JP2012152820A - Laser welded shape steel - Google Patents

Laser welded shape steel Download PDF

Info

Publication number
JP2012152820A
JP2012152820A JP2011016954A JP2011016954A JP2012152820A JP 2012152820 A JP2012152820 A JP 2012152820A JP 2011016954 A JP2011016954 A JP 2011016954A JP 2011016954 A JP2011016954 A JP 2011016954A JP 2012152820 A JP2012152820 A JP 2012152820A
Authority
JP
Japan
Prior art keywords
flange
web material
welding
welded
steel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2011016954A
Other languages
Japanese (ja)
Other versions
JP5658579B2 (en
Inventor
Yasuhiro Sakurada
康弘 桜田
Takefumi Nakako
武文 仲子
Hiroshi Asada
博 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Nisshin Co Ltd
Original Assignee
Nisshin Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nisshin Steel Co Ltd filed Critical Nisshin Steel Co Ltd
Priority to JP2011016954A priority Critical patent/JP5658579B2/en
Publication of JP2012152820A publication Critical patent/JP2012152820A/en
Application granted granted Critical
Publication of JP5658579B2 publication Critical patent/JP5658579B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide a laser welded shaped steel having a T-joint part which secures desired bonding strength and desired corrosion resistance by making a formed melting part in an appropriate shape.SOLUTION: In the shaped steel, the T-joint part is formed by vertically pressing an end of a web material made of a steel plate to a flange material also made of a steel plate and is subjected to fusion-welding by one-pass irradiation of a laser beam from one side. The vertical cross section of the shape of the welded part in the longitudinal direction of the shaped steel is set to satisfy the following: a>0 mm; b>0 mm; c≥0.14Tw; d≥0 mm; e≥0 mm; a+d≤2 mm; and b+e≤2 mm, where a denotes a front melting width of the web material (welding side), b denotes a back melting width of the web material (non-welding side), c denotes a maximum melt-in depth in the plate thickness direction of the flange material, d denotes a front melting width of the flange material (welding side), e denotes a back melting width of the flange material (non-welded side), and Tw denotes the thickness of the web material.

Description

本発明は、レーザ光を熱源としたレーザ溶接によってT字状の溶接継手部を形成した溶接形鋼に関する。   The present invention relates to a welded steel having a T-shaped weld joint formed by laser welding using laser light as a heat source.

近年、建築物の躯体を構成する梁等に用いられているT形鋼やH形鋼等の形鋼を製造する方法として、フランジ材とウェブ材とのT字継手部にレーザ光を照射するレーザ溶接法が検討されるようになっている。
例えば特許文献1に見られるように、2枚の金属板を互いに垂直に突き合わせ、突き合わせ部に沿って突き合わせた金属板の両面から対向する位置に2つのレーザ光を同時に照射している。
In recent years, a laser beam is irradiated to a T-shaped joint portion of a flange material and a web material as a method of manufacturing a shape steel such as a T-shaped steel or an H-shaped steel used for a beam or the like constituting a housing of a building. Laser welding methods are being studied.
For example, as can be seen in Patent Document 1, two metal plates are abutted perpendicularly to each other, and two laser beams are simultaneously irradiated to positions facing from both sides of the metal plate abutted along the abutting portion.

この方法によると、突き合わせ部に対してウェブ材の両面方向からレーザ光を照射することになり、生産性向上の観点からは必ずしも効率的でない。
そこで、本出願人は、突き合わせ部に対してウェブ材の片面方向からのみレーザ光を照射する方法を提案している。例えば特許文献2を参照されたい。
この方法では、第一の金属板に第二の金属板の端部を垂直に押し当ててT字状の溶接継手部を形成した建築部材を製造する際、溶接法としてレーザ光を照射するレーザ溶接法を用い、前記レーザ光を、第一の金属板に対して30度以下の傾斜角度で、押し当てた第二の金属板端部に当該金属板が板厚方向全域にわたって溶融されるように照射している。
According to this method, the butt portion is irradiated with laser light from both sides of the web material, which is not necessarily efficient from the viewpoint of improving productivity.
Therefore, the present applicant has proposed a method of irradiating the butt portion with laser light only from one side of the web material. For example, see Patent Document 2.
In this method, when manufacturing a building member in which the end of the second metal plate is vertically pressed against the first metal plate to form a T-shaped welded joint, a laser that irradiates a laser beam as a welding method. Using a welding method, the metal plate is melted across the entire plate thickness direction at the end of the second metal plate pressed against the first metal plate at an inclination angle of 30 degrees or less with respect to the first metal plate. Irradiating.

特開2005−21912号公報JP 2005-21912 A 特開2007‐307591号公報JP 2007-307591 A

特許文献2で提案した溶接方法によると、押し当てた側のウェブ材端部に当該ウェブ材が板厚方向全域にわたって溶融されるようにレーザ光を照射しているため、溶融領域を狭く、かつ深くすることができる。その結果、形状精度良く溶接接合できるばかりでなく、被溶接鋼板がめっき鋼板であってもめっき層が蒸発する損傷領域を極力狭くすることができるため、溶接後の補修塗料の塗布量の低減効果が発揮される。また、溶融領域を深くすることができるため、片側からの溶接のみでも、所要の溶接強度を備えた形材を簡便に製造することができる。   According to the welding method proposed in Patent Document 2, since the laser beam is irradiated so that the web material end on the pressed side is melted over the entire plate thickness direction, the melting region is narrowed, and Can be deep. As a result, not only can welding be performed with good shape accuracy, but even if the steel plate to be welded is a plated steel plate, the damage area where the plating layer evaporates can be made as narrow as possible, thus reducing the amount of repair paint applied after welding. Is demonstrated. In addition, since the melting region can be deepened, it is possible to easily manufacture a shape member having a required welding strength only by welding from one side.

しかしながら、特許文献2による溶接方法では、被溶接部にレーザ光を照射して被溶接部の板厚方向全域を溶融させているので、フランジ材に対するレーザ光の入射角、ウェブ材端部の狙い位置、及びレーザ光自身のエネルギー量の違いによって、溶融部の形成状況が変わり所望の接合強度が得られないことがある。また、素材としてめっき鋼板、特に亜鉛系めっき鋼板を用いた場合に、溶融部の形成状況が変わるとめっき層の蒸発状況が変化して、製造された溶接形鋼の耐食性が劣化する場合がある。   However, in the welding method according to Patent Document 2, since the welded portion is irradiated with laser light to melt the entire area in the plate thickness direction of the welded portion, the incident angle of the laser light on the flange material and the aim of the end of the web material Depending on the position and the difference in the amount of energy of the laser beam itself, the formation state of the melted part may change and a desired bonding strength may not be obtained. In addition, when a plated steel sheet, particularly a zinc-based plated steel sheet, is used as the material, if the formation state of the molten part changes, the evaporation state of the plating layer changes, and the corrosion resistance of the manufactured welded steel may deteriorate. .

本発明は、このような問題を解消すべく案出されたものであり、T字継手部を備えたレーザ溶接形鋼にあって、形成された溶融部の形状を適正なものとして所望の接合強度、所望の耐食性を確保したレーザ溶接形鋼を提供することを目的とする。   The present invention has been devised to solve such a problem, and is a laser welded shape steel having a T-shaped joint portion. An object of the present invention is to provide a laser welded shape steel that ensures strength and desired corrosion resistance.

本発明のレーザ溶接形鋼は、その目的を達成するため、いずれも鋼板からなるフランジ材に対してウェブ材の端部に垂直に押し当てられて形作られたT字状継手部がレーザ光の片側からの1パス照射によって溶融接合された形鋼であって、当該形鋼長手方向に垂直な断面の溶接部形状が、a>0mm、b>0mm、c≧0.14Tw、d≧0mm、e≧0mmとなっていることを特徴とする。
フランジ材及びウェブ材のいずれもが亜鉛系めっき鋼板からなる場合、a>0mm、b>0mm、c≧0.14Tw、d≧0mm、e≧0mm、a+d≦2mm、b+e≦2mmとなっていることが好ましい。
In order to achieve the object, the laser welded shape steel of the present invention has a T-shaped joint portion formed by being pressed perpendicularly to an end portion of a web material against a flange material made of a steel plate. The shape of the welded part is melt bonded by one-pass irradiation from one side, and the welded part shape of the cross section perpendicular to the longitudinal direction of the shaped steel is a> 0 mm, b> 0 mm, c ≧ 0.14 Tw, d ≧ 0 mm, e ≥0mm.
When both the flange material and the web material are made of galvanized steel sheet, a> 0mm, b> 0mm, c ≧ 0.14Tw, d ≧ 0mm, e ≧ 0mm, a + d ≦ 2mm, b + e ≦ 2mm It is preferable that

ただし、a:ウェブ材の表溶融幅(溶接側)、b:ウェブ材の裏溶融幅(非溶接側)、c:フランジ材の板厚方向最大溶け込み深さ、d:フランジ材の表溶融幅(溶接側)、e:フランジ材の裏溶融幅(非溶接側)、Tw:ウェブ材の板厚である。単位はいずれもmmとする。
また、前記溶接部のフランジ材溶け込み面積をSf、ウェブ材溶け込み面積をSuとしたとき、その比Sf/Suが、Sf/Su<0.75であることが好ましい。
ただし、Sf=(d+Tw+e)×c/2、Su=(a+b)×Tw/2と近似する。
However, a: web material front melt width (welding side), b: web material back melt width (non-weld side), c: flange material maximum penetration depth, d: flange material front melt width (Welding side), e: back melt width of flange material (non-welding side), Tw: thickness of web material. The unit is mm.
Further, when the flange material penetration area of the weld is Sf and the web material penetration area is Su, the ratio Sf / Su is preferably Sf / Su <0.75.
However, Sf = (d + Tw + e) × c / 2 and Su = (a + b) × Tw / 2 are approximated.

本発明によるレーザ溶接形鋼は、フランジ材にウェブ材の端部を垂直に押し当てて形作られたT字状継手部にレーザ光を片側からの1パス照射し、前記継手部が溶融接合されたものであって、前記継手部に形成された溶融溶接部の形状を規定している。
このため、本発明で提供されるレーザ溶接形鋼は、安定した接合強度を有し、特に亜鉛系めっき鋼板を素材とした溶接形鋼であっても溶接部耐食性の低下がないので、高強度、高耐食性を備えた溶接形鋼を低コストで製造することが可能となる。
In the laser welded shape steel according to the present invention, a laser beam is irradiated from one side to a T-shaped joint portion formed by pressing an end of a web material perpendicularly to a flange material, and the joint portion is melt-bonded. The shape of the fusion weld formed in the joint is defined.
For this reason, the laser welded shape steel provided in the present invention has a stable joint strength, and in particular, a welded shape steel made of a galvanized steel sheet has no deterioration in weld corrosion resistance. Further, it becomes possible to produce a welded shape steel having high corrosion resistance at a low cost.

T字状継手部を片側からの1パス照射でレーザ溶接する方法を説明する図The figure explaining the method of laser-welding a T-shaped joint part by one-pass irradiation from one side T字状継手部の溶融溶接部の形状を説明する図The figure explaining the shape of the fusion weld part of a T-shaped joint part T字状継手部を片側からの1パス照射でレーザ溶接する際のレーザ光照射角度θとウェブ材端部に対する照射位置の関係を説明する図The figure explaining the relationship between the irradiation position with respect to the laser beam irradiation angle (theta) and the web material edge part at the time of laser welding the T-shaped joint part by one-pass irradiation from one side

フランジ材にウェブ材の端部を垂直に押し当てて形作られたT字状継手部を片側からの1パスによるレーザ光照射で溶接する際に、図1に示す、フランジ材に対するレーザ光の照射角度θ、及びウェブ材端部に対する照射位置を適正に行わないと、所望の接合強度は得られない。また、めっき鋼板を素材とした場合には、フランジ材のめっき層に損傷を与えることもある。
例えば、前記レーザ光の照射角度θを鋭角にすると、図2に示す、ウェブ材とフランジ材の交点の上下に位置するフランジ表溶融幅d、及びフランジ裏溶融幅eが大きくなり、溶接部の耐食性劣化が懸念される。
When welding the T-shaped joint formed by pressing the end of the web material vertically against the flange material by laser beam irradiation by one pass from one side, the laser beam irradiation to the flange material shown in FIG. If the angle θ and the irradiation position with respect to the end portion of the web material are not properly performed, a desired bonding strength cannot be obtained. Moreover, when a plated steel plate is used as the material, the plated layer of the flange material may be damaged.
For example, when the irradiation angle θ of the laser beam is set to an acute angle, the flange surface melt width d and the flange back melt width e positioned above and below the intersection of the web material and the flange material shown in FIG. There is a concern about deterioration of corrosion resistance.

逆に照射角度θを鈍角にするとフランジ溶融幅d、eは小さくなるが、ウェブ端面の溶け込みに対しては未溶融部が生じ易くなり、十分な強度を確保することができなくなる。また、フランジ材が薄板の場合はフランジ材への溶け込み深さcが大きくなることから、熱変形が大きくなったり、さらにめっき鋼板の場合ではウェブ材と相反する面のめっき損傷幅が大きくなる。
そこで、本発明者等は、フランジ材に対するレーザ光の照射角度θ、及びウェブ材端部に対するレーザ光の照射位置を細かく調整することによって、所望特性の関連で図2に示される各部位のサイズとして最適なものを見出した。
以下にその詳細を説明する。
Conversely, when the irradiation angle θ is made obtuse, the flange melt widths d and e are reduced, but an unmelted portion is likely to occur when the web end face is melted, and sufficient strength cannot be ensured. Further, when the flange material is a thin plate, the penetration depth c into the flange material increases, so that thermal deformation increases, and in the case of a plated steel plate, the plating damage width on the surface opposite to the web material increases.
Therefore, the present inventors finely adjust the irradiation angle θ of the laser beam to the flange material and the irradiation position of the laser beam to the end of the web material to thereby adjust the size of each part shown in FIG. I found the best one.
Details will be described below.

まず、前記フランジ材に対するレーザ光の照射角度θ、及びウェブ材端部に対するレーザ光の照射位置の影響を調べるために、前記条件を種々変更した予備実験を行った。
板厚が2.3mmで引張強さが400N/mm2の鋼板にZn−6%Al−3%Mg合金めっき層を片面当り付着量が90g/m2で設けた溶融めっき鋼板を試験材とし、表1に示す条件でレーザ溶接して、T字状形鋼を得た。
First, in order to investigate the influence of the irradiation angle θ of the laser beam on the flange material and the irradiation position of the laser beam on the end portion of the web material, preliminary experiments were performed in which the above conditions were variously changed.
Tensile strength plate thickness by 2.3mm has a hot dip plated steel sheet per side adhered amount of Zn-6% Al-3% Mg alloy plating layer on the steel sheet 400 N / mm 2 is provided at 90 g / m 2 and the test material, Laser welding was performed under the conditions shown in Table 1 to obtain a T-shaped steel.

Figure 2012152820
Figure 2012152820

その後、得られたT字状のレーザ溶接形鋼について、図2に示す各部位のサイズを断面観察した画像より測定するとともに、接合強度を測定した。またフランジ材の裏面を目視観察した。
この際、接合強度は、JIS G 3353に準拠して引張試験を行い、溶接部引張強さも同JISに準拠し、ウェブの母材破断もしくは溶接部で破断した場合には引張荷重をウェブ実断面積で除した値が400N/mm2以上を満足するものを良好とした。またフランジ材の裏面観察で、めっきの再溶融による損傷が確認されたものを損傷有りとし、その損傷幅を測定した。
その結果を表2〜12に示す。
なお、各表2〜12において、数値に下線を付したものは、引張試験において強度不足となったものである。
Then, about the obtained T-shaped laser welded shape steel, while measuring the size of each site | part shown in FIG. 2 from the cross-sectional-observed image, joint strength was measured. Further, the back surface of the flange material was visually observed.
At this time, the joint strength is a tensile test according to JIS G 3353, and the tensile strength of the welded part is also compliant with the same JIS. A value satisfying a value divided by area of 400 N / mm 2 or more was considered good. In addition, when the back surface of the flange material was observed to be damaged due to remelting of the plating, the damage width was measured.
The results are shown in Tables 2-12.
In Tables 2 to 12, the numerical value with the underline indicates that the strength was insufficient in the tensile test.

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

Figure 2012152820
Figure 2012152820

ウェブ材とフランジ材の組合せからなるT字継ぎ手部の溶接強度を確保するためには、ウェブ材端面がフランジ材中にある程度以上溶け込んでいることが必要である。すなわち、片側からの1パスによるレーザ溶接で溶接を行う場合は、ウェブ材の表及び裏ビードが存在し(a>0、b>0)、かつフランジへ溶け込んでいる必要がある。上記表4の結果からはフランジへの溶け込み深さcは0.33mm以上必要であるが、これは板厚2.3mmのものに対するものであるから、一般的にはフランジへの溶け込み幅cはc/Tw=0.33/2.3=0.14から0.14×Tw(mm)以上が必要となる。   In order to ensure the welding strength of the T-shaped joint portion composed of the combination of the web material and the flange material, it is necessary that the end surface of the web material is dissolved in the flange material to some extent. That is, when welding is performed by laser welding with one pass from one side, the front and back beads of the web material must be present (a> 0, b> 0) and must be melted into the flange. From the results of Table 4 above, the penetration depth c into the flange is required to be 0.33 mm or more, but since this is for a plate thickness of 2.3 mm, the penetration width c into the flange is generally c / Tw = 0.33 / 2.3 = 0.14 to 0.14 × Tw (mm) or more is required.

フランジ材の表及び裏ビードの幅については、フランジ上面よりレーザ光を傾斜させて入射しているため、入射角が大きくなり過ぎたり、狙い位置がフランジとウェブの交点より離れ過ぎたりすると、フランジ材の表及び裏ビードが存在しなくなり、ウェブ端面とフランジとの間に未溶融部が生じて強度低下になる傾向があるため、フランジ材の表及び裏溶融幅d、eは存在する必要がある。すなわちフランジ材の表及び裏溶融幅d、eについては、それぞれd≧0(mm)、e≧0(mm)とする必要がある。   As for the width of the front and back beads of the flange material, the laser beam is tilted from the top surface of the flange, so if the incident angle becomes too large or the target position is too far from the intersection of the flange and the web, the flange Since the front and back beads of the material do not exist and an unmelted portion tends to be generated between the web end surface and the flange, the strength of the flange material and the back melt widths d and e need to exist. is there. That is, the front and back melt widths d and e of the flange material need to satisfy d ≧ 0 (mm) and e ≧ 0 (mm), respectively.

また、フランジへの溶け込み量が大きくなるとフランジ材が薄板のめっき鋼板の場合はウェブ材と相反する面のめっき損傷が大きくなり、また熱変形が生じるため、フランジ材への溶け込み量は多過ぎない方がよい。
さらに、ウェブ材とフランジ材の交点付近における溶融面積は極力小さくした方がよい。めっき鋼板の切断端面における犠牲防食作用は、一般的に2.3mm程度までしか効果がないと言われており、レーザ溶接部においては溶接部周囲のめっき蒸発を考慮するとレーザ溶接による溶融幅は2mm程度以内にすることで、溶接部は補修塗装を施さなくても良好な耐食性が確保される。よって、溶融している領域を2mm以内にすることがよい。
すなわち、亜鉛系めっき鋼板を素材とした場合、ウェブ材とフランジ材の交点付近の耐食性劣化を抑制するためには、a+d≦2mm、b+e≦2mmとする必要がある。
In addition, when the amount of penetration into the flange increases, if the flange material is a thin plated steel plate, the plating damage on the surface opposite to the web material will increase, and thermal deformation will occur, so there is not too much penetration into the flange material. Better.
Furthermore, it is better to make the melting area near the intersection of the web material and the flange material as small as possible. The sacrificial anti-corrosion action on the cut end face of the plated steel sheet is generally said to be effective only up to about 2.3 mm. In the laser welded part, considering the evaporation of plating around the welded part, the melt width by laser welding is about 2 mm. By making it within the range, it is possible to ensure good corrosion resistance even if the welded portion is not subjected to repair coating. Therefore, it is preferable that the melted area is within 2 mm.
That is, when a galvanized steel sheet is used as a raw material, it is necessary to satisfy a + d ≦ 2 mm and b + e ≦ 2 mm in order to suppress deterioration in corrosion resistance near the intersection of the web material and the flange material.

めっき鋼板の犠牲防食の観点からは、フランジの損傷幅も2mm以下にしておくことが好ましいが、表7において、照射角度θが10°と15°の狙い0.2mmではa+dがともに2mm以下となっているにも関わらず、表12におけるフランジ損傷幅はともに2mmを超えている。
フランジ損傷部はめっきが完全になくなっておらず、残存しているため、必ずしも2mm以下にする必要はないが、表12の結果を表11に戻して、フランジ損傷部幅を2mm以下とすると共に、フランジの熱変形を抑制するためにSf/Su<0.75とすることが好ましいとした。
また、溶接部強度の面をも考慮すると、Sf/Su≧0.15とすることがさらに好ましい。
ただし、Sf=(d+Tw+e)×c/2、Su=(a+b)×Tw/2と近似する。
From the standpoint of sacrificial corrosion protection of plated steel sheets, it is preferable that the damage width of the flange be 2 mm or less. However, in Table 7, when the irradiation angle θ is 10 ° and 15 ° and 0.2 mm, both a + d are 2 mm or less. In spite of this, both flange damage widths in Table 12 exceed 2 mm.
The flange damaged part is not completely removed and remains, so it is not necessarily 2 mm or less. However, the result of Table 12 is returned to Table 11 and the width of the flange damaged part is set to 2 mm or less. In order to suppress thermal deformation of the flange, Sf / Su <0.75 is preferable.
In consideration of the strength of the welded part, it is more preferable to satisfy Sf / Su ≧ 0.15.
However, Sf = (d + Tw + e) × c / 2 and Su = (a + b) × Tw / 2 are approximated.

なお、亜鉛系めっき鋼板を素材とした場合に、a+d≦2mm、b+e≦2mmとする必要があること、さらにSf/Su<0.75とすることが好ましいことは、耐食性評価の加速試験として従来から広く利用されている塩水噴霧→乾燥→湿潤の繰返し試験(CCT試験)を行うことによって確認した。(本件では、35℃、5%NaClを2時間間噴霧→60℃、30%RH(相対湿度)で4時間乾燥→50℃、95%RHで2時間湿潤の繰返し条件を採用した。)
200サイクルまで試験を実施した結果、a+d≦2mm、b+e≦2mmとしたT字継手部のレーザ溶接部は、早期から溶接部が白錆に覆われ赤錆の発生は確認されなかったし、フランジの熱影響部についてもめっき損傷部が白錆に覆われ赤錆の発生は確認されなかった。また、フランジ部の熱変形も観察されなかった。
In addition, it is necessary to set a + d ≦ 2mm and b + e ≦ 2mm when using galvanized steel sheet as a material, and it is preferable to set Sf / Su <0.75. It was confirmed by conducting a salt water spray->dry-> wet repeated test (CCT test) that has been widely used conventionally. (In this case, 35 ° C, 5% NaCl sprayed for 2 hours → 60 ° C, 30% RH (relative humidity) for 4 hours → 50 ° C, 95% RH for 2 hours)
As a result of testing up to 200 cycles, the laser welded part of the T-shaped joint with a + d ≦ 2mm and b + e ≦ 2mm was covered with white rust from the early stage, and the occurrence of red rust was not confirmed. In the heat affected zone of the flange, the damaged portion of the plating was covered with white rust, and the occurrence of red rust was not confirmed. Further, thermal deformation of the flange portion was not observed.

ところで、前記したような狭い幅の溶融部を得るためには、片側からの1パスによるレーザ溶接でT字継ぎ手部を溶接する際に、ウェブ端面前面を効率良く溶融させるには幾何学的に考えて、ウェブ表面側のフランジとの交点を狙うよりもウェブ裏面側のフランジとの交点を狙った方が良い。
ウェブ表面上のフランジからの狙い位置Xは「X=Tw・tanθ」(Tw:ウェブ板厚,θ:フランジに対するレーザ入射角)で求められる。狙い位置Xはレーザビーム半径(D/2)以上にすると、幾何学的に考えた場合、ウェブ表面とフランジの交点をレーザが通過しないため、未溶融部が生じることとなる。
By the way, in order to obtain a melted portion having a narrow width as described above, when the T-joint portion is welded by laser welding with one pass from one side, the front end surface of the web is efficiently melted geometrically. Considering, it is better to aim at the intersection with the flange on the back side of the web rather than aiming at the intersection with the flange on the web surface side.
The target position X from the flange on the web surface is obtained by “X = Tw · tan θ” (Tw: web plate thickness, θ: laser incident angle with respect to the flange). If the target position X is equal to or greater than the laser beam radius (D / 2), an unmelted portion is generated because the laser does not pass through the intersection of the web surface and the flange when geometrically considered.

しかし、実際にはレーザビーム径周囲も熱影響(熱伝導)を受け、ビーム径以上溶融する(条件により変動:約1.1〜2.5倍)ため、狙い位置Xの上限値は「2.5×(D/2)」となる(Tw・tanθ<X≦2.5×(D/2))。これより照射角θを求めると、0<θ≦tan-1((2.5×D/2)/Twとなる。
前記したような照射角θ、狙い位置Xを採用して片側からの1パスによるレーザ溶接でT字継ぎ手部を溶接すれば、規定した形状の溶接部が得られる。
However, since the laser beam diameter is also affected by heat (heat conduction) and melts more than the beam diameter (varies depending on conditions: about 1.1 to 2.5 times), the upper limit of the target position X is “2.5 × (D / 2) ”(Tw · tan θ <X ≦ 2.5 × (D / 2)). From this, when the irradiation angle θ is determined, 0 <θ ≦ tan −1 ((2.5 × D / 2) / Tw.
By adopting the irradiation angle θ and the target position X as described above and welding the T-shaped joint portion by laser welding with one pass from one side, a welded portion having a defined shape can be obtained.

Claims (3)

いずれも鋼板からなるフランジ材に対してウェブ材の端部に垂直に押し当てられて形作られたT字状継手部がレーザ光の片側からの1パス照射によって溶融接合された形鋼であって、当該形鋼長手方向に垂直な断面の溶接部形状が、a>0mm、b>0mm、c≧0.14Tw、d≧0mm、e≧0mmとなっていることを特徴とするレーザ溶接形鋼。
ただし、a:ウェブ材の表溶融幅(溶接側)、b:ウェブ材の裏溶融幅(非溶接側)、c:フランジ材の板厚方向最大溶け込み深さ、d:フランジ材の表溶融幅(溶接側)、e:フランジ材の裏溶融幅(非溶接側)、Tw:ウェブ材の板厚である。単位はいずれもmmとする。
Each of them is a shaped steel in which a T-shaped joint portion formed by being pressed perpendicularly to an end portion of a web material against a flange material made of a steel plate is melt-bonded by one-pass irradiation from one side of a laser beam. The laser welded shape steel, wherein the shape of the welded portion having a cross section perpendicular to the longitudinal direction of the shape steel is a> 0 mm, b> 0 mm, c ≧ 0.14 Tw, d ≧ 0 mm, and e ≧ 0 mm.
However, a: web material front melt width (welding side), b: web material back melt width (non-weld side), c: flange material maximum penetration depth, d: flange material front melt width (Welding side), e: back melt width of flange material (non-welding side), Tw: thickness of web material. The unit is mm.
いずれもが亜鉛系めっき鋼板からなるフランジ材に対してウェブ材の端部に垂直に押し当てられて形作られたT字状継手部がレーザ光の片側からの1パス照射によって溶融接合された形鋼であって、当該形鋼長手方向に垂直な断面の溶接部形状が、a>0mm、b>0mm、c≧0.14Tw、d≧0mm、e≧0mm、a+d≦2mm、b+e≦2mmとなっていることを特徴とするレーザ溶接形鋼。
ただし、a:ウェブ材の表溶融幅(溶接側)、b:ウェブ材の裏溶融幅(非溶接側)、c:フランジ材の板厚方向最大溶け込み深さ、d:フランジ材の表溶融幅(溶接側)、e:フランジ材の裏溶融幅(非溶接側)、Tw:ウェブ材の板厚である。単位はいずれもmmとする。
Each is a shape in which a T-shaped joint formed by pressing perpendicularly to the end of a web material against a flange material made of galvanized steel sheet is melt-bonded by one-pass irradiation from one side of the laser beam The welded portion shape of the cross section perpendicular to the longitudinal direction of the shape steel is a> 0 mm, b> 0 mm, c ≧ 0.14 Tw, d ≧ 0 mm, e ≧ 0 mm, a + d ≦ 2 mm, b + e Laser welded shape steel characterized by ≦ 2mm.
However, a: web material front melt width (welding side), b: web material back melt width (non-weld side), c: flange material maximum penetration depth, d: flange material front melt width (Welding side), e: back melt width of flange material (non-welding side), Tw: thickness of web material. The unit is mm.
前記溶接部のフランジ材溶け込み面積をSf、ウェブ材溶け込み面積をSuとしたとき、その比Sf/Suが、Sf/Su<0.75である請求項2に記載のレーザ溶接形鋼。   3. The laser welded section steel according to claim 2, wherein the ratio Sf / Su is Sf / Su <0.75, where Sf is the flange material penetration area of the weld and Su is the web material penetration area.
JP2011016954A 2011-01-28 2011-01-28 Laser welded section steel Expired - Fee Related JP5658579B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011016954A JP5658579B2 (en) 2011-01-28 2011-01-28 Laser welded section steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016954A JP5658579B2 (en) 2011-01-28 2011-01-28 Laser welded section steel

Publications (2)

Publication Number Publication Date
JP2012152820A true JP2012152820A (en) 2012-08-16
JP5658579B2 JP5658579B2 (en) 2015-01-28

Family

ID=46835121

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016954A Expired - Fee Related JP5658579B2 (en) 2011-01-28 2011-01-28 Laser welded section steel

Country Status (1)

Country Link
JP (1) JP5658579B2 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192189A (en) * 2013-04-12 2013-07-10 深圳中集专用车有限公司 Semitrailer girder structure and welding process thereof
JP2015025317A (en) * 2013-07-29 2015-02-05 山下 三男 Stainless steel grating
JP2015128054A (en) * 2013-11-26 2015-07-09 日本特殊陶業株式会社 Spark plug
CN106536120A (en) * 2014-07-21 2017-03-22 西门子能源公司 Optimization of melt pool shape in a joining process
WO2017141470A1 (en) * 2016-02-16 2017-08-24 日新製鋼株式会社 Laser-welded shaped steel and method for producing same
JP6293952B1 (en) * 2017-03-29 2018-03-14 日新製鋼株式会社 Support structure
JP6310605B1 (en) * 2017-08-08 2018-04-11 日新製鋼株式会社 Laser-welded section and manufacturing method thereof
US10286492B2 (en) 2014-04-14 2019-05-14 Mitsubishi Heavy Industries, Ltd. Welded structure, laser welding method, and laser welding device
JP2020151726A (en) * 2019-03-18 2020-09-24 日鉄日新製鋼株式会社 Composite welding method of galvanized steel sheet and welded structure thereof
CN116100213A (en) * 2023-04-11 2023-05-12 四川科新机电股份有限公司 Large stainless steel sheet welding anti-deformation device and method

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119485A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Manufacturing method of welded section steel

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009119485A (en) * 2007-11-13 2009-06-04 Nisshin Steel Co Ltd Manufacturing method of welded section steel

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103192189A (en) * 2013-04-12 2013-07-10 深圳中集专用车有限公司 Semitrailer girder structure and welding process thereof
JP2015025317A (en) * 2013-07-29 2015-02-05 山下 三男 Stainless steel grating
JP2015128054A (en) * 2013-11-26 2015-07-09 日本特殊陶業株式会社 Spark plug
US10286492B2 (en) 2014-04-14 2019-05-14 Mitsubishi Heavy Industries, Ltd. Welded structure, laser welding method, and laser welding device
CN106536120A (en) * 2014-07-21 2017-03-22 西门子能源公司 Optimization of melt pool shape in a joining process
US11440138B2 (en) 2014-07-21 2022-09-13 Siemens Energy, Inc. Optimization of melt pool shape in a joining process
KR102035954B1 (en) * 2016-02-16 2019-10-23 닛테츠 닛신 세이코 가부시키가이샤 Laser welding section steel and manufacturing method
RU2689823C1 (en) * 2016-02-16 2019-05-29 Ниссин Стил Ко., Лтд. Steel profile formed by laser welding and method of its production
WO2017141470A1 (en) * 2016-02-16 2017-08-24 日新製鋼株式会社 Laser-welded shaped steel and method for producing same
KR20180108646A (en) 2016-02-16 2018-10-04 닛신 세이코 가부시키가이샤 Laser welded steel and its manufacturing method
CN108698168A (en) * 2016-02-16 2018-10-23 日新制钢株式会社 Laser welding shaped steel and its manufacturing method
US10603746B2 (en) 2016-02-16 2020-03-31 Nippon Steel Nisshin Co., Ltd. Laser-welded shaped steel and method for producing same
AU2016393538B2 (en) * 2016-02-16 2019-01-17 Nisshin Steel Co., Ltd. Laser-welded shaped steel and method for producing same
TWI678420B (en) * 2016-02-16 2019-12-01 日商日鐵日新製鋼股份有限公司 Laser-welded section steel and method for producing same
JP6197126B1 (en) * 2016-02-16 2017-09-13 日新製鋼株式会社 Laser-welded section and manufacturing method thereof
JP2018167281A (en) * 2017-03-29 2018-11-01 日新製鋼株式会社 Support structure
JP6293952B1 (en) * 2017-03-29 2018-03-14 日新製鋼株式会社 Support structure
TWI653105B (en) 2017-03-29 2019-03-11 日商日新製鋼股份有限公司 Support structure
WO2018179582A1 (en) * 2017-03-29 2018-10-04 日新製鋼株式会社 Support body, support body set, support structure, and method for manufacturing support body
JP2019030890A (en) * 2017-08-08 2019-02-28 日新製鋼株式会社 Laser welding shaped steel and method for manufacture the same
WO2019031013A1 (en) * 2017-08-08 2019-02-14 日新製鋼株式会社 Laser-welded shaped steel and method for manufacturing same
JP6310605B1 (en) * 2017-08-08 2018-04-11 日新製鋼株式会社 Laser-welded section and manufacturing method thereof
JP2020151726A (en) * 2019-03-18 2020-09-24 日鉄日新製鋼株式会社 Composite welding method of galvanized steel sheet and welded structure thereof
JP7230606B2 (en) 2019-03-18 2023-03-01 日本製鉄株式会社 Composite welding method for galvanized steel sheets
CN116100213A (en) * 2023-04-11 2023-05-12 四川科新机电股份有限公司 Large stainless steel sheet welding anti-deformation device and method

Also Published As

Publication number Publication date
JP5658579B2 (en) 2015-01-28

Similar Documents

Publication Publication Date Title
JP5658579B2 (en) Laser welded section steel
TWI628022B (en) Point welding method for plated steel plate
JP5110642B2 (en) Manufacturing method of welded section steel
CN101905379B (en) High strong weather resistance cold rolling container coating plate laser welding process
KR102024415B1 (en) Laser-welded shaped steel
JP2008272826A (en) Stiffened plate and process for producing the same
US9266195B2 (en) Laser welding method
JP5088920B2 (en) Manufacturing method for building components
JP2011083781A (en) Method for manufacturing h-section steel by laser welding
JP5949539B2 (en) Electrogas arc welding method
JP5473171B2 (en) Manufacturing method for building components
TWI579092B (en) Laser welded shaped steel
JP5656220B2 (en) Manufacturing method of laser welded H-section steel
JP5657053B2 (en) Multi-layer overlay welding of thick steel plates by submerged arc welding
JP2012187590A (en) Method for producing laser-welded steel pipe
JP6213332B2 (en) Hot wire laser combined welding method for thick steel plate
CN112351855A (en) Method for joining plated steel sheets and joined structure
NZ703757B2 (en) Laser-welded shaped steel
EP1870194A1 (en) Method of producing a continuous metal strip by laser butt welding, with a laser having a multimodal welding power distribution
JP7230606B2 (en) Composite welding method for galvanized steel sheets
JP2020044565A (en) Hybrid welding method and weld joint manufacturing method
KR20140057452A (en) Method of laser welding
JP2005111541A (en) Galvanized steel excellent in laser weldability, and welding method thereof
JP2012206130A (en) Laser welding method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130517

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140227

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140305

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141119

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141128

R150 Certificate of patent or registration of utility model

Ref document number: 5658579

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees