JP6992898B2 - Grinding method of steel pieces, manufacturing method of steel bars and manufacturing method of wire rods - Google Patents

Grinding method of steel pieces, manufacturing method of steel bars and manufacturing method of wire rods Download PDF

Info

Publication number
JP6992898B2
JP6992898B2 JP2020526044A JP2020526044A JP6992898B2 JP 6992898 B2 JP6992898 B2 JP 6992898B2 JP 2020526044 A JP2020526044 A JP 2020526044A JP 2020526044 A JP2020526044 A JP 2020526044A JP 6992898 B2 JP6992898 B2 JP 6992898B2
Authority
JP
Japan
Prior art keywords
steel
grinding
steel piece
piece
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020526044A
Other languages
Japanese (ja)
Other versions
JPWO2020171185A1 (en
Inventor
謙一 小巻
慶一 丸田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JPWO2020171185A1 publication Critical patent/JPWO2020171185A1/en
Application granted granted Critical
Publication of JP6992898B2 publication Critical patent/JP6992898B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B27/00Other grinding machines or devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B7/00Machines or devices designed for grinding plane surfaces on work, including polishing plane glass surfaces; Accessories therefor
    • B24B7/10Single-purpose machines or devices
    • B24B7/12Single-purpose machines or devices for grinding travelling elongated stock, e.g. strip-shaped work
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B9/00Machines or devices designed for grinding edges or bevels on work or for removing burrs; Accessories therefor

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Finish Polishing, Edge Sharpening, And Grinding By Specific Grinding Devices (AREA)
  • Metal Rolling (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Grinding And Polishing Of Tertiary Curved Surfaces And Surfaces With Complex Shapes (AREA)

Description

本発明は、鋼片の研削方法、棒鋼の製造方法及び線材の製造方法に関する。 The present invention relates to a method for grinding steel pieces, a method for manufacturing steel bars, and a method for manufacturing wire rods.

棒鋼製品の表面疵を低減する方法として、素材となる鋼片の表面を全面溶削し、表面検査装置にて表面疵を検出し、検出した表面疵をグラインダーで研削して除去する方法が知られている(例えば、特許文献1)。全面溶削からグラインダーによる表面疵を除去するまでの工程は、手入れとも呼ばれている。手入れが完了した鋼片は棒鋼に圧延される。また、特許文献2には、ヘゲ疵発生の抑止効果の高い冷間鍛造用太径線材の製造方法に関する技術が開示されている。この特許文献2の技術は、角鋼片を熱間圧延して直径20mm以上の太径線材を製造するに際し、角鋼片から、磁粉探傷で検出される疵、ならびに磁粉探傷では検出されない打ち疵および擦り疵を除去した後、熱間圧延することを特徴とするものである。ここで、特許文献2には、磁粉探傷では検出されない打ち疵や擦り疵は、角鋼片の角部に存在するので、角部をその長手方向に沿って全部面取りした後、熱間圧延する太径線材の製造方法についても提案されている。 As a method of reducing the surface flaws of steel bar products, it is known that the entire surface of the steel piece used as a material is melted, the surface flaws are detected by a surface inspection device, and the detected surface flaws are ground by a grinder to remove them. (For example, Patent Document 1). The process from total surface milling to removal of surface defects by a grinder is also called maintenance. The finished steel pieces are rolled into steel bars. Further, Patent Document 2 discloses a technique relating to a method for manufacturing a large-diameter wire rod for cold forging, which has a high effect of suppressing the occurrence of scratches. According to the technique of Patent Document 2, when a square steel piece is hot-rolled to produce a large-diameter wire rod having a diameter of 20 mm or more, a flaw detected by magnetic particle flaw detection and a scratch and scratch not detected by magnetic particle flaw detection are found on the square steel piece. It is characterized by hot rolling after removing flaws. Here, in Patent Document 2, since the flaws and scratches that are not detected by magnetic particle inspection exist at the corners of the square steel pieces, all the corners are chamfered along the longitudinal direction thereof and then hot-rolled. A method for manufacturing a diameter wire has also been proposed.

特開2013-27906号公報Japanese Unexamined Patent Publication No. 2013-27906 特開2008-68297号公報Japanese Unexamined Patent Publication No. 2008-68297

上記のように、素材となる鋼片の全面溶削および表面疵の研削という手入れが完了した鋼片を用いた棒鋼であっても、棒鋼に疵が残る場合がある。疵の除去をより完全なものとするために、圧延前の鋼片の全表面をグラインダーで強制的に研削する方法も実施されているが、この方法では、手入れの所要時間が増え、研削量も増えるため、鋼片の生産性が低下してしまう。 As described above, even if the steel bar is made of a steel piece that has been completely melted and ground the surface defect of the steel piece as a raw material, the steel piece may have a defect. In order to complete the removal of flaws, a method of forcibly grinding the entire surface of the unrolled steel pieces with a grinder has also been implemented, but this method increases the time required for maintenance and the amount of grinding. As a result, the productivity of steel pieces decreases.

また、特許文献2では、角鋼片を直径20mm以上の太径線材に圧延した場合に、角鋼片に存在した打ち疵および擦り疵が、圧延後の線材へのヘゲ疵発生の原因となるとしている。しかし、直径20mm未満の線材に圧延する場合についても、圧延後の棒鋼や線材に疵が残る場合があった。また、打ち疵や擦り疵が生じていると考えられる角部を全長にわたり面取りした場合であっても、極微小な疵の存在をも認めない等、需要家の無疵化に対する要求レベルが高い場合には、圧延後の棒鋼や線材の疵発生に課題が残る場合があった。 Further, in Patent Document 2, when a square steel piece is rolled into a thick wire rod having a diameter of 20 mm or more, the scratches and scratches present on the square steel piece cause the wire rod to have a scratch after rolling. There is. However, even in the case of rolling into a wire rod having a diameter of less than 20 mm, a flaw may remain in the steel bar or the wire rod after rolling. In addition, even if the corners that are thought to have scratches or scratches are chamfered over the entire length, the presence of extremely small scratches is not recognized, and the level of demand for scratch removal by consumers is high. In some cases, there may remain a problem in the occurrence of flaws in steel bars and wire rods after rolling.

本発明は、生産性の低下を抑制しつつ、表面の疵をさらに低減できるようにした鋼片の研削方法、棒鋼の製造方法及び線材の製造方法を提供することを目的とする。 It is an object of the present invention to provide a method for grinding steel pieces, a method for producing steel bars, and a method for producing wire rods, which can further reduce surface defects while suppressing a decrease in productivity.

本発明者らは、鋼片を圧延して得られた棒鋼の断面を顕微鏡で観察して、鋳造組織の調査を行った。そして、本発明者らは、その調査結果から、圧延前の鋼片において、表面の疵(以下、表面疵ともいう)が特に発生しやすい位置を特定した。この特定により、圧延前の鋼片では、鋼片の角部およびその近傍に表面疵が多数存在していることが明らかとなった。本発明は、このような知見に基づいてなされたものである。 The present inventors investigated the cast structure by observing the cross section of the steel bar obtained by rolling the steel pieces with a microscope. Then, from the investigation result, the present inventors identified the position where the surface flaw (hereinafter, also referred to as the surface flaw) is particularly likely to occur in the steel piece before rolling. From this identification, it was clarified that in the steel piece before rolling, a large number of surface flaws were present at the corners of the steel piece and its vicinity. The present invention has been made based on such findings.

本発明の一態様に係る鋼片の研削方法は、一方向に長く、且つ前記一方向と直交する平面で切断した断面の形状が矩形である鋼片を圧延する前に、前記鋼片の前記矩形の角部から前記矩形の一辺に沿って該一辺の長さの26%以上30%以下までの範囲を含む領域を前記鋼片の全長にわたり研削する工程、を備える。
本発明の一態様に係る棒鋼の製造方法は、上記の鋼片の研削方法を行う工程と、前記領域が研削された鋼片を圧延して棒鋼を製造する工程と、を備える。
本発明の一態様に係る線材の製造方法は、上記の鋼片の研削方法を行う工程と、前記領域が研削された鋼片を圧延して線材を製造する工程と、を備える。
The method for grinding a piece of steel according to one aspect of the present invention is to grind the piece of steel before rolling the piece of steel, which is long in one direction and has a rectangular cross section cut in a plane orthogonal to the one direction. A step of grinding a region including a range from a corner portion of the rectangle to 26% or more and 30% or less of the length of the one side along one side of the rectangle over the entire length of the steel piece is provided.
The method for manufacturing steel bars according to one aspect of the present invention includes a step of grinding the above-mentioned steel pieces and a step of rolling the steel pieces whose regions have been ground to manufacture steel bars.
The method for manufacturing a wire rod according to one aspect of the present invention includes a step of performing the above-mentioned method for grinding a steel piece and a step of rolling a steel piece whose region has been ground to manufacture a wire rod.

本発明の一態様によれば、生産性の低下を抑制しつつ、表面の疵をさらに低減できるようにした鋼片の研削方法、棒鋼の製造方法及び線材の製造方法を提供することができる。 According to one aspect of the present invention, it is possible to provide a method for grinding steel pieces, a method for producing steel bars, and a method for producing wire rods, which can further reduce surface defects while suppressing a decrease in productivity.

図1は、本発明の実施形態に係る鋼片の研削方法を示すフローチャートである。FIG. 1 is a flowchart showing a method for grinding a steel piece according to an embodiment of the present invention. 図2は、本発明の実施形態に係る鋼片の表面検査及び表面研削の各工程を模式的に示す図である。FIG. 2 is a diagram schematically showing each step of surface inspection and surface grinding of a steel piece according to an embodiment of the present invention. 図3は、本発明の実施形態に係る鋼片の角部近傍の研削方法を模式的に示す図である。FIG. 3 is a diagram schematically showing a grinding method in the vicinity of a corner of a steel piece according to an embodiment of the present invention. 図4は、角部近傍が研削された後の鋼片を示す断面図である。FIG. 4 is a cross-sectional view showing a steel piece after the vicinity of the corner portion has been ground. 図5は、本発明の実施形態に係る棒鋼を示す断面図である。FIG. 5 is a cross-sectional view showing a steel bar according to an embodiment of the present invention. 図6は、本発明の実施形態に係る線材を示す断面図である。FIG. 6 is a cross-sectional view showing a wire rod according to an embodiment of the present invention. 図7は、角部近傍の研削の有無と、棒鋼における不具合の発生率との関係を調査した結果を示すグラフである。FIG. 7 is a graph showing the results of investigating the relationship between the presence or absence of grinding in the vicinity of the corners and the occurrence rate of defects in steel bars. 図8は、棒鋼製品のC断面の組織観察写真であり、(a)は全断面を、(b)は疵の発生位置を示す。FIG. 8 is a microstructure observation photograph of the C cross section of the steel bar product, where (a) shows the entire cross section and (b) shows the position where the flaw is generated.

以下に本発明の実施形態を説明する。以下の図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。但し、図面は模式的なものであり、厚みと平面寸法との関係、各装置や各部材の厚みの比率等は現実のものとは異なることに留意すべきである。したがって、具体的な厚みや寸法は以下の説明を参酌して判定すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 An embodiment of the present invention will be described below. In the description of the drawings below, the same or similar parts are designated by the same or similar reference numerals. However, it should be noted that the drawings are schematic, and the relationship between the thickness and the plane dimensions, the ratio of the thickness of each device and each member, etc. are different from the actual ones. Therefore, the specific thickness and dimensions should be determined in consideration of the following explanation. In addition, it goes without saying that parts having different dimensional relationships and ratios are included between the drawings.

また、以下の説明では、Z軸方向の正側を「上」と称し、Z軸方向の負側を「下」と称する場合がある。「上」及び「下」は、必ずしも地面に対する鉛直方向を意味しない。つまり、「上」及び「下」の方向は、重力方向に限定されない。「上」及び「下」は、後述の鋼片等における相対的な位置関係を特定する便宜的な表現に過ぎず、本発明の技術的思想を限定するものではない。例えば、紙面を180度回転すれば「上」が「下」に、「下」が「上」になることは勿論である。
また、以下の説明では、X軸方向、Y軸方向及びZ軸方向の文言を用いて、方向を説明する場合がある。例えば、X軸方向及びY軸方向は水平方向であり、Z軸方向は鉛直方向である。X軸、Y軸及びZ軸は、互いに直交する。X軸、Y軸及びZ軸は、例えば、左手系をなす。
Further, in the following description, the positive side in the Z-axis direction may be referred to as "upper", and the negative side in the Z-axis direction may be referred to as "lower". "Top" and "bottom" do not necessarily mean vertical to the ground. That is, the "up" and "down" directions are not limited to the direction of gravity. "Upper" and "lower" are merely expedient expressions for specifying the relative positional relationship in the steel pieces and the like described later, and do not limit the technical idea of the present invention. For example, if the paper surface is rotated 180 degrees, it goes without saying that "upper" becomes "lower" and "lower" becomes "upper".
Further, in the following description, the direction may be described by using the words in the X-axis direction, the Y-axis direction, and the Z-axis direction. For example, the X-axis direction and the Y-axis direction are horizontal directions, and the Z-axis direction is a vertical direction. The X-axis, Y-axis and Z-axis are orthogonal to each other. The X-axis, Y-axis and Z-axis form, for example, a left-handed system.

本発明の実施形態に係る鋼片は、連続鋳造によって製造される。連続鋳造によって製造された鋼片は、一方向(以下、長手方向ともいう)に長く、その表面には、割れや非金属介在物などの疵(すなわち、表面疵)が存在する。この表面疵を除去するために、本発明の実施形態では、まず、ホットスカーファーやコールドスカーファーなどの溶削設備を用い、溶削用酸素ガスを鋼片表面に吹き付けて鋼片表面の全面を、例えば2mm程度の厚みで溶削処理する。
溶削を行った後も、表面疵が溶削深さよりも深い場合には、表面疵が十分に除去されずに残存する。また、鋼片の溶削深さのばらつきが大きい場合は、未溶削部分が発生する場合もある。そこで、本発明の実施形態では、溶削処理が行われた鋼片について、表面検査と、表面検査の結果に基づく表面研削とを行う。
The steel pieces according to the embodiment of the present invention are manufactured by continuous casting. Steel pieces produced by continuous casting are long in one direction (hereinafter, also referred to as longitudinal direction), and scratches such as cracks and non-metal inclusions (that is, surface scratches) are present on the surface thereof. In order to remove this surface defect, in the embodiment of the present invention, first, a melting facility such as a hot scarfer or a cold scarfer is used, and oxygen gas for melting is sprayed on the surface of the steel piece to cover the entire surface of the steel piece. Is melted to a thickness of, for example, about 2 mm.
Even after the melting, if the surface scratches are deeper than the melting depth, the surface scratches are not sufficiently removed and remain. Further, when the variation in the melting depth of the steel piece is large, an unmelted portion may occur. Therefore, in the embodiment of the present invention, the surface inspection and the surface grinding based on the result of the surface inspection are performed on the steel pieces that have been subjected to the melt treatment.

図1は、本発明の実施形態に係る鋼片の研削方法を示すフローチャートである。図2は、本発明の実施形態に係る鋼片の表面検査及び表面研削の各工程を模式的に示す図である。本発明の実施形態では、図2に示すように、溶削処理が行われた鋼片2が、搬送ローラ3によって、鋼片2の長手方向の一方の側(例えば、X軸方向の矢印側)に搬送される。鋼片2は、圧延前の半製品(即ち、製造工程の途中にある未完成の製品)であり、用途や形状、大きさに応じて、ブルーム又はビレットと呼ばれる。鋼片2は、X軸方向に搬送されながら、表面検査装置1によって、表面疵の有無が検査される(図1のステップST1)。 FIG. 1 is a flowchart showing a method for grinding a steel piece according to an embodiment of the present invention. FIG. 2 is a diagram schematically showing each step of surface inspection and surface grinding of a steel piece according to an embodiment of the present invention. In the embodiment of the present invention, as shown in FIG. 2, the slab-treated steel piece 2 is placed on one side in the longitudinal direction of the steel piece 2 by the transport roller 3 (for example, the arrow side in the X-axis direction). ). The steel piece 2 is a semi-finished product before rolling (that is, an unfinished product in the middle of the manufacturing process), and is called a bloom or billet depending on the use, shape, and size. The steel piece 2 is inspected for surface defects by the surface inspection device 1 while being conveyed in the X-axis direction (step ST1 in FIG. 1).

表面検査装置1は、例えば、蛍光磁粉を用いて表面疵を探傷する蛍光磁粉探傷装置である。表面検査装置1は、溶削処理後の鋼片2の表面に残存する表面疵や未溶削部分を検出し、検出した位置を表面研削装置に表示させて、疵のある位置を特定する。表面疵や未溶削部分が検出された場合(図1のステップST2;Yes)、表面研削装置は、鋼片2の表面であって上記の検出した位置、すなわち、疵があると特定された位置にグラインダー4を接触させて、表面を研削する。これにより、表面研削装置は、鋼片2に残存する表面疵や未溶削部分を除去する(図1のステップST3)。 The surface inspection device 1 is, for example, a fluorescent magnetic particle flaw detector that detects surface defects using fluorescent magnetic powder. The surface inspection device 1 detects surface flaws and unmelted portions remaining on the surface of the steel piece 2 after the melting process, displays the detected positions on the surface grinding apparatus, and identifies the flawed positions. When a surface defect or an unmelted portion is detected (step ST2 in FIG. 1; Yes), the surface grinding machine is identified as having the above-mentioned detected position on the surface of the steel piece 2, that is, a defect. The grinder 4 is brought into contact with the position to grind the surface. As a result, the surface grinding apparatus removes surface defects and unmelted portions remaining on the steel piece 2 (step ST3 in FIG. 1).

一方、表面疵や未溶削部分が検出されない場合(図1のステップST2;No)、表面研削装置は、鋼片2の表面にグラインダー4を接触させない。つまり、グラインダー4は、鋼片2の表面を研削しない。その際、研削処理は図1のステップST4へ進み、表面研削装置が、グラインダー4(後述の図3参照)を動作させて、鋼片2の角部およびその近傍を研削する(図1のステップST4)。 On the other hand, when no surface flaw or unmelted portion is detected (step ST2; No in FIG. 1), the surface grinding apparatus does not bring the grinder 4 into contact with the surface of the steel piece 2. That is, the grinder 4 does not grind the surface of the steel piece 2. At that time, the grinding process proceeds to step ST4 of FIG. 1, and the surface grinding device operates the grinder 4 (see FIG. 3 described later) to grind the corner portion of the steel piece 2 and its vicinity (step of FIG. 1). ST4).

図3は、本発明の実施形態に係る鋼片の角部およびその近傍の研削方法を模式的に示す図である。図3は、鋼片2をその長手方向(例えば、X軸方向)と直交する面(例えば、Y-Z平面)で切断した断面を示している。図3に示すように、鋼片2をY-Z平面で切断した断面の形状は、矩形である。図1のステップST4では、この矩形の4つの角部と、その近傍の部位とを研削する。本発明の実施形態の説明では、以後、角部とその近傍の部位とを合わせて、角部近傍という。 FIG. 3 is a diagram schematically showing a grinding method of a corner portion of a steel piece and its vicinity according to an embodiment of the present invention. FIG. 3 shows a cross section of a steel piece 2 cut along a plane (for example, a YY plane) orthogonal to its longitudinal direction (for example, the X-axis direction). As shown in FIG. 3, the shape of the cross section of the steel piece 2 cut in the YY plane is rectangular. In step ST4 of FIG. 1, the four corners of the rectangle and the portions in the vicinity thereof are ground. In the description of the embodiment of the present invention, the corner portion and the portion in the vicinity thereof are collectively referred to as the vicinity of the corner portion.

研削される角部近傍は、矩形の角部から矩形の一辺に沿って、この一辺の長さの26%以上30%以下までの範囲を含む領域である。例えば、図3に示すように、鋼片2の断面形状である矩形は、4つの角部2A、2B、2C、2Dを有する。この矩形の幅方向(例えば、Y軸方向)に平行な一辺の長さをyとし、厚さ方向(例えば、Z軸方向)に平行な一辺の長さをzとする。また、角部2Aを含む角部近傍21のY軸方向の長さをy21とし、角部近傍21のZ軸方向の長さをz21とする。 The vicinity of the corner to be ground is a region including a range from the corner of the rectangle to 26% or more and 30% or less of the length of the side along one side of the rectangle. For example, as shown in FIG. 3, the rectangle having the cross-sectional shape of the steel piece 2 has four corner portions 2A, 2B, 2C, and 2D. Let y be the length of one side parallel to the width direction (for example, the Y-axis direction) of this rectangle, and z be the length of one side parallel to the thickness direction (for example, the Z-axis direction). Further, the length of the corner portion 21 including the corner portion 2A in the Y-axis direction is y21, and the length of the corner portion vicinity 21 in the Z-axis direction is z21.

研削される角部近傍21のY軸方向の長さy21は、矩形のY軸方向に平行な一辺の長さyの26%以上30%以下である。研削される角部近傍21のZ軸方向の長さz21は、矩形のZ軸方向に平行な一辺の長さzの26%以上30%以下である。
同様に、角部2Bを含む角部近傍22のY軸方向の長さをy22とし、角部近傍22のZ軸方向の長さをz22とする。研削される角部近傍22のY軸方向の長さy22は、矩形のY軸方向に平行な一辺の長さyの26%以上30%以下である。研削される角部近傍22のZ軸方向の長さz22は、矩形のZ軸方向に平行な一辺の長さzの26%以上30%以下である。
The length y21 in the Y-axis direction of the corner portion 21 to be ground is 26% or more and 30% or less of the length y of one side parallel to the Y-axis direction of the rectangle. The length z21 in the Z-axis direction of the corner portion 21 to be ground is 26% or more and 30% or less of the length z of one side parallel to the Z-axis direction of the rectangle.
Similarly, the length of the corner portion 22 including the corner portion 2B in the Y-axis direction is y22, and the length of the corner portion vicinity 22 in the Z-axis direction is z22. The length y22 in the Y-axis direction of the corner portion 22 to be ground is 26% or more and 30% or less of the length y of one side parallel to the Y-axis direction of the rectangle. The length z22 in the Z-axis direction of the corner portion 22 to be ground is 26% or more and 30% or less of the length z of one side parallel to the Z-axis direction of the rectangle.

角部2Cを含む角部近傍23のY軸方向の長さをy23とし、角部近傍23のZ軸方向の長さをz23とする。研削される角部近傍23のY軸方向の長さy23は、矩形のY軸方向に平行な一辺の長さyの26%以上30%以下である。研削される角部近傍23のZ軸方向の長さz23は、矩形のZ軸方向に平行な一辺の長さzの26%以上30%以下である。
角部2Dを含む角部近傍24のY軸方向の長さをy24とし、角部近傍24のZ軸方向の長さをz24とする。研削される角部近傍24のY軸方向の長さy24は、矩形のY軸方向に平行な一辺の長さyの26%以上30%以下である。研削される角部近傍24のZ軸方向の長さz24は、矩形のZ軸方向に平行な一辺の長さzの26%以上30%以下である。
Let y23 be the length of the corner portion 23 including the corner portion 2C in the Y-axis direction, and let z23 be the length of the corner portion vicinity 23 in the Z-axis direction. The length y23 in the Y-axis direction of the corner portion 23 to be ground is 26% or more and 30% or less of the length y of one side parallel to the Y-axis direction of the rectangle. The length z23 in the Z-axis direction of the corner portion 23 to be ground is 26% or more and 30% or less of the length z of one side parallel to the Z-axis direction of the rectangle.
Let y24 be the length of the corner portion 24 including the corner portion 2D in the Y-axis direction, and let z24 be the length of the corner portion vicinity 24 in the Z-axis direction. The length y24 in the Y-axis direction of the corner portion 24 to be ground is 26% or more and 30% or less of the length y of one side parallel to the Y-axis direction of the rectangle. The length z24 in the Z-axis direction of the corner portion 24 to be ground is 26% or more and 30% or less of the length z of one side parallel to the Z-axis direction of the rectangle.

4つの角部2A、2B、2C、2Dは、曲率半径Rの丸みをそれぞれ有する。例えば、曲率半径Rは、15mm以上25mm以下である。
鋼片2及び角部近傍21、22、23、24の各寸法について、具体例を示す。鋼片2がビレットの場合、y=160mm、z=160mm、y21=y22=y23=y24=45mm、z21=z22=z23=z24=45mm、R=25mmである。鋼片2がブルームの場合、y=400mm、z=300mm、y21=y22=y23=y24=112mm、z21=z22=z23=z24=84mm、R=25mmである。なお、これらの寸法はあくまで一例であって、本発明の実施形態を限定するものではない。
The four corners 2A, 2B, 2C, and 2D each have a roundness of radius of curvature R. For example, the radius of curvature R is 15 mm or more and 25 mm or less.
Specific examples are shown for each dimension of the steel piece 2 and the corner portions 21, 22, 23, 24. When the steel piece 2 is a billet, y = 160 mm, z = 160 mm, y21 = y22 = y23 = y24 = 45 mm, z21 = z22 = z23 = z24 = 45 mm, R = 25 mm. When the steel piece 2 is bloom, y = 400 mm, z = 300 mm, y21 = y22 = y23 = y24 = 112 mm, z21 = z22 = z23 = z24 = 84 mm, R = 25 mm. It should be noted that these dimensions are merely examples, and do not limit the embodiments of the present invention.

図4は、角部近傍が研削された後の鋼片を示す断面図である。図1のステップST4では、上記の角部近傍21、22、23、24の各表面がグラインダー4で研削される。図4に示すように、研削の深さをdとすると、dは1mm以上3mm以下であり、例えば2mmである。鋼片の角部近傍21、22、23、24が研削された後、角部近傍21、22、23、24の表面は、研削の痕跡として、周囲よりも深さdだけ凹んだ形状となる。 FIG. 4 is a cross-sectional view showing a steel piece after the vicinity of the corner portion has been ground. In step ST4 of FIG. 1, the surfaces of 21, 22, 23, and 24 near the corners are ground by the grinder 4. As shown in FIG. 4, where d is the grinding depth, d is 1 mm or more and 3 mm or less, for example, 2 mm. After the corners 21, 22, 23, 24 of the steel piece are ground, the surface of the corners 21, 22, 23, 24 becomes a shape recessed by a depth d from the periphery as a trace of grinding. ..

図1のステップST5では、例えば作業者が、角部近傍21、22、23、24の表面を目視して、削り残しの有無を確認する。または、作業者の代わりに検査装置が、角部近傍21、22、23、24の表面を外観検査して、削り残しの有無を確認してもよい。削り残しがある場合(ステップST6;No)は、ステップST4に戻る。削り残しがない場合(ステップST6;Yes)は、図1に示す鋼片2の研削工程を終了する。 In step ST5 of FIG. 1, for example, an operator visually observes the surfaces of 21, 22, 23, and 24 near the corners to confirm the presence or absence of uncut parts. Alternatively, instead of the operator, an inspection device may visually inspect the surfaces of 21, 22, 23, and 24 near the corners to confirm the presence or absence of uncut parts. If there is uncut portion (step ST6; No), the process returns to step ST4. When there is no uncut portion (step ST6; Yes), the grinding process of the steel piece 2 shown in FIG. 1 is completed.

図5は、本発明の実施形態に係る棒鋼を示す断面図である。図6は、本発明の実施形態に係る線材を示す断面図である。図1の研削工程を終了した鋼片2は、圧延工程に進む。圧延工程において、鋼片2は圧延される。これにより、鋼片2から図5に示すような棒鋼11、又は、図6に示すような線材12が製造される。 FIG. 5 is a cross-sectional view showing a steel bar according to an embodiment of the present invention. FIG. 6 is a cross-sectional view showing a wire rod according to an embodiment of the present invention. The steel piece 2 that has completed the grinding process of FIG. 1 proceeds to the rolling process. In the rolling process, the steel pieces 2 are rolled. As a result, the steel bar 11 as shown in FIG. 5 or the wire rod 12 as shown in FIG. 6 is manufactured from the steel pieces 2.

図7は、角部近傍の研削の有無と、棒鋼における不具合の発生率との関係を調査した結果を示すグラフである。図7中、最も左に示されるデータは、角部近傍の研削を全く行わなかった場合のものである。左から2番目のデータは、角部のみ(曲率半径Rの丸みの部分のみ)をについて鋼片全長にわたる研削を実施した場合である。その右側の3つのデータはそれぞれ、角部からそれぞれ鋼片の一辺長さの25%、26%、30%の長さ領域にわたって、鋼片全長について研削を実施した場合である。 FIG. 7 is a graph showing the results of investigating the relationship between the presence or absence of grinding in the vicinity of the corners and the occurrence rate of defects in steel bars. In FIG. 7, the data shown on the far left is the case where no grinding is performed near the corners. The second data from the left is the case where grinding is performed over the entire length of the steel piece only at the corners (only the rounded portion of the radius of curvature R). The three data on the right side are the cases where the total length of the steel piece is ground from the corner to the length region of 25%, 26%, and 30% of the side length of the steel piece, respectively.

図7に示すように、鋼片の全長にわたる角部近傍、すなわち、矩形の角部から矩形の一辺に沿って一辺の長さの26%以上30%以下までの範囲を含む領域の研削を行うことによって、角部およびその近傍の研削を全く行わなかった場合(図7中の最も左のデータ)および角部のみを研削した場合(図7中の左から2番目のデータ)と比較して、この鋼片から製造される棒鋼において表面疵を原因とする不具合の発生率が低下することを本発明者は確認した。 As shown in FIG. 7, grinding is performed in the vicinity of a corner portion over the entire length of the steel piece, that is, a region including a range from the corner portion of the rectangle to 26% or more and 30% or less of the length of one side along one side of the rectangle. As a result, compared with the case where no grinding was performed on or near the corner (leftmost data in FIG. 7) and when only the corner was ground (second data from the left in FIG. 7). The present inventor has confirmed that the incidence of defects caused by surface defects is reduced in steel bars manufactured from this piece of steel.

なお、ここでの研削は、研削深さを1mmとして行っている。また、不具合の発生率の確認は、各研削条件を経た鋼片2(各条件につき2000本、合計10000本)を熱間圧延して得られた棒鋼について表面疵の有無を調査することで行った。表面疵の有無の確認は、得られた棒鋼についてC断面の組織観察を光学顕微鏡により行い、棒鋼表面に深さ0.050mm超の疵がある場合を疵有とし(図8参照、図8は深さ0.076mmの疵がある例)、それ以外を疵無とした。そして、各研削条件2000本についての疵有の割合を不具合の発生率とした。 The grinding here is performed with the grinding depth set to 1 mm. In addition, the occurrence rate of defects is confirmed by investigating the presence or absence of surface defects in the steel bars obtained by hot rolling steel pieces 2 (2000 pieces for each condition, 10,000 pieces in total) that have passed each grinding condition. rice field. To confirm the presence or absence of surface scratches, the microstructure of the C cross section of the obtained steel bar was observed with an optical microscope, and if there were scratches on the surface of the steel bar with a depth of more than 0.050 mm, it was considered as flawed (see Fig. 8 and Fig. 8). (Example) with a defect with a depth of 0.076 mm), and no other defects. Then, the rate of defects for each of 2000 grinding conditions was used as the failure rate.

図8は、圧延前の鋼片段階において、表面検査により疵があると特定された位置の表面をグラインダーで研削し、その後に熱間圧延を行った製品径15mmφの棒鋼製品のC断面の組織観察写真である。この棒鋼製品は、圧延後の製品段階において表面に疵の発生が認められたものであり、図8(a)は、棒鋼製品の全断面を示し、図8(b)は疵の発生位置をさらに高倍率(200倍)で観察した場合を示している。図8(b)に示すような疵発生箇所について、棒鋼製品における周方向位置を特定し、図8(a)に示すような組織観察結果と疵発生位置とを対応付けると、鋼片(熱間圧延前)段階における、角部に相当する位置に疵が生じていることがわかっている。つまり、鋼片の表面検査では角部近傍の疵は検出できず、角部近傍については表面検査結果に基づいた特定位置の研削では不十分であることがわかった。この知見は、角部近傍を表面検査における疵検出の有無にかかわらず研削することで、疵発生率が低下したという図7に示した結果とよく整合している。 FIG. 8 shows the structure of the C cross section of a steel bar having a product diameter of 15 mmφ, which is obtained by grinding the surface at a position identified as having a defect by surface inspection with a grinding machine in the steel piece stage before rolling and then hot rolling. It is an observation photograph. The surface of this steel bar product was found to have scratches at the product stage after rolling. FIG. 8 (a) shows the entire cross section of the steel bar product, and FIG. 8 (b) shows the position of the scratch. The case of observing at a higher magnification (200 times) is shown. When the circumferential position of the steel bar product is specified for the flaw occurrence location as shown in FIG. 8 (b) and the microstructure observation result as shown in FIG. 8 (a) is associated with the flaw occurrence location, the steel piece (hot) It is known that a flaw has occurred at a position corresponding to a corner in the stage (before rolling). In other words, it was found that the surface inspection of the steel piece could not detect the flaw near the corner, and the grinding at the specific position based on the surface inspection result was insufficient for the vicinity of the corner. This finding is in good agreement with the result shown in FIG. 7 that the occurrence rate of flaws was reduced by grinding the vicinity of the corner portion regardless of the presence or absence of flaw detection in the surface inspection.

以上説明したように、本発明の実施形態に係る鋼片の研削方法は、一方向(例えば、X軸方向)に長く、且つ一方向と直交する平面(例えば、Y-Z平面)で切断した断面の形状が矩形である鋼片2を圧延する前に、鋼片2において矩形の角部近傍21、22、23、24を全長にわたり研削する工程(例えば、図1のステップST4)、を備える。上述したように、連続鋳造によって製造される鋼片2の角部近傍21、22、23、24の表面には、小さな割れ等の表面疵が発生しやすい。この原因として、鋼片2の表面に生じるオシレーションマークや、凝固形態から、角部近傍21、22、23、24に細かな内部割れや偏析等が発生しやすいことが考えられる。 As described above, the method for grinding a piece of steel according to the embodiment of the present invention is long in one direction (for example, in the X-axis direction) and cut in a plane orthogonal to one direction (for example, YY plane). Before rolling the steel piece 2 having a rectangular cross-sectional shape, the steel piece 2 is provided with a step of grinding 21, 22, 23, 24 in the vicinity of the corners of the rectangle over the entire length (for example, step ST4 in FIG. 1). .. As described above, surface scratches such as small cracks are likely to occur on the surfaces of 21, 22, 23, and 24 near the corners of the steel piece 2 manufactured by continuous casting. It is considered that the cause of this is that fine internal cracks and segregation are likely to occur in 21, 22, 23, and 24 near the corners due to the oscillation marks generated on the surface of the steel piece 2 and the solidification form.

なお、図7に示した結果のうち、左から2番目の角部のみを全長にわたり研削を施した場合については、角部研削後の鋼片2の角部近傍には、視認できる打ち疵や擦り疵が存在していないことを確認している。このことから、打ち疵や擦り疵といった目視で確認できる疵のみを研削除去することや、目視で確認できる疵が発生していると考えられる角部のみを鋼片2の全長にわたり研削することでは、不具合発生率を顕著に低下させることはできないことがわかる。そして、図7からは、上述のオシレーションマークや、内部割れ、偏析等に起因していると考えられる表面疵は、鋼片の矩形の角部から矩形の一辺に沿って一辺の長さの26%以上30%以下までの範囲を含む領域を鋼片の全長にわたって研削を行うことによって、顕著に低減可能であることがわかる。 Of the results shown in FIG. 7, when only the second corner from the left is ground over the entire length, visible scratches or scratches are found in the vicinity of the corner of the steel piece 2 after the corner is ground. It is confirmed that there are no scratches. For this reason, it is not possible to grind and remove only visually identifiable defects such as scratches and scratches, or to grind only the corners where visually identifiable defects are considered to have occurred over the entire length of the steel piece 2. It can be seen that the defect occurrence rate cannot be significantly reduced. Then, from FIG. 7, the above-mentioned oscillation mark, internal cracks, surface defects considered to be caused by segregation, etc. are the length of one side along one side of the rectangle from the corner of the rectangle of the steel piece. It can be seen that the region including the range of 26% or more and 30% or less can be significantly reduced by grinding over the entire length of the steel piece.

本発明の実施形態に係る鋼片の研削方法によれば、小さな割れ等の表面疵が特に発生しやすい角部近傍21、22、23、24の表面が、鋼片2の圧延前に強制的に研削される。これにより、鋼片2の表面疵をさらに低減することができる。その結果、鋼片2を圧延して製造される棒鋼11や線材12において表面疵を原因とする不具合の発生を低減することができる。本発明の実施形態に係る鋼片の研削方法は、表面疵を除去するために鋼片の全表面をグラインダーで強制的に研削する方法と比べて、研削の所要時間を短くすることができ、研削量も低く抑えることができるため、鋼片2の生産性の低下を抑制することができる。 According to the method for grinding steel pieces according to the embodiment of the present invention, the surfaces of 21, 22, 23, and 24 near the corners where surface defects such as small cracks are particularly likely to occur are forced before rolling of the steel pieces 2. Grinded to. Thereby, the surface flaw of the steel piece 2 can be further reduced. As a result, it is possible to reduce the occurrence of defects caused by surface defects in the steel bar 11 and the wire rod 12 manufactured by rolling the steel piece 2. The method for grinding a steel piece according to the embodiment of the present invention can shorten the time required for grinding as compared with the method for forcibly grinding the entire surface of the steel piece with a grinder in order to remove surface defects. Since the amount of grinding can be suppressed to a low level, it is possible to suppress a decrease in the productivity of the steel piece 2.

研削される角部近傍は、矩形の角部から矩形の一辺に沿って、この一辺の長さの26%以上30%以下までの範囲を含む領域である。これによれば、鋼片2の研削量を低く抑えつつ、表面疵を効率よく除去することができる。例えば、鋼片2が、y=160mm、z=160mmのビレットの場合、顕微鏡による断面観察によって、鋼片2の角部2A、2B、2C、2Dからそれぞれ20mmの範囲に表面疵が多数残存していることが確認された。この範囲を強制的にグラインダーで研削除去することで、鋼片2の表面疵を効率よく除去することができる。 The vicinity of the corner to be ground is a region including a range from the corner of the rectangle to 26% or more and 30% or less of the length of the side along one side of the rectangle. According to this, surface defects can be efficiently removed while keeping the grinding amount of the steel piece 2 low. For example, when the steel piece 2 is a billet having y = 160 mm and z = 160 mm, a large number of surface defects remain in the range of 20 mm from the corners 2A, 2B, 2C, and 2D of the steel piece 2 by observing the cross section with a microscope. It was confirmed that By forcibly grinding and removing this range with a grinder, surface defects on the steel piece 2 can be efficiently removed.

角部近傍を研削する工程では、角部近傍の表面を1mm以上3mm以下の深さまで研削する。これによれば、表面疵は、表面から1mm以上3mm以下の範囲までに存在することが多いため、鋼片2の研削量を低く抑えつつ、表面疵を除去することができる。表面疵を効率よく除去することができる。 In the step of grinding the vicinity of the corner portion, the surface near the corner portion is ground to a depth of 1 mm or more and 3 mm or less. According to this, since the surface scratches are often present in the range of 1 mm or more and 3 mm or less from the surface, the surface scratches can be removed while keeping the grinding amount of the steel piece 2 low. Surface flaws can be removed efficiently.

本発明の実施形態に係る鋼片の研削方法は、角部近傍21、22、23、24を研削する工程の前に、鋼片2の表面を検査して表面疵のある位置を特定する工程(例えば、図1のステップST1)と、鋼片2の表面に表面疵があると特定された位置の表面を研削して表面疵を除去する工程(例えば、図1のステップST2、ステップST3)と、を備える。これによれば、鋼片2において、角部近傍21、22、23、24以外の表面についても、表面疵を効率よく除去することができる。 The method for grinding a steel piece according to an embodiment of the present invention is a step of inspecting the surface of the steel piece 2 to identify a position having a surface defect before the step of grinding the corner portions 21, 22, 23, 24. (For example, step ST1 in FIG. 1) and a step of grinding the surface at a position where the surface of the steel piece 2 is identified as having a surface defect to remove the surface defect (for example, step ST2 and step ST3 in FIG. 1). And. According to this, in the steel piece 2, surface flaws can be efficiently removed even on the surfaces other than the corner portions 21, 22, 23, and 24.

本発明の実施形態に係る棒鋼の製造方法は、上記した鋼片の研削方法を行う工程と、角部近傍21、22、23、24が研削された鋼片2を圧延して棒鋼11を製造する工程と、を備える。これによれば、鋼片2の表面疵が低減されるため、鋼片2を材料とする棒鋼11において表面疵を原因とする不具合の発生を低減することができる。
本発明の実施形態に係る線材の製造方法は、上記した鋼片の研削方法を行う工程と、角部近傍21、22、23、24が研削された鋼片2を圧延して線材12を製造する工程と、を備える。これによれば、鋼片2の表面疵が低減されるため、鋼片2を材料とする線材12において表面疵を原因とする不具合の発生を低減することができる。
The method for manufacturing steel bars according to the embodiment of the present invention includes the step of grinding the steel pieces described above and rolling the steel pieces 2 in which the corners 21, 22, 23, and 24 are ground to manufacture the steel bars 11. The process of rolling out is provided. According to this, since the surface flaws of the steel piece 2 are reduced, it is possible to reduce the occurrence of defects caused by the surface flaws in the steel bar 11 made of the steel piece 2.
The method for manufacturing the wire rod according to the embodiment of the present invention includes the step of performing the above-mentioned method for grinding the steel piece and rolling the steel piece 2 in which the corners 21, 22, 23, and 24 are ground to manufacture the wire rod 12. The process of rolling out is provided. According to this, since the surface flaws of the steel piece 2 are reduced, it is possible to reduce the occurrence of defects caused by the surface flaws in the wire rod 12 made of the steel piece 2.

1 表面検査装置
2 鋼片
2A、2B、2C、2D 角部
3 搬送ローラ
4 グラインダー
11 棒鋼
12 線材
21、22、23、24 角部近傍
1 Surface inspection device 2 Steel pieces 2A, 2B, 2C, 2D Corners 3 Conveyor rollers 4 Grinder 11 Steel bars 12 Wires 21, 22, 23, 24 Near the corners

Claims (5)

一方向に長く、且つ前記一方向と直交する平面で切断した断面の形状が矩形である鋼片を圧延する前に、前記矩形の四辺の各々について、前記矩形の角部から前記矩形の一辺に沿って該一辺の長さの26%以上30%以下までの範囲を含む領域を前記鋼片の全長にわたり研削する工程、を備える鋼片の研削方法。 Before rolling a steel piece that is long in one direction and has a rectangular cross section cut in a plane orthogonal to the one direction, for each of the four sides of the rectangle, from the corner of the rectangle to one side of the rectangle. A method for grinding a steel piece, comprising a step of grinding a region including a range of 26% or more and 30% or less of the length of the side along the entire length of the steel piece. 前記領域を研削する工程では、前記領域の表面を1mm以上3mm以下の深さまで研削する、請求項1に記載の鋼片の研削方法。 The method for grinding a piece of steel according to claim 1, wherein in the step of grinding the region, the surface of the region is ground to a depth of 1 mm or more and 3 mm or less. 前記領域を研削する工程の前に、前記鋼片の表面を検査して疵のある位置を特定する工程と、
前記鋼片に疵があると特定された位置の表面を研削して前記疵を除去する工程と、をさらに備える請求項2に記載の鋼片の研削方法。
Prior to the step of grinding the area, the step of inspecting the surface of the steel piece to identify the position of the flaw and the step of identifying the flawed position.
The method for grinding a steel piece according to claim 2, further comprising a step of grinding a surface at a position where the steel piece is identified to have a flaw to remove the flaw.
請求項1から3のいずれか1項に記載の鋼片の研削方法を行う工程と、
前記領域が研削された鋼片を圧延して棒鋼を製造する工程と、を備える棒鋼の製造方法。
The step of performing the method for grinding a steel piece according to any one of claims 1 to 3 and
A method for manufacturing a steel bar, comprising a step of rolling a steel piece whose region has been ground to manufacture a steel bar.
請求項1から3のいずれか1項に記載の鋼片の研削方法を行う工程と、
前記領域が研削された鋼片を圧延して線材を製造する工程と、を備える線材の製造方法。
The step of performing the method for grinding a steel piece according to any one of claims 1 to 3 and
A method for manufacturing a wire rod, comprising a step of rolling a steel piece whose region has been ground to manufacture a wire rod.
JP2020526044A 2019-02-20 2020-02-20 Grinding method of steel pieces, manufacturing method of steel bars and manufacturing method of wire rods Active JP6992898B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2019028586 2019-02-20
JP2019028586 2019-02-20
PCT/JP2020/006916 WO2020171185A1 (en) 2019-02-20 2020-02-20 Method for grinding steel billet, method for manufacturing steel bar, and method for manufacturing wire rod

Publications (2)

Publication Number Publication Date
JPWO2020171185A1 JPWO2020171185A1 (en) 2021-03-11
JP6992898B2 true JP6992898B2 (en) 2022-01-13

Family

ID=72144560

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020526044A Active JP6992898B2 (en) 2019-02-20 2020-02-20 Grinding method of steel pieces, manufacturing method of steel bars and manufacturing method of wire rods

Country Status (3)

Country Link
JP (1) JP6992898B2 (en)
CN (1) CN113453845B (en)
WO (1) WO2020171185A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181561A (en) 2002-12-02 2004-07-02 Jfe Steel Kk Manufacturing method of hot rolled steel material
JP2008068297A (en) 2006-09-15 2008-03-27 Kobe Steel Ltd Method of manufacturing large diameter wire rod for cold forging

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6033803A (en) * 1983-08-05 1985-02-21 Nippon Steel Corp Manufacture of hot rolled steel sheet free from surface flaw
JPH01150402A (en) * 1987-12-07 1989-06-13 Sumitomo Metal Ind Ltd Manufacture of seam-free hot rolled steel sheet
JPH09122918A (en) * 1995-10-31 1997-05-13 Nkk Corp Deburring device for weld zone of square billet
JP2000153435A (en) * 1998-11-16 2000-06-06 Kawasaki Steel Corp Method and device for maintenance of steel round bar
CN100546761C (en) * 2007-05-11 2009-10-07 宁波甬微集团有限公司 A kind of manufacture method of motor turning pump blade
TWI604068B (en) * 2016-10-11 2017-11-01 新日鐵住金股份有限公司 Steel wire rod and method for manufacturing the same
CN108393783A (en) * 2018-04-24 2018-08-14 北京瀚川鑫冶工程技术有限公司 A kind of belt bar, wire rod, tubing grinding-polishing process equipment and its production line

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004181561A (en) 2002-12-02 2004-07-02 Jfe Steel Kk Manufacturing method of hot rolled steel material
JP2008068297A (en) 2006-09-15 2008-03-27 Kobe Steel Ltd Method of manufacturing large diameter wire rod for cold forging

Also Published As

Publication number Publication date
CN113453845A (en) 2021-09-28
CN113453845B (en) 2023-05-30
WO2020171185A1 (en) 2020-08-27
JPWO2020171185A1 (en) 2021-03-11

Similar Documents

Publication Publication Date Title
EP1980345B1 (en) Production method for steel continuously cast piece and system for caring surface defect of cast piece
JP6992898B2 (en) Grinding method of steel pieces, manufacturing method of steel bars and manufacturing method of wire rods
JP4523579B2 (en) Manufacturing method of wire for cold forging
JP5999294B2 (en) Steel continuous casting method
JP4907467B2 (en) Grinding method of slab, slab for hot rolling, and manufacturing method of steel plate using them
JP4509833B2 (en) Surface defect inspection method for aluminum alloy bar
JP5397406B2 (en) Thick steel plate shearing method and shearing machine
JP5614219B2 (en) Cold rolled steel sheet manufacturing method
JP2008264986A (en) Grinding method and grinder of slab
JP4770274B2 (en) Thick steel plate shearing method
JP6458662B2 (en) Billet manufacturing method and billet manufacturing equipment
CN111062939A (en) Method for quickly discriminating quality and automatically extracting defect characteristics of strip steel surface
KR20130027323A (en) Detecting apparatus and the method thereof
JP5821368B2 (en) Surface care method for billets
JP2004202677A (en) On-line defect removing device and method for metal strip
JP4453299B2 (en) Manufacturing method of steel strip with few surface defects
TWI834922B (en) Metal plate for manufacturing evaporation cover, method of manufacturing metal plate, evaporation cover, and method of manufacturing evaporation cover
JPH089050B2 (en) Metal slab conditioning equipment row
JP6152905B2 (en) Titanium slab for hot rolling
JP2017056491A (en) Slab surface repairing method
CN114323732A (en) Method for sampling roller sample
JP4982438B2 (en) Method for preventing mass outflow of defects in steel
JP5929576B2 (en) Titanium slab side care method and treated titanium slab
JPH0682426A (en) Flaw detection method for wire rod surface cutting work line
JP2008246520A (en) Method of manufacturing steel bar or wire rod

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20200508

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20210615

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210813

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211109

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211122

R150 Certificate of patent or registration of utility model

Ref document number: 6992898

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150