられる。 When these foamed particles are used, it is possible to mold a foamed particle molded body having excellent fusion properties between the foamed particles under a wide range of in-mold molding temperature conditions. Since the use of the expanded beads, the reason can be molded foamed bead molded article excellent in fusion bonding of the expanded beads another, but is not certain, it not progressed crystallization of the foamed particle surface layer portion (S B), Obtained from expandable resin particles that are easily softened at the surface layer of the expanded particles, are easily fused to the expanded particles, and the physical foaming agent is dispersed under high humidity conditions. It is considered that the foamed particles are formed by forming a thicker skin than the conventional one and preventing the shrinkage and foam breakage of the foamed particles during in-mold molding.

〔4〕ポリ乳酸系樹脂発泡粒子成形体の製造
ポリ乳酸系樹脂発泡粒子成形体の製造方法は、上記ポリ乳酸系樹脂発泡粒子の製造方法において記載した、
(i)前記ポリ乳酸系樹脂粒子100重量部に対し物理発泡剤を1重量部以上含浸させる含浸工程と、
(ii)該物理発泡剤が含浸されたポリ乳酸系樹脂粒子を温度0〜40℃の条件下に曝して、含浸させた物理発泡剤の10〜60重量%を逸散させて発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子とする逸散工程、
(iii)前記発泡性ポリ乳酸系樹脂粒子を発泡させてポリ乳酸系樹脂発泡粒子を得る工程、
に続いて更に
(iv)前記ポリ乳酸系樹脂発泡粒子を型内成型することにより発泡粒子を相互に融着させてポリ乳酸系樹脂発泡粒子成形体を得ることができる。
[4] Production of Polylactic Acid Resin Foamed Particle Molded Article A method for producing a polylactic acid resin foamed particle molded article is described in the method for producing polylactic acid resin foamed particles.
(I) an impregnation step of impregnating 1 part by weight or more of a physical foaming agent with respect to 100 parts by weight of the polylactic acid resin particles;
(Ii) The polylactic acid resin particles impregnated with the physical foaming agent are exposed to a temperature of 0 to 40 ° C. to dissipate 10 to 60% by weight of the impregnated physical foaming agent, and the amount of the foaming agent impregnated A process of dissipating foamed polylactic acid resin particles having a weight of 3.9% by weight or less,
(Iii) a step of foaming the expandable polylactic acid-based resin particles to obtain polylactic acid-based resin expanded particles;
Subsequently, (iv) the polylactic acid-based resin expanded particles can be obtained by in-mold molding the polylactic acid-based resin expanded particles to fuse the expanded particles to each other.

(1)ポリ乳酸系樹脂発泡粒子の成形
上記(iv)発泡粒子型内成形工程においては、発泡粒子を型内に充填した後に、水蒸気又は水蒸気と空気等の加熱媒体により該発泡粒子を加熱して発泡粒子を相互に融着させることが好ましい。このように、加熱成形すると発泡粒子は相互に融着し一体となった発泡粒子成形体が得られる。この場合の成形用の型としては一般に使用されている金型又は特開2000−15708号公報等に記載の連続成形装置に使用されているスチールベルトが用いられる。また、加熱手段としては、通常スチ−ムが用いられ、その加熱温度は発泡粒子表面部が溶融する温度にできればよく、通常、0.1〜0.25MPa(G)のスチ−ム圧力が採用される。
ポリ乳酸系樹脂発泡粒子を型内成形させて得られる発泡粒子成形体は、従来のポリ乳酸樹脂発泡粒子成形体より発泡粒子相互の融着性に優れる。
(1) Molding of polylactic acid-based resin foamed particles In the above (iv) foamed particle in-mold molding step, after the foamed particles are filled in the mold, the foamed particles are heated with a heating medium such as steam or steam and air. Thus, it is preferable to fuse the expanded particles to each other. As described above, when the heat molding is performed, the foamed particles are fused and integrated to obtain a foamed particle compact. As a mold for molding in this case, a generally used mold or a steel belt used in a continuous molding apparatus described in JP 2000-15708 A or the like is used. Further, as the heating means, a steam is usually used, and the heating temperature only needs to be a temperature at which the foamed particle surface portion melts, and a steam pressure of 0.1 to 0.25 MPa (G) is usually adopted. Is done.
A foamed particle molded body obtained by in-mold molding of polylactic acid-based resin expanded particles is superior to the conventional polylactic acid resin expanded particle molded body in the fusion property between the expanded particles.

(2)ポリ乳酸系樹脂発泡粒子への加圧ガスの含浸
発泡粒子成形体を製造する場合、型内成形に先立ってポリ乳酸系樹脂発泡粒子に予め空気、窒素、炭酸ガス等の無機ガス、又はブタン等の有機ガス等を含浸させることが好ましい。上記無機ガス又は有機ガスの中でも炭酸ガスが取扱性の点から好ましい。発泡粒子にガスを含浸させることにより、型内成形において、発泡粒子相互間の隙間が少なくなる等の二次発泡性、金型形状再現性、発泡粒子成形体成形後の養生回復性が向上する。発泡粒子への含浸ガス量は、好ましくは0.05〜4mol/(1000g発泡粒子)、更に好ましくは0.1〜2mol/(1000g発泡粒子)の範囲内である。
(2) impregnation of pressurized gas into polylactic acid-based resin expanded particles When producing a expanded particle molded body, prior to in-mold molding, an inorganic gas such as air, nitrogen, carbon dioxide gas, etc. in advance to the polylactic acid-based resin expanded particles, Alternatively, it is preferable to impregnate with an organic gas such as butane. Among the inorganic gas and organic gas, carbon dioxide is preferable from the viewpoint of handling. By impregnating the expanded particles with gas, in-mold molding, secondary foaming properties such as a decrease in gaps between the expanded particles, mold shape reproducibility, and curing recovery after molding the expanded particle molded body are improved. . The amount of impregnation gas into the expanded particles is preferably in the range of 0.05 to 4 mol / (1000 g expanded particles), more preferably 0.1 to 2 mol / (1000 g expanded particles).

尚、発泡粒子内のガス量(mol/1000g発泡粒子)は下記(6)式によって求められる。
発泡粒子内のガス量(mol/1000g発泡粒子)=
[ガス増加量(g)×1000]/[ガスの分子量(g/mol)×発泡粒子重量(g)]・・(6)
上記(6)式中のガス増加量(g)は次のように求める。
金型内に充填される、ガスを含浸することにより発泡粒子内部の圧力が高められた発泡粒子を500個以上取り出して60秒以内に相対湿度50%、23℃の大気圧下の恒温恒湿室に移動し、その恒温恒湿室内の秤に乗せ、該発泡粒子を取り出して120秒後の重量を読み取る。このときの重量をQ(g)とする。次に、該発泡粒子を相対湿度50%、23℃の大気圧下の同恒温恒湿室内にて240時間放置する。発泡粒子内の高い圧力のガスは時間の経過とともに気泡膜を透過して外部に抜け出すため発泡粒子の重量はそれに伴って減少し、240時間後では平衡に達しているため実質的にその重量は安定している。上記240時間後の該発泡粒子の重量を同恒温恒湿室内にて測定し、このときの重量をS(g)とする。上記のいずれの重量も0.0001gまで読み取るものとする。この測定で得られたQ(g)とS(g)の差を(6)式中のガス増加量(g)とする。
上記無機ガス又は有機ガスを発泡粒子に含浸させる方法としては、周知の通り、密閉容器に発泡粒子を入れ、該容器内を無機ガス又は有機ガスにて加圧する方法が挙げられ、この方法により発泡粒子の含浸ガス量を高めることができる。
In addition, the gas amount (mol / 1000 g foamed particles) in the foamed particles is obtained by the following formula (6).
Gas amount in expanded particles (mol / 1000 g expanded particles) =
[Gas increase (g) × 1000] / [Gas molecular weight (g / mol) × Expanded particle weight (g)] (6)
The gas increase amount (g) in the above equation (6) is obtained as follows.
Take out 500 or more foamed particles filled in the mold, and the pressure inside the foamed particles is increased by impregnating gas, and within 60 seconds, constant humidity and humidity at 50% relative humidity and 23 ° C atmospheric pressure It moves to a chamber, puts on the balance in the constant temperature and humidity chamber, takes out the foamed particles, and reads the weight after 120 seconds. The weight at this time is defined as Q (g). Next, the foamed particles are allowed to stand for 240 hours in the same constant temperature and humidity room at 50% relative humidity and 23 ° C. atmospheric pressure. The high-pressure gas in the expanded particles permeates through the cell membrane over time and escapes to the outside, so the weight of the expanded particles decreases accordingly, and after 240 hours the equilibrium is reached. stable. The weight of the expanded particles after 240 hours is measured in the same constant temperature and humidity chamber, and the weight at this time is defined as S (g). Any of the above weights shall be read up to 0.0001 g. The difference between Q (g) and S (g) obtained by this measurement is defined as the gas increase amount (g) in the equation (6).
As a method of impregnating the expanded particles with the inorganic gas or the organic gas, as is well known, there is a method in which the expanded particles are put in a closed container and the inside of the container is pressurized with an inorganic gas or an organic gas. The amount of impregnating gas of the particles can be increased.

(3)型内成形後の養生
上記型内成形で得られた発泡粒子成形体は、基材樹脂の中間点ガラス転移温度をTgとした場合、[Tg+5]〜[Tg+30]℃の雰囲気下に一定時間保持する養生工程を経ることが好ましい。
養生工程の温度が[Tg+5]℃未満の場合には、ポリ乳酸系樹脂を結晶化させるのに長時間必要であることや発泡粒子成形体の耐熱性向上の効果がなく、耐熱性に劣った発泡粒子成形体となる。この観点から、養生温度は[Tg+8]℃以上が好ましく、[Tg+10]℃以上がより好ましい。また、[Tg+30]℃を超える場合には、発泡粒子成形体が変形を起こしてしまい、良好な発泡粒子成形体を得ることが困難となる。この観点から[Tg+25]℃以下が好ましく、[Tg+20]℃以下がより好ましい。
また、養生工程で上記の温度雰囲気下で保持する時間としては耐熱性向上の観点から1時間以上が好ましく、3時間以上が好ましく、特に5時間以上が好ましい。一方、その上限は発泡粒子成形体が変形や変色を起こさない観点から通常、36時間である。上記観点と生産性のバランスから24時間以下がより好ましく、特に12時間以下が好ましい。
(3) Curing after in-molding The foamed particle molded body obtained by the in-mold molding described above is in an atmosphere of [Tg + 5] to [Tg + 30] ° C. when the intermediate glass transition temperature of the base resin is Tg. It is preferable to go through a curing process for holding for a certain time.
When the temperature of the curing process is less than [Tg + 5] ° C., it is necessary for a long time to crystallize the polylactic acid-based resin and there is no effect of improving the heat resistance of the foamed particle molded body, resulting in poor heat resistance. A foamed particle molded body is obtained. In this respect, the curing temperature is preferably [Tg + 8] ° C. or higher, and more preferably [Tg + 10] ° C. or higher. Moreover, when it exceeds [Tg + 30] degreeC, a foamed particle molded object will raise | generate a deformation | transformation and it will become difficult to obtain a favorable expanded particle molded object. From this viewpoint, [Tg + 25] ° C. or lower is preferable, and [Tg + 20] ° C. or lower is more preferable.
Moreover, as time to hold | maintain under said temperature atmosphere at a curing process, 1 hour or more is preferable from a viewpoint of heat resistance improvement, 3 hours or more are preferable, and especially 5 hours or more are preferable. On the other hand, the upper limit is usually 36 hours from the viewpoint of preventing the foamed particle molded body from being deformed or discolored. From the above viewpoint and productivity balance, 24 hours or shorter is more preferable, and 12 hours or shorter is particularly preferable.

また、養生工程の相対湿度は、相対湿度が高いと発泡粒子成形体が加水分解を受けやすくなり、機械的物性に劣った発泡粒子成形体となる虞があることから40%RH以下が好ましい。上記観点から30%RH以下がより好ましく、20%RH以下がさらに好ましい。一方、その下限は0%RHではその条件とするのに特別な装置が必要となる虞れがあることから5%RH以上が好ましい。
また、養生工程全体の時間を100%とした場合、上記観点から相対湿度が40%RHを超える時間が50%以下が好ましく、25%以下がより好ましい。
養生する際、発泡粒子成形体はそのままの形態でも良いが、温度が高いと発泡粒子成形体が変形を起こすおそれがある。このような場合には、形状を固定する冶具などで発泡粒子成形体を固定することが好ましい。
上記養生工程によれば、基材樹脂の中間点ガラス転移温度を基準として結晶化させることも兼ねるので、効率よく耐熱性が向上した発泡粒子成形体が得られる。なお、養生工程での加熱媒体は通常熱風で行なわれる。発泡粒子成形体は、前記養生工程を行うことによってより耐熱性に優れたものとなる。具体的な耐熱性は90℃の雰囲気下で22時間放置後の加熱寸法変化率の絶対値が4%以内であることが好ましく、3%以内であることがより好ましく、2%以内であることが更に好ましい。該加熱寸法変化率の絶対値が4%を超えると、90℃付近で用いる分野に使用し難いなど使用範囲が狭くなる虞れがある。発泡粒子成形体を構成しているポリ乳酸系樹脂の組成にもよるが、上記範囲内の耐熱性を有する発泡粒子成形体は、上記養生工程を経ることにより得ることができる。なお、上記加熱寸法変化率(%)とは、〔(90℃、22時間の加熱後の発泡粒子成形体の寸法(mm)−加熱前の発泡粒子成形体の寸法(mm))/加熱前の発泡粒子成形体の寸法(mm)〕×100の式にて求められる値であり、本明細書における発泡粒子成形体の加熱寸法変化率は、上式により求められる各部位の加熱寸法変化率の内、最も寸法変化率の絶対値が大きかった部位の値を採用することとする。
Further, the relative humidity in the curing process is preferably 40% RH or less because if the relative humidity is high, the foamed particle molded body tends to be hydrolyzed and the foamed particle molded body inferior in mechanical properties may be formed. From the above viewpoint, 30% RH or less is more preferable, and 20% RH or less is more preferable. On the other hand, the lower limit of 0% RH is preferably 5% RH or more because there is a possibility that a special apparatus may be required to satisfy the condition.
Moreover, when the time of the whole curing process is 100%, from the above viewpoint, the time when the relative humidity exceeds 40% RH is preferably 50% or less, and more preferably 25% or less.
When curing, the foamed particle molded body may be in the form as it is, but if the temperature is high, the foamed particle molded body may be deformed. In such a case, it is preferable to fix the foamed particle molded body with a jig or the like for fixing the shape.
According to the curing step, since the crystallization can be performed based on the midpoint glass transition temperature of the base resin, a foamed particle molded body with improved heat resistance can be obtained efficiently. In addition, the heating medium in a curing process is normally performed with a hot air. The foamed particle molded body is more excellent in heat resistance by performing the curing step. Specifically, the heat resistance is preferably within 4%, more preferably within 3%, and more preferably within 2% of the heating dimensional change after standing for 22 hours in an atmosphere at 90 ° C. Is more preferable. If the absolute value of the heating dimensional change rate exceeds 4%, the use range may be narrowed, such as being difficult to use in the field used near 90 ° C. Although depending on the composition of the polylactic acid resin constituting the expanded particle molded body, the expanded particle molded body having heat resistance within the above range can be obtained through the curing step. The heating dimensional change rate (%) is [(the size of the foamed particle molded body after heating at 90 ° C. for 22 hours (mm) −the dimension of the foamed particle molded body before heating (mm)) / before the heating] Dimension of foamed particle molded body (mm)] × 100, which is a value determined by the formula, and the heating dimensional change rate of the foamed particle molded body in this specification is the heating dimensional change rate of each part determined by the above formula Of these, the value of the part having the largest absolute value of the dimensional change rate is adopted.

(4)発泡粒子成形体
かくして得られる発泡粒子成形体は、型内成形時の二次発泡性と発泡粒子相互の融着が良好な発泡粒子より得られるので発泡粒子相互間に隙間が少ないため、外観と発泡粒子成形体の中心部付近の融着が良好な発泡粒子成形体である。
更に、発泡粒子成形体の結晶化が促進されていると、耐熱性が向上するので、前述した養生工程を経ることにより効率よく結晶化度を高め、耐熱性を向上させることができる。
発泡粒子成形体の形状は特に制約されず、その形状は、例えば、容器状、板状、筒体状、柱状、シート状、ブロック状等の各種の形状にすることができる。また、該発泡粒子成形体は寸法安定性、表面平滑性において優れたものである。
(イ)見かけ密度
発泡粒子成形体の見かけ密度は、0.02〜0.65g/cmが好ましく、0.03〜0.45g/cmがより好ましい。
発泡粒子成形体の見かけ密度は、発泡粒子成形体の外形寸法から求められる体積VM(cm)にて発泡粒子成形体の重量WM(g)を割り算し(WM/VM)単位換算することにより求められる。
(4) Foamed particle molded body The foamed particle molded body thus obtained is obtained from foamed particles that have good secondary foaming properties during molding in the mold and good fusion between the foamed particles, so there are few gaps between the foamed particles. The foamed particle molded body has good appearance and fusion in the vicinity of the center of the foamed particle molded body.
Furthermore, when the crystallization of the foamed particle molded body is promoted, the heat resistance is improved, so that the degree of crystallization can be efficiently increased and the heat resistance can be improved by passing through the curing step described above.
The shape of the foamed particle molded body is not particularly limited, and the shape can be various shapes such as a container shape, a plate shape, a cylindrical shape, a column shape, a sheet shape, and a block shape. The foamed particle molded body is excellent in dimensional stability and surface smoothness.
Apparent density (a) Apparent Density foamed bead molded article is preferably 0.02~0.65g / cm 3, more preferably 0.03~0.45g / cm 3.
The apparent density of the foamed particle molded body is obtained by dividing the weight WM (g) of the foamed particle molded body by the volume VM (cm 3 ) determined from the external dimensions of the foamed particle molded body and converting the unit (WM / VM). Desired.

(ロ)融着率
発泡粒子成形体の融着率は、該成形体の曲げ強さなどの十分な機械的物性示すものとなる観点から50%以上が好ましく、60%以上がより好ましい。
融着率の測定は以下の方法で行うことができる。即ち、発泡粒子成形体を、カッターナイフで発泡粒子成形体の厚み方向に約3mmの切り込みを入れた後、手で切り込み部から発泡粒子成形体を破断した。次に、破断面に存在する発泡粒子の個数(n)と、材料破壊した発泡粒子の個数(b)を測定し、(n)と(b)の比(b/n)から下記(7)式により求めることができる。
融着率(%)=(b/n)×100・・・(7)
ポリ乳酸系樹脂発泡粒子成形体は、環境低負荷型の熱可塑性樹脂を基材樹脂とするものであることから、従来のポリスチレン系樹脂発泡粒子成形体やポリオレフィン系樹脂発泡粒子成形体が使用されていた分野、例えば、魚箱、包装緩衝材料、自動車の内装材等の代替物として好ましく使用できる。
(B) Fusion rate The fusion rate of the foamed particle molded body is preferably 50% or more, and more preferably 60% or more from the viewpoint of exhibiting sufficient mechanical properties such as bending strength of the molded body.
The fusion rate can be measured by the following method. That is, the foamed particle molded body was cut by about 3 mm in the thickness direction of the foamed particle molded body with a cutter knife, and then the foamed particle molded body was broken from the cut portion by hand. Next, the number of expanded particles (n) present on the fractured surface and the number of expanded particles (b) whose material was destroyed were measured, and the ratio (b / n) between (n) and (b), It can be obtained by an expression.
Fusing rate (%) = (b / n) × 100 (7)
Since the polylactic acid-based resin foamed particle molded body uses a low environmental load thermoplastic resin as the base resin, conventional polystyrene-based resin foamed particle molded body and polyolefin-based resin foamed particle molded body are used. It can be preferably used as a substitute for conventional fields, for example, fish boxes, packaging cushioning materials, automobile interior materials and the like.

次に、本発明を実施例によりさらに詳しく説明する。但し、本発明は、これらの実施例に限定されるものではない。
実施例における評価方法等を以下に記載する。
尚、以下の実施例、比較例にて使用したDSC装置はティー・エイ・インスツルメント・ジャパン(株)製、商品名:DSC―Q1000である。
(1)基材樹脂について
(イ)吸熱量(Rendo)の測定
前記「〔1〕ポリ乳酸系樹脂粒子について、(1)基材樹脂、(ロ)基材樹脂の示差走査熱量測定における吸熱量」の項に記載した測定法を採用した。
(ロ)中間点ガラス転移温度の測定
前記「〔3〕ポリ乳酸系樹脂発泡粒子の製造方法、(1)発泡工程」の項に記載した測定法を採用した。
Next, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples.
The evaluation methods and the like in the examples are described below.
In addition, the DSC apparatus used in the following Examples and Comparative Examples is a product name: DSC-Q1000 manufactured by TA Instruments Japan Co., Ltd.
(1) About base resin (a) Measurement of endothermic amount (Rendo) “[1] About polylactic acid resin particles, (1) Base resin, (b) Endothermic amount in differential scanning calorimetry of base resin The measurement method described in the section is adopted.
(B) Measurement of midpoint glass transition temperature The measurement method described in the above section “[3] Production method of polylactic acid-based resin expanded particles, (1) Foaming step” was adopted.

(2)発泡性ポリ乳酸系樹脂粒子について
(イ)物理発泡剤含浸量
ポリ乳酸系樹脂粒子に対する物理発泡剤の含浸量(重量%)は下記式から求められる。
物理発泡剤含浸量(重量%)=[(物理発泡剤含浸後のポリ乳酸系樹脂粒子重量(g)−物理発泡剤含浸前のポリ乳酸系樹脂粒子重量(g))/物理発泡剤含浸前のポリ乳酸系樹脂粒子重量(g)]×100
(ロ)物理発泡剤逸散率
樹脂粒子に対する物理発泡剤逸散率(重量%)は下記式から求めた。
[(物理発泡剤含浸量(g)−逸散後の物理発泡剤含浸量(g))/(物理発泡剤含浸量(g))]×100(%)
(ハ)含水率
発泡性ポリ乳酸系樹脂粒子の含水率はJIS K7251(2002年)のB法−水分気化法に基づき測定した。
(2) Expandable polylactic acid resin particles (a) Physical foaming agent impregnation amount The physical foaming agent impregnation amount (% by weight) with respect to the polylactic acid resin particles is obtained from the following formula.
Physical foaming agent impregnation amount (% by weight) = [(polylactic acid resin particle weight (g) after physical foaming agent impregnation−polylactic acid resin particle weight (g) before physical foaming agent impregnation) / before physical foaming agent impregnation Of polylactic acid resin particles (g)] × 100
(B) Physical foaming agent dissipation rate The physical foaming agent dissipation rate (% by weight) relative to the resin particles was determined from the following formula.
[(Physical foaming agent impregnation amount (g) −physical foaming agent impregnation amount after dissipation (g)) / (physical foaming agent impregnation amount (g))] × 100 (%)
(C) Moisture content The moisture content of the expandable polylactic acid resin particles was measured based on the method B-water vaporization method of JIS K7251 (2002).

(3)ポリ乳酸系樹脂発泡粒子について
(イ)見かけ密度
23℃の水の入ったメスシリンダーを用意し、該メスシリンダーに相対湿度50%、23℃、1atmの条件にて2日放置した約1000個の発泡粒子(発泡粒子群の重量W1)を金網を使用して沈めて、水位上昇分より読みとられる発泡粒子群の容積V1(cm)にてメスシリンダーに入れた発泡粒子群の重量W1(g)を割り算(W1/V1)することにより求めた。
(ロ)発熱量(Bexo)と吸熱量(Bendo)
前記「〔3〕ポリ乳酸系樹脂発泡粒子の製造方法、(2)ポリ乳酸系樹脂発泡粒子について、(ロ)示差走査熱量測定における発泡粒子の吸熱量と該発泡粒子の発熱量との関係」の項に記載した測定法を採用した。
(ハ)中央部の発熱量(Bc)と表層部の発熱量(Bs)
前記「〔3〕、(2)、(ハ)発泡粒子の表層部(S)の発熱量と中央部(C)の発熱量との関係」の項に記載した測定法を採用した。
(ニ)樹脂発泡粒子の平均表層厚みと平均気泡膜厚み
前記「〔3〕、(2)、(ニ)ポリ乳酸系樹脂発泡粒子の平均表層厚み(Ts)と平均気泡膜厚み(Tm)との比」の項に記載した方法を採用し各々50個の発泡粒子について測定を行った。なお、ρgを0(g/cm)、ρsを1.26(g/cm)とした。
(3) Polylactic acid resin expanded particles (a) A graduated cylinder containing water with an apparent density of 23 ° C. was prepared, and the graduated cylinder was allowed to stand for 2 days under the conditions of 50% relative humidity, 23 ° C. and 1 atm. 1,000 foam particles (weight W1 of the foam particle group) were submerged using a wire mesh, and the expanded particle group was placed in a graduated cylinder at a volume V1 (cm 3 ) of the foam particle group read from the rise in water level. The weight W1 (g) was obtained by dividing (W1 / V1).
(B) Heat generation (Bexo) and heat absorption (Bendo)
"[3] Production method of polylactic acid-based resin expanded particles, (2) Regarding polylactic acid-based resin expanded particles, (b) Relationship between the heat absorption amount of the expanded particles and the calorific value of the expanded particles in differential scanning calorimetry" The measurement method described in the section was adopted.
(C) Heat value (Bc) at the center and heat value (Bs) at the surface layer
The measurement method described in the section “[3], (2), (c) Relationship between the calorific value of the surface layer part (S B ) and the calorific value of the central part (C B )” of the expanded particles was adopted.
(D) Average surface layer thickness and average cell membrane thickness of resin foam particles “[3], (2), (d) Average surface layer thickness (Ts) and average cell membrane thickness (Tm) of polylactic acid resin foam particles Using the method described in the section “Ratio of No.”, 50 foamed particles were measured. Note that ρg was 0 (g / cm 3 ) and ρs was 1.26 (g / cm 3 ).

(4)発泡粒子成形体について
(イ)二次発泡性
表1に示した二次発泡性の評価は、以下に示す基準にて発泡粒子成形体を目視により観察することにより評価した。
◎:発泡粒子成形体の表面において発泡粒子相互間に隙間がなく、成形体の角部の形状が金型の形状と同じ。
○:発泡粒子成形体の表面において発泡粒子相互間に隙間がほとんどなく、成形体の角部の形状が金型の形状とほぼ同じ。
△:発泡粒子成形体の表面において発泡粒子相互間に隙間が少なく、成形体の角部の形状が金型の形状より若干丸い。
×:発泡粒子成形体の表面において発泡粒子相互間に隙間が多く、成形体の角部の形状が金型の形状より丸い。
(4) Foamed particle molded body (a) Secondary foamability The secondary foamability shown in Table 1 was evaluated by visually observing the foamed particle molded body according to the following criteria.
A: There is no gap between the expanded particles on the surface of the expanded particle molded body, and the shape of the corner of the molded body is the same as the shape of the mold.
○: There are almost no gaps between the expanded particles on the surface of the expanded particle molded body, and the shape of the corner of the molded body is almost the same as the shape of the mold.
Δ: There are few gaps between the expanded particles on the surface of the expanded particle molded body, and the shape of the corner of the molded body is slightly rounder than the shape of the mold.
X: There are many gaps between the expanded particles on the surface of the expanded particle molded body, and the shape of the corner of the molded body is rounder than the shape of the mold.

(ロ)融着率
発泡粒子成形体を、カッターナイフで発泡粒子成形体の厚み方向に約3mmの切り込みを入れた後、手で切り込み部から発泡粒子成形体を破断した。次に、破断面に存在する発泡粒子の個数(n)と、材料破壊した発泡粒子の個数(b)を測定し、(n)と(b)の比(b/n)の100分率である〔(b/n)×100〕(%)を融着率とした。
(ハ)中心部の融着評価
上記融着率の測定で破断した発泡粒子成形体の破断面の中心部を目視により観察し、融着の程度を以下のように評価した。
◎:全ての発泡粒子が粒子界面で剥がされず、発泡粒子自体が破壊している。
○:ほとんどの発泡粒子が粒子界面で剥がされず、発泡粒子自体が破壊している。
△:界面で剥がされている発泡粒子が多く、発泡粒子自体が破壊しているものが少ない。
×:ほぼ全ての発泡粒子が粒子界面で剥がされている。
(ニ)発泡粒子成形体の見かけ密度
発泡粒子成形体の見かけ密度は、相対湿度50%、23℃、1atmの条件にて2日放置した発泡粒子成形体の外形寸法から求められる体積VM(cm)にて発泡粒子成形体の重量WM(g)を割り算(WM/VM)してkg/mに単位換算することにより求めた。
(B) Fusing rate The foamed particle molded body was cut with a cutter knife in the thickness direction of the foamed particle molded body by about 3 mm, and then the foamed particle molded body was broken by hand from the cut portion. Next, the number (n) of the expanded particles existing on the fracture surface and the number (b) of the expanded material particles are measured, and the ratio (b / n) of (n) and (b) is 100%. A certain [(b / n) × 100] (%) was defined as the fusion rate.
(C) Evaluation of fusion at the center part The center part of the fracture surface of the foamed particle molded body fractured by the measurement of the fusion rate was visually observed, and the degree of fusion was evaluated as follows.
A: All foamed particles are not peeled off at the particle interface, and the foamed particles themselves are broken.
○: Most of the expanded particles are not peeled off at the particle interface, and the expanded particles themselves are broken.
Δ: Many foamed particles are peeled off at the interface, and few foamed particles are destroyed.
X: Almost all foamed particles are peeled off at the particle interface.
(D) Apparent density of the foamed particle molded body The apparent density of the foamed particle molded body is a volume VM (cm In 3 ), the weight WM (g) of the foamed particle molded body was divided (WM / VM) and converted into a unit of kg / m 3 .

[実施例1]
(1)樹脂粒子の製造
結晶性ポリ乳酸(三井化学(株)製、商品名:レイシアH−100、密度1.26g/cm、吸熱量49J/g、表1に結晶性樹脂と記した。)50重量部と非結晶性ポリ乳酸(三井化学(株)製、商品名:レイシアH−280、密度1.26g/cm、吸熱量0J/g、表1に非結晶性樹脂と記した。)50重量部とのブレンド物に、ポリエチレンワックス(東洋ペトロライト(株)製、商品名:ポリワックス1000、数平均分子量2200)200重量ppmを添加し、これらを押出機にて溶融、混練してストランド状に押出した。次いでこのストランドを約25℃の水中で急冷固化させた後に切断して、長さ(L)/直径(D)が1.3、1個当たりの平均重量1.1mgの無架橋の樹脂粒子を得た。得られた樹脂粒子の中間点ガラス転移温度は、57℃であった。
[Example 1]
(1) Production of Resin Particles Crystalline polylactic acid (manufactured by Mitsui Chemicals, Inc., trade name: Lacia H-100, density 1.26 g / cm 3 , endotherm 49 J / g, listed as crystalline resin in Table 1) .) 50 parts by weight and amorphous polylactic acid (Mitsui Chemicals, trade name: Lacia H-280, density 1.26 g / cm 3 , endotherm 0 J / g, listed as amorphous resin in Table 1) 200 weight ppm of polyethylene wax (manufactured by Toyo Petrolite Co., Ltd., trade name: Polywax 1000, number average molecular weight 2200) was added to the blend with 50 parts by weight, and these were melted in an extruder. Kneaded and extruded into strands. Next, the strand was quenched and solidified in water at about 25 ° C. and then cut to obtain non-crosslinked resin particles having a length (L) / diameter (D) of 1.3 and an average weight of 1.1 mg per piece. Obtained. The midpoint glass transition temperature of the obtained resin particles was 57 ° C.

得られた樹脂粒子の吸熱量(Rendo)を測定した結果、図1に示したようなDSC曲線が得られた。吸熱量(Rendo)の測定値を表1に示した。 As a result of measuring the endothermic amount (Rendo) of the obtained resin particles, a DSC curve as shown in FIG. 1 was obtained. Table 1 shows the measured endotherm (Rendo).

(2)発泡剤の含浸
5リットル(L)の内容積を有するオートクレーブにイオン交換水3000mlと酸化アルミニウム(デグッサ製、商品名:アエロオキサイド)0.5g、ドデシルベンゼンスルホン酸ナトリウム(第一工業製薬(株)製、商品名:ネオゲンS20A)0.2g、樹脂粒子1000gを投入し、さらに融着性改良剤としてグリセロールジアセトモノカプリレート(理研ビタミン(株)製、商品名:リケマールPL―019)を樹脂粒子100重量部に対し0.5重量部添加した。
次に、前記オートクレーブ内温度を30℃(表1の含浸条件の欄に示す含浸温度)に調整した後、炭酸ガス(CO)を圧力調整弁を介してオートクレーブ内に圧入し、そのオートクレーブ内の気相部の圧力が2MPa(G)(表1の含浸条件の欄に示した含浸圧力)になるように調整し、5.5時間(表1の含浸条件の欄に示す時間保持(保持時間))保持し炭酸ガスを含浸させた。
その後、オートクレーブ内の圧力を大気圧に減圧した後、樹脂粒子を取出した。取出した樹脂粒子は、遠心分離機にて付着水分が除去された。
得られた樹脂粒子表面の水分をエアーによりさらに除去し、上記オートクレーブから取り出してから10分経過後に樹脂粒子の物理発泡剤含浸量を測定したところ6.3重量%であった。
(2) Impregnation with foaming agent In an autoclave having an internal volume of 5 liters (L), 3000 ml of ion-exchanged water and 0.5 g of aluminum oxide (product name: Aerooxide), sodium dodecylbenzenesulfonate (Daiichi Kogyo Seiyaku) Co., Ltd., trade name: Neogen S20A) 0.2 g, resin particles 1000 g were added, and glycerol diacetomonocaprylate (manufactured by Riken Vitamin Co., Ltd., trade name: Riquemar PL-019) as a fusion improver Was added in an amount of 0.5 part by weight based on 100 parts by weight of the resin particles.
Next, after adjusting the temperature in the autoclave to 30 ° C. (impregnation temperature shown in the column of impregnation conditions in Table 1), carbon dioxide (CO 2 ) was press-fitted into the autoclave through the pressure regulating valve, and the autoclave The pressure in the gas phase is adjusted to 2 MPa (G) (impregnation pressure shown in the column of impregnation conditions in Table 1) and maintained for 5.5 hours (retained for the time shown in the column of impregnation conditions in Table 1). Time)) held and impregnated with carbon dioxide.
Thereafter, the pressure in the autoclave was reduced to atmospheric pressure, and then the resin particles were taken out. The extracted resin particles were freed of adhering moisture by a centrifuge.
Moisture on the surface of the obtained resin particles was further removed with air, and the amount of the resin particles impregnated with the physical foaming agent was measured 10 minutes after taking out from the autoclave and found to be 6.3% by weight.

(3)発泡剤の逸散
前記発泡剤含浸樹脂粒子をポリエチレン袋に入れ、室温25℃、湿度50%RHの雰囲気で袋の口は開封したまま2時間半静置して、該樹脂粒子に含浸された炭酸ガスの一部を逸散させる処理を実施した。この発泡剤逸散処理を終えてから10分経過後に測定される逸散処理後の発泡剤含浸量は3.5重量%であった。発泡剤逸散処理前後の発泡剤含浸量から、樹脂粒子の発泡剤逸散率は、45重量%であった。また、逸散処理後の発泡性樹脂粒子の含水率は、1.1重量%であった。
(3) Dissipation of foaming agent The foaming agent-impregnated resin particles are placed in a polyethylene bag, and left at room temperature of 25 ° C. and humidity of 50% RH for 2 and a half hours with the bag mouth open, A treatment to dissipate a part of the impregnated carbon dioxide gas was performed. The amount of impregnation of the foaming agent after the dissipation treatment measured after 10 minutes from the end of the foaming agent dissipation treatment was 3.5% by weight. From the amount of foaming agent impregnation before and after the foaming agent dissipation treatment, the foaming agent dissipation rate of the resin particles was 45% by weight. The water content of the expandable resin particles after the dissipation treatment was 1.1% by weight.

(4)ポリ乳酸系樹脂発泡性樹脂粒子の発泡
この発泡剤逸散処理後の発泡性樹脂粒子を、圧力調整弁の付いた密閉容器内に充填した後、スチームとエアーにより96℃に温度調整した混合熱媒体を8秒間導入して加熱し、膨張発泡した無架橋の発泡粒子を得た。この時、発泡機内の最高温度は82℃であった。この発泡粒子のこの発泡粒子の見かけ密度、発熱量(Bexo)、吸熱量(Bendo)、比(Bexo/Bendo)及び差(Bendo−Bexo)、表層部の発熱量(Bs)、中央部の発熱量(Bc)、及び比(Bs/Bc)、平均表層厚み(Ts)、平均気泡膜厚み(Tm)、比(Ts/Tm)を表1に示す。
(4) Foaming of polylactic acid-based resin foamable resin particles After filling the foamable resin particles after the foaming agent dissipation treatment into a sealed container with a pressure regulating valve, the temperature is adjusted to 96 ° C with steam and air. The mixed heat medium thus introduced was introduced for 8 seconds and heated to obtain expanded and expanded non-crosslinked expanded particles. At this time, the maximum temperature in the foaming machine was 82 ° C. The apparent density of the expanded particles, the calorific value (Bexo), the endothermic amount (Bendo), the ratio (Bexo / Bendo) and the difference (Bendo-Bexo), the calorific value (Bs) of the surface layer portion, the calorific value of the central portion Table 1 shows the amount (Bc), ratio (Bs / Bc), average surface layer thickness (Ts), average bubble film thickness (Tm), and ratio (Ts / Tm).

(5)ポリ乳酸系樹脂発泡粒子の型内成形
得られた発泡粒子を用いて、次のように型内成形を行った。
発泡粒子を密閉容器内に充填し、空気にて加圧し、空気の含浸量が0.33(mol/1000g)となるよう発泡粒子に含浸した後、横250(mm)×縦200(mm)×厚み50(mm)の成形空間部を有する金型に圧縮率20%(金型に充填される圧縮前の発泡粒子の嵩体積(cm)−型締後の金型内容積(cm))×100/型締後の金型内容積(cm))(%)にて充填し、表1に示す成形圧力(スチーム圧)で型内成形した。なお、金型に充填される圧縮前の発泡粒子の嵩体積(cm)は、発泡粒子の嵩密度(g/cm)にて金型に充填される該発泡粒子の重量(g)を除した値であり、発泡粒子の嵩密度(g/cm)は、発泡粒子を空のメスシリンダーに入れた際にメスシリンダーの目盛りが示す発泡粒子の体積(cm)にてメスシリンダー中の発泡粒子の重量(g)除した値である。型内成形条件と得られた発泡粒子成形体の評価結果を表1に示す。
図6には、実施例1で得られたポリ乳酸発泡粒子を略二分割した断面の走査型電子顕微鏡写真を示す。図7には、実施例1で得られたポリ乳酸発泡粒子を略二分割した断面における表層部を更に拡大した走査型電子顕微鏡写真を示す。
(5) In-mold molding of polylactic acid-based resin expanded particles In-mold molding was performed as follows using the obtained expanded particles.
The foamed particles are filled into a sealed container, pressurized with air, impregnated into the foamed particles so that the amount of impregnation with air is 0.33 (mol / 1000 g), and then 250 (mm) wide by 200 (mm) wide. × thickness 50 compression rate of 20% in a mold having a molding space portion (mm) (bulk volume of the expanded beads before compression to be filled into the mold (cm 3) - mold volume after clamping (cm 3 )) × 100 / mold inner volume after clamping (cm 3 )) (%), and molded in-mold at molding pressure (steam pressure) shown in Table 1. The bulk volume (cm 3 ) of the foamed particles before compression filled in the mold is the weight (g) of the foamed particles filled in the mold at the bulk density (g / cm 3 ) of the foamed particles. The bulk density (g / cm 3 ) of the foamed particles is the volume of the foamed particles (cm 3 ) indicated by the scale of the graduated cylinder when the foamed particles are placed in an empty graduated cylinder. It is a value obtained by dividing the weight (g) of the expanded particles. Table 1 shows the in-mold molding conditions and the evaluation results of the obtained foamed particle molded body.
FIG. 6 shows a scanning electron micrograph of a cross-section obtained by dividing the polylactic acid foamed particles obtained in Example 1 into approximately two parts. In FIG. 7, the scanning electron micrograph which expanded further the surface layer part in the cross section which divided the polylactic acid foamed particle obtained in Example 1 into about 2 is shown.

[実施例2]
実施例2では、実施例1と同じ樹脂粒子を用い、発泡剤の含浸時に、グリセロールジアセトモノカプリレート(理研ビタミン(株)製、商品名:リケマールPL―019)を添加しないで炭酸ガスを含浸させた。発泡剤逸散処理、及び発泡は実施例1と同様の条件で実施した。また、型内成形は発泡粒子に空気を加圧含浸させないで行った以外は実施例1と同様の条件で行った。得られた発泡粒子成形体の評価結果を表1に示す。
[Example 2]
In Example 2, the same resin particles as in Example 1 were used, and carbon dioxide gas was impregnated without adding glycerol diacetomonocaprylate (manufactured by Riken Vitamin Co., Ltd., trade name: Riquemar PL-019) when impregnating the foaming agent. I let you. The foaming agent dissipation treatment and foaming were performed under the same conditions as in Example 1. In-mold molding was performed under the same conditions as in Example 1 except that the foamed particles were not impregnated with air under pressure. The evaluation results of the obtained foamed particle molded body are shown in Table 1.

[比較例1、2]
比較例1及び比較例2では、実施例1と同じ樹脂粒子を用い、表1に記載の条件で発泡剤の炭酸ガスを含浸させた。比較例1及び比較例2では、発泡剤の逸散処理を行わず発泡剤含浸終了後直ちに実施例1と同様の条件にて発泡し、発泡粒子を得た。ここで含浸終了後直ちにとは、含浸終了から発泡開始まで10分以内に実施した事を示す。また、型内成形は発泡粒子に空気を加圧含浸させないで成形圧力を0.2MPa(G)とした以外は実施例1と同様の条件で行った。得られた発泡粒子成形体の評価結果を表1に示す。
図8には、比較例1で得られたポリ乳酸発泡粒子を略二分割した断面の一部の走査型電子顕微鏡写真を示す。図9には、比較例1で得られたポリ乳酸発泡粒子を略二分割した断面の一部における表層部を更に拡大した走査型電子顕微鏡写真を示す。
[Comparative Examples 1 and 2]
In Comparative Example 1 and Comparative Example 2, the same resin particles as in Example 1 were used and impregnated with carbon dioxide gas as a blowing agent under the conditions described in Table 1. In Comparative Example 1 and Comparative Example 2, foaming particles were obtained by performing foaming under the same conditions as in Example 1 immediately after the foaming agent impregnation without performing the foaming agent dissipation treatment. Here, “immediately after the impregnation” means that the impregnation was performed within 10 minutes from the end of the impregnation to the start of foaming. In-mold molding was performed under the same conditions as in Example 1 except that the foamed particles were not impregnated with air and the molding pressure was 0.2 MPa (G). The evaluation results of the obtained foamed particle molded body are shown in Table 1.
FIG. 8 shows a scanning electron micrograph of a part of a cross-section obtained by dividing the polylactic acid foamed particles obtained in Comparative Example 1 into approximately two parts. In FIG. 9, the scanning electron micrograph which expanded further the surface layer part in a part of the cross section which divided the polylactic acid foamed particle obtained by the comparative example 1 substantially into two is shown.

[実施例3、実施例4]
実施例3と実施例4では、実施例1で使用したのと同じ樹脂粒子を用い、発泡剤含浸条件の保持時間を5時間とした以外は実施例1と同じ条件で発泡剤の炭酸ガスを含浸させた。次に、オートクレーブ内の圧力を大気圧に減圧した後、樹脂粒子を取り出し、遠心分離機にて付着水分を除去した。
得られた発泡性樹脂粒子を内径10cm深さ25cmの円筒容器(流動層乾燥装置)に入れ、この容器の下部から湿度を調整した空気を導入して容器内を温度25℃、湿度40%RHの状態にして、実施例3では1時間、実施例4では2時間、発泡性樹脂粒子の発泡剤逸散処理を実施した。次いで、実施例1と同様の条件で逸散処理後の発泡性樹脂粒子を発泡させた。得られた発泡粒子を成形圧力0.2MPa(G)とした以外は実施例2と同様の条件で型内成形した。得られた発泡粒子成形体の評価結果を表1に示す。
[Example 3, Example 4]
In Example 3 and Example 4, the same resin particles as used in Example 1 were used, and the blowing agent carbon dioxide gas was used under the same conditions as in Example 1 except that the retention time of the blowing agent impregnation condition was 5 hours. Impregnated. Next, after reducing the pressure in the autoclave to atmospheric pressure, the resin particles were taken out and the adhering moisture was removed with a centrifuge.
The obtained expandable resin particles are put into a cylindrical container (fluidized bed drying apparatus) having an inner diameter of 10 cm and a depth of 25 cm, and air with adjusted humidity is introduced from the lower part of the container, and the temperature in the container is 25 ° C. and humidity is 40% RH. In this state, the foaming agent dissipation treatment of the expandable resin particles was performed for 1 hour in Example 3 and for 2 hours in Example 4. Next, the foamable resin particles after the dissipation treatment were foamed under the same conditions as in Example 1. In-mold molding was performed under the same conditions as in Example 2 except that the obtained foamed particles were subjected to a molding pressure of 0.2 MPa (G). The evaluation results of the obtained foamed particle molded body are shown in Table 1.

[実施例5]
実施例5では、実施例1で使用したのと同じ樹脂粒子を用い、発泡剤含浸条件の保持時間を5時間とした以外は実施例1と同じ条件で発泡剤の炭酸ガスを含浸させた。次に、オートクレーブ内の圧力を大気圧に減圧した後、樹脂粒子を取り出し、遠心分離機にて付着水分を除去した。
得られた発泡性樹脂粒子を内径10cm深さ25cmの円筒容器(流動層乾燥装置)に入れ、この容器の下部から乾燥空気を導入して容器内を温度25℃、湿度15%RHの状態にして2時間、発泡性樹脂粒子の発泡剤逸散処理を実施した。次いで、実施例1と同様の条件で逸散処理後の発泡性樹脂粒子を発泡させた。
得られた発泡粒子に空気の加圧含浸処理を行わずに横250(mm)×縦200(mm)×厚み10(mm)の成形空間部を有する金型に圧縮率50%にて充填し、成形圧力を0.16MPa(G)とした以外は実施例1と同様の条件で型内成形した。得られた発泡粒子成形体の評価結果を表1に示す。
[比較例3]
比較例3では、実施例1と同じ樹脂粒子を用い、表1に記載の条件で発泡剤の炭酸ガスを含浸させた。比較例3では、発泡剤の逸散処理を行わず発泡剤含浸終了後直ちに実施例1と同様の条件にて発泡し、発泡粒子を得た。また、型内成形は発泡粒子に空気を加圧含浸させないで成形圧力を0.16MPa(G)とした以外は実施例1と同様の条件で行った。得られた発泡粒子成形体の評価結果を表1に示す。
[参考例1]
比較例3にて得られた発泡粒子を、空気による加圧含浸処理を行わずに横250(mm)×縦200(mm)×厚み10(mm)の成形空間部を有する金型に圧縮率50%にて充填し、比較例3と同様の条件で型内成形した。得られた発泡粒子成形体の評価結果を表1に示す。
[Example 5]
In Example 5, the same resin particles as used in Example 1 were used, and the blowing agent carbon dioxide gas was impregnated under the same conditions as in Example 1 except that the retention time of the blowing agent impregnation condition was 5 hours. Next, after reducing the pressure in the autoclave to atmospheric pressure, the resin particles were taken out and the adhering moisture was removed with a centrifuge.
The obtained expandable resin particles are put into a cylindrical container (fluidized bed drying apparatus) having an inner diameter of 10 cm and a depth of 25 cm, and dry air is introduced from the lower part of the container to bring the container to a temperature of 25 ° C. and a humidity of 15% RH. The foaming agent dissipation treatment of the expandable resin particles was performed for 2 hours. Next, the foamable resin particles after the dissipation treatment were foamed under the same conditions as in Example 1.
The obtained foamed particles were filled in a mold having a molding space portion of width 250 (mm) × length 200 (mm) × thickness 10 (mm) at a compression rate of 50% without being subjected to pressure impregnation treatment with air. In-mold molding was performed under the same conditions as in Example 1 except that the molding pressure was 0.16 MPa (G). The evaluation results of the obtained foamed particle molded body are shown in Table 1.
[Comparative Example 3]
In Comparative Example 3, the same resin particles as in Example 1 were used and impregnated with carbon dioxide gas as a foaming agent under the conditions described in Table 1. In Comparative Example 3, foaming particles were obtained by performing foaming under the same conditions as in Example 1 immediately after the impregnation of the foaming agent without performing the foaming agent dissipation treatment. In-mold molding was performed under the same conditions as in Example 1 except that the foaming particles were not impregnated with air and the molding pressure was 0.16 MPa (G). The evaluation results of the obtained foamed particle molded body are shown in Table 1.
[Reference Example 1]
The expanded particles obtained in Comparative Example 3 were compressed into a mold having a molding space portion of width 250 (mm) × length 200 (mm) × thickness 10 (mm) without performing pressure impregnation treatment with air. Filled at 50% and molded in-mold under the same conditions as in Comparative Example 3. The evaluation results of the obtained foamed particle molded body are shown in Table 1.

[実施例6]
実施例6では、実施例1と同じ樹脂粒子を用い、実施例3と同じ条件で発泡剤の炭酸ガスを含浸させた。次に、オートクレーブ内の圧力を大気圧に減圧した後、オートクレーブ内で攪拌しながらそのまま2時間発泡剤の逸散処理を実施した。次いで発泡性樹脂粒子をオートクレーブ内から取り出し、遠心分離機にて付着水分を除去した後、実施例3と同様の条件で逸散処理後の発泡性樹脂粒子を発泡させた。得られた発泡粒子を実施例3と同様の条件で型内成形した。得られた発泡粒子成形体の評価結果を表1に示す。なお、表1において()内の値は推定値である。
[Example 6]
In Example 6, the same resin particles as in Example 1 were used, and the blowing agent carbon dioxide gas was impregnated under the same conditions as in Example 3. Next, after reducing the pressure in the autoclave to atmospheric pressure, the foaming agent was dispersed for 2 hours while stirring in the autoclave. Next, the expandable resin particles were taken out from the autoclave, and the adhering moisture was removed with a centrifuge. Then, the expandable resin particles after the dissipation treatment were expanded under the same conditions as in Example 3. The obtained expanded particles were molded in-mold under the same conditions as in Example 3. The evaluation results of the obtained foamed particle molded body are shown in Table 1. In Table 1, values in parentheses are estimated values.

Figure 2012153907
なお、表1において重量部とはポリ乳酸系樹脂粒子100重量部に対する値である。
Figure 2012153907
In Table 1, “parts by weight” is a value relative to 100 parts by weight of the polylactic acid resin particles.

[実施例と比較例のまとめ]
実施例1〜6より、本発明の製法で製造された、物理発泡剤の逸散処理を行った発泡性樹脂粒子から得られる発泡粒子は、表層部の発熱量が大きいもので型内成形にて二次発泡性に優れ、融着率が高い発泡粒子成形体が得られるものであることが分かる。更に、実施例1〜4、6から、本発明の発泡性樹脂粒子から得られる発泡粒子は、厚み50mmの二次発泡性、融着性において良好な発泡粒子成形体が得られるものであることが分かる。また、実施例1、2より、本発明の発泡性樹脂粒子から得られる発泡粒子は、成形圧力を低く設定し0.16MPa(G)とした場合でも、二次発泡性、発泡粒子成形体の中心部まで融着性に優れる厚み50mmの発泡粒子成形体が得られていることが分かる。また、実施例1と実施例2との対比結果より、融着改良剤が添加されている実施例1の発泡性樹脂粒子から得られる発泡粒子の方が実施例2のものよりも二次発泡性において多少優位ではあるが、実施例1、2において得られた発泡粒子成形体は互いに遜色のないものであった。実施例1、2の比較より、融着性改良剤を含有しなくとも本発明の逸散処理を行った発泡性樹脂粒子から、二次発泡性、融着性において良好な発泡粒子成形体が得られる発泡粒子を得ることが可能であることが分かる。
一方、比較例1、2より、物理発泡剤の逸散処理を行なわなかった発泡性樹脂粒子は、高い加熱スチーム圧力でも発泡粒子成形体は充分に融着しておらず、特に発泡粒子成形体の中心部の融着が極端に低いものであり、表には示していないが更に加熱スチーム圧を上げても発泡粒子相互の融着性に優れる50mmの厚みの発泡粒子成形体を得ることは出来なかった。
また、実施例1〜4、6で得られた本発明の製法で製造された発泡性ポリ乳酸樹脂粒子は、逸散処理において発泡性樹脂粒子の含水率を高く調整したものであることにより、該発泡性樹脂粒子を発泡して得られたポリ乳酸発泡粒子は、平均表層厚みと平均気泡厚みとの比が大きな値を示すものであった(図7参照のこと)。一方、比較例1〜3で得られた発泡性ポリ乳酸樹脂粒子は、逸散処理を行っておらず、また実施例5で得られた発泡性ポリ乳酸樹脂粒子は、逸散処理を行っているが含水率が低い為、それらの発泡性樹脂粒子を発泡して得られたポリ乳酸発泡粒子は、平均表層厚みと平均気泡厚みとの比が小さな値を示すものであった(図9参照のこと)。なお、図7と図9の写真の拡大倍率は同じである。
実施例3〜6は、物理発泡剤の逸散処理方法を変更したものであり、静置による逸散処理に限らずその他の逸散処理方法でも、良好な発泡粒子成形体が得られる発泡粒子となる本発明の発泡性樹脂粒子を製造できることが分かる。
[Summary of Examples and Comparative Examples]
From Examples 1 to 6, the foamed particles obtained from the expandable resin particles produced by the process of the present invention and subjected to the dissipation treatment of the physical foaming agent have a large calorific value in the surface layer portion and are used for in-mold molding. It can be seen that a foamed particle molded body having excellent secondary foamability and a high fusion rate can be obtained. Furthermore, from Examples 1 to 4 and 6, the expanded particles obtained from the expandable resin particles of the present invention are those in which a foamed particle molded body having a thickness of 50 mm and good secondary expandability and fusion property can be obtained. I understand. Further, from Examples 1 and 2, the foamed particles obtained from the foamable resin particles of the present invention have a secondary foaming property of the foamed particle molded body even when the molding pressure is set low and 0.16 MPa (G). It can be seen that a foamed particle molded body having a thickness of 50 mm and excellent fusion properties up to the center is obtained. Further, from the comparison result between Example 1 and Example 2, the expanded foam obtained from the expandable resin particle of Example 1 to which the fusion improver is added is secondary expanded than that of Example 2. The foamed particle molded bodies obtained in Examples 1 and 2 were inferior to each other, although they were somewhat superior in properties. From the comparison of Examples 1 and 2, from the foamable resin particles subjected to the dissipation treatment of the present invention without containing a fusibility improver, a foamed particle molded article having a good secondary foamability and fusibility is obtained. It can be seen that the resulting expanded particles can be obtained.
On the other hand, from Comparative Examples 1 and 2, the foamable resin particles that were not subjected to the physical foaming agent dissipation treatment were not sufficiently fused with the foamed particle molded body even at a high heating steam pressure. It is extremely low in the fusion of the central part of the resin, and although it is not shown in the table, it is possible to obtain a foamed particle molded body having a thickness of 50 mm that is excellent in fusion property between the foamed particles even if the heating steam pressure is further increased. I could not do it.
Moreover, the expandable polylactic acid resin particles produced by the production method of the present invention obtained in Examples 1 to 4 and 6 are those in which the water content of the expandable resin particles is adjusted to be high in the dissipation treatment. The polylactic acid foamed particles obtained by foaming the foamable resin particles showed a large ratio between the average surface layer thickness and the average cell thickness (see FIG. 7). On the other hand, the expandable polylactic acid resin particles obtained in Comparative Examples 1 to 3 were not subjected to dissipation treatment, and the expandable polylactic acid resin particles obtained in Example 5 were subjected to dissipation treatment. However, since the water content is low, the polylactic acid foamed particles obtained by foaming those foamable resin particles showed a small ratio between the average surface layer thickness and the average cell thickness (see FIG. 9). ) Note that the magnifications of the photographs in FIGS. 7 and 9 are the same.
Examples 3 to 6 are obtained by changing the dissipation treatment method of the physical foaming agent, and are not limited to the dissipation treatment by standing. It can be seen that the expandable resin particles of the present invention can be produced.

実施例5で得られた本発明の発泡性ポリ乳酸樹脂粒子は、含水率が低いものであるが、物理発泡剤の逸散処理に起因して、該発泡性樹脂粒子から得られる発泡粒子は、表層部の発熱量が大きいものであることより、二次発泡性、融着性において良好な10mm厚みの発泡粒子成形体が得られるものであった。なお、実施例5の発泡性樹脂粒子から得られる発泡粒子は、参考例1として示す逸散処理を行なわず融着性改良剤を添加した発泡性樹脂粒子から得られる発泡粒子よりも、融着率が大きい値を示すものであった。
参考例1の発泡性樹脂粒子は、該発泡性樹脂粒子から得られる発泡粒子において10mm厚みの発泡粒子成形体が型内成形により成形可能であったが、比較例3に示す通り、50mm厚みの良好な発泡粒子成形体を得ることが難しいものであった。
Although the expandable polylactic acid resin particles of the present invention obtained in Example 5 have a low water content, the expanded particles obtained from the expandable resin particles due to the dissipation treatment of the physical foaming agent are Since the surface layer portion has a large calorific value, a 10 mm-thick foamed particle molded article having a good secondary foaming property and fusing property can be obtained. In addition, the expanded particle obtained from the expandable resin particle of Example 5 is fused rather than the expanded particle obtained from the expandable resin particle to which the fusibility improver is added without performing the dissipation treatment shown in Reference Example 1. The rate showed a large value.
In the foamable resin particles of Reference Example 1, a foamed particle molded body having a thickness of 10 mm could be formed by in-mold molding in the foamed particles obtained from the foamable resin particles. It was difficult to obtain a good foamed particle molded body.

Claims (3)

JIS K7122(1987年)に記載されている熱流束示差走査熱量測定法に基づいて、融解ピーク終了時より30℃高い温度まで加熱して溶融させ、その温度に10分間保った後、冷却速度2℃/minにて110℃まで冷却し、その温度に120分間保った後、冷却速度2℃/minにて40℃まで冷却する熱処理後、再度、加熱速度2℃/minにて融解ピーク終了時より30℃高い温度まで加熱して溶融させる際に得られるDSC曲線における吸熱量(Rendo)が10J/g以上であるポリ乳酸系樹脂を基材樹脂とする発泡性ポリ乳酸系樹脂粒子の製造方法であって、
(i)該ポリ乳酸系樹脂粒子100重量部に対し物理発泡剤を1重量部以上含浸させる含浸工程と、
(ii)該物理発泡剤が含浸されたポリ乳酸系樹脂粒子を温度0〜40℃の条件下にて、含浸させた物理発泡剤の10〜60重量%を逸散させて発泡剤含浸量が3.9重量%以下の発泡性ポリ乳酸系樹脂粒子とする逸散工程、
とを含むことを特徴とする発泡性ポリ乳酸系樹脂粒子の製造方法。
Based on the heat flux differential scanning calorimetry described in JIS K7122 (1987), the mixture was heated to 30 ° C. higher than the end of the melting peak and melted, maintained at that temperature for 10 minutes, and then cooled at a cooling rate of 2 After cooling at 110 ° C / min to 110 ° C and keeping at that temperature for 120 minutes, after heat treatment cooling to 40 ° C at a cooling rate of 2 ° C / min, again at the end of the melting peak at a heating rate of 2 ° C / min Method for producing expandable polylactic acid-based resin particles using a polylactic acid-based resin having a heat absorption (Rendo) of 10 J / g or more in a DSC curve obtained when heated to a temperature higher than 30 ° C. as a base resin Because
(I) an impregnation step of impregnating 100 parts by weight of the polylactic acid-based resin particles with 1 part by weight or more of a physical foaming agent;
(Ii) 10-60% by weight of the physical foaming agent impregnated with the polylactic acid resin particles impregnated with the physical foaming agent is diffused under a temperature of 0 to 40 ° C. A dissipation step for producing 3.9 wt% or less of expandable polylactic acid resin particles;
A process for producing expandable polylactic acid-based resin particles.
前記逸散工程が相対湿度40%以上の条件にて行なわれることを特徴とする、請求項1に記載の発泡性ポリ乳酸系樹脂粒子の製造方法。 The method for producing expandable polylactic acid-based resin particles according to claim 1, wherein the dissipation step is performed under a condition of a relative humidity of 40% or more. 前記物理発泡剤の主成分が炭酸ガスである、請求項1又は2に記載の発泡性ポリ乳酸系樹脂粒子の製造方法。 The manufacturing method of the expandable polylactic acid-type resin particle of Claim 1 or 2 whose main component of the said physical foaming agent is a carbon dioxide gas.
JP2012118251A 2012-05-24 2012-05-24 Method for producing expandable polylactic acid resin particles Active JP5366276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012118251A JP5366276B2 (en) 2012-05-24 2012-05-24 Method for producing expandable polylactic acid resin particles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012118251A JP5366276B2 (en) 2012-05-24 2012-05-24 Method for producing expandable polylactic acid resin particles

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007234067A Division JP5027599B2 (en) 2007-09-10 2007-09-10 Method for producing expandable polylactic acid resin particles

Publications (2)

Publication Number Publication Date
JP2012153907A true JP2012153907A (en) 2012-08-16
JP5366276B2 JP5366276B2 (en) 2013-12-11

Family

ID=46835952

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012118251A Active JP5366276B2 (en) 2012-05-24 2012-05-24 Method for producing expandable polylactic acid resin particles

Country Status (1)

Country Link
JP (1) JP5366276B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282753A (en) * 2005-03-31 2006-10-19 Jsp Corp Polylactic acid-based resin foamed particle and polylactic acid-based resin in-mold foamed particle
WO2008093284A1 (en) * 2007-01-30 2008-08-07 Biopolymer Network Limited Methods of manufacture of polylactic acid foams
JP5027599B2 (en) * 2007-09-10 2012-09-19 株式会社ジェイエスピー Method for producing expandable polylactic acid resin particles

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006282753A (en) * 2005-03-31 2006-10-19 Jsp Corp Polylactic acid-based resin foamed particle and polylactic acid-based resin in-mold foamed particle
WO2008093284A1 (en) * 2007-01-30 2008-08-07 Biopolymer Network Limited Methods of manufacture of polylactic acid foams
JP5027599B2 (en) * 2007-09-10 2012-09-19 株式会社ジェイエスピー Method for producing expandable polylactic acid resin particles

Also Published As

Publication number Publication date
JP5366276B2 (en) 2013-12-11

Similar Documents

Publication Publication Date Title
TWI398471B (en) Expandable polylactic acid resin particles, expanded polylactic acid resin beads and molded article obtained from expanded polylactic acid resin beads
JP5004247B2 (en) Polylactic acid expanded particle molded body
JP4807834B2 (en) Expandable polylactic acid resin particles, polylactic acid expanded particles, and molded polylactic acid expanded particles
TWI520995B (en) Expanded polylactic acid resin beads and foamed molded article thereof
JP5941052B2 (en) Method for producing polylactic acid-based resin expanded particles, and method for producing a molded article thereof
JP5044337B2 (en) Polylactic acid-based resin expanded particles and the expanded particles molded body
JP4697861B2 (en) Polylactic acid-based resin foamed particles and polylactic acid-based resin in-mold foam molding
JP4289547B2 (en) Polylactic acid foamed particles and molded product of polylactic acid foamed particles
JP6356477B2 (en) Foamed particle molding
JP4664106B2 (en) Method for producing foamed polylactic acid resin particles
JP5717204B2 (en) Polylactic acid resin foamed particles and molded article of the foamed particles
JP5986096B2 (en) Method for producing foamed polylactic acid resin particles
JP5620733B2 (en) Method for producing foamed polylactic acid resin particles
JP5027599B2 (en) Method for producing expandable polylactic acid resin particles
JP4225477B2 (en) Method for producing polylactic acid-based resin in-mold foam molded body and polylactic acid-based resin in-mold foam molded body
JP6583909B2 (en) Polylactic acid resin foamed molded article
JP5366276B2 (en) Method for producing expandable polylactic acid resin particles
JP6611032B2 (en) Polylactic acid-based resin expanded particles and molded body of polylactic acid-based resin expanded particles
JP2011213906A (en) Polylactic acid-based resin foaming particle, method for producing the same, and foamed molding
JP2010207469A (en) Pedestal for flower arrangement, and method for manufacturing thereof
JP2012188560A (en) Polyester resin foamed particle, polyester resin foamed molded product using the foamed particle, and method of producing the molded product
JP2010185050A (en) Aliphatic polyester-based resin foam molding with high open cell ratio and method for producing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130904

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130906

R150 Certificate of patent or registration of utility model

Ref document number: 5366276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250