JP5657053B2 - Multi-layer overlay welding of thick steel plates by submerged arc welding - Google Patents

Multi-layer overlay welding of thick steel plates by submerged arc welding Download PDF

Info

Publication number
JP5657053B2
JP5657053B2 JP2013098089A JP2013098089A JP5657053B2 JP 5657053 B2 JP5657053 B2 JP 5657053B2 JP 2013098089 A JP2013098089 A JP 2013098089A JP 2013098089 A JP2013098089 A JP 2013098089A JP 5657053 B2 JP5657053 B2 JP 5657053B2
Authority
JP
Japan
Prior art keywords
welding
layer
submerged arc
thick steel
pass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013098089A
Other languages
Japanese (ja)
Other versions
JP2014217855A (en
Inventor
俊之 沼田
俊之 沼田
知幸 橋田
知幸 橋田
三十志 春名
三十志 春名
Original Assignee
片山ストラテック株式会社
神機建材株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 片山ストラテック株式会社, 神機建材株式会社 filed Critical 片山ストラテック株式会社
Priority to JP2013098089A priority Critical patent/JP5657053B2/en
Publication of JP2014217855A publication Critical patent/JP2014217855A/en
Application granted granted Critical
Publication of JP5657053B2 publication Critical patent/JP5657053B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Arc Welding In General (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)

Description

本発明は、鉄骨、橋梁等の鋼構造物に使用される板厚60mmを越える厚板鋼板製柱状体を製作する場合に使用されるサブマージアーク溶接に関し、さらに詳しくは、スキンプレートの角溶接部分をサブマージアーク溶接を使用して多層盛溶接する方法に関する。   The present invention relates to submerged arc welding used when manufacturing a steel plate and steel plate column having a thickness exceeding 60 mm and used for steel structures such as steel frames and bridges. The present invention relates to a method for multi-layer welding using submerged arc welding.

近年、鋼構造物を用いた建築物の高層化に伴い、厚板鋼板をボックス状に組んでその接合部をサブマージアーク溶接で多層盛溶接して鉄骨柱に形成することが盛んに行われるようになっている。   In recent years, with the increase in the height of buildings using steel structures, it has become a popular practice to form thick steel plates into boxes and form multi-layer welds with submerged arc welding to form steel columns. It has become.

特開平11−138267号公報Japanese Patent Laid-Open No. 11-138267

ところが、ボックス状に組んだ極厚鋼板の角接合部をサブマージアーク溶接を使用して多層盛溶接し、柱状鉄骨とする場合、溶接金属の引っ張り特性に問題があることがある。
これは、多層溶接時においても溶接金属内に発生した溶接欠陥(低温割れ)の発生が引っ張り強度に悪影響を及ぼしているものと推測される。
However, when multi-layer welding is performed on a corner joint portion of a thick steel plate assembled in a box shape using submerged arc welding to form a columnar steel frame, there may be a problem in the tensile properties of the weld metal.
This is presumed that the occurrence of weld defects (cold cracks) occurring in the weld metal even during multilayer welding has an adverse effect on the tensile strength.

本発明は、このような点に着目して、ボックス状に組んだ極厚鋼板の角接合部をサブマージアーク溶接で多層盛溶接しても溶接欠陥の生じにくい溶接手法を確立することを目的とする。   The present invention aims to establish a welding technique that is less likely to cause welding defects even when multi-layer welding is performed on corner joints of extremely thick steel plates assembled in a box shape by submerged arc welding, focusing on such points. To do.

上述の目的を達成するために、本発明は、サブマージアーク溶接で角溶接部の初層溶接をした後、所定時間断熱材でワーク全体を被覆して保温することで、溶接金属内の拡散性水素量の低減化を促し、第2層以降に生じ易い低温割れを防止すようにしたことを特徴としている。   In order to achieve the above-mentioned object, the present invention performs diffusibility in the weld metal by covering the whole workpiece with a heat insulating material for a predetermined time after the initial layer welding of the corner welded portion by submerged arc welding. It is characterized by promoting a reduction in the amount of hydrogen and preventing low-temperature cracking that tends to occur in the second and subsequent layers.

請求項1に記載の本発明では、板厚60mmを越える極厚鋼板をボックス状に組んでその接合部をサブマージアーク溶接で多層盛溶接して鉄骨柱に形成するにあたり、初層溶接後に初層溶接個所で間スラグを残置した状態でワーク全体をグラスファイバー製断熱材で被覆して6時間以上保温し、溶接終了後所定時間経過後、第2層溶接を行い、以後溶接終了後6時間以上経過後次層溶接を行うようにしたことを特徴としている。また、請求項2に記載の本発明では、肉厚60mmを越える極厚鋼板をボックス状に組んでその接合部をサブマージアーク溶接で多層盛溶接して鉄骨柱に形成するにあたり、初層溶接後スラグを残置した状態でワーク全体をグラスファイバー製断熱材で被覆して溶接部温度が100℃以下に低下するまで保温し、その保温時間経過後第2層溶接を行い、以後溶接終了後一定時間経過後次層溶接を行うようにしたことを特徴としている。
In the present invention described in claim 1, when forming an extremely thick steel plate having a thickness of more than 60 mm in a box shape and forming a steel column by multi-layer welding of the joint portion by submerged arc welding, the first layer is welded after the first layer welding. while leaving between slag welds the entire workpiece is coated with fiberglass insulation material was kept for 6 hours or more, after the end of welding after a predetermined time, it performed the second layer welding, thereafter welding end after 6 hours or more It is characterized in that the next layer welding is performed after the lapse. Further, in the present invention described in claim 2, in forming an extremely thick steel plate having a thickness of more than 60 mm in a box shape and forming a steel column by multi-layer welding the joint portion by submerged arc welding, The entire workpiece is covered with glass fiber insulation with the slag left, and the weld is kept warm until the weld temperature drops below 100 ° C. After the warming time has elapsed, the second layer is welded. It is characterized in that the next layer welding is performed after the lapse.

本発明では、初層溶接後スラグを除去することなく、さらにワーク全体をグラスファイバー製断熱材で6時間以上被覆あるいは、溶接部温度が100℃以下に低下するまで保温して、溶接部分を自後熱効果で保温するようにしていることから、多層溶接時に溶接金属内に発生する溶接欠陥(低温割れ)発生を防止することができる。特に溶接部の温度管理が面倒な長尺の厚板鋼板製柱状体の溶接に効果が見られる。
In the present invention, without removing the slag after the first layer welding, the whole work is further covered with a glass fiber heat insulating material for 6 hours or more, or the welded part is kept warm until the temperature of the welded part decreases to 100 ° C. or lower. Since the heat is retained by the post-heating effect, it is possible to prevent the occurrence of weld defects (cold cracks) that occur in the weld metal during multi-layer welding. In particular, the effect can be seen in welding a long steel plate columnar body that is troublesome to control the temperature of the weld.

サブマージアーク溶接による厚板鋼板の多層盛溶接方法を適用する試験材を示す正面図である。It is a front view which shows the test material which applies the multilayer overlay welding method of the thick steel plate by submerged arc welding. 溶接部での各パスでの溶着金属の状態を示す正面図である。It is a front view which shows the state of the weld metal in each pass in a welding part. 本発明方法を適用している状態での試験材の正面図である。It is a front view of the test material in the state which has applied the method of the present invention. 溶接時の温度履歴を測定する温度測定点位置を示す図である。It is a figure which shows the temperature measurement point position which measures the temperature history at the time of welding. 初層温度履歴を示す図である。It is a figure which shows initial layer temperature history. 各試験体の溶接部での縦断面のマクロ写真であり、(a)は試験体S8N、(b)は試験体S8S、(c)は試験体S8Iの断面である。It is the macro photograph of the longitudinal cross-section in the welding part of each test body, (a) is test body S8N, (b) is test body S8S, (c) is a cross section of test body S8I. 各試験体の溶接部での斜め縦断面のマクロ写真であり、(a)は試験体S8N、(b)は試験体S8S、(c)は試験体S8Iの断面である。It is a macro photograph of the diagonal longitudinal section in the welding part of each test body, (a) is test body S8N, (b) is test body S8S, (c) is a cross section of test body S8I. マクロ試験に使用する斜め縦断面を示す斜視図である。It is a perspective view which shows the diagonal longitudinal cross section used for a macro test. 試験体S8Nの溶接断面をピクリン酸腐食した後のマクロ写真であり、(a)は試験体S8Nの斜め縦断面、(b)は試験体S8Nの縦断面である。It is a macro photograph after carrying out the picric acid corrosion of the welding cross section of test body S8N, (a) is a diagonal vertical cross section of test body S8N, (b) is a vertical cross section of test body S8N. 引張試験の結果を示すグラフである。It is a graph which shows the result of a tension test. 衝撃試験の結果を示すグラフである。It is a graph which shows the result of an impact test.

本発明は、板厚60mm以上の厚肉鋼板を箱型に組み付け、その接合部をサブマージアーク溶接(SAW)の多層溶接を用いて接合するに当たり、SAW溶接で第1層(初層)溶接のあとスラグを除去することなく、ワーク全体を断熱材で被覆保温するようにしたものである。   In the present invention, when a thick steel plate having a thickness of 60 mm or more is assembled in a box shape and the joint portion is joined using submerged arc welding (SAW) multi-layer welding, the first layer (first layer) welding is performed by SAW welding. The entire work is covered with a heat insulating material without removing the slag.

溶接母材として、板厚80mmの2枚のSA440C鋼製のスキンプレート(1)(2)を図1に示すようにL型に配置し、その当接部分の外面側に開先(3)を形成し、この開先部分の内側に裏当て金(4)として25mm角のSN490B材を配置したものを試験材とし、タンデムサブマージアーク溶接機を使用して、図2に示すように、3層4パス仕上げで溶接を行った。図中符号(5)は拘束板、符号(6)は拘束板に設けた貫通孔である。   As a welding base material, two SA440C steel skin plates (1) and (2) having a plate thickness of 80 mm are arranged in an L shape as shown in FIG. 1, and a groove (3) is formed on the outer surface side of the contact portion. And using a tandem submerged arc welder as shown in FIG. 2, a 25 mm square SN490B material arranged as a backing metal (4) inside the groove portion was used as a test material. Welding was performed with a layer 4 pass finish. In the figure, reference numeral (5) denotes a restraining plate, and reference numeral (6) denotes a through hole provided in the restraining plate.

この3層4パス仕上げで溶接の溶接条件を表1に示す。   Table 1 shows the welding conditions for this three-layer four-pass finish.

本発明に係る溶接方法にあっては、図3に示すように各パス施工後に、次パス施工までフラックス(7)及びスラグ(8)を回収せず、ワーク全体を断熱材(9)で包被して保温した。そして、本発明の実施形態では、1パス目の溶接終了後6時間経過、あるいは溶接部近傍個所でのワークの温度が100℃以下となった時点で2パス目の溶接を行い、3パス目以降は、前のパスでの溶接終了2時間経過後に次パスの溶接を行った。以下、この溶接方法での試験体をS8Iという。   In the welding method according to the present invention, as shown in FIG. 3, the flux (7) and slag (8) are not recovered until the next pass construction after each pass construction, and the whole work is wrapped with a heat insulating material (9). Covered and kept warm. In the embodiment of the present invention, the second pass welding is performed when 6 hours have elapsed after the end of the first pass welding or when the temperature of the workpiece near the welded portion becomes 100 ° C. or less. Thereafter, the welding of the next pass was performed after 2 hours from the end of welding in the previous pass. Hereinafter, the test body by this welding method is referred to as S8I.

厚板鋼板製柱状体を製作する従来のサブマージアーク溶接方法は、各パス施工後に、次直ちにフラックス及びスラグを回収する。1パス終了後に溶接部近傍個所でのワークの温度が250℃以下になった時点で次のパスの溶接を行い、この操作を繰り返す。以下、この溶接方法での試験体をS8Nという。   A conventional submerged arc welding method for producing a thick steel plate column collects flux and slag immediately after each pass. After the end of one pass, when the temperature of the workpiece near the welded portion becomes 250 ° C. or lower, the next pass is welded and this operation is repeated. Hereinafter, the test body by this welding method is referred to as S8N.

また、厚板鋼板製柱状体を製作する異なるサブマージアーク溶接方法として、各パス施工後、フラックス及びスラグを回収せず次パス施工までそのままとし、1パス目の溶接終了後6時間経過、あるいは溶接部近傍個所でのワークの温度が100℃以下となった時点で2パス目の溶接を行い、3パス目以降は、前のパスでの溶接終了2時間経過後に次パスの溶接を行った。以下、この溶接方法での試験体をS8Sという。   In addition, as a different submerged arc welding method for producing thick steel plate columnar bodies, after each pass construction, the flux and slag are not collected until the next pass construction, and 6 hours have passed after the first pass welding, or welding The second pass was welded when the temperature of the workpiece in the vicinity of the part became 100 ° C. or less, and the second pass was welded after 2 hours from the end of welding in the previous pass after the third pass. Hereinafter, the test body by this welding method is referred to as S8S.

各溶接方法で角溶接する際の温度履歴測定する測定点の配置を図4に示す。この測定点は各試験体1体につき、溶接線に沿う方向でのウエブ側スキンプレート(1)の端部から表面側100mm位置と550mm位置、溶接線と直交する方向での表面側開先端から20mmの位置、200mm位置及び裏面側でのウエブ側スキンプレート(1)での開先端から20mm対応位置、フランジ側スキンプレート(2)では、角部から40mm位置及び100mm位置の計10箇所とし、溶接開始から次溶接まで10秒間隔で測定した。   FIG. 4 shows the arrangement of measurement points for measuring the temperature history when corner welding is performed by each welding method. The measurement points are 100 mm and 550 mm from the end of the web side skin plate (1) in the direction along the weld line, and from the open end on the surface side in the direction perpendicular to the weld line. 20mm position, 200mm position, 20mm position from the open end on the web side skin plate (1) on the back side, and 10mm position on the flange side skin plate (2), 40mm position and 100mm position from the corner, Measurement was performed at intervals of 10 seconds from the start of welding to the next welding.

各パスでの溶接施工後にワークを断熱材で被覆するS8I試験体と各パス施工後にフラックス及びスラグを回収しないS8S試験体での、ウエブ側スキンプレート(1)の端部から表面側550mm位置でかつ、フランジ側角部から40mm位置の測定点において、150℃以上の温度維持時間に初層で約1.7倍、時間にして約50分の違い、トータルでは、約1.4倍、時間にして約80分の違いが見られた。   At the 550mm position on the surface side from the edge of the web-side skin plate (1) in the S8I specimen that covers the workpiece with a heat insulating material after welding in each pass and the S8S specimen that does not collect flux and slag after each pass. And at the measuring point 40mm from the flange side corner, the temperature maintenance time of 150 ° C or more is about 1.7 times in the first layer and about 50 minutes in time, and the total time is about 1.4 times. The difference was about 80 minutes.

各パスでの溶接施工後にワークを断熱材で被覆するS8I試験体と各パス施工後にフラックス及びスラグを回収しないS8S試験体での、ウエブ側では溶接線と直交する方向での表面側開先端から20mmの位置でかつ、フランジ側角部から40mm位置の測定点において、150℃以上の温度維持時間に初層で約1.4倍、時間にして約35分の違い、トータルでは、約1.5倍、時間にして約100分の違いが見られた。   From the surface-side open tip in the direction perpendicular to the weld line on the web side, with the S8I specimen that coats the workpiece with a heat insulating material after welding in each pass and the S8S specimen that does not collect flux and slag after each pass construction At the measuring point at 20 mm and 40 mm from the corner on the flange side, the temperature maintenance time of 150 ° C. or more is about 1.4 times that of the first layer, and the time is about 35 minutes. A difference of about 100 minutes over 5 times was seen.

各パスでの溶接施工後にワークを断熱材で被覆するS8I試験体での測定点別の温度履歴の比較では、溶接線と直交する方向での表面側開先端から200mm位置で低い温度履歴となったが、それ以外の溶接近傍部(20〜60mmの範囲)で150℃維持時間に特に大きな差異は見られなかった。このことから、ボックスフランジの溶接部端(ウエブ表面側開先端から20mm位置、及びフランジ側角部から40mm位置)の温度を管理することが自後熱効果の確認に有効であることが判明した。   In the comparison of the temperature history for each measurement point in the S8I test specimen in which the work is covered with a heat insulating material after welding in each pass, the temperature history is low at a position 200 mm from the surface-side open tip in the direction perpendicular to the weld line. However, there was no significant difference in the 150 ° C. maintenance time in the other welding vicinity (range of 20 to 60 mm). From this, it was found that controlling the temperature of the welded end of the box flange (20 mm position from the open end on the web surface side and 40 mm position from the flange side corner) is effective in confirming the autothermal effect. .

各パスでの溶接施工後にワークを断熱材で被覆するS8I試験体、各パス施工後にフラックス及びスラグを回収しないS8S試験体、各パスでの溶接施工後にフラックス及びスラグを回収するS8N試験体それぞれの各パス施工後に100℃を保持する時間および150℃を保持する時間を、溶接線に沿う方向でのウエブ側スキンプレート(1)の端部から表面側100mm位置でかつ、フランジ側角部から40mm位置の測定点において測定した結果を表2に示す。   Each of the S8I specimen that covers the work with a heat insulating material after welding in each pass, the S8S specimen that does not collect flux and slag after each pass, and the S8N specimen that collects flux and slag after welding in each pass The time for maintaining 100 ° C. and the time for maintaining 150 ° C. after each pass is set at a position 100 mm from the edge of the web side skin plate (1) in the direction along the weld line and 40 mm from the corner on the flange side. Table 2 shows the measurement results at the position measurement points.

そして、初層の温度履歴を図5に示す。
この温度履歴から、ワークを断熱材で被覆するS8I試験体はフラックス及びスラグを回収しないS8S試験体や溶接施工後にフラックス及びスラグを回収するS8N試験体に比べてワーク温度を長時間保持できることが確認できた。
The temperature history of the first layer is shown in FIG.
From this temperature history, it is confirmed that the S8I specimen that coats the workpiece with heat insulating material can maintain the workpiece temperature for a longer time than the S8S specimen that does not collect flux and slag and the S8N specimen that collects flux and slag after welding. did it.

図6、図7及び図9は各試験体の溶接部のマクロ写真を示す。図6は各試験体の溶接部での縦断面のマクロ写真、図7は各試験体の溶接部での斜め縦断面のマクロ写真であり、それぞれ(a)は試験体S8N、(b)は試験体S8S、(c)は試験体S8Iの断面の結果である。
ここで斜め縦断面とは図8に示すように、溶接線に沿って深さ方向に変化する傾斜面で切断した縦断面である。
6, 7 and 9 show macro photographs of the welds of each specimen. FIG. 6 is a macro photograph of a longitudinal section at the welded portion of each specimen, and FIG. 7 is a macro photograph of an oblique longitudinal section at the welded section of each specimen, with (a) representing the specimen S8N and (b) representing the specimen S8N. Specimen S8S, (c) is the result of the cross section of specimen S8I.
Here, as shown in FIG. 8, the oblique longitudinal section is a longitudinal section cut along an inclined surface that changes in the depth direction along the weld line.

このマクロ写真から、試験体S8Nでは図6(a)及び図7(a)に示すように丸で囲った部分に目視による割れがみられた。斜め断面マクロで、割れの幅は15mm程度、深さは20〜25mmの位置に相当した。また、縦断面マクロによると割れは、深さ15mm〜25mmの位置で発生し、約30mmのピッチで発生していた。S8Sの試験体及びS8Iの試験体では割れは確認できなかった。   From this macrophotograph, in the specimen S8N, as shown in FIGS. 6 (a) and 7 (a), cracks were visually observed in the circled portions. In the oblique cross section macro, the crack width was about 15 mm and the depth was 20 to 25 mm. Moreover, according to the longitudinal section macro, cracks occurred at a depth of 15 to 25 mm and occurred at a pitch of about 30 mm. No cracks could be confirmed in the S8S specimen and the S8I specimen.

S8Nの試験体の割れについて、より詳細な割れ位置を確認する目的でピクリン酸腐食によるマクロ試験を実施した。ピクリン酸腐食では、各パスの凝固組織が明確に確認できる特徴があり、割れの起点が溶接金属部(DEPO)または熱影響部(HAZ)へ侵入しているのかを確認した。   With respect to the cracking of the S8N specimen, a macro test by picric acid corrosion was performed for the purpose of confirming a more detailed cracking position. Picric acid corrosion has a feature that the solidification structure of each pass can be clearly confirmed, and it was confirmed whether the origin of the crack penetrated into the weld metal part (DEPO) or the heat affected zone (HAZ).

図9に示すピクリン酸腐食によるマクロ試験の結果によると、割れは3パス目の境界部近傍から発生していることが予測され、この割れは2パス目の熱影響部(1パス溶接金属内)と溶接金属部、及び3パス目の溶接金属部へと進展していることが分かる。   According to the result of the macro test by picric acid corrosion shown in FIG. 9, it is predicted that the crack is generated near the boundary portion of the third pass, and this crack is caused by the heat-affected zone in the second pass (in the one-pass weld metal). ) And the weld metal part and the weld metal part in the third pass.

各試験体の溶着金属をJIS Z2241に準拠して引張試験を行った。試験試料は、各試験体の溶着金属でのスキンプレート上面から10mmの位置(U)、25mm(M)の位置、40mm(L)の位置で各々2本形成した。引張試験の結果を図10に示す。   The weld metal of each test body was subjected to a tensile test according to JIS Z2241. Two test samples were formed at positions 10 mm (U), 25 mm (M), and 40 mm (L) from the upper surface of the skin plate of the weld metal of each test specimen. The result of the tensile test is shown in FIG.

保温を実施していないS8N試験体では、上部から25mm(NTM1・NTM2)の位置の試験片に割れが確認された。一方、スラグ保温を実施しているS8S試験体では、上部から40mm(STL1・STL2)の位置の試験片で早期に破断が生じ引張耐力が目標性能を満足しない試験体が確認された。
これに対して断熱材保温を施したS8I試験体では、他の試験体に比較して、いずれも高い耐力値を示した。
In the S8N test specimen that had not been kept warm, cracks were confirmed in the test piece at a position 25 mm (NTM1, NTM2) from the top. On the other hand, in the S8S test body in which slag heat insulation was carried out, a test body in which the test piece at a position of 40 mm (STL1, STL2) from the upper part broke early and the tensile strength did not satisfy the target performance was confirmed.
On the other hand, in the S8I test body which performed heat insulation heat insulation, all showed the high yield strength value compared with the other test body.

各試験体の溶接接続部での金属に対し、JIS Z2202に準拠した衝撃試験を行う。各試験片は、各試験体の溶接金属部(DEPO)、ボンド部(BOND)、熱影響部(HAZ)のそれぞれで上面及び下面からそれぞれ7mmの位置で採取した。衝撃試験の結果を図11に示す。   An impact test based on JIS Z2202 is performed on the metal at the welded connection of each specimen. Each test piece was sampled at a position of 7 mm from the upper surface and the lower surface in each of the weld metal portion (DEPO), bond portion (BOND), and heat affected zone (HAZ) of each test specimen. The result of the impact test is shown in FIG.

図11から明らかなように、溶接金属部(DEPO)は、断熱材保温を施したS8I試験体が最も高い結果を示した。ボンド部(BOND)にあっては、断熱材保温を施したS8I試験体は上部・下部ともに安定した値を示したが、保温を実施していないS8N試験体および、スラグ保温を実施しているS8S試験体は、上部で高く、下部で低い結果となった。熱影響部(HAZ)では、いずれの試験体も高い値となった。   As is clear from FIG. 11, the weld metal part (DEPO) showed the highest result with the S8I test body subjected to heat insulation. In the bond part (BOND), the S8I test body with heat insulation was stable in both the upper and lower parts, but the S8N test body without heat insulation and slag heat insulation were implemented. The S8S specimen was high at the top and low at the bottom. In the heat affected zone (HAZ), all the specimens showed high values.

ボンド部(BOND)で、S8N試験体およびS8S試験体にあって上部と下部との衝撃値に差が生じたのは、S8Iと比べて保温状況に差異があつた為と考えられる。下部では、スラグ保温の効果が低く保温の有無による差があまり無く、試験体全体を保温材で保温したとS8Iでは、試験体全体の保温効果が大きいため、下部でも良好な衝撃特性が得られたと予測される。   The difference in the impact value between the upper part and the lower part in the S8N test body and the S8S test body at the bond part (BOND) is considered to be due to the difference in the heat insulation situation compared to S8I. In the lower part, the effect of slag heat insulation is low and there is not much difference depending on the presence or absence of heat insulation. If the whole specimen is kept warm with the heat insulation material, S8I has a large heat insulation effect on the whole specimen, so good impact characteristics can be obtained even in the lower part. Predicted.

以上の結果から、SA440材での極厚80mmのSAW多層溶接(4パス連続溶接)では、何の保温を行わない場合には、水素に起因した横割れが溶接金属内に発生するが、スラグや断熱材による保温効果によって、原因である水素をより拡散させることにより、水素割れの発生を抑制できることが確認できた。   From the above results, in SAW multi-layer welding (4 pass continuous welding) with a thickness of 80 mm with SA440 material, if no heat retention is performed, transverse cracks due to hydrogen occur in the weld metal, but slag It was confirmed that the generation of hydrogen cracking can be suppressed by further diffusing hydrogen, which is the cause, due to the heat retention effect by the heat insulating material.

また、スラグによる保温効果よりも断熱材による保温効果がより効果的であり、溶接金属中の水素量を低減しうる自後熱効果が得られる150℃あるいは100℃の保持時間が、断熱材保温のほうがスラグ断熱よりも長時間にわたって保持できることが確認できた。   In addition, the thermal insulation effect by the heat insulating material is more effective than the thermal insulation effect by the slag, and the holding time of 150 ° C. or 100 ° C. at which the autothermal effect capable of reducing the amount of hydrogen in the weld metal is obtained is the thermal insulation heat insulation. It was confirmed that can be held for a longer time than slag insulation.

断熱材による自後熱効果によって、スラグ断熱に比較して溶接金属の引張強性能、衝撃性能を向上させることが確認できた。   It was confirmed that the tensile strength performance and impact performance of the weld metal were improved by the self-heating effect of the heat insulating material compared with the slag heat insulation.

さらに、板厚80mmのSA440鋼材のSAW多層盛溶接の実施においては、溶接後断熱材を用いてウエブ面の表面40mmの位置での温度管理の下に、1パス溶接後1日放置張るものとし、105℃以上保持時間を5.0時間、100℃以上保持時間を8.5時間以上を目安に管理することにより、低温割れの発生を回避できることが分かった。   Furthermore, in the implementation of SAW multi-layer welding of SA440 steel with a plate thickness of 80 mm, the post-weld heat insulating material shall be used for one day after one pass welding under temperature control at the position of 40 mm on the surface of the web surface. It was found that the occurrence of cold cracking can be avoided by managing the holding time at 105 ° C. or higher as 5.0 hours and the holding time at 100 ° C. or higher as 8.5 hours or more.

本発明は、スキンプレートの角溶接部分をサブマージアーク溶接で多層盛溶接する板厚60mmを越える厚板鋼板製柱状体の溶接に利用することができる。   INDUSTRIAL APPLICABILITY The present invention can be used for welding thick steel plate columns having a thickness of more than 60 mm, in which corner welding portions of skin plates are multilayered by submerged arc welding.

1…ウエブ側スキンプレート、2…フランジ側スキンプレート、3…開先、4…裏当て金、5…拘束板、6…拘束板に設けた貫通孔、7…フラックス、8…スラグ、9…断熱材。   DESCRIPTION OF SYMBOLS 1 ... Web side skin plate, 2 ... Flange side skin plate, 3 ... Groove, 4 ... Back metal, 5 ... Restraint plate, 6 ... Through-hole provided in restraint plate, 7 ... Flux, 8 ... Slag, 9 ... Insulation.

Claims (2)

肉厚60mmを越える極厚鋼板をボックス状に組んでその接合部をサブマージアーク溶接で多層盛溶接して鉄骨柱に形成するにあたり、
初層溶接後スラグを残置した状態でワーク全体をグラスファイバー製断熱材で被覆して6時間以上保温し、その保温時間経過後第2層溶接を行い、以後溶接終了後6時間以上経過後次層溶接を行うようにしたことを特徴とするサブマージアーク溶接による厚板鋼板の多層盛溶接方法。
When forming an extremely thick steel plate with a wall thickness of more than 60mm in a box shape and forming a steel column by multi-layer welding the joints by submerged arc welding,
The entire workpiece while leaving the initial layer welding after the slag was kept covered to more than 6 hours at fiberglass insulation, does its incubation time second layer after welding, after subsequent welding completion after 6 hours or more following A method of multi-layer welding of thick steel plates by submerged arc welding, wherein layer welding is performed.
肉厚60mmを越える極厚鋼板をボックス状に組んでその接合部をサブマージアーク溶接で多層盛溶接して鉄骨柱に形成するにあたり、When forming an extremely thick steel plate with a wall thickness of more than 60mm in a box shape and forming a steel column by multi-layer welding the joints by submerged arc welding,
初層溶接後スラグを残置した状態でワーク全体をグラスファイバー製断熱材で被覆して溶接部温度が100℃以下に低下するまで保温し、その保温時間経過後第2層溶接を行い、以後溶接終了後一定時間経過後次層溶接を行うようにしたことを特徴とするサブマージアーク溶接による厚板鋼板の多層盛溶接方法。After the first layer welding, the entire workpiece is covered with glass fiber insulation with the slag remaining, and the temperature is kept until the weld temperature drops to 100 ° C or lower. A multilayer overlay welding method for thick steel plates by submerged arc welding, wherein the next layer welding is performed after a lapse of a certain time after completion.
JP2013098089A 2013-05-08 2013-05-08 Multi-layer overlay welding of thick steel plates by submerged arc welding Active JP5657053B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013098089A JP5657053B2 (en) 2013-05-08 2013-05-08 Multi-layer overlay welding of thick steel plates by submerged arc welding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013098089A JP5657053B2 (en) 2013-05-08 2013-05-08 Multi-layer overlay welding of thick steel plates by submerged arc welding

Publications (2)

Publication Number Publication Date
JP2014217855A JP2014217855A (en) 2014-11-20
JP5657053B2 true JP5657053B2 (en) 2015-01-21

Family

ID=51936842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013098089A Active JP5657053B2 (en) 2013-05-08 2013-05-08 Multi-layer overlay welding of thick steel plates by submerged arc welding

Country Status (1)

Country Link
JP (1) JP5657053B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104625358B (en) * 2015-01-05 2017-01-25 云南昆钢新型复合材料开发有限公司 Abrasion resistant steel and low-carbon steel dissimilar metal submerged-arc welding technology
JP7435397B2 (en) * 2020-10-09 2024-02-21 Jfeスチール株式会社 Welded assembly box-shaped cross-section member
CN114346370A (en) * 2021-12-29 2022-04-15 苏州优霹耐磨复合材料有限公司 Surfacing device and method capable of eliminating residual stress

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4939746B1 (en) * 1968-10-22 1974-10-28
SE529741C2 (en) * 2005-01-17 2007-11-13 Sandvik Intellectual Property Procedure for thermal insulation of weld joint and sleeve therefor
JP4952892B2 (en) * 2006-05-24 2012-06-13 Jfeエンジニアリング株式会社 Welding method for extra heavy steel plates

Also Published As

Publication number Publication date
JP2014217855A (en) 2014-11-20

Similar Documents

Publication Publication Date Title
EP3288706B1 (en) Hot cracking reduction in aluminum laser welding
RU2708186C1 (en) Welded article and a method for production thereof
JP6354941B2 (en) Method for suppressing groove shrinkage in automatic TIG back wave welding
JP2006224137A (en) Reinforced plate, and reinforced plate manufacturing method
JP5657053B2 (en) Multi-layer overlay welding of thick steel plates by submerged arc welding
JP2006198675A (en) Mounting structure of steel-made member for car and aluminum alloy-made member
JP4779815B2 (en) U-rib steel slab
RU2606682C2 (en) Shaped part made by laser welding
JP2007268551A (en) Multi-electrode one side submerged arc welding method
JP5402824B2 (en) Multi-electrode submerged arc welding method with excellent weldability
CN102712063B (en) Weld structure having resistance to brittle crack propagation
JP6382593B2 (en) Welding method
KR101197884B1 (en) Weld Structure
JP5052976B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics
JP5935395B2 (en) Welding assembly groove part for square welding of four-sided box section
JP4929096B2 (en) Overlay welding method for piping
Shahri et al. Eurocode 9 to estimate the fatigue life of friction stir welded aluminium panels
CN204625753U (en) The compound bending deformation device of process welding joint
KR102305743B1 (en) Welded structural member having excellent crack resistance and manufacturing method of the same
TWI597120B (en) Method of steel multi-pass temper bead welding
JP2010253509A (en) Arc welding method
JP2019166526A (en) Clad thick steel plate with excellent fatigue characteristic and method for manufacturing the same
JP2010046682A (en) Weld joint structure, structure provided with the same weld joint structure and steel deck plate
Mann et al. Influence of filler wires on weld seam properties of laser beam welded dissimilar copper connections
CN115151364B (en) T-joint, building structure and manufacturing method of T-joint

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20141028

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20141125

R150 Certificate of patent or registration of utility model

Ref document number: 5657053

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250