JP2012152712A - Submerged plasma generating device and electrode device used therefor - Google Patents

Submerged plasma generating device and electrode device used therefor Download PDF

Info

Publication number
JP2012152712A
JP2012152712A JP2011015545A JP2011015545A JP2012152712A JP 2012152712 A JP2012152712 A JP 2012152712A JP 2011015545 A JP2011015545 A JP 2011015545A JP 2011015545 A JP2011015545 A JP 2011015545A JP 2012152712 A JP2012152712 A JP 2012152712A
Authority
JP
Japan
Prior art keywords
liquid
electrode
plasma
main pipe
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011015545A
Other languages
Japanese (ja)
Inventor
Kazuo Ishibashi
和生 石橋
Koji Ito
幸治 伊藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSS KYUSHU Ltd
Original Assignee
NSS KYUSHU Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSS KYUSHU Ltd filed Critical NSS KYUSHU Ltd
Priority to JP2011015545A priority Critical patent/JP2012152712A/en
Publication of JP2012152712A publication Critical patent/JP2012152712A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy

Landscapes

  • Treatment Of Water By Oxidation Or Reduction (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a submerged plasma generating device for efficiently generating plasma by electric discharge in the liquid to be processed even when using at a large scale treatment facility as seen in a waste liquid treatment field site.SOLUTION: The submerged plasma generating device, which generates plasma in the liquid, includes: a main pipe (10); an air supply pipe (102) for supplying a gas to the main pipe (10); a closed body (12) closing an opening part of the main pipe (10) and formed with porous materials for discharging a gas passed through the main pipe (10) into the liquid as microbubbles; and a wire electrode (20) whose tip end part (22) is located in a space (120) formed by the main pipe (10) and the closed body (12) and provided close to the closed body (12).

Description

本発明は、液体中でプラズマを生起させる液中プラズマ発生装置及びそれに使用する電極装置に関するものである。更に詳しくは、液体中でパルス放電を起こしてプラズマを生起させ、プラズマの生起により生成されたOHラジカルやオゾン等を被処理液中に効率よく分散させることができるものに関する。   The present invention relates to an in-liquid plasma generator for generating plasma in a liquid and an electrode device used therefor. More specifically, the present invention relates to an apparatus capable of generating a plasma by generating a pulse discharge in a liquid and efficiently dispersing OH radicals, ozone, and the like generated by the generation of the plasma in the liquid to be processed.

水中でパルス放電を起こしてOHラジカルやオゾンを生成させ、これを利用して活性汚泥の減容化、異臭を放つ有機排水の消臭、排出される化学薬品を含む廃液の処理などを行うことが、既に実施化されている。   Generate pulse discharge in water to generate OH radicals and ozone, and use this to reduce the volume of activated sludge, deodorize organic wastewater that emits a strange odor, and treat waste liquid containing discharged chemicals, etc. Has already been implemented.

水中でパルス放電を起こす水中放電プラズマ装置としては、下記の特許文献1に記載された装置がある。この装置は、多孔質誘電体パイプの内側に高電圧電極を貼り付けて、多孔質誘電体パイプ及び高電圧電極の内部にガス通路を形成し、また、多孔質誘電体パイプの外部と囲んだ接地電極の間に処理すべき水通路を形成し、両電極に高電圧高周波電源又は高電圧パルス電源を接続することで、多孔質誘電体パイプを通過した微細気泡に水中放電プラズマを生起させ、これによって高濃度のOHラジカル及びオゾンを効率よく得ることができるとともに、金属電極の溶出を防止することとしている。   As an underwater discharge plasma apparatus that causes pulse discharge in water, there is an apparatus described in Patent Document 1 below. In this apparatus, a high voltage electrode is attached to the inside of the porous dielectric pipe, a gas passage is formed inside the porous dielectric pipe and the high voltage electrode, and the outside of the porous dielectric pipe is enclosed. By forming a water passage to be treated between the ground electrodes and connecting a high-voltage high-frequency power source or a high-voltage pulse power source to both electrodes, an underwater discharge plasma is generated in fine bubbles that have passed through the porous dielectric pipe, As a result, high concentration OH radicals and ozone can be obtained efficiently, and elution of the metal electrode is prevented.

特許文献1記載の電極では、前記のように多孔質誘電体パイプ及び高電圧電極の内部にガス通路を形成し、また、多孔質誘電体パイプの外部と囲んだ接地電極の間に処理すべき水通路を形成した構成を採用しており、空気、アルゴン、酸素ガスなどを、微細気泡の形で水に供給し、ガス入り口により多孔質誘電体パイプと高電圧電極の内部に供給するようになっている。   In the electrode described in Patent Document 1, a gas passage is formed inside the porous dielectric pipe and the high-voltage electrode as described above, and should be processed between the outside of the porous dielectric pipe and the surrounding ground electrode. Adopting a structure with a water passage, air, argon, oxygen gas, etc. are supplied to the water in the form of fine bubbles, and supplied to the inside of the porous dielectric pipe and the high voltage electrode through the gas inlet It has become.

特開2004−268003号公報JP 2004-268003 A

しかし、水に供給されたガスは水中で浮遊しながらガス入り口により多孔質誘電体パイプと高電圧電極の内部に供給されるものであり、前記特許文献1の図2に示すような、実験室における小型の装置の場合にはガスの供給が十分だとしても、廃液処理現場にあるような大型の処理施設では、廃液中に供給されたガスが水中で浮遊するため、多孔質誘電体パイプと高電圧電極の内部に効率よく且つ安定して供給されにくく、実際的とは言い難い。   However, the gas supplied to the water is supplied to the inside of the porous dielectric pipe and the high voltage electrode through the gas inlet while floating in the water, and the laboratory as shown in FIG. Even if the gas supply is sufficient in the case of a small-scale device, the gas supplied to the waste liquid floats in the water at a large treatment facility such as the waste liquid treatment site. It is difficult to supply the high voltage electrode efficiently and stably, which is not practical.

また、処理される廃液は、多孔質誘電体パイプの外部と囲んだ接地電極の間に形成されている水通路を通過させる必要があるために、廃液を水通路に送り出すポンプが必要で、装置の設置場所もポンプから排出される廃液の排出口近傍に限定される。   In addition, since the waste liquid to be treated needs to pass through a water passage formed between the outside of the porous dielectric pipe and the surrounding ground electrode, a pump for sending the waste liquid to the water passage is necessary. The installation location is also limited to the vicinity of the discharge port of the waste liquid discharged from the pump.

更には、廃液処理を効率よく行うためには、水中放電プラズマの生起によって生成されたOHラジカル及びオゾン等を廃液中に効率よく分散させる必要があるが、装置の排出口は一方向にしか排出できないために、電極又は電極近傍で生成されたOHラジカル及びオゾン等を効率よく広域に分散させることができない。   Furthermore, in order to perform waste liquid treatment efficiently, it is necessary to efficiently disperse OH radicals and ozone generated by the occurrence of underwater discharge plasma in the waste liquid, but the discharge port of the apparatus discharges only in one direction. Therefore, it is impossible to efficiently disperse OH radicals, ozone, and the like generated in the electrode or in the vicinity of the electrode over a wide area.

本発明者は、被処理液中に供給したガスを水通路に供給するのではなく、電極を多孔質素材で被処理液から隔離し、該多孔質素材から気体を水中に噴出して微細気泡を発生させ、発生した微細気泡に隔離した電極にパルス電圧を印加してパルス放電を起こしてプラズマを生起させることにより、プラズマの生起により生成されたOHラジカルやオゾン等は、微細気泡と共に被処理液中に効率よく分散されることを知見した。
本発明はこの知見に基づいて完成したものである。
The inventor does not supply the gas supplied into the liquid to be processed to the water passage, but isolates the electrode from the liquid to be processed with a porous material, and ejects the gas from the porous material into the water to form fine bubbles. By generating a plasma by generating a pulse discharge by applying a pulse voltage to the electrode isolated in the generated fine bubbles, OH radicals, ozone, etc. generated by the generation of the plasma are treated together with the fine bubbles It was found that it was efficiently dispersed in the liquid.
The present invention has been completed based on this finding.

(本発明の目的)
そこで、本発明の目的は、廃液処理現場にあるような大型の処理施設で使用する場合にも、効率よく被処理液中で放電によるプラズマを生起させることにある。
また、本発明の他の目的は、プラズマの生起により生成されたOHラジカルやオゾン等を被処理液中に効率よく分散させることにある。
(Object of the present invention)
Therefore, an object of the present invention is to efficiently generate plasma due to discharge in a liquid to be processed even when used in a large processing facility such as a waste liquid processing site.
Another object of the present invention is to efficiently disperse OH radicals, ozone and the like generated by the generation of plasma in the liquid to be treated.

前記課題を解決するために本発明が講じた手段は次のとおりである。
本発明は、
液中に正電極と負電極を配置し、正電極に電圧を印加して液中にプラズマを生起させる液中プラズマ発生装置であって、
外部から液中へ気体を直接供給して微細な気泡を発生させる微細気泡発生手段を備え、前記正電極と負電極の何れか一方又は双方を、気体の通過要素を備える隔離要素の中に配設して液から隔離し、前記隔離要素は微細気泡発生手段を構成し、前記隔離要素から気体を液中に放出して液中に微細気泡を発生しながら正電極に電圧を印加して液中にプラズマを生起させる、液中プラズマ発生装置である。
Means taken by the present invention to solve the above-mentioned problems are as follows.
The present invention
A submerged plasma generator for arranging a positive electrode and a negative electrode in a liquid and applying a voltage to the positive electrode to generate a plasma in the liquid,
A fine bubble generating means for generating fine bubbles by directly supplying gas into the liquid from the outside is provided, and either one or both of the positive electrode and the negative electrode are arranged in an isolation element having a gas passage element. And separating the liquid from the liquid, and the separation element constitutes a fine bubble generating means, and a voltage is applied to the positive electrode while discharging the gas from the separation element into the liquid and generating the fine bubbles in the liquid. It is an in-liquid plasma generator that generates plasma in it.

本発明は、
液体中でプラズマを生起させる液中プラズマ用電極装置であって、
主管と、
該主管に気体を送る送気要素と、
該主管の開口部を閉鎖しており、主管の中を通過した気体を液中に微細気泡として排出する多孔質閉鎖要素と、
前記主管と多孔質閉鎖要素で形成される空間に位置しており、前記多孔質閉鎖要素に近接して設けられている線材電極と、
を備えている、液中プラズマ発生電極装置である。
The present invention
An electrode device for plasma in liquid that generates plasma in liquid,
The main
An air supply element for sending gas to the main pipe;
A porous closing element that closes the opening of the main pipe and discharges the gas that has passed through the main pipe as fine bubbles in the liquid;
A wire electrode located in a space formed by the main tube and the porous closure element, provided close to the porous closure element;
A submerged plasma generating electrode device.

本発明に係る装置の電極としては、タングステンを使用した線材電極が好ましい。線材電極(針状、棒状を含む)は、電極表面積が小さく、電界集中が発生し、しかも電極損傷量が少なく、低電圧でプラズマを生起させることが可能である。   As the electrode of the device according to the present invention, a wire electrode using tungsten is preferable. Wire electrodes (including needles and rods) have a small electrode surface area, electric field concentration occurs, and the amount of electrode damage is small, so that plasma can be generated at a low voltage.

本発明に係る装置の電源としては、商用電源(AC100V)、車載用電源(DC24V)、太陽光発電装置からの電源が利用できる。
微細気泡をつくる気体としては、空気の他、酸素ガス、或いは酸素とアルゴン等、他の気体との混合ガスを使用することができる。
As a power source of the device according to the present invention, a commercial power source (AC 100 V), an in-vehicle power source (DC 24 V), and a power source from a solar power generation device can be used.
As a gas for forming fine bubbles, oxygen, an oxygen gas, or a mixed gas of other gas such as oxygen and argon can be used.

(作用)
被処理液中に負電極(30)を配置すると共に、主管(10)の先端部を被処理液中に沈め、正電極である線材電極(20)の先端部と負電極(30)とを対向させる。
外部より被処理液中へ直接気体を送り、被処理液中で気泡を発生させる。即ち、外部より気体を給気管(102)を介して主管(10)へ送り、主管(10)下端の多孔質閉鎖要素(12)から微細気泡を被処理液中に放出する。
(Function)
The negative electrode (30) is placed in the liquid to be treated, and the tip of the main pipe (10) is submerged in the liquid to be treated, so that the tip of the wire electrode (20), which is a positive electrode, and the negative electrode (30) Make them face each other.
Gas is sent directly from the outside into the liquid to be treated, and bubbles are generated in the liquid to be treated. That is, gas is sent from the outside to the main pipe (10) through the air supply pipe (102), and fine bubbles are discharged into the liquid to be treated from the porous closing element (12) at the lower end of the main pipe (10).

放出された微細気泡によって主管(10)下端部が囲繞された後、線材電極(20)にパルス電圧を印加すると、線材電極(20)の先端と負電極(30)との間でアーク放電を生じ、プラズマが生起されてOHラジカルやオゾンを生成する。
パルス電圧の印加直後は、電極(20,30)間には急激に高電圧が加わる。その後、電圧の急激な低下が生じ、パルス電圧が印加されている間は、アーク放電と共にプラズマが生起される。
After the lower end of the main pipe (10) is surrounded by the released fine bubbles, when a pulse voltage is applied to the wire electrode (20), an arc discharge occurs between the tip of the wire electrode (20) and the negative electrode (30). It is generated and plasma is generated to generate OH radicals and ozone.
Immediately after the pulse voltage is applied, a high voltage is suddenly applied between the electrodes (20, 30). Thereafter, a rapid decrease in voltage occurs, and plasma is generated along with arc discharge while the pulse voltage is applied.

生成されたOHラジカルやオゾンは、放出されている微細気泡と共に被処理液中で拡散し、被処理液を処理する。   The generated OH radicals and ozone are diffused in the liquid to be processed together with the released fine bubbles, thereby processing the liquid to be processed.

本発明によれば、装置自体に微細気泡発生手段を備えているので、装置自体と微細気泡発生手段とが一体として設置できる。したがって廃液処理現場にあるような大型の処理施設に使用する場合にも、設置場所に限定されることなく効率よく水中放電プラズマを生起させることができる。   According to the present invention, since the apparatus itself is provided with the fine bubble generating means, the apparatus itself and the fine bubble generating means can be installed integrally. Therefore, even when used in a large treatment facility such as a waste liquid treatment site, the underwater discharge plasma can be efficiently generated without being limited to the installation location.

また、生成されたOHラジカルやオゾン等は、微細気泡の放出圧力により、気相領域の体積が拡大し、微細気泡と共に被処理液中に効率よく拡散される。   Further, the generated OH radicals, ozone, and the like expand the volume of the gas phase region due to the discharge pressure of the fine bubbles, and are efficiently diffused into the liquid to be treated together with the fine bubbles.

電極装置の全体と使用状態を示す概略説明図である。It is a schematic explanatory drawing which shows the whole electrode apparatus and use condition. 電極装置の先端側を拡大した部分概略説明図である。It is the partial schematic explanatory drawing which expanded the front end side of the electrode apparatus. 電極装置の基部側を拡大した部分概略説明図である。It is the partial schematic explanatory drawing which expanded the base side of the electrode device. 印加電圧としてのパルス電圧を送る装置の一実施の形態を示したブロック図である。It is the block diagram which showed one Embodiment of the apparatus which sends the pulse voltage as an applied voltage.

本発明を図に示した実施の形態に基づき詳細に説明する。   The present invention will be described in detail based on the embodiments shown in the drawings.

〔実施の形態〕
液中プラズマ発生装置は、主管10を備える。主管10の基部側は二股に分岐している。第1の分岐部は、主管10に気体を送る送気要素である給気管102である。第2の分岐部は、主管10に線材電極20を通している電極側管104である。
主管10は可視光線を通し、耐腐食性に富むガラス管を使用している。
Embodiment
The in-liquid plasma generator includes a main pipe 10. The base side of the main pipe 10 is bifurcated. The first branch portion is an air supply pipe 102 that is an air supply element that sends gas to the main pipe 10. The second branch portion is an electrode side tube 104 that passes the wire electrode 20 through the main tube 10.
The main tube 10 uses a glass tube that transmits visible light and has high corrosion resistance.

主管10の先端部はじょうご状の末広がり部11が形成されており、末広がり部11下端の開口部には、多孔質閉鎖要素である多孔質の閉鎖体12が設けられている。
閉鎖体12は、外形が半球形状に形成され、内部に半球形状の中空部120を有する。閉鎖体12は、多孔質セラミックで構成されている。具体的にはアルミナを主体としたもので、粒度はJIS No.2に準じ、微細孔の径は、40〜50μ程度である。なお、微細孔の径がナノレベルの多孔質素材を採用することもできる。
A funnel-shaped divergent portion 11 is formed at the tip of the main tube 10, and a porous closing body 12, which is a porous closing element, is provided at the lower end of the divergent portion 11.
The closed body 12 has an outer shape formed in a hemispherical shape and has a hemispherical hollow portion 120 therein. The closing body 12 is made of a porous ceramic. Specifically, it is mainly composed of alumina, the particle size conforms to JIS No. 2, and the diameter of the micropores is about 40 to 50 μm. It is also possible to adopt a porous material having a nanopore diameter of nano level.

閉鎖体12は、主管10を通った気体を微細孔から微細気泡として液中に放出する。
閉鎖体12は、セラミックやガラスなどの無機多孔質で、空気などの気体を通過させることができれば、前記素材に限定されるものではない。また、閉鎖体12としては、いわゆる多孔質素材ではなく、例えば非通気素材に多数の細孔を形成したものを採用してもよい。
The closing body 12 discharges the gas that has passed through the main pipe 10 from the fine holes into the liquid as fine bubbles.
The closing body 12 is not limited to the above material as long as it is made of an inorganic porous material such as ceramic or glass and can pass a gas such as air. Moreover, as the closing body 12, you may employ | adopt what formed many pores in the non-breathing material instead of what is called a porous material, for example.

閉鎖体12の中空部120には、主管10内を通っている細長の線材電極20の先端部22が位置している。線材電極20の先端側には、位置決め用絶縁体が装着されている。先端側が揺動するのを防止する位置決め用絶縁体24が装着されている。線材電極20は正電極を構成し、タングステン(融点3380℃)を使用して放電による消耗の抑制を図っている。線材電極20は絶縁チューブ26で覆われており、基端側は、主管10の中を通り、主管10から分岐した電極側管104の中を通っており、基端には接続端子28が取り付けられている。   In the hollow portion 120 of the closing body 12, the distal end portion 22 of the elongated wire electrode 20 passing through the main pipe 10 is located. A positioning insulator is attached to the distal end side of the wire electrode 20. A positioning insulator 24 is mounted to prevent the tip side from swinging. The wire electrode 20 constitutes a positive electrode, and tungsten (melting point: 3380 ° C.) is used to suppress consumption due to discharge. The wire electrode 20 is covered with an insulating tube 26, and the base end side passes through the main pipe 10 and the electrode side pipe 104 branched from the main pipe 10, and a connection terminal 28 is attached to the base end. It has been.

被処理液L中には、負電極を構成する板状電極30を配置している。本実施の形態では板状電極30の素材として、強度があり耐腐食性に富むステンレス板(SUS304)を使用している。   In the liquid L to be processed, a plate electrode 30 constituting a negative electrode is arranged. In the present embodiment, a stainless plate (SUS304) having strength and high corrosion resistance is used as a material for the plate electrode 30.

図4は、液中プラズマ発生装置に、気体としてのオゾンと、印加電圧としてのパルス電圧を送る装置の一実施の形態を示したブロック図である。
図において、DC電源40はAC100Vを入力することによってDC1KVを出力する。エアーポンプ41はオゾン発生器(オゾナイザー)42に空気を送り、オゾンを生成する。オゾン発生器42で生成されたオゾン及び窒素、酸素、アルゴン等の空気成分は、給気管102を介して主管10に送られ、閉鎖体12から、微細気泡として被処理液L中に送られる。なお、オゾンを含まない空気又は酸素を含むその他の気体を送る構造とすることもできる。
FIG. 4 is a block diagram showing an embodiment of an apparatus for sending ozone as a gas and a pulse voltage as an applied voltage to an in-liquid plasma generator.
In the figure, a DC power supply 40 outputs DC 1 KV when AC 100 V is input. The air pump 41 sends air to an ozone generator (ozonizer) 42 to generate ozone. Ozone generated by the ozone generator 42 and air components such as nitrogen, oxygen, and argon are sent to the main pipe 10 via the air supply pipe 102 and sent from the closing body 12 into the liquid L to be processed as fine bubbles. In addition, it can also be set as the structure which sends the other gas containing the air which does not contain ozone, or oxygen.

マイクロコンピュータ43からゲート回路44に制御用のクロック信号が送られ、ゲート回路44を介して線材電極20にパルスが送られる。
マイクロコンピュータ43からゲート回路44に制御用のクロック信号が送られ、電極に電圧を印加するパルス信号が出力される。
なお、パルス電圧の発生装置は前記装置に限定されるものではなく、公知の各種装置が好適に使用される。
A clock signal for control is sent from the microcomputer 43 to the gate circuit 44, and a pulse is sent to the wire electrode 20 through the gate circuit 44.
A clock signal for control is sent from the microcomputer 43 to the gate circuit 44, and a pulse signal for applying a voltage to the electrodes is output.
The pulse voltage generator is not limited to the above-mentioned device, and various known devices are preferably used.

(作用)
工場廃液などの被処理液を処理する処理槽の槽底に板状電極30を配置すると共に、主管10の先端部を被処理液中に沈め、線材電極20の先端部22と板状電極30とを対向させる。
(Function)
The plate electrode 30 is disposed on the bottom of a processing tank for processing a liquid to be processed such as a factory waste liquid, and the tip of the main pipe 10 is submerged in the liquid to be processed. Facing each other.

エアーポンプ41を作動させてオゾン発生器42に空気を送り、オゾンを生成させる。生成されたオゾンは給気管102を介して主管10に送られ、主管10下端の閉鎖体12からオゾンの微細気泡として被処理液中に放出される。   The air pump 41 is operated to send air to the ozone generator 42 to generate ozone. The generated ozone is sent to the main pipe 10 via the air supply pipe 102, and is discharged into the liquid to be treated as fine bubbles of ozone from the closing body 12 at the lower end of the main pipe 10.

放出されたオゾンが微細気泡となって主管10下端部が微細気泡で囲繞された後、線材電極20にパルス電圧を印加すると、線材電極20の先端部22と板状電極30との間でアーク放電を生じ、プラズマが生起されてOHラジカルやオゾンを生成する。   After the released ozone becomes fine bubbles and the lower end of the main pipe 10 is surrounded by the fine bubbles, when a pulse voltage is applied to the wire electrode 20, an arc is generated between the tip 22 of the wire electrode 20 and the plate electrode 30. A discharge is generated and plasma is generated to generate OH radicals and ozone.

生成されたOHラジカルやオゾンは、オゾンの微細気泡と共に被処理液中で拡散し、被処理液を処理する。   The generated OH radicals and ozone are diffused in the liquid to be processed together with the fine bubbles of ozone to process the liquid to be processed.

なお、本明細書で使用している用語と表現は、あくまでも説明上のものであって、なんら限定的なものではなく、本明細書に記述された特徴およびその一部と等価の用語や表現を除外する意図はない。また、本発明の技術思想の範囲内で、種々の変形態様が可能であるということは言うまでもない。   Note that the terms and expressions used in this specification are merely explanatory and are not limiting at all, and terms and expressions equivalent to the features described in this specification and parts thereof. There is no intention to exclude. It goes without saying that various modifications are possible within the scope of the technical idea of the present invention.

本発明は、液中で放電を起こしてOHラジカルやオゾンを生成させ、これを利用する各種の分野に利用できる。   INDUSTRIAL APPLICABILITY The present invention can be used in various fields in which discharge is caused in a liquid to generate OH radicals and ozone and use them.

10 主管
11 末広がり部
12 閉鎖体
20 線材電極
22 先端部
24 位置決め用絶縁体
26 絶縁チューブ
28 接続端子
30 板状電極
40 電源
41 エアーポンプ
42 オゾン発生器
43 マイクロコンピュータ
44 ゲート回路
102 給気管
104 電極側管
120 中空部
L 被処理液
DESCRIPTION OF SYMBOLS 10 Main pipe 11 End spread part 12 Closure body 20 Wire electrode 22 Tip part 24 Positioning insulator 26 Insulation tube 28 Connection terminal 30 Plate electrode 40 Power supply 41 Air pump 42 Ozone generator 43 Microcomputer 44 Gate circuit 102 Supply pipe 104 Electrode side Tube 120 Hollow part L Liquid to be treated

Claims (2)

液中に正電極と負電極を配置し、正電極に電圧を印加して液中にプラズマを生起させる液中プラズマ発生装置であって、
外部から液中へ気体を直接供給して微細な気泡を発生させる微細気泡発生手段(102,10,12)を備え、前記正電極(20)と負電極(30)の何れか一方又は双方を、気体の通過要素を備える隔離要素(12)の中に配設して液から隔離し、前記隔離要素(12)は微細気泡発生手段を構成し、前記隔離要素(12)から気体を液中に放出して液中に微細気泡を発生しながら正電極(20)に電圧を印加して液中にプラズマを生起させる、
液中プラズマ発生装置。
A submerged plasma generator for arranging a positive electrode and a negative electrode in a liquid and applying a voltage to the positive electrode to generate a plasma in the liquid,
Provided with fine bubble generating means (102, 10, 12) for generating fine bubbles by directly supplying gas into the liquid from the outside, either one or both of the positive electrode (20) and the negative electrode (30) , Disposed in an isolation element (12) having a gas passage element to isolate the liquid from the liquid, the isolation element (12) constitutes a fine bubble generating means, and gas from the isolation element (12) is contained in the liquid To generate a fine bubble in the liquid to generate a plasma in the liquid by applying a voltage to the positive electrode (20),
In-liquid plasma generator.
液体中でプラズマを生起させる液中プラズマ用電極装置であって、
主管(10)と、
該主管(10)に気体を送る送気要素(102)と、
該主管(10)の開口部を閉鎖しており、主管(10)の中を通過した気体を液中に微細気泡として排出する多孔質閉鎖要素(12)と、
前記主管(10)と多孔質閉鎖要素(12)で形成される空間(120)に位置しており、前記多孔質閉鎖要素(12)に近接して設けられている線材電極(20)と、
を備えている、
液中プラズマ発生電極装置。
An electrode device for plasma in liquid that generates plasma in liquid,
(10)
An air supply element (102) for sending gas to the main pipe (10);
A porous closing element (12) that closes the opening of the main pipe (10) and discharges the gas that has passed through the main pipe (10) into the liquid as fine bubbles;
A wire electrode (20) located in the space (120) formed by the main pipe (10) and the porous closure element (12), and provided close to the porous closure element (12);
With
In-liquid plasma generating electrode device.
JP2011015545A 2011-01-27 2011-01-27 Submerged plasma generating device and electrode device used therefor Pending JP2012152712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011015545A JP2012152712A (en) 2011-01-27 2011-01-27 Submerged plasma generating device and electrode device used therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011015545A JP2012152712A (en) 2011-01-27 2011-01-27 Submerged plasma generating device and electrode device used therefor

Publications (1)

Publication Number Publication Date
JP2012152712A true JP2012152712A (en) 2012-08-16

Family

ID=46835038

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011015545A Pending JP2012152712A (en) 2011-01-27 2011-01-27 Submerged plasma generating device and electrode device used therefor

Country Status (1)

Country Link
JP (1) JP2012152712A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188498A (en) * 2013-03-28 2014-10-06 Taiyo Nippon Sanso Corp Detoxification treatment apparatus and detoxification treatment method

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014188498A (en) * 2013-03-28 2014-10-06 Taiyo Nippon Sanso Corp Detoxification treatment apparatus and detoxification treatment method

Similar Documents

Publication Publication Date Title
US9814127B2 (en) Liquid treatment device and liquid treatment method
JP5067802B2 (en) Plasma generating apparatus, radical generating method, and cleaning and purifying apparatus
JP5099612B2 (en) Liquid processing equipment
EP2762453B1 (en) Liquid treatment device and liquid treatment method
KR101579349B1 (en) Water treatment apparatus using plasma-membrane and method using the same
CN105174360A (en) Method for adopting discharge plasma to activate persulfate
KR100924649B1 (en) Generator and method of high desity underwater plasma torch
TW200734276A (en) Fluid purification device and method
JP2013119043A (en) Microbubble generating device and water treating apparatus using the same
JP2003062579A (en) Treating method of liquid and device therefor
JP2005058887A (en) Waste water treatment apparatus using high-voltage pulse
CN104583131B (en) Liquid treatment apparatus and liquid treatment method
JP2015116561A (en) Liquid treatment apparatus and liquid treatment method
KR101497591B1 (en) Apparatus for treating water using discharge in reactor
CN107592855A (en) Water at low temperature plasma generating means
JP6511440B2 (en) Plasma irradiation method and plasma irradiation apparatus
JP2015056226A (en) Liquid dielectric barrier discharge plasma device and liquid purification system
JP2013504157A (en) Liquid medium plasma discharge generator
JP2013049015A (en) Water treatment apparatus
JP2009114001A (en) Ozone generator
JP2014159008A (en) Water treatment apparatus
KR101280445B1 (en) Underwater discharge apparatus for purifying water
JP2012152712A (en) Submerged plasma generating device and electrode device used therefor
JP2014032787A (en) In-liquid discharge device
JP2009234900A (en) Underwater ozonizer

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20130401

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130401

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20130823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131203