JP2012152896A - Method and device for grinding slab - Google Patents

Method and device for grinding slab Download PDF

Info

Publication number
JP2012152896A
JP2012152896A JP2012090416A JP2012090416A JP2012152896A JP 2012152896 A JP2012152896 A JP 2012152896A JP 2012090416 A JP2012090416 A JP 2012090416A JP 2012090416 A JP2012090416 A JP 2012090416A JP 2012152896 A JP2012152896 A JP 2012152896A
Authority
JP
Japan
Prior art keywords
slab
grinding
distance
shape
grindstone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012090416A
Other languages
Japanese (ja)
Other versions
JP5348275B2 (en
Inventor
Yasuo Yamazaki
泰生 山崎
Hitoshi Sakagami
仁志 坂上
Takehiro Sasaki
剛宏 佐々木
Shuichi Ukata
修一 羽片
Hidesato Hashimoto
英賢 橋本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2012090416A priority Critical patent/JP5348275B2/en
Publication of JP2012152896A publication Critical patent/JP2012152896A/en
Application granted granted Critical
Publication of JP5348275B2 publication Critical patent/JP5348275B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)
  • Metal Rolling (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a grinding method and a grinding device of a slab capable of precisely recognizing a shape of the slab and providing a favorable grinding surface state even on the slab diagonally arranged on a carrier passage with respect to the carrying direction or slab edges of both sides in the cross direction which is not rectilinear.SOLUTION: The grinding method includes steps of: picking up an image of the slab 17 carried in the X direction from above and to measure its shape; measuring a distance to both side surfaces in the cross direction of the slab 17 along its overall length by using a pair of distance measuring means arranged at prescribed distance positions at the outside in the cross direction of the slab 17; detecting an abnormal value included in data of the distance measured by the distance measuring means and to correct it by using data of the shape of the slab 17; and carrying out the chamfering work of the edge by controlling a grinding wheel free to move in the X direction and in the Y direction orthogonal with the X direction by using the corrected data of the distance.

Description

本発明は、スラブの研削方法及び研削装置に係り、更に詳細には、搬送方向に対して斜めであるスラブ、あるいは幅方向両側のエッジ部が直線でないスラブに対しても良好な研削面性状を得られるスラブの研削方法及び研削装置に関する。   The present invention relates to a slab grinding method and a grinding apparatus. More specifically, the present invention provides good grinding surface properties even for a slab that is slanted with respect to the conveying direction or a slab whose edges on both sides in the width direction are not straight. The present invention relates to a method for grinding a slab and a grinding apparatus.

連続鋳造されたスラブ(鋳片)の表面には、圧延時に欠陥を生じる原因となる瑕が発生する場合がある。このような表面瑕は、圧延工程に搬送される前に、マシンスカーフやグラインダ等の瑕取り装置により除去される。従来、表面瑕の除去の際には、グラインダ装置を用いて手動操作により研削が行われるのが一般的であったが、最近では、表面瑕の位置を読み取る装置とグラインダとを連動させた自動研削が可能となっている。   On the surface of the continuously cast slab (slab), wrinkles that cause defects during rolling may occur. Such surface defects are removed by a scraping device such as a machine scarf or a grinder before being conveyed to the rolling process. Conventionally, when removing surface flaws, grinding is generally performed by manual operation using a grinder device. Recently, however, an automatic device that links a grinder with a device that reads the position of surface flaws. Grinding is possible.

一方、連続鋳造されたスラブに対し、エッジ部の面取り手入れを行うことにより、圧延後の鋼板の品質を向上できることが知られている。例えば、特許文献1には、スラブのコーナー部の幅方向切欠き長さを20〜40mmとし、かつカリバー溝の側壁で形成されたスラブのコーナー部の厚み方向切欠き長さを幅プレス前のスラブ厚みの10〜15%にするオーステナイト系ステンレス鋼板の製造方法が開示されている。
スラブのエッジ部の面取り加工を自動研削により行う場合には、幅の変動や幅可変連続鋳造により幅方向両側のエッジ部が直線でないスラブや、幅方向両側のエッジ部が搬送方向に対して斜めである(斜行している)スラブに対応するため、表面瑕の研削に比べ砥石の位置を正確に制御することが必要になる。従来は、砥石の位置を高精度に制御することが困難であったため、グラインダ上に設置された運転室にオペレータが搭乗し、運転室からスラブのエッジ部を目視により確認しながら手動操作により砥石又はスラブを移動させて研削するのが一般的であった。
On the other hand, it is known that the quality of the steel sheet after rolling can be improved by performing chamfering of the edge portion on the continuously cast slab. For example, in Patent Document 1, the notch length in the width direction of the corner portion of the slab is 20 to 40 mm, and the notch length in the thickness direction of the corner portion of the slab formed by the side wall of the caliber groove is the width before the width press. A method for producing an austenitic stainless steel sheet having a slab thickness of 10 to 15% is disclosed.
When chamfering the edges of slabs by automatic grinding, slabs whose edges on both sides in the width direction are not straight due to variable width or variable width continuous casting, or edges on both sides in the width direction are oblique to the conveying direction Therefore, it is necessary to accurately control the position of the grindstone as compared with the grinding of the surface flaws. Conventionally, it has been difficult to control the position of the grindstone with high accuracy, so an operator gets on the cab installed on the grinder and manually checks the edge of the slab from the cab. Or it was common to grind by moving a slab.

また、スラブ形状を自動的に認識してスラブの表面手入れを行うための装置及び方法が提案されている。
例えば、特許文献2には、オンラインでスラブの4点のコーナーを検出するスラブ形状の自動認識に際し、検出した4点とスラブの仕様とを比較して誤検出の有無を調べ、誤検出値が1点のみの場合には他の3点の検出値を用いて誤検出値を修正するスラブ形状自動認識バックアップ方法が開示されている。
特許文献3には、グラインダによってスラブ表面を研削してスラブの表面手入れを行うに際し、前記スラブの搬送方向と直交する搬送直交方向の所定の位置からスラブまでの距離を前記スラブの全周にわたって計測することにより前記スラブの形状及び位置を認識し、その認識結果に応じて砥石がスラブより脱落しないように砥石の移動を制御するスラブ表面手入れ用のグラインダ研削方法及びスラブ表面手入れ用のグラインダ研削装置が開示されている。
特許文献4には、赤熱鋼材の表面に対向して受光面に光選択手段を有する受光信号変換装置を配設し、受光信号変換装置の一部に鋼材に対して斜めの投射光を発する照明装置を配設し、受光信号変換装置からの信号により、赤熱鋼材表面に存在する欠陥部を検出し、検出した結果による欠陥に関する信号により除去装置を作動させる鋼材の表面手入れ装置が開示されている。
In addition, an apparatus and a method for automatically recognizing a slab shape and cleaning the surface of the slab have been proposed.
For example, in Patent Document 2, in the automatic recognition of the slab shape for detecting the four corners of the slab online, the detected four points are compared with the specification of the slab to check whether there is a false detection. A slab shape automatic recognition backup method is disclosed that corrects a false detection value using the detection values of the other three points when there is only one point.
In Patent Document 3, when a slab surface is ground by grinding with a grinder, a distance from a predetermined position in a conveyance orthogonal direction perpendicular to the conveyance direction of the slab to the slab is measured over the entire circumference of the slab. The grinder grinding method for slab surface care and the grinder grinding device for slab surface care that recognizes the shape and position of the slab and controls the movement of the grindstone so that the grindstone does not fall off the slab according to the recognition result Is disclosed.
In Patent Document 4, a light receiving signal conversion device having a light selection means on a light receiving surface facing a surface of a red hot steel material is disposed, and illumination that emits oblique projection light to the steel material at a part of the light receiving signal conversion device. Disclosed is a steel surface cleaning device for disposing a device, detecting a defective portion existing on the surface of a red hot steel material by a signal from a light receiving signal conversion device, and operating a removing device by a signal relating to the defect as a result of the detection. .

特開2001−212603号公報JP 2001-212603 A 特開平9−239660号公報JP-A-9-239660 特開平7−136929号公報JP-A-7-136929 特開昭52−11086号公報Japanese Patent Laid-Open No. 52-11086

しかしながら、特許文献1に記載のオーステナイト系ステンレス鋼板の製造方法では、スラブの搬送時の斜行や、幅可変又は幅変動による非直線状のエッジを有するスラブに対して切欠き部の長さを一定に保つことが困難である。
特許文献2に記載のスラブ形状自動認識バックアップ方法では、コーナーの4点を認識し、その間を直線と認識するため、幅可変スラブ等のエッジ位置の認識に用いることができない。
However, in the manufacturing method of the austenitic stainless steel sheet described in Patent Document 1, the length of the notch is set to the slab having a non-linear edge due to skewing or width variation or width variation when the slab is conveyed. It is difficult to keep it constant.
In the slab shape automatic recognition backup method described in Patent Document 2, since four corner points are recognized and the space between them is recognized as a straight line, it cannot be used for recognition of an edge position such as a variable width slab.

特許文献3に記載のスラブ表面手入れ用のグラインダ研削方法及びスラブ表面手入れ用のグラインダ研削装置では、スラブ側面に対するマシンスカーフの実施の有無、スケールの付着状況等によりレーザの反射率が変化するため計測誤差が大きくなり、エッジ部の面取り研削に必要なエッジ位置の検出精度を確保することができず、砥石が誤ったスラブ形状に基づいて研削を行う結果、スラブの損傷、又は装置の破損を招くおそれがある。さらに、研削面上に不連続面が発生する結果、圧延時に瑕を生じるおそれもある。
特許文献4に記載の鋼材の表面手入れ装置では、計測結果をスラブのエッジ部の面取り研削加工に用いることに関しては記載がない。
In the grinder grinding method for slab surface care and the grinder grinding device for slab surface care described in Patent Document 3, measurement is performed because the reflectance of the laser changes depending on whether or not the machine scarf is applied to the side surface of the slab, the adhesion state of the scale, etc. The error becomes large, the detection accuracy of the edge position necessary for chamfering grinding of the edge portion cannot be ensured, and the grinding wheel grinds based on an incorrect slab shape, resulting in damage to the slab or equipment. There is a fear. Furthermore, as a result of the generation of discontinuous surfaces on the ground surface, wrinkles may occur during rolling.
In the surface care apparatus for steel materials described in Patent Document 4, there is no description regarding the use of the measurement result for chamfering grinding of the edge portion of the slab.

本発明はかかる事情に鑑みてなされたもので、手入れ面形状の不規則さに起因する瑕の発生の抑制と、連続鋳造されたスラブを幅方向にも熱間圧延する際のコイルエッジ部でのエッジシーム瑕の発生の抑制とを両立しうるエッジ面取り形状を提供するスラブの研削方法、及びスラブの形状を精度よく認識することができ、搬送方向に対して斜めに搬送路上に配置されているスラブ、あるいは幅方向両側のエッジ部が直線でないスラブに対しても上記の良好なエッジ面取り形状を得られるスラブの研削装置を提供することを目的とする。   The present invention has been made in view of such circumstances, and suppresses the generation of wrinkles due to irregularities in the shape of the care surface, and the coil edge portion when hot-rolling the continuously cast slab also in the width direction. A method for grinding a slab that provides an edge chamfering shape that can simultaneously suppress generation of edge seam wrinkles, and a shape of the slab can be accurately recognized, and is disposed on the conveyance path obliquely with respect to the conveyance direction. An object of the present invention is to provide a slab grinding device capable of obtaining the above-mentioned favorable edge chamfered shape even for a slab or a slab whose edge portions on both sides in the width direction are not straight.

前記目的に沿う第1の発明に係るスラブの研削方法は、搬送路上を跨がって搬送されるスラブを上方から撮像した画像を用いて、該スラブの幅方向両側のエッジ部を識別し、該スラブの形状を計測する工程Aと、前記スラブの幅方向外側にあって、所定の距離位置に配置された距離計測手段を用いて、前記スラブの幅方向の両側面までの距離を前記スラブの全長にわたって計測する工程Bと、前記工程Aにおいて計測された前記スラブの形状のデータを用いて、前記工程Bにおいて計測された前記距離のデータに含まれる異常値を検出してその補正を行う工程Cと、前記工程Cにおいて補正された前記距離のデータを用いて、前記スラブの搬送方向であるX方向及び該X方向に直交するY方向に移動可能な砥石を制御して、前記スラブのエッジ部の面取り加工を行う工程Dとを備える。   The grinding method of the slab according to the first invention that meets the above-mentioned object is to identify edges on both sides in the width direction of the slab using an image obtained by imaging the slab that is transported across the transport path from above. The distance to both side surfaces in the width direction of the slab is measured using the step A for measuring the shape of the slab and the distance measuring means arranged at a predetermined distance position outside the slab in the width direction. Using the process B measured over the entire length of the slab and the shape data of the slab measured in the process A, the abnormal value included in the distance data measured in the process B is detected and corrected. Using the data of the distance corrected in the process C and the process C, the grindstone that is movable in the X direction that is the conveyance direction of the slab and the Y direction that is orthogonal to the X direction is controlled, and Oh And a step D of performing chamfering parts.

第1の発明に係るスラブの研削方法において、前記スラブの上面と前記砥石による研削面とがなす角度αについて、常に20°≦α≦70°なる関係が成立し、かつ前記研削面の幅Wについて、常に10mm≦W≦40mmなる関係が成立するように、前記砥石の前記X方向及びY方向の移動速度を制御することが好ましい。   In the slab grinding method according to the first aspect of the invention, the angle α formed by the upper surface of the slab and the grinding surface by the grindstone always satisfies the relationship of 20 ° ≦ α ≦ 70 °, and the width W of the grinding surface. It is preferable to control the moving speed of the grindstone in the X direction and the Y direction so that a relationship of 10 mm ≦ W ≦ 40 mm is always established.

第1の発明に係るスラブの研削方法において、前記工程Dにおいて、前記スラブの側面と短円筒状の前記砥石の中心との前記X方向の距離が一定の研削距離範囲を外れた場合に、前記砥石の前記Y方向への移動速度v及び前記X方向への移動速度vが以下の式を満足するように前記砥石の前記X方向及びY方向の移動速度を制御して、前記砥石を前記研削距離範囲内に配置することが好ましい。
a<v<b、及び0.2≦|v/v|≦√3
(a、bは装置構成で決まる定数)
なお、「√3」は3の平方根を表す(以下同じ)。
In the slab grinding method according to the first invention, in the step D, when the distance in the X direction between the side surface of the slab and the center of the short cylindrical grindstone is out of a certain grinding distance range, by controlling the moving speed v 1 and the moving speed of the X and Y directions of the grinding wheel as the moving speed v 2 satisfy the following formula to the X direction in the Y direction of the grinding wheel, said grinding wheel It is preferable to arrange within the grinding distance range.
a <v 2 <b and 0.2 ≦ | v 2 / v 1 | ≦ √3
(A and b are constants determined by the device configuration)
“√3” represents the square root of 3 (hereinafter the same).

第2の発明に係るスラブの研削装置は、搬送路上を跨がってX方向に搬送されるスラブを上方から撮像した画像を用いて、該スラブの幅方向両側のエッジ部を識別し、該スラブの形状を計測する形状計測手段と、前記形状計測手段よりも下流側で前記スラブを跨ぐように配置され、前記X方向に沿って進退可能な門型台車と、前記門形台車に前記スラブの幅より長い距離を有して配置されて、内側にある前記スラブの幅方向の両側面までの距離を前記スラブの全長にわたって計測する対となる第1、第2の距離計測手段と、前記門型台車上で前記X方向とは直交するY方向に移動可能に移動手段を介して前記門型台車に搭載され、前記スラブの幅方向両側のエッジ部の面取り加工を同時又は順次行う砥石を備えたグラインダ装置と、前記形状計測手段によって計測された前記スラブの形状のデータを用いて、前記距離計測手段により計測された前記距離のデータに含まれる異常値を検出してその補正を行う演算手段と、前記演算手段によって補正された前記距離のデータを用いて、前記門型台車のX方向の移動速度及び前記移動手段のY方向の移動速度を制御する制御手段とを備える。   A grinding apparatus for a slab according to a second aspect of the invention identifies an edge portion on both sides in the width direction of the slab using an image obtained by imaging the slab transported in the X direction across the transport path from above, A shape measuring means for measuring the shape of the slab, a portal-type carriage that is disposed so as to straddle the slab downstream from the shape-measuring means, and that can advance and retreat along the X direction, and the slab on the portal-type carriage The first and second distance measuring means, which are paired to measure the distance to both side surfaces in the width direction of the slab on the inside, over the entire length of the slab, A grindstone that is mounted on the portal-type carriage via a moving means so as to be movable in the Y-direction orthogonal to the X-direction on the portal-type carriage, and performs chamfering on the edge portions on both sides in the width direction of the slab simultaneously or sequentially. Grinder device provided and the shape Using the data of the shape of the slab measured by the measuring means, an arithmetic means for detecting and correcting an abnormal value included in the distance data measured by the distance measuring means, and a correction by the calculating means Control means for controlling the moving speed in the X direction of the portal trolley and the moving speed in the Y direction of the moving means using the distance data.

請求項1〜3に記載のスラブの研削方法及び請求項4に記載のスラブの研削装置においては、距離計測手段により計測された距離のデータを用いて、搬送路上を搬送されるスラブの幅方向両側のエッジ部の面取り加工を行うので、搬送方向に対して斜めであるスラブ、あるいは幅方向両側のエッジ部が直線でないスラブについても、面取り手入れを自動で効率よく、かつ高精度に行うことができる。
さらに、スラブを上方から撮像した画像を用いて計測したスラブの形状のデータを用いて、距離計測手段により計測された距離のデータに含まれる異常値の検出及び補正を行うので、スラブの形状を高精度に計測することができる。
また、請求項4に記載のスラブの研削装置においては、形状計測手段がグラインダ装置から離れた位置に設けられているため、研削時の火花等の影響を受けることなく、高精度にスラブの形状の計測を行うことができる。
In the slab grinding method according to any one of claims 1 to 3, and the slab grinding apparatus according to claim 4, the width direction of the slab that is transported on the transport path using the distance data measured by the distance measuring means. Since chamfering is performed on the edge parts on both sides, chamfering can be automatically and efficiently performed with high precision even for slabs that are slanted with respect to the transport direction or slabs that have edge parts on both sides in the width direction that are not straight. it can.
Furthermore, since the abnormal value included in the distance data measured by the distance measuring means is detected and corrected using the data of the shape of the slab measured using the image obtained by imaging the slab from above, the shape of the slab is changed. It can measure with high accuracy.
Further, in the slab grinding apparatus according to claim 4, since the shape measuring means is provided at a position away from the grinder apparatus, the shape of the slab can be obtained with high accuracy without being affected by sparks during grinding. Can be measured.

請求項2に記載のスラブの研削方法においては、スラブの上面と砥石による研削面とがなす角度αについて、常に20°≦α≦70°なる関係が成立し、かつ研削面の幅Wについて、常に10mm≦W≦40mmなる関係が成立するように、砥石のX方向及びY方向の移動速度を制御している。そのため、スラブの熱問圧延前の幅方向の圧延時において、ロールとの接触面積が減少することでスラブのエッジ部近傍に発生する歪が低減され、熱間圧延時にコイルエッジ部に瑕(エッジシーム瑕)が発生するのを抑制できる。   In the slab grinding method according to claim 2, for the angle α formed between the upper surface of the slab and the grinding surface by the grindstone, a relationship of 20 ° ≦ α ≦ 70 ° is always established, and the width W of the grinding surface, The moving speed of the grindstone in the X direction and the Y direction is controlled so that the relationship of 10 mm ≦ W ≦ 40 mm is always established. Therefore, when rolling in the width direction before hot rolling of the slab, the contact area with the roll is reduced, so that the strain generated in the vicinity of the edge of the slab is reduced. The occurrence of i) can be suppressed.

請求項3に記載のスラブの研削方法においては、スラブの側面と短円筒状の砥石の中心とのX方向の距離が一定の研削距離範囲を外れた場合に、砥石のY方向への移動速度v及びX方向への移動速度vが、a<v<b、及び0.2≦|v/v|≦√3(a、bは装置構成で決まる定数)なる関係を満足するように砥石のX方向及びY方向の移動速度を制御して、砥石を研削距離範囲内に配置するので、研削時における研削面形状が変動する部位の発生を確実に抑制することができる。 In the slab grinding method according to claim 3, when the distance in the X direction between the side surface of the slab and the center of the short cylindrical grindstone is out of a certain grinding distance range, the moving speed of the grindstone in the Y direction. v 1 and the moving speed v 2 in the X direction satisfy the relationship that a <v 2 <b and 0.2 ≦ | v 2 / v 1 | ≦ √3 (a and b are constants determined by the device configuration). As described above, since the moving speed of the grindstone in the X direction and the Y direction is controlled and the grindstone is disposed within the grinding distance range, it is possible to reliably suppress the occurrence of a portion where the grinding surface shape fluctuates during grinding.

本発明の一実施の形態に係るスラブの研削装置の概略説明図である。It is a schematic explanatory drawing of the grinding device of the slab which concerns on one embodiment of this invention. 同スラブの研削装置に用いられるグラインダ装置の概略説明図である。It is a schematic explanatory drawing of the grinder apparatus used for the grinding apparatus of the same slab. 同スラブの研削装置における計測データの処理の流れを示す説明図である。It is explanatory drawing which shows the flow of a measurement data process in the grinding device of the slab. レーザ距離計とスラブの距離の関係を示す説明図である。It is explanatory drawing which shows the relationship between the distance of a laser distance meter and a slab. スラブのエッジと砥石の軌跡との関係を示す説明図である。It is explanatory drawing which shows the relationship between the edge of a slab, and the locus | trajectory of a grindstone. スラブの屈折点近傍及びエッジ部側面近傍の説明図である。It is explanatory drawing of the refraction point vicinity and edge part side surface vicinity of a slab. 、vと研削面形状の良否との関係を示すグラフである。v 1, v is a graph showing the relationship between the quality of the 2 and the grinding surface shape. スラブの幅方向及び圧延方向両側のエッジ部の研削、並びにエッジ部以外の表面瑕の除去を同時に行う場合の砥石の軌跡を示す説明図である。It is explanatory drawing which shows the locus | trajectory of a grindstone in the case of performing simultaneously grinding of the edge part of the width direction and rolling direction both sides of a slab, and removal of surface flaws other than an edge part.

続いて、添付した図面を参照しつつ、本発明を具体化した実施の形態につき説明し、本発明の理解に供する。
ここで、図1は本発明の一実施の形態に係るスラブの研削装置の概略説明図、図2は同スラブの研削装置に用いられるグラインダ装置の概略説明図、図3は同スラブの研削装置におけるデータ処理の流れを示す説明図、図4はレーザ距離計とスラブの距離の関係を示す説明図、図5はスラブのエッジと砥石の軌跡との関係を示す説明図、図6はスラブの屈折点近傍及びエッジ部側面近傍の説明図、図7はv、vと研削面形状の良否との関係を示すグラフ、図8はスラブの幅方向及び圧延方向両側のエッジ部の研削、並びにエッジ部以外の表面瑕の除去を同時に行う場合の砥石の軌跡を示す説明図である。
Next, embodiments of the present invention will be described with reference to the accompanying drawings for understanding of the present invention.
Here, FIG. 1 is a schematic explanatory view of a slab grinding apparatus according to an embodiment of the present invention, FIG. 2 is a schematic explanatory view of a grinder apparatus used in the slab grinding apparatus, and FIG. 3 is a slab grinding apparatus. FIG. 4 is an explanatory diagram showing the relationship between the laser distance meter and the slab distance, FIG. 5 is an explanatory diagram showing the relationship between the edge of the slab and the trajectory of the grindstone, and FIG. FIG. 7 is a graph showing the relationship between v 1 , v 2 and the quality of the grinding surface, FIG. 8 is grinding of edge portions on both sides in the width direction and rolling direction of the slab, And it is explanatory drawing which shows the locus | trajectory of a grindstone in the case of removing simultaneously surface flaws other than an edge part.

図1及び図2を参照して、本発明の一実施の形態に係るスラブの研削装置10について説明する。
図1に示すように、スラブの研削装置10は、搬送路の一例であるチェーンコンベア16を跨ぐように配置され、チェーンコンベア16上を跨がって搬送されるスラブ17を上方から撮像した画像を用いてスラブ17の幅方向両側のエッジ部を識別し、スラブ17の形状を計測する形状計測手段11、形状計測手段11の下流側の床面に、スラブ17を跨ぐように配置され、チェーンコンベア16に平行に配置されたレール14上を、図示しない門型台車用移動手段を介してスラブ17の搬送方向であるX方向に移動可能な門型台車12、及び門型台車12上をX方向に直交するY方向に移動可能なグラインダ装置13とを備える。
ローラーテーブル15上を搬送されたスラブ17は、ローラーテーブル15と直交方向にスラブ17を搬送するチェーンコンベア16によって、スラブの研削装置10に搬送される。
スラブ17の大きさに特に制限はないが、本実施の形態において、幅1000〜1600mm、厚さ120〜300mm、長さ5000〜10000mmのスラブを用いた。
A slab grinding apparatus 10 according to an embodiment of the present invention will be described with reference to FIGS. 1 and 2.
As shown in FIG. 1, the slab grinding apparatus 10 is arranged so as to straddle a chain conveyor 16 which is an example of a conveyance path, and is an image obtained by imaging a slab 17 conveyed over the chain conveyor 16 from above. Is used to identify edge portions on both sides in the width direction of the slab 17 and to measure the shape of the slab 17, and on the floor surface on the downstream side of the shape measuring means 11 so as to straddle the slab 17, On the rail 14 arranged in parallel with the conveyor 16, the gate-type carriage 12 that can move in the X direction, which is the conveying direction of the slab 17, via the gate-type carriage moving means (not shown), and the gate-type carriage 12 on the X And a grinder device 13 movable in the Y direction orthogonal to the direction.
The slab 17 conveyed on the roller table 15 is conveyed to the slab grinding device 10 by the chain conveyor 16 that conveys the slab 17 in a direction orthogonal to the roller table 15.
Although there is no restriction | limiting in particular in the magnitude | size of the slab 17, In this Embodiment, the slab of width 1000-1600mm, thickness 120-300mm, and length 5000-10000mm was used.

形状計測手段11は、チェーンコンベア16を跨ぐように配置された架台18の上をY方向に移動可能な光学的検査装置19を備えている。光学的検査装置19としては、任意の公知の装置を用いることができる。   The shape measuring means 11 includes an optical inspection device 19 that can move in the Y direction on a gantry 18 that is arranged so as to straddle the chain conveyor 16. Any known device can be used as the optical inspection device 19.

図2に示すように、グラインダ装置13は、門型台車12上をY方向に移動可能に配置されている。
門型台車12は、脚部25、脚部25上に設けられた枠体26、及び門型台車12全体をレール14に案内されてX方向に移動させる図示しない門型台車用移動手段を備えている。なお、門型台車12の移動方法に特に制限はなく、各種の手段によって自走式としてもよく、あるいは、ラックアンドピニオン、ねじ伝動、チェーンやワイヤを利用した巻き掛け伝動等の任意の公知の機械的手段を用いることができる。門型台車12のX方向への移動速度は、例えば0.5〜15m/分である。
As shown in FIG. 2, the grinder device 13 is disposed on the portal carriage 12 so as to be movable in the Y direction.
The portal trolley 12 includes a leg 25, a frame 26 provided on the leg 25, and a gate trolley moving means (not shown) that moves the entire portal trolley 12 in the X direction while being guided by the rail 14. ing. There is no particular limitation on the moving method of the portal trolley 12, and it may be self-propelled by various means, or any publicly known method such as rack and pinion, screw transmission, winding transmission using a chain or wire, etc. Mechanical means can be used. The moving speed of the portal carriage 12 in the X direction is, for example, 0.5 to 15 m / min.

グラインダ装置13は、回転しながらスラブ17の幅方向両側のエッジ部の面取り加工を行う短円筒形の砥石20、砥石20をスラブ17の表面に押圧するシリンダ21、枠体26上に載置されたグラインダ装置架台24、グラインダ装置全体を枠体26上でY方向に移動させる図示しないグラインダ装置用移動手段、及び図示しない砥石位置検知装置を備えている。
グラインダ装置13において、シリンダ21は、油圧シリンダでもエアシリンダでもよい。また、グラインダ装置用移動手段についても、門型台車用移動手段と同様に自走式としてもよく、あるいは、ねじ伝動や巻き掛け伝動等の任意の機械的手段を用いることができる。グラインダ装置13のY方向への移動速度は、例えば0〜30m/分である。
砥石20は、鋼板の研削加工に通常用いられる任意の材質のものを用いることができる。砥石20の径は、例えば700〜900mmである。
The grinder device 13 is mounted on a short cylindrical grindstone 20 for chamfering the edge portions on both sides in the width direction of the slab 17 while rotating, a cylinder 21 for pressing the grindstone 20 against the surface of the slab 17, and a frame body 26. Further, a grinder device frame 24, a grinder device moving means (not shown) for moving the entire grinder device in the Y direction on the frame 26, and a grindstone position detecting device (not shown) are provided.
In the grinder device 13, the cylinder 21 may be a hydraulic cylinder or an air cylinder. The grinder device moving means may be self-propelled like the portal trolley moving means, or any mechanical means such as screw transmission or winding transmission may be used. The moving speed of the grinder device 13 in the Y direction is, for example, 0 to 30 m / min.
The grindstone 20 can be made of any material usually used for grinding steel sheets. The diameter of the grindstone 20 is, for example, 700 to 900 mm.

また、グラインダ装置架台24には、内側にあるスラブ17の幅方向の両側面までの距離をスラブ17の全長にわたって計測する第1のレーザ距離計22及び第2のレーザ距離計23(第1、第2の距離計測手段の一例)が、スラブ17の幅より長い一定の距離を有して固定されている。   Further, the grinder device frame 24 includes a first laser distance meter 22 and a second laser distance meter 23 (first and second laser distance meters 23) that measure the distance to both side surfaces in the width direction of the slab 17 on the inner side over the entire length of the slab 17. An example of the second distance measuring means is fixed with a certain distance longer than the width of the slab 17.

図3に示すように、光学的検査装置19によって各標本点毎にそれぞれ計測されたスラブ17の形状のデータ、及び第1のレーザ距離計22、第2のレーザ距離計23によって各標本点毎にそれぞれ計測されたスラブ17の距離のデータは、演算手段27に転送され、距離のデータに含まれる異常値の検出及びその補正のために必要な演算処理が行われる。
異常値が補正された距離のデータは、制御手段28に転送される。制御手段28は、演算手段27より転送された距離のデータ及び砥石位置検知装置からの信号に基づいて、門型台車用移動手段、グラインダ装置用移動手段、砥石20の位置及び回転数、及びシリンダ21の押圧力を制御し、スラブ17の幅方向両端エッジ部の研削を行う。
As shown in FIG. 3, the data of the shape of the slab 17 measured for each sample point by the optical inspection device 19 and the first laser distance meter 22 and the second laser distance meter 23 for each sample point. The distance data of the slab 17 respectively measured is transferred to the calculation means 27, and the calculation processing necessary for detection and correction of the abnormal value included in the distance data is performed.
The distance data for which the abnormal value is corrected is transferred to the control means 28. Based on the distance data transferred from the calculation means 27 and the signal from the grindstone position detection device, the control means 28 moves the gate-type carriage moving means, the grinder device moving means, the position and rotation speed of the grindstone 20, and the cylinder. The pressing force of 21 is controlled, and the edge portions in the width direction of the slab 17 are ground.

次に、スラブの研削装置10を用いたスラブの研削方法について、各工程毎に順を追って説明する。
工程Aにおいて、光学的検査装置19は、チェーンコンベア16によって搬送されたスラブ17を上方から撮像して得られた画像データを用いて、背景との輝度の差によってスラブ17のエッジ部を識別し、エッジ上の所定間隔毎の標本点について、その位置座標を形状のデータとして記憶する。次に、工程Bにおいて、第1のレーザ距離計22及び第2のレーザ距離計23は、グラインダ装置架台24と共にY方向に移動しながら、図4に示すように、第1のレーザ距離計22とスラブ17の一方の側面との距離L、及び第2のレーザ距離計23とスラブ17の他方の側面との距離Lを、スラブ17の圧延方向(次工程でスラブが圧延される方向をいう。以下同じ)の全長にわたって所定間隔毎の標本点について計測し、その値を距離のデータとして記憶する。
Next, a slab grinding method using the slab grinding apparatus 10 will be described step by step for each step.
In step A, the optical inspection device 19 uses the image data obtained by imaging the slab 17 conveyed by the chain conveyor 16 from above to identify the edge portion of the slab 17 based on the luminance difference from the background. The position coordinates of the sample points at predetermined intervals on the edge are stored as shape data. Next, in step B, the first laser rangefinder 22 and the second laser rangefinder 23 move in the Y direction together with the grinder device mount 24, as shown in FIG. a direction between the one side surface of the slab 17 L a, and the distance L B between the other side surface of the second laser rangefinder 23 and slabs 17, the rolling direction (slab in the next step of the slab 17 is rolled The same applies to the following), and the sample points at predetermined intervals are measured over the entire length, and the values are stored as distance data.

工程Cでは、以下の手順により、形状のデータを用いて距離のデータに含まれる異常値の検出及び補正を行う。
まず、演算手段27により、光学的検査装置19により計測されたY座標が等しい2つの標本点のX座標の差を演算し、各Y座標におけるスラブ17の幅Lを求める。
次に、演算手段27により、各Y座標について、第1のレーザ距離計22より計測されたL、及び第2のレーザ距離計23により計測されたLを用いて、L=d−(L+L)を演算する。ここで、dは、第1のレーザ距離計22と第2のレーザ距離計23との距離である。
In step C, an abnormal value included in the distance data is detected and corrected using the shape data according to the following procedure.
First, the calculating unit 27 calculates the difference between the X coordinates of the two sample points is equal Y coordinates measured by the optical inspection apparatus 19 obtains the width L 1 of the slab 17 at each Y-coordinate.
Next, the arithmetic unit 27, for each Y coordinate, using L B measured by the first laser rangefinder 22 from the measured L A, and the second laser rangefinder 23, L 2 = d- (L A + L B ) is calculated. Here, d is the distance between the first laser distance meter 22 and the second laser distance meter 23.

第1のレーザ距離計22及び第2のレーザ距離計23のいずれの計測値にも異常値が含まれていなければ、LとLは計測誤差の範囲内で一致する筈である。そこで、L−Lの絶対値と所定の閾値Dとの比較により異常値の検出を行う。閾値Dの値は、スラブの大きさ、用いた光学的検査装置19、第1のレーザ距離計22及び第2のレーザ距離計23の計測精度等に応じて適宜定められるが、本実施の形態において、好ましくは10〜70mm、より好ましくは20〜50mm、さらに好ましくは30〜40mmである。
ある標本点について|L−L|>Dとなる場合、その標本点における距離のデータ(座標値)に異常値が含まれると判定し、異常値の補正を行う。異常値の補正は、例えば、異常値を含む標本点のX座標を、隣接する標本点のX座標で置換することにより行われる。
このようにして補正した距離のデータを、補正後の距離のデータとして記憶する。
If any measurement value of the first laser distance meter 22 and the second laser distance meter 23 does not include an abnormal value, L 1 and L 2 should match within the range of the measurement error. Therefore, an abnormal value is detected by comparing the absolute value of L 1 -L 2 with a predetermined threshold value D. The value of the threshold value D is appropriately determined according to the size of the slab, the measurement accuracy of the optical inspection device 19 used, the first laser distance meter 22 and the second laser distance meter 23, and the like. Is preferably 10 to 70 mm, more preferably 20 to 50 mm, and still more preferably 30 to 40 mm.
When | L 1 −L 2 |> D for a certain sample point, it is determined that the distance data (coordinate value) at that sample point includes an abnormal value, and the abnormal value is corrected. The correction of the abnormal value is performed, for example, by replacing the X coordinate of the sample point including the abnormal value with the X coordinate of the adjacent sample point.
The corrected distance data is stored as corrected distance data.

工程Dでは、補正後の距離のデータ及び砥石位置検知装置からの信号を用いて、制御手段28により、砥石20の位置、シリンダ21による押圧力、門型台車12及びグラインダ装置13の、それぞれX方向、Y方向への移動速度を制御し、スラブ17の幅方向両側のエッジ部の面取り加工を行う。
スラブ17の幅方向両端のエッジが直線であり、かつその向きがY方向に平行である場合には、砥石20をY方向にのみ移動させることにより、幅方向及び厚み方向の切削量を常に一定(例えば、10mm)に保つことができる。その結果、スラブ17上面と砥石20による研削面との稜線は、常にスラブ17の圧延方向と平行になる。
In step D, using the corrected distance data and the signal from the grindstone position detection device, the control means 28 controls the position of the grindstone 20, the pressing force by the cylinder 21, the portal carriage 12 and the grinder device 13, respectively. The chamfering of the edge portions on both sides in the width direction of the slab 17 is performed by controlling the moving speed in the direction and the Y direction.
When the edges at both ends in the width direction of the slab 17 are straight lines and the directions thereof are parallel to the Y direction, the cutting amount in the width direction and the thickness direction is always constant by moving the grindstone 20 only in the Y direction. (For example, 10 mm). As a result, the ridgeline between the upper surface of the slab 17 and the grinding surface by the grindstone 20 is always parallel to the rolling direction of the slab 17.

スラブ17のチェーンコンベア16上での斜行、スラブ17における幅可変部又は幅の変動の存在等により、スラブ17の幅方向両端のエッジの少なくとも一部がY方向と平行でない場合、面取り加工の際には、砥石20をY方向のみならずX方向にも移動させながら研削を行う必要がある。グラインダ装置用移動手段は、砥石20のX方向の位置を無段階に変化させることができず、有限のステップ幅が存在するので、砥石20はX方向に間欠的に移動する。そのため、砥石20の軌跡は、図5中に破線で示したスラブ17のエッジと平行な一本の直線とはならず、図5中に矢印付の実線で示したように、Y方向に平行な線分Aと、X方向への変位を伴う線分Bとが互いに連接する折れ線状となる。なお、矢印は砥石20の移動方向を表す。
以上述べたように、砥石20によるスラブ17のエッジ部の研削量は圧延方向の全般にわたって一定とはならず、局所的に変動する。
If at least a part of the edges at both ends in the width direction of the slab 17 is not parallel to the Y direction due to the skew of the slab 17 on the chain conveyor 16, the presence of a variable width portion or a variation in the width of the slab 17, chamfering is performed. In this case, it is necessary to perform grinding while moving the grindstone 20 not only in the Y direction but also in the X direction. The moving means for the grinder device cannot change the position of the grindstone 20 in the X direction steplessly, and since the finite step width exists, the grindstone 20 moves intermittently in the X direction. Therefore, the trajectory of the grindstone 20 does not become a single straight line parallel to the edge of the slab 17 indicated by a broken line in FIG. 5, but is parallel to the Y direction as indicated by a solid line with an arrow in FIG. A straight line segment A and a line segment B accompanying displacement in the X direction are connected to each other in a broken line shape. The arrow represents the moving direction of the grindstone 20.
As described above, the grinding amount of the edge portion of the slab 17 by the grindstone 20 is not constant throughout the rolling direction, but varies locally.

それに伴い、スラブ17上面と砥石20による研削面との稜線は一直線にはならず、図6中の屈折点近傍の部分拡大図に示すように、1又は複数の屈折点を有し、屈折点で連接する複数の線分からなる折れ線状となる。ここで、θは、屈折点で互いに隣接する2本の線分のなす角度のうちより小さいほうの角度をいう(したがって、0°<θ≦90°である)。
屈折点における切削面の形状の変動が著しくなると、急峻なエッジが形成されるため、圧延加工時における瑕の発生率が増大する。したがって、全ての屈折点において、θを常にある一定の値以下に保つか、θがある一定の値より大きい屈折点で隣接する線分のうち短い方(砥石20がX方向に移動した際に形成される)の長さλを一定の値以下に保たないと、スラブ17の圧延加工時に、前記した切削面の形状の変動が著しい屈折点近傍に形成された急峻なエッジ部分の倒れ込みが発生し、製品における新たな瑕の発生原因となりうる。
Accordingly, the ridgeline between the upper surface of the slab 17 and the grinding surface by the grindstone 20 does not become a straight line, but has one or more refraction points as shown in the partially enlarged view in the vicinity of the refraction point in FIG. It becomes the shape of a polygonal line consisting of a plurality of line segments connected together. Here, θ is the smaller of the angles formed by two line segments adjacent to each other at the refraction point (thus, 0 ° <θ ≦ 90 °).
When the variation of the shape of the cut surface at the refraction point becomes significant, a steep edge is formed, and the generation rate of wrinkles during the rolling process increases. Therefore, at all refraction points, θ is always kept below a certain value, or the shorter one of adjacent line segments at a refraction point larger than a certain value (when the grindstone 20 moves in the X direction). If the length λ of the slab 17 is not kept below a certain value, the steep edge portion formed near the refraction point where the variation of the shape of the cutting surface is remarkable at the time of rolling the slab 17 And can cause new defects in the product.

また、砥石20によるスラブ17のエッジ部の研削量の局所的な変動に伴い、スラブ17上面と研削面とがなす角度(面取り角度)α、及び研削面の幅W(図6中のエッジ部近傍の部分拡大図参照)もそれぞれ変動するが、これらの値についても、それぞれ所定の範囲内に保たないと、エッジシーム瑕の発生や製品歩留まりの低下を招くおそれがある。   Further, as the amount of grinding of the edge portion of the slab 17 by the grindstone 20 is locally varied, the angle (chamfer angle) α formed between the upper surface of the slab 17 and the grinding surface and the width W of the grinding surface (the edge portion in FIG. 6). Each of these values also fluctuates. However, if these values are not maintained within a predetermined range, there is a risk that edge seams will occur and the product yield will be reduced.

まず、30°≦α≦45°、かつ15mm≦W≦35mmを満たすスラブを用いて、スラブ17上面と砥石20による研削面との稜線の屈折点(「研削面形状変動部」ということもある)に起因するスラブ17の圧延加工時におけるエッジの倒れこみの発生と、θ、λの関係について検討を行った。その結果を以下の表1に示す。   First, using a slab satisfying 30 ° ≦ α ≦ 45 ° and 15 mm ≦ W ≦ 35 mm, the refraction point of the ridgeline between the upper surface of the slab 17 and the grinding surface by the grindstone 20 (sometimes referred to as “grinding surface shape variation portion”). The relation between θ and λ and the occurrence of edge collapse during rolling of the slab 17 due to the above was investigated. The results are shown in Table 1 below.

Figure 2012152896
Figure 2012152896

なお、表1中、「○」は、研削面形状変動部がスラブの圧延加工時に倒れ込み発生する瑕の発生率が0.5%以下であることを表しており、「×」は、研削面形状変動部がスラブの圧延加工時に倒れ込み発生する瑕の発生率が0.5%を上回ることを表している。
表1に示すように、λの大きさによらずθを60度以下に保つか、あるいはθが60度を超えた部分についてもλを25mm以下に保つことができれば、スラブ17の圧延加工時におけるエッジの倒れこみの発生率を0.5%以下に抑制できることがわかった。
In Table 1, “◯” indicates that the rate of occurrence of wrinkles that occur when the grinding surface shape variation portion collapses during rolling of the slab is 0.5% or less, and “×” indicates that the grinding surface It shows that the generation rate of wrinkles that the shape variation part collapses during rolling of the slab exceeds 0.5%.
As shown in Table 1, regardless of the size of λ, if θ can be kept at 60 ° or less, or if λ can be kept at 25 mm or less for a portion where θ exceeds 60 °, the slab 17 can be rolled. It was found that the occurrence rate of the edge collapse in can be suppressed to 0.5% or less.

次に、30°≦θ≦45°、かつ15mm≦λ≦20mmを満たすスラブを用いて、スラブ17の圧延加工時におけるエッジの倒れこみの発生と、α、Wの関係について検討を行った。その結果を以下の表2に示す。   Next, using a slab satisfying 30 ° ≦ θ ≦ 45 ° and 15 mm ≦ λ ≦ 20 mm, the occurrence of edge collapse during rolling of the slab 17 and the relationship between α and W were examined. The results are shown in Table 2 below.

Figure 2012152896
Figure 2012152896

なお、表2中、「◎」は、エッジシーム瑕の発生率が0.5%以下であることを表しており、「○」は、エッジシーム瑕の発生率が0.5%以下であるが、切削量が多いため製品歩留まりが低下していることを表している。また、「△」は、面取り加工を行わなかったスラブに比べてエッジシーム瑕の発生率は改善されているものの、その値が0.5%を上回っていることを表している。
表2に示すように、αを20度以上70度以下に保ち、かつWを10mm以上40mm以下(製品歩留まりの向上の観点から、Wは10mm以上30mm以下であることがより好ましい)に保つことができれば、スラブ17の圧延加工時におけるエッジシーム瑕の発生率を0.5%以下に抑制できることがわかった。
In Table 2, “◎” indicates that the occurrence rate of edge seam wrinkles is 0.5% or less, and “◯” indicates that the occurrence rate of edge seam wrinkles is 0.5% or less. This means that the product yield is reduced due to the large amount of cutting. In addition, “Δ” indicates that although the occurrence rate of edge seam wrinkles is improved as compared with the slab that has not been chamfered, the value exceeds 0.5%.
As shown in Table 2, α is kept at 20 degrees or more and 70 degrees or less, and W is kept at 10 mm or more and 40 mm or less (from the viewpoint of improving product yield, W is more preferably 10 mm or more and 30 mm or less). If it was possible, it turned out that the generation rate of the edge seam wrinkle at the time of the rolling process of the slab 17 can be suppressed to 0.5% or less.

θ、λ、α及びWが上述の条件を満たすようなグラインダ装置13の制御方法について検討した結果、スラブ17のエッジ(側面)と砥石20の中心とのX方向の距離が、ある所定の範囲(研削距離範囲)(例えば、300±30mm、好ましくは300±20mm)を超えた場合にのみ門型台車12をX方向に移動させ、スラブ17のエッジ(側面)と砥石20の中心とのX方向の距離が所定の範囲内となるように砥石20を配置することが好ましいことがわかった。
さらに、門型台車12をX方向に移動させる際のグラインダ装置13のY方向への移動速度v、及び門型台車12のX方向への移動速度vとθとの関係についても検討した結果、vとvとの間に、0.2≦|v/v|≦√3なる関係が成り立つように門型台車12及びグラインダ装置13の移動速度を制御した場合に、θを60度以下に保つことができることもわかった。特に、図7に示すように、0.2≦|v/v|≦1なる関係が成り立つ場合には、研削面の形状が良好である(図7中で、「面形状○」と記載)。1<|v/v|≦√3なる関係が成り立つ場合には、研削面には若干の段差や不連続面が見られるものの、θは60度以下に保たれていた(図7中で、「面形状△」と記載)。
なお、グラインダ装置のX方向への移動速度vについては、装置構成で定まる下限値a、及び上限値bが存在するので、a<v<bなる関係が成り立つ範囲内で、v及びvを制御手段28により制御する必要がある。
As a result of examining the control method of the grinder device 13 in which θ, λ, α, and W satisfy the above-described conditions, the distance in the X direction between the edge (side surface) of the slab 17 and the center of the grindstone 20 is within a predetermined range. Only when exceeding (grinding distance range) (for example, 300 ± 30 mm, preferably 300 ± 20 mm), the portal trolley 12 is moved in the X direction, and X between the edge (side surface) of the slab 17 and the center of the grindstone 20 It turned out that it is preferable to arrange | position the grindstone 20 so that the distance of a direction may be in the predetermined range.
Furthermore, the movement speed v 1 of the grinder apparatus 13 in the Y direction when the portal carriage 12 is moved in the X direction, and the relationship between the movement speed v 2 of the portal carriage 12 in the X direction and θ were also examined. As a result, when the moving speeds of the portal trolley 12 and the grinder device 13 are controlled so that a relationship of 0.2 ≦ | v 2 / v 1 | ≦ √3 is established between v 1 and v 2 , θ It was also found that can be kept below 60 degrees. In particular, as shown in FIG. 7, when the relationship of 0.2 ≦ | v 2 / v 1 | ≦ 1 holds, the shape of the grinding surface is good (in FIG. 7, “surface shape ○” Description). When the relationship 1 <| v 2 / v 1 | ≦ √3 holds, θ is kept at 60 degrees or less although there are slight steps and discontinuous surfaces on the ground surface (see FIG. 7). And described as “surface shape Δ”).
As for the moving speed v 2 in the X direction of the grinder device, there are a lower limit value a and an upper limit value b determined by the device configuration, so that v 1 and v are within the range where the relationship of a <v 2 <b holds. v needs to be controlled by 2 the control means 28.

また、vとvの間に、0.2≦|v/v|≦√3なる関係が成り立つように門型台車12をX方向に移動する際に、X方向への移動量(ステップ幅)を20mm以下に制御した場合に、λを25mm以下に保つことができることがわかった。 Further, when the portal carriage 12 is moved in the X direction so that the relationship of 0.2 ≦ | v 2 / v 1 | ≦ √3 is established between v 1 and v 2, the amount of movement in the X direction It was found that when (step width) is controlled to 20 mm or less, λ can be kept to 25 mm or less.

以上述べたようなスラブ17の幅方向両側部のエッジ部の研削と同時に、スラブ17の圧延方向両側のエッジ部の研削、及びエッジ部以外の表面瑕の除去を併せて行ってもよい。図8に、スラブ17の幅方向及び圧延方向両側のエッジ部の研削、並びにエッジ部以外の表面瑕の除去を同時に行う場合の砥石20の軌跡の一例を示す。この場合、光学的検査装置19により、スラブ17の表面瑕の位置の検出も併せて行う。
まず、(1)グラインダ装置13をY方向に移動させながら、第1のレーザ距離計22及び第2のレーザ距離計23により、スラブ17の側面までの距離の計測を行う。
次に、(2)回転する砥石20を、表面瑕の位置まで移動させ、シリンダ21で押圧して研削を行い、表面瑕(図8中の斜線部)を除去する。
最後に、(3)スラブ17の幅方向及び圧延方向両側のエッジ部の研削を行う。
Simultaneously with the grinding of the edge portions on both sides in the width direction of the slab 17 as described above, the grinding of the edge portions on both sides in the rolling direction of the slab 17 and the removal of surface defects other than the edge portions may be performed. FIG. 8 shows an example of the trajectory of the grindstone 20 when grinding the edge portions on both sides in the width direction and the rolling direction of the slab 17 and removing surface defects other than the edge portions. In this case, the optical inspection device 19 also detects the position of the surface defect of the slab 17.
First, (1) the distance to the side surface of the slab 17 is measured by the first laser distance meter 22 and the second laser distance meter 23 while moving the grinder device 13 in the Y direction.
Next, (2) the rotating grindstone 20 is moved to the position of the surface flaw and pressed by the cylinder 21 to perform grinding to remove the surface flaw (shaded portion in FIG. 8).
Finally, (3) the edge portions on both sides in the width direction and the rolling direction of the slab 17 are ground.

本発明は、前記した実施の形態に限定されるものではなく、本発明の要旨を変更しない範囲での変更は可能であり、例えば、前記したそれぞれの実施の形態や変形例の一部又は全部を組み合わせて本発明のスラブの研削方法及びスラブの研削装置を構成する場合も本発明の権利範囲に含まれる。
例えば、前記実施の形態のスラブの研削装置では、形状計測手段及びグラインダ装置を、ローラーテーブルに直交するチェーンコンベア上に配置したが、ローラーテーブル上に配置してもよい。
また、前記実施の形態のスラブの研削装置において、砥石の押圧手段としてギアやリンク機構を利用した機械的な手段を用いてもよい。
前記実施の形態のスラブの研削装置においては、1台のグラインダ装置を用いて面取り加工を行っているが、2台のグラインダ装置を同時に用いて、スラブの幅方向両側のエッジ部の面取り加工を同時に行うような構成とすることもできる。
さらに、前記実施の形態ではレーザ距離計をグラインダ装置と共にY方向に移動させて距離の計測を行ったが、スラブをY方向に移動させて計測を行うこともできる。
The present invention is not limited to the above-described embodiment, and can be changed without changing the gist of the present invention. For example, some or all of the above-described embodiments and modifications are possible. The slab grinding method and the slab grinding apparatus of the present invention are combined to form the slab grinding apparatus of the present invention, and are also included in the scope of the right of the present invention.
For example, in the slab grinding apparatus of the above-described embodiment, the shape measuring unit and the grinder device are arranged on the chain conveyor orthogonal to the roller table, but may be arranged on the roller table.
In the slab grinding apparatus of the above-described embodiment, mechanical means using a gear or a link mechanism may be used as the grinding stone pressing means.
In the slab grinding apparatus of the above embodiment, the chamfering is performed using one grinder apparatus, but the chamfering of the edge portions on both sides in the width direction of the slab is simultaneously performed using two grinder apparatuses. It can also be set as the structure performed simultaneously.
Further, in the above embodiment, the distance was measured by moving the laser distance meter in the Y direction together with the grinder device, but the measurement can also be performed by moving the slab in the Y direction.

10:スラブの研削装置、11:形状計測手段、12:門型台車、13:グラインダ装置、14:レール、15:ローラーテーブル、16:チェーンコンベア、17:スラブ、18:架台、19:光学的検査装置、20:砥石、21:シリンダ、22:第1のレーザ距離計、23:第2のレーザ距離計、24:グラインダ装置架台、25:脚部、26:枠体、27:演算手段、28:制御手段 10: slab grinding device, 11: shape measuring means, 12: portal trolley, 13: grinder device, 14: rail, 15: roller table, 16: chain conveyor, 17: slab, 18: mount, 19: optical Inspection device, 20: grinding wheel, 21: cylinder, 22: first laser distance meter, 23: second laser distance meter, 24: grinder device mount, 25: leg, 26: frame, 27: calculation means, 28: Control means

Claims (4)

搬送路上を跨がって搬送されるスラブを上方から撮像した画像を用いて、該スラブの幅方向両側のエッジ部を識別し、該スラブの形状を計測する工程Aと、
前記スラブの幅方向外側にあって、所定の距離位置に配置された距離計測手段を用いて、前記スラブの幅方向の両側面までの距離を前記スラブの全長にわたって計測する工程Bと、
前記工程Aにおいて計測された前記スラブの形状のデータを用いて、前記工程Bにおいて計測された前記距離のデータに含まれる異常値を検出してその補正を行う工程Cと、
前記工程Cにおいて補正された前記距離のデータを用いて、前記スラブの搬送方向であるX方向及び該X方向に直交するY方向に移動可能な砥石を制御して、前記スラブのエッジ部の面取り加工を行う工程Dとを備えることを特徴とするスラブの研削方法。
Using the image obtained by imaging the slab transported across the transport path from above, identifying the edge portions on both sides in the width direction of the slab, and measuring the shape of the slab,
Step B of measuring the distance to both side surfaces in the width direction of the slab over the entire length of the slab, using distance measuring means located outside the slab in the width direction and arranged at a predetermined distance position;
Using the shape data of the slab measured in the step A, the step C for detecting an abnormal value included in the distance data measured in the step B and correcting it,
Using the distance data corrected in the step C, the grindstone that is movable in the X direction that is the conveyance direction of the slab and in the Y direction that is orthogonal to the X direction is controlled to chamfer the edge portion of the slab. A slab grinding method comprising: a process D for performing processing.
請求項1記載のスラブの研削方法において、前記スラブの上面と前記砥石による研削面とがなす角度αについて、常に20°≦α≦70°なる関係が成立し、かつ前記研削面の幅Wについて、常に10mm≦W≦40mmなる関係が成立するように、前記砥石の前記X方向及びY方向の移動速度を制御することを特徴とするスラブの研削方法。   2. The slab grinding method according to claim 1, wherein an angle α formed between an upper surface of the slab and a grinding surface by the grindstone always satisfies a relationship of 20 ° ≦ α ≦ 70 ° and a width W of the grinding surface. A method for grinding a slab, wherein the moving speed of the grindstone in the X direction and the Y direction is controlled so that a relationship of 10 mm ≦ W ≦ 40 mm is always established. 請求項2記載のスラブの研削方法において、前記工程Dにおいて、前記スラブの側面と短円筒状の前記砥石の中心との前記X方向の距離が一定の研削距離範囲を外れた場合に、前記砥石の前記Y方向への移動速度v及び前記X方向への移動速度vが以下の式を満足するように前記砥石の前記X方向及びY方向の移動速度を制御して、前記砥石を前記研削距離範囲内に配置することを特徴とするスラブの研削方法。
a<v<b、及び0.2≦|v/v|≦√3
(a、bは装置構成で決まる定数)
3. The slab grinding method according to claim 2, wherein, in the step D, when the distance in the X direction between the side surface of the slab and the center of the short cylindrical grindstone is out of a fixed grinding distance range, wherein by controlling the moving speed of the X and Y directions of the grinding wheel as the moving velocity v 2 of the moving speed v 1 and said X-direction in the Y direction satisfies the following equation, the said grinding wheel A method for grinding a slab, wherein the grinding method is arranged within a grinding distance range.
a <v 2 <b and 0.2 ≦ | v 2 / v 1 | ≦ √3
(A and b are constants determined by the device configuration)
搬送路上を跨がってX方向に搬送されるスラブを上方から撮像した画像を用いて、該スラブの幅方向両側のエッジ部を識別し、該スラブの形状を計測する形状計測手段と、
前記形状計測手段よりも下流側で前記スラブを跨ぐように配置され、前記X方向に沿って進退可能な門型台車と、
前記門形台車に前記スラブの幅より長い距離を有して配置されて、内側にある前記スラブの幅方向の両側面までの距離を前記スラブの全長にわたって計測する対となる第1、第2の距離計測手段と、
前記門型台車上で前記X方向とは直交するY方向に移動可能に移動手段を介して前記門型台車に搭載され、前記スラブの幅方向両側のエッジ部の面取り加工を同時又は順次行う砥石を備えたグラインダ装置と、
前記形状計測手段によって計測された前記スラブの形状のデータを用いて、前記距離計測手段により計測された前記距離のデータに含まれる異常値を検出してその補正を行う演算手段と、
前記演算手段によって補正された前記距離のデータを用いて、前記門型台車のX方向の移動速度及び前記移動手段のY方向の移動速度を制御する制御手段とを備えることを特徴とするスラブの研削装置。
A shape measuring means for identifying edge portions on both sides in the width direction of the slab and measuring the shape of the slab using an image obtained by imaging the slab transported in the X direction across the transport path from above.
A portal-type carriage that is arranged so as to straddle the slab on the downstream side of the shape measuring means, and that can advance and retreat along the X direction;
A first and second pair that are disposed on the portal trolley with a distance longer than the width of the slab and measure the distance to both side surfaces of the inner slab in the width direction over the entire length of the slab. Distance measuring means,
A grindstone that is mounted on the portal-type carriage via a moving means so as to be movable in the Y-direction orthogonal to the X-direction on the portal-type carriage, and simultaneously or sequentially chamfers the edge portions on both sides in the width direction of the slab. A grinder device comprising:
Using the shape data of the slab measured by the shape measuring means, an arithmetic means for detecting and correcting an abnormal value included in the distance data measured by the distance measuring means,
Control means for controlling the moving speed of the portal carriage in the X direction and the moving speed of the moving means in the Y direction using the distance data corrected by the calculating means. Grinding equipment.
JP2012090416A 2007-03-29 2012-04-11 Slab grinding method and grinding apparatus Active JP5348275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012090416A JP5348275B2 (en) 2007-03-29 2012-04-11 Slab grinding method and grinding apparatus

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007088913 2007-03-29
JP2007088913 2007-03-29
JP2012090416A JP5348275B2 (en) 2007-03-29 2012-04-11 Slab grinding method and grinding apparatus

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007213906A Division JP5014921B2 (en) 2007-03-29 2007-08-20 Slab grinding method and grinding apparatus

Publications (2)

Publication Number Publication Date
JP2012152896A true JP2012152896A (en) 2012-08-16
JP5348275B2 JP5348275B2 (en) 2013-11-20

Family

ID=40045209

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2007213906A Active JP5014921B2 (en) 2007-03-29 2007-08-20 Slab grinding method and grinding apparatus
JP2012090416A Active JP5348275B2 (en) 2007-03-29 2012-04-11 Slab grinding method and grinding apparatus

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2007213906A Active JP5014921B2 (en) 2007-03-29 2007-08-20 Slab grinding method and grinding apparatus

Country Status (1)

Country Link
JP (2) JP5014921B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200073521A (en) * 2018-12-14 2020-06-24 주식회사 포스코 Apparatus and method for automatic grinding of billet

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10391573B2 (en) 2013-06-27 2019-08-27 Jfe Steel Corporation Method of cutting and removing adhesive matter at end of cuboid metal material and removal apparatus
CN106425731B (en) * 2016-12-02 2018-11-13 安徽睿知信信息科技有限公司 A kind of plank Rapid chamfering device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136929A (en) * 1993-11-12 1995-05-30 Kawasaki Steel Corp Grinder grinding method for slab surface trimming and grinder grinding device for slab surface trimming
JP2000357007A (en) * 1999-06-15 2000-12-26 Minolta Co Ltd Three-dimensional data processor
JP2001212603A (en) * 2000-02-02 2001-08-07 Kawasaki Steel Corp Method of manufacturing austenite-based stainless steel plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6039505B2 (en) * 1980-12-01 1985-09-06 住友金属工業株式会社 Steel strip edge processing method
JP3628538B2 (en) * 1999-01-12 2005-03-16 シャープ株式会社 Substrate chamfering device
JP2004025255A (en) * 2002-06-26 2004-01-29 Jfe Steel Kk Method for manufacturing hot rolled stainless steel sheet
JP2004058242A (en) * 2002-07-31 2004-02-26 Shiga Yamashita:Kk Method for correcting cast deburring position deviation
JP4907467B2 (en) * 2007-08-16 2012-03-28 新日本製鐵株式会社 Grinding method of slab, slab for hot rolling, and manufacturing method of steel plate using them

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07136929A (en) * 1993-11-12 1995-05-30 Kawasaki Steel Corp Grinder grinding method for slab surface trimming and grinder grinding device for slab surface trimming
JP2000357007A (en) * 1999-06-15 2000-12-26 Minolta Co Ltd Three-dimensional data processor
JP2001212603A (en) * 2000-02-02 2001-08-07 Kawasaki Steel Corp Method of manufacturing austenite-based stainless steel plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200073521A (en) * 2018-12-14 2020-06-24 주식회사 포스코 Apparatus and method for automatic grinding of billet
KR102200216B1 (en) * 2018-12-14 2021-01-07 주식회사 포스코 Apparatus and method for automatic grinding of billet

Also Published As

Publication number Publication date
JP5348275B2 (en) 2013-11-20
JP2008264986A (en) 2008-11-06
JP5014921B2 (en) 2012-08-29

Similar Documents

Publication Publication Date Title
WO2009119772A1 (en) Method and apparatus for machining glass substrate
KR101622444B1 (en) Shape inspection apparatus and method of bar steel
TWI594860B (en) Workpiece peripheral processing equipment
JP5348275B2 (en) Slab grinding method and grinding apparatus
JP4907467B2 (en) Grinding method of slab, slab for hot rolling, and manufacturing method of steel plate using them
JP6624121B2 (en) Steel plate shape straightening device
TW201345857A (en) Cutting line processing device and processing method for plate-shaped object, and glass plate manufacturing device and glass plate manufacturing method
JP2013134198A (en) End shape detection method, end shape inspection method, end shape detection device, and end shape inspection device for angle steel
JP2005074553A (en) Weld bead grinding method and grinding device
JP2008309714A (en) Visual inspection method of long article, and its device
JP5626002B2 (en) Cropshire drive control method
TW201336793A (en) Cutting line processing device for plate-shaped object, cutting line processing method for plate-shaped object, manufacturing device for glass panel and manufacturing method for glass panel
JP4585465B2 (en) Steel rolling equipment
JPH07136929A (en) Grinder grinding method for slab surface trimming and grinder grinding device for slab surface trimming
IT201800003456A1 (en) MACHINE AND METHOD FOR PROCESSING CERAMIC PRODUCTS, NATURAL STONES AND SIMILAR
JP2008105071A (en) Method and device for cutting thick steel plate
KR20180065774A (en) Device and method for grinding slab
JP6413991B2 (en) How to clean the slab surface
KR20200073521A (en) Apparatus and method for automatic grinding of billet
KR20130134328A (en) Scale existence confirmation device
TWI684490B (en) Saw band skew detection device of band saw machine and application method thereof
JP5475614B2 (en) Steel chamfering grinding method and steel piece chamfering grinding apparatus
KR101657783B1 (en) Apparatus and method of controlling tension of wire rod
JP6992898B2 (en) Grinding method of steel pieces, manufacturing method of steel bars and manufacturing method of wire rods
JP5821368B2 (en) Surface care method for billets

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130723

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130725

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130805

R151 Written notification of patent or utility model registration

Ref document number: 5348275

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350