JP2012152624A - 放射線撮影装置及びその制御方法 - Google Patents

放射線撮影装置及びその制御方法 Download PDF

Info

Publication number
JP2012152624A
JP2012152624A JP2012117995A JP2012117995A JP2012152624A JP 2012152624 A JP2012152624 A JP 2012152624A JP 2012117995 A JP2012117995 A JP 2012117995A JP 2012117995 A JP2012117995 A JP 2012117995A JP 2012152624 A JP2012152624 A JP 2012152624A
Authority
JP
Japan
Prior art keywords
imaging
amount
radiation
radiation dose
dose
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2012117995A
Other languages
English (en)
Other versions
JP5451816B2 (ja
JP2012152624A5 (ja
Inventor
Chuma Nagao
宙馬 長尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2012117995A priority Critical patent/JP5451816B2/ja
Publication of JP2012152624A publication Critical patent/JP2012152624A/ja
Publication of JP2012152624A5 publication Critical patent/JP2012152624A5/ja
Application granted granted Critical
Publication of JP5451816B2 publication Critical patent/JP5451816B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Apparatus For Radiation Diagnosis (AREA)

Abstract

【課題】放射線撮影において、最適な撮影タイミングを得るために実行される補助撮影に用いられる低放射線照射量を自動的に調整可能とする。
【解決手段】第1の放射線照射量による第1の放射線撮影で得られた本撮影画像と、第1の放射線照射量より低い第2の放射線照射量による第2の放射線撮影で得られた補助撮影画像とを用いて第1の放射線撮影の撮影タイミングを決定する放射線撮影装置において、撮影制御部113は、第1の放射線照射量よりも小さい照射量の範囲で放射線照射量を変化させながら放射線撮影を繰り返し、動き検出部111は、それら放射線撮影によって得られた複数の撮影画像から被写体の動き量を検出し、動き量比較部112及び札制御部113は、検出された動き量に基づいて、被写体の動き量の検出に必要な最小の放射線照射量を探索し、探索された放射線照射量を第2の放射線照射量に決定する。
【選択図】図1

Description

本発明は、放射線撮影装置及びその制御方法に関し、特に放射線による動画撮影に関するものである。
近年、医療用のX線透視診断装置は、従来のアナログ撮影からデジタル画像を用いて診断を行う方式が普及してきている。これに伴い、連続的にX線撮影されたデジタル画像を、動画像データとしてモニタ上に表示したり、メモリやハードディスク装置内に保存したりすることで、診断や治療等に利用している。
このような動画撮影においては、診断精度の向上と被写体に対する低被曝化の両立が求められている。具体的には、診断に用いる撮影画像(以下、本撮影画像と呼ぶ)を分析して被写体の変化を検知し、その結果に基づいて後続する本撮影のフレームレート、即ち、撮影タイミングを制御したり、X線照射量を制御したりする。そして、このような制御により、低いX線照射量で診断画像を得る手法が特許文献1により提案されている。
しかしながら、前述した提案のように本撮影画像のみを用いて被写体の動きを検出する場合には、フレームレートが低いと動きへの追従性が悪くなる。このため、被写体の動きに大きな変化があった時に適切な撮影タイミングを逸してしまい、結果として診断精度に関して不利になる場合がある。
上記の課題を解決する従来技術として、適切な撮影タイミングを得るために、本撮影とは別に、低線量のX線照射で撮影した画像(以下、補助撮影画像と呼ぶ)を分析し、トータルの被曝量を抑制する技術が提案されている(特許文献2)。ここで、補助撮影画像の撮影においては、手動によりその照射量を設定可能な低線量のX線照射、あるいは予め設定された固定の低線量のX線照射で撮影が行われる。
この技術では、心臓や肺など動きに周期性がある組織を被写体とする撮影において、低線量のX線照射で撮影を行った画像を分析することで被写体の位相が検出される。そして、被写体が所望の状態になったタイミングでのみ、通常のX線照射量で本撮影画像の撮影が行われる。
特開平5−192319号公報 特開2005−342088号公報
しかしながら、特許文献2では、補助画像の撮影におけるX線照射量の制御を手動による設定、もしくは、予め設定した固定の設定で行っている。このため、補助撮影画像を用いた被写体の位相検出による撮影タイミングの制御を行う場合に、補助撮影画像の撮影における低X線照射量の最適化が困難である。その結果、低X線照射の累積によって被写体に対する総被曝量の低減が十分に図れないという課題がある。
本発明は、上記課題を解決するためになされたもので、放射線撮影において、最適な撮影タイミングを得るために実行される補助撮影に用いられる低放射線照射量を自動的に調整可能とし、被写体に対するトータルの被曝量を低減することを目的とする。
上記の課題を解決するための本発明による放射線撮影装置は以下の構成を備える。すなわち、
第1の放射線照射量による第1の放射線撮影で得られた本撮影画像と、前記第1の放射線照射量より低い第2の放射線照射量による第2の放射線撮影で得られた補助撮影画像とを用いて前記第1の放射線撮影の撮影タイミングを決定する放射線撮影装置であって、
前記第1の放射線照射量よりも小さい照射量の範囲で放射線照射量を変化させながら放射線撮影を繰り返す撮影制御手段と、
前記撮影制御手段によって得られた複数の撮影画像から被写体の動き量を検出する検出手段と、
前記検出手段で検出された動き量に基づいて、被写体の動き量の検出に必要な最小の放射線照射量を探索し、探索された放射線照射量を前記第2の放射線照射量に決定する決定手段とを備える。
本発明によれば、放射線撮影において、最適な撮影タイミングを得るための補助撮影における低X線照射量を自動的に調整することが可能となり、被写体に対するトータルのX線被曝量を更に低減することが可能となる。
第1実施形態によるX線透視診断装置の全体構成を表すブロック図である。 第1実施形態による撮影制御部113が実行する全体の制御を表すフローチャートである。 第1実施形態による低X線照射量調整時の制御を表すフローチャートである。 第1実施形態による診断撮影時の制御を表すフローチャートである。 第1実施形態による低X線照射量調整から診断撮影への推移、X線照射量、診断撮影時におけるの被写体の動き量、及び、本撮影画像の取得タイミングの時間経過における相関を表わす図である。 第1実施形態による低X線照射量調整期間のX線照射量、及び、被写体の動き量の時間経過を表す図である。 第1実施形態による被写体の動きにともなう撮影画像を表す図である。 第1実施形態による被写体の動きにともなう撮影画像を表す図である。 第2実施形態による低X線照射量調整時の制御を表すフローチャートである。 第2実施形態による低X線照射量調整期間のX線照射量、及び、被写体の動き量の時間経過を表す図である。
以下、添付の図面を参照して本発明の好適な実施形態を説明する。なお、以下では、本発明の放射線撮影装置をX線透視診断装置に適用した場合を説明する。
<第1実施形態>
図1に第1実施形態における、X線透視診断装置の全体構成を表すブロック図を示す。図1に示すように、本実施形態の放射線撮影装置としてのX線透視診断装置は、センサユニット101、X線発生装置104、コントローラ107、操作ユニット114から構成されている。
センサユニット101は、X線センサ102、センサ制御部103を備えている。X線センサ102は、X線に反応し、検出したX線をその強度に応じた電気信号に変換して出力することが可能な固体撮像素子で構成される。或いは、X線センサ102は、X線のエネルギーに応じた蛍光(可視光)を発生する蛍光体と、可視光をその強度に応じた電気信号に変換する光電変換素子を組み合わせたユニットなどで構成される。X線センサ102から出力された生画像デジタルデータはコントローラ107に送られる。また、センサ制御部103は、撮影制御部113からのタイミング指示に応じてX線センサ102のデータ出力タイミング信号を発生させる処理や、X線センサ102の出力モード設定などを含む、センサ駆動制御を行う。センサユニット101とコントローラ107の間には、データ転送用としてLVDS(Low Voltage Differential Signaling)などの高速デジタルインタフェースが用いられている。また、センサユニット101とコントローラ107の間では、パラメータの入出力用としてUARTなどの非同期シリアル通信が用いられている。
X線発生装置104は、X線管105およびX線パルス制御部106を備えている。X線管105はX線パルス制御部106からのタイミング信号に応答してパルスX線を曝射する。また、X線パルス制御部106は、撮影制御部113からのタイミング指示や設定パラメータに応じて、設定された曝射条件でX線管105に対してX線曝射タイミング信号を出力する処理を行う。本撮影画像は、X線パルス制御部106に、第1の放射線照射量(X線照射量)による第1の放射線撮影(X線撮影)を実行させることで取得される。また、補助撮影画像は、X線パルス制御部106に、第1の放射線量よりも小さい第2の放射線照射量(X線照射量)による第2の放射線撮影(X線撮影)を実行させることで取得される。
コントローラ107は、画像処理部108、符号化部109、表示画像送信部110、動き検出部111、動き量比較部112、撮影制御部113を備えている。X線発生装置104とコントローラ107間のパラメータの入出力用としては、非同期シリアル通信、あるいはCAN(Controller Area Network)などの低遅延型のネットワークプロトコルが用いられている。
これらX線発生装置104およびセンサユニット101に対して連続的にタイミング指示を送ることにより、X線透視画像の連続撮影が可能である。連続撮影では、例えば1秒間に30回のタイミング指示によって、30fpsの動画データを発生することができる。
画像処理部108は、センサユニット101から出力された生画像デジタルデータを受けて所定の画像処理を行う。ここで画像処理は、X線センサの特性に依存した補正やノイズ除去、ダイナミックレンジ改善などの画像の高画質化処理などである。また、画像処理部108は、画像処理されたデータを動き検出部111へ送り、同時に、そのうち診断用に撮影された画像データ、つまり表示画像データのみを符号化部109へ送る処理を行う。符号化部109では、画像処理された表示画像データに対してロスレスの圧縮符号化処理を行い、表示画像送信部110へ送る。コントローラ107と操作ユニット114の間は、ギガビットイーサネット(登録商標)を使用したネットワークにより接続されている。表示画像送信部110は、画像データのパケット化やネットワークプロトコル処理を実行し、当該ネットワークを介して操作ユニット114へのデータ送信を行う。
動き検出部111は、本撮影画像を得るための撮影(以下、診断撮影と呼ぶ)時には、連続撮影した本撮影画像データ及び補助撮影画像データにおけるそれぞれの動き量を算出する処理を行う。なお、動き量の算出は、本撮影画像データと補助撮影画像データとで別々に行われてもよいし、一緒に用いて行われてもよい。但し、本撮影画像データと補助撮影画像データを一緒に用いる場合には、本撮影画像データ及び補助撮影画像データの画素値の平均値のレベル合わせをしてから動き量を算出することになる。また、補助撮影画像用の低X線照射量の調整(以下、低X線照射量調整と呼ぶ。)を行う時には、同一のX線照射で撮影した画像データにおけるそれぞれの動き量を算出する(図6による後述する)。あるいは、低X線照射量の調整時において、連続撮影した画像データのそれぞれの動き量を算出する処理を行う(図10(第2実施形態)において後述する)。なお、動き検出のためのアルゴリズムは、従来技術として広く利用されているためここでは説明を省略する。例えば単純に各画素同士の差異を計算し、その差分量や全画素に対する割合から被写体全体の動き量を算出したり、動きベクトルの値から判断したりする場合が考えられる。動きベクトルの算出としては、例えば、マクロブロック単位で行ない、それら動きベクトルを組み合わせることで被写体全体の動き量を算出する方法が考えられる。
動き量比較部112は、低X線照射量調整時に動き検出部111から受信した同一のX線照射で撮影した画像データ、あるいは、連続撮影した画像データの動き量の違い比較する。
撮影制御部113は、診断撮影時には動き検出部111によって算出された動き量に応じて、撮影間隔や本撮影画像取得時のX線照射量を決定し、センサユニット101やX線発生装置104に対して撮影タイミング指示やパラメータ指示を送る処理を行う。低X線照射量調整時には、撮影制御部113は、動き量比較部112の比較結果に応じて低X線照射量を調整し、センサユニット101やX線発生装置104に対して撮影タイミング指示やパラメータ指示を送る。また、撮影制御部113は、操作ユニット114からの指示に基づいた撮影条件に従って、センサユニット101やX線発生装置104に対してパラメータ指示を送る処理などを実行する。
操作ユニット114は、表示システム115、表示装置116、コンソール117、蓄積装置118を備えており、PC(パーソナルコンピュータ)とこれに接続される周辺機器で構成されている。本実施形態では、表示システム115はPC本体とその上で動作するアプリケーションソフトウエアにより実現されている。表示システム115は、コントローラ107からネットワークを通じて送信された符号化撮影画像データを受信し、データの復号処理を行った後に表示装置116へ出力したり、蓄積装置118へ格納したりする処理を行う。また、コンソール117からの操作に対応して、例えば撮影の開始/停止、撮影モードの設定などコントローラ107に対する各種指示をネットワークを通じて行う。
次に、図2のフローチャートを参照して、図1に示される撮影制御部113の動作を説明する。
ステップS201において、撮影制御部113は、操作ユニット114より、低X線照射量調整時のフレームレートや低X線照射量の最大値、最小値、及び、本撮影画像取得時の表示画像フレームレートやX線照射量などの各種撮影の初期条件を取得する。ここで、低X線照射量の最大値とは、診断のための画像品質を得る必要はないが、少なくとも確実に被写体の動きを検出することが可能な画像品質が得られるX線照射量のことである。
次に、ステップS202において、撮影制御部113は、ステップS201で取得した撮影条件に従って、X線照射量の設定やセンサ読み出しモードの設定などを実行する。X線照射量やセンサ読み出しモードの設定は、センサ制御部103およびX線パルス制御部106に対して設定パラメータコマンドを発行することにより実行される。次にステップS203において、撮影制御部113は、操作ユニット114から撮影開始指示が行われるまで待機する。
ここで撮影開始指示が行われると、ステップS204において、撮影制御部113は、動き量比較部112へ指示を行いながら、補助撮影画像を撮影する際のX線照射量を調整する低X線照射量調整を行う。ステップS204の処理は、一言で言えば、被写体の動き量の検出に必要な最小の放射線照射量を探索する処理である。ステップS204の処理について、図3のフローチャートを参照してより具体的に説明する。
ステップS301において、撮影制御部113は、調整段階の低X線(以下、調整低X線)を照射するか、動きを検出可能な低X線(以下、基準低X線と呼ぶ)、即ち、低X線の最大値で照射するかの判断を行う。この判断は、直前の撮影が調整低X線と基準低X線のいずれによる撮影であったかによりなされる。すなわち、直前の撮影で基準低X線を照射した場合は、調整低X線の照射を行うべく、処理はステップS306へ進む。一方、直前の処理で調整低X線を照射した場合は、基準低X線を照射するべく、処理はステップS302へ進む。こうして、調整低X線による撮影と基準低X線による撮影が交互に実行されることになる。なお、ステップS301以降の低X線照射量調整においては、ステップS202で設定されたセンサ読み出しモードが用いられる。
ステップS302において、撮影制御部113は、センサ制御部103およびX線パルス制御部106に対して基準低X線を照射するための撮影タイミング指示コマンドを発行する。続いてステップS303において、撮影制御部113は、撮影した画像データを一時記憶するように動き検出部111に指示する。この指示に応じて、動き検出部111は、一時記憶している基準低X線照射で取得した前回の画像データと、現在撮影した画像データとから動き量を算出する。次に、ステップS304において、撮影制御部113は、動き検出部111が算出した動き量を読み込む。そして、撮影制御部113は、その動き量を動き量比較部112へ渡し、ステップS305において、動き量比較部112へその動き量を記憶させ、ステップS301へ戻る。
一方、ステップS301で調整低X線を照射すると判断された場合は、処理はステップS306に進む。ステップS306において、撮影制御部113は、センサ制御部103およびX線パルス制御部106に対して調整低X線を照射するための撮影タイミング指示コマンドを発行する。本実施形態では、このステップにおいて、最初に設定される低X線照射量は、図2のステップS201において取得した低X線照射量の最小値である。
ステップS307において、撮影制御部113は、当該調整低X線照射量で既に画像データが取得されているか否かをチェックする。当該調整低X線照射量で画像データが取得されていなければ、すなわち、当該調整低X線照射量による1回目の撮影である場合は、処理はステップS308に進む。ステップS308において、撮影制御部113は、撮影した画像データを一時記憶するように動き検出部111に指示する。同じ調整低X線照射量で既に画像データが取得されている場合、すなわち当該調整低X線照射量による2回目の撮影である場合は、ステップS309に進む。ステップS309において、撮影制御部113は、動き検出部111へ一時記憶している当該調整低X線照射で取得した前回の画像データと今撮影した画像データから動き量を算出する。そして、撮影制御部113は、その動き量を動き検出部111から動き量比較部112へ渡す。こうして、同一の調整低X線量で撮影された2つの画像についての動き量が動き量比較部112へ提供されることになる。ステップS310において、撮影制御部113は、調整低X線照射時における動き量とステップS305で記憶した基準低X線照射時における動き量との比較を行う。そして、比較結果が一定の範囲内に一致した場合は、処理を終了する。比較結果が一致しない場合は、ステップS311において、ステップS306で設定する調整低X線照射量を増やし、ステップS301に戻る。
以上説明したステップS301からステップS311までが、本実施形態における被写体の動きを検出するための低X線照射量を調整する処理である。
補助撮影時のX線照射量の調整が完了すると、ステップS205において、診断撮影を行う。ステップS205の処理の詳細なフローを図4に示す。
ステップS401において、撮影制御部113は、現在設定されているフレームレートでの表示画像、即ち、本撮影画像の撮影タイミングかどうかをチェックする。撮影タイミングであった場合、ステップS402において、撮影制御部113は、センサ制御部103およびX線パルス制御部106に対して本撮影画像取得のための通常のX線照射量による撮影タイミング指示コマンドを発行する。続いて、ステップS404において、撮影制御部113は、表示画像送信部110に対して1フレーム分の表示画像を送信する指示を行う。また、ステップS401で表示画像撮影タイミングではないと判定された場合、つまり補助撮影画像の撮影タイミングである場合には、ステップS403に処理は進む。ステップS403みにおいて、撮影制御部113は、ステップS404で決定した低X線照射量による撮影タイミング指示コマンドを発行してS405へ進む。
ステップS405において、撮影制御部113は、ステップS402あるいはステップS403で撮影された画像データから算出された動き量を、動き検出部111から読み出す。次に、ステップS406において、撮影制御部113は、読み出した動き量に合わせて表示画像フレームレートを再設定する。つまり、現状より動き量が少なくなっている場合は表示画像フレームレートを小さくし、逆に動き量が多くなっている場合は大きくする。
上記説明したステップS401からステップS406までが画像1フレームの撮影処理を示しており、この一連の処理を繰り返すことで本実施形態における連続画像としての診断用の動画撮影を行うことができる。以上が、ステップS205の処理を示すフローである。
ステップS205で一連の診断撮影の処理が行われたら、ステップS206において、操作ユニット114から撮影領域を所定の距離以上移動する指示があったかどうかチェックする。そのような指示があった場合は、ステップS204に戻り、低X線照射量調整を行う。すなわち、撮影領域が所定の距離以上変更される度に、低X線照射量調整が繰り返されることになる。一方、そのような指示のない場合はステップS207に進む。ステップS207では、操作ユニット114から撮影終了指示があったかどうかをチェックし、あった場合は本処理を終了し、無い場合はステップS205からの処理を繰り返す。
図5は、本実施形態における低X線照射量調整から診断撮影への推移、X線照射量、診断撮影時における被写体の動き量、及び、本撮影画像の取得タイミングの時間経過における相関を表わす図である。
図5において、501はX線照射量とその曝射タイミングを示している。502に示す中ぐらいの長さの矢印は低X線照射量調整期間における基準低X線照射量であり、固定の放射線量で撮影が行われることを示す。503に示す短い矢印は低X線照射量調整期間における調整低X線照射量であり、可変の放射線量となっている。本実施形態では、低X線照射量調整期間においてこの可変の放射線量を変化させながら動き量を検出し、検出された動き量に基づいて低X線照射量が決定される。504に示す長い矢印は、診断撮影期間における本撮影画像用の通常強度のX線照射量である。また、505に示す短い矢印は、診断撮影期間における補助撮影画像用の低X線照射量である。また、506は診断撮影期間における被写体の動き量を表わす図であり、507で示す曲線は時間経過にともなう被写体の動き量の推移を表現したものである。508は診断に用いる本撮影画像を取得するタイミングを表しており、509に示すような斜線でマスクした部分がその取得タイミングである。
図5で示すように、まず低X線照射量の調整が行われ、調整が完了すると診断撮影が行われる。また、撮影領域が移動した場合は、再度低X線照射量の調整を行い、調整が完了すると診断撮影を行う。診断撮影時の補助撮影画像を得るためのX線の照射は、低X線照射量調整期間で決定された低X線照射量505で行われる。診断撮影期間の時間経過にともなう動き量の変化の推移507とX線照射量501が示すとおり、動き量が少ない場合は、本撮影画像を得るX線照射の回数を間引きし、本撮影画像を表示するフレームレートの制御を行う。この場合にも動き量検出の補助撮影用の低X線照射は固定の高いフレームレートで行われているため、急激に動き量が大きくなっても即座に動き量検出を行うことができ、迅速に高フレームレートでの表示画像撮影に切り替得ることが可能になっている。
図6は、図5に示す低X線照射量調整期間を拡大したものである。図6に示されるように、基準低X線照射量502によるX線撮影と、可変の調整低X線照射量503を増減させながら行うX線撮影とが交互に実行される。また、同一の可変の調整低X線照射量による撮影が2回ずつ行われる。図6において、601は低X線照射量調整時の被写体の動き量を表す図である。また、602は基準低X線照射量502で撮影した画像間の被写体の動き量(以下、第1の動き量)、603は調整低X線照射量503で撮影した画像間の被写体の動き量(以下、第2の動き量)である。第1及び第2の動き量602、603を逐次比較し、段階的に調整低X線照射量を増加させていき、第1及び第2の動き量が一定範囲内で一致した時に診断撮影期間における補助撮影画像を得るため低X線照射量505が決定される。
図7、図8に被写体の動きにともなう撮影画像を表わす図を示す。図7において、701はあるフレーム(Xn)の撮像画像、703は次のフレーム(Xn+1)の撮像画像を表わしている。701では被写体として心臓(702)の収縮状態が示されており、次のフレーム703では収縮状態(704)から拡張状態(705)に移行している様子が示されている。この場合の動き量は図中の矢印で表わされており、心臓は比較的速い動作であるため動き速度が大きくなっている。
図8でも同様に、あるフレーム(Xn)の撮像画像801、次のフレーム(Xn+1)の撮像画像803を表わしている。撮像画像801では被写体として肺(802)の収縮状態が示されており、次のフレームの撮像画像803では収縮状態(804)から拡張状態(805)に移行している様子が示されている。肺は比較的ゆっくりした動作であるため、動き量を表わす矢印も短く、動き量が少ないことがわかる。ただし、撮影被写体が画面全体を占める割合が大きいため、画像の動きのある領域は広くなっている。
動き検出部111の動き量の値は、図7で示す心臓のように動き速度が大きい場合も、図8で示す肺のように動きがある領域が広い場合も、動き量として大きい値を算出するようになっている。また、動き量比較部112が行う低X線照射量調整時の動き量の比較は、図7、図8で示すところの動き量の大きさを比較することで実現できる。
なお、本実施形態では、低X線照射量調整時の調整低X線照射量を低い値から徐々に高い値にしていく方法を例として示したが、高い値から徐々に低い値に調整する方法や、二分法によって調整する方法を用いることも可能であることは言うまでもない。
また、本実施形態では、低X線照射量の再調整を撮影領域が移動した場合にのみ行ったが、一定期間を経過したら再調整を行うようにしても良い。すなわち、定期的に低X線照射量の調整を実行するようにしてもよい。
<第2実施形態>
次に、第2実施形態を説明する。図9は、第2実施形態におけるX線透視診断装置の低X線照射量調整処理を示すフローチャートである。なお、全体構成、全体の制御のフロー、及び、診断撮影のフローは、第1実施形態と同様であるので、ここでは説明を省略する。
ステップS901において、撮影制御部113は、センサ制御部103およびX線パルス制御部106に対して調整低X線を照射するための撮影タイミング指示コマンドを発行する。本例では、本ステップにおいて、最初に設定される低X線照射量は、図2のステップS201において取得した低X線照射量の最大値である。
ステップS902において、撮影制御部113は、連続撮影された画像データから算出された動き量を、動き検出部111から取得し、これを動き量比較部112へ渡す。そして、ステップS903において、撮影制御部113は、動き量比較部112へその動き量を一時的に記憶させる。
ステップS904では、現在算出された動き量と比較すべき一時記憶された動き量の数が十分に揃っているかチェックする。本実施形態では、一つ前の動き量のみと比較するとするが、これに限られるものではない。例えば、1つ前と2つ前の動き量と比較する等、当業者であれば種々のバリエーションが存在することは明らかである。比較すべき動き量(比較データ)がある場合、処理はステップS905へ進み、比較すべき動き量がない場合は、処理はステップS901に戻る。
ステップS905において、撮影制御部113は、動き量を比較し、一定範囲内で安定しているかをチェックする。動き量が安定していない場合は、ステップS906に処理が進み、動き量が安定している場合は、ステップS907に処理が進む。
ステップS906において、撮影制御部113は、不安定な動き量になってしまうX線量が検出されたことを示すフラグ(不安定X線量検出フラグ)をセットし、保存した動き量をすべてクリアして、処理をステップS908へ進める。
ステップS907において、撮影制御部113は、不安定X線量検出フラグがセットされているかをチェックする。当該フラグがセットされている場合は、動き検出が不安定になってしまうX線量を検出した後、動き検出が安定したところを見つけたことを示す。よって、ステップS908において、撮影制御部113は、フラグのクリア及び保存した動き量をクリアした後、処理を終了する。一方、ステップS907において不安定X線量検出フラグフラグがセットされていない場合は、処理はステップS910へ進む。
ステップS910において、撮影制御部113は、低X線照射量を調整するステップで不安定X線量検出フラグがセットされていない場合は、X線照射量を低くし、不安定X線量検出フラグがセットされている場合は、X線照射量を高くする。その後、ステップS901に処理は戻る。
上記説明したステップS901からステップS910までが第2実施形態における、被写体の動きを検出するための低X線照射量を調整するための処理である。
図10は、図9のフローチャートで示される低X線照射量調整を行った場合の、動き量とX線照射量の時間経過を示した図であり、第1実施形態の図5に代わるものである。図10において、1001は調整低X線照射量503で撮影した画像間の被写体の動き量である。連続した画像間の動き量を比較し、動き量が一定範囲内で安定し、且つ、動き量が不安定になるまでは、段階的に調整低X線照射量を減少させていく。そして、動きが不安定になってからは、段階的に調整低X線照射量を増加させていく。その後、動き量が一定範囲内で安定した時に診断撮影期間における補助撮影画像用の低X線照射量505を決定している。このように、第2実施形態の低X線照射量調整期間では、最低のX線照射量から照射量を増加させながらX線撮影を行い、時間的に近接するタイミングで撮影された撮影画像から被写体の動きが検出される。そして、検出された動き量の変化が、第1の閾値を越えた後(不安定期間を経た後)であって、第1の閾値より小さい第2の閾値に収まった場合に、安定した撮影画像が得られたと判定する。すなわち、第2実施形態では、検出された動き量の変動が閾値を越える直前の放射線照射量が、被写体の動き量の検出に必要な最小の放射線照射量として決定される。
以上のように、上記各実施形態によれば、X線診断において、X線被曝量を抑えつつ良好な動画撮影を得るために必要な動き検出用の補助撮影画像の撮影時のX線照射量を、被写体の動きを検出するのに必要最低限に近い線量まで自動制御する。すなわち、放射線照射量を変化させながら放射線撮影を繰り返すことにより検出された動き量に基づいて、被写体の動き量の検出に必要な最小の放射線照射量が探索され、探索された放射線照射量が補助撮影画像の撮影時の放射線照射量に決定される。このため、被写体に対するトータルのX線被曝量を更に低減することが可能となる。
以上、実施形態を詳述したが、本発明は、例えば、システム、装置、方法、プログラムもしくは記憶媒体等としての実施態様をとることが可能である。具体的には、複数の機器から構成されるシステムに適用しても良いし、また、一つの機器からなる装置に適用しても良い。
尚、本発明は、ソフトウェアのプログラムをシステム或いは装置に直接或いは遠隔から供給し、そのシステム或いは装置のコンピュータが該供給されたプログラムコードを読み出して実行することによって前述した実施形態の機能が達成される場合を含む。この場合、供給されるプログラムは実施形態で図に示したフローチャートに対応したコンピュータプログラムである。
従って、本発明の機能処理をコンピュータで実現するために、該コンピュータにインストールされるプログラムコード自体も本発明を実現するものである。つまり、本発明は、本発明の機能処理を実現するためのコンピュータプログラム自体も含まれる。
その場合、プログラムの機能を有していれば、オブジェクトコード、インタプリタにより実行されるプログラム、OSに供給するスクリプトデータ等の形態であっても良い。
コンピュータプログラムを供給するためのコンピュータ読み取り可能な記憶媒体としては以下が挙げられる。例えば、フロッピー(登録商標)ディスク、ハードディスク、光ディスク、光磁気ディスク、MO、CD−ROM、CD−R、CD−RW、磁気テープ、不揮発性のメモリカード、ROM、DVD(DVD−ROM,DVD−R)などである。
その他、プログラムの供給方法としては、クライアントコンピュータのブラウザを用いてインターネットのホームページに接続し、該ホームページから本発明のコンピュータプログラムをハードディスク等の記録媒体にダウンロードすることが挙げられる。この場合、ダウンロードされるプログラムは、圧縮され自動インストール機能を含むファイルであってもよい。また、本発明のプログラムを構成するプログラムコードを複数のファイルに分割し、それぞれのファイルを異なるホームページからダウンロードすることによっても実現可能である。つまり、本発明の機能処理をコンピュータで実現するためのプログラムファイルを複数のユーザに対してダウンロードさせるWWWサーバも、本発明に含まれるものである。
また、本発明のプログラムを暗号化してCD−ROM等の記憶媒体に格納してユーザに配布するという形態をとることもできる。この場合、所定の条件をクリアしたユーザに、インターネットを介してホームページから暗号を解く鍵情報をダウンロードさせ、その鍵情報を使用して暗号化されたプログラムを実行し、プログラムをコンピュータにインストールさせるようにもできる。
また、コンピュータが、読み出したプログラムを実行することによって、前述した実施形態の機能が実現される他、そのプログラムの指示に基づき、コンピュータ上で稼動しているOSなどとの協働で実施形態の機能が実現されてもよい。この場合、OSなどが、実際の処理の一部または全部を行ない、その処理によって前述した実施形態の機能が実現される。
さらに、記録媒体から読み出されたプログラムが、コンピュータに挿入された機能拡張ボードやコンピュータに接続された機能拡張ユニットに備わるメモリに書き込まれて前述の実施形態の機能の一部或いは全てが実現されてもよい。この場合、機能拡張ボードや機能拡張ユニットにプログラムが書き込まれた後、そのプログラムの指示に基づき、その機能拡張ボードや機能拡張ユニットに備わるCPUなどが実際の処理の一部または全部を行なう。

Claims (12)

  1. 第1の放射線照射量による第1の放射線撮影で得られた本撮影画像と、前記第1の放射線照射量より低い第2の放射線照射量による第2の放射線撮影で得られた補助撮影画像とを用いて前記第1の放射線撮影の撮影タイミングを決定する放射線撮影装置であって、
    前記第1の放射線照射量よりも小さい照射量の範囲で放射線照射量を変化させながら放射線撮影を繰り返す撮影制御手段と、
    前記撮影制御手段によって得られた複数の撮影画像から被写体の動き量を検出する検出手段と、
    前記検出手段で検出された動き量に基づいて、被写体の動き量の検出に必要な最小の放射線照射量を探索し、探索された放射線照射量を前記第2の放射線照射量に決定する決定手段とを備えることを特徴とする放射線撮影装置。
  2. 前記第2の放射線照射量を決定するための、前記撮影制御手段、前記検出手段及び前記決定手段の動作を、撮影領域が変更される度に繰り返す制御手段を更に備えることを特徴とする請求項1に記載の放射線撮影装置。
  3. 前記第2の放射線照射量を決定するための、前記撮影制御手段、前記検出手段及び前記決定手段の動作を、定期的に繰り返す制御手段を更に備えることを特徴とする請求項1に記載の放射線撮影装置。
  4. 前記撮影制御手段は、被写体の動き量の検出に十分な固定の放射線照射量での撮影と、前記固定の放射線照射量より小さい照射量の範囲で増減する可変の放射線照射量での撮影とを交互に実行し、
    前記検出手段は、前記固定の放射線照射量での撮影により得られた画像から第1の動き量を検出するとともに、前記可変の放射線照射量での撮影により得られた画像から第2の動き量を検出し、
    前記決定手段は、前記第1の動き量と前記第2の動き量との差が所定の範囲に収まる、最小の可変の放射線照射量を探索することを特徴とする請求項1乃至3のいずれか1項に記載の放射線撮影装置。
  5. 前記撮影制御手段は、放射線照射量を減少させながら放射線撮影を繰り返し、
    前記検出手段は、時間的に近接するタイミングで撮影された撮影画像から被写体の動きを検出し、
    前記決定手段は、前記検出手段で検出された動き量の変動が閾値を越える直前の放射線照射量を、被写体の動き量の検出に必要な最小の放射線照射量として決定することを特徴とする請求項1乃至3のいずれか1項に記載の放射線撮影装置。
  6. 第1の放射線照射量による第1の放射線撮影で得られた本撮影画像と、前記第1の放射線照射量より低い第2の放射線照射量による第2の放射線撮影で得られた補助撮影画像とを用いて前記第1の放射線撮影の撮影タイミングを決定する放射線撮影装置の制御方法であって、
    前記第1の放射線照射量よりも小さい照射量の範囲で放射線照射量を変化させながら放射線撮影を繰り返す撮影制御工程と、
    前記撮影制御工程によって得られた複数の撮影画像から被写体の動き量を検出する検出工程と、
    前記検出工程で検出された動き量に基づいて、被写体の動き量の検出に必要な最小の放射線照射量を探索し、探索された放射線照射量を前記第2の放射線照射量に決定する決定工程とを備えることを特徴とする放射線撮影装置の制御方法。
  7. 前記第2の放射線照射量を決定するための、前記撮影制御工程、前記検出工程及び前記決定工程を、撮影領域が変更される度に繰り返す制御工程を更に備えることを特徴とする請求項6に記載の放射線撮影装置の制御方法。
  8. 前記第2の放射線照射量を決定するための、前記撮影制御工程、前記検出工程及び前記決定工程を定期的に繰り返す制御工程を更に備えることを特徴とする請求項6に記載の放射線撮影装置の制御方法。
  9. 前記撮影制御工程では、被写体の動き量の検出に十分な固定の放射線照射量での撮影と、前記固定の放射線照射量より小さい照射量の範囲で増減する可変の放射線照射量での撮影とを交互に実行し、
    前記検出工程では、前記固定の放射線照射量での撮影により得られた画像から第1の動き量を検出するとともに、前記可変の放射線照射量での撮影により得られた画像から第2の動き量を検出し、
    前記決定工程では、前記第1の動き量と前記第2の動き量との差が所定の範囲に収まる、最小の可変の放射線照射量を探索することを特徴とする請求項6乃至8のいずれか1項に記載の放射線撮影装置の制御方法。
  10. 前記撮影制御工程では、放射線照射量を減少させながら放射線撮影を繰り返し、
    前記検出工程では、時間的に近接するタイミングで撮影された撮影画像から被写体の動きを検出し、
    前記決定工程では、前記検出工程で検出された動き量の変動が閾値を越える直前の放射線照射量を、被写体の動き量の検出に必要な最小の放射線照射量として決定することを特徴とする請求項6乃至8のいずれか1項に記載の放射線撮影装置の制御方法。
  11. 請求項6乃至10のいずれか1項に記載の放射線撮影装置の制御方法をコンピュータに実行させるコンピュータプログラム。
  12. 請求項11に記載のコンピュータプログラムを格納したことを特徴とするコンピュータ読み取り可能な記憶媒体。
JP2012117995A 2012-05-23 2012-05-23 放射線撮影制御装置及び放射線撮影制御方法 Active JP5451816B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012117995A JP5451816B2 (ja) 2012-05-23 2012-05-23 放射線撮影制御装置及び放射線撮影制御方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012117995A JP5451816B2 (ja) 2012-05-23 2012-05-23 放射線撮影制御装置及び放射線撮影制御方法

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007208474A Division JP5006732B2 (ja) 2007-08-09 2007-08-09 放射線撮影装置及びその制御方法

Publications (3)

Publication Number Publication Date
JP2012152624A true JP2012152624A (ja) 2012-08-16
JP2012152624A5 JP2012152624A5 (ja) 2012-10-18
JP5451816B2 JP5451816B2 (ja) 2014-03-26

Family

ID=46834964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012117995A Active JP5451816B2 (ja) 2012-05-23 2012-05-23 放射線撮影制御装置及び放射線撮影制御方法

Country Status (1)

Country Link
JP (1) JP5451816B2 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115800A (ja) * 2012-12-10 2014-06-26 Toshiba Corp サーバ装置、読影システム及び医用画像の枚数確認方法
JP2015092913A (ja) * 2013-11-08 2015-05-18 キヤノン株式会社 制御装置、制御方法及びプログラム
KR20220140968A (ko) * 2021-04-12 2022-10-19 주식회사 포스콤 흔들림을 감지하는 x선 촬영 장치
JP7373980B2 (ja) 2019-11-29 2023-11-06 キヤノンメディカルシステムズ株式会社 X線診断装置、およびマーカ検出プログラム

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014115800A (ja) * 2012-12-10 2014-06-26 Toshiba Corp サーバ装置、読影システム及び医用画像の枚数確認方法
JP2015092913A (ja) * 2013-11-08 2015-05-18 キヤノン株式会社 制御装置、制御方法及びプログラム
JP7373980B2 (ja) 2019-11-29 2023-11-06 キヤノンメディカルシステムズ株式会社 X線診断装置、およびマーカ検出プログラム
KR20220140968A (ko) * 2021-04-12 2022-10-19 주식회사 포스콤 흔들림을 감지하는 x선 촬영 장치
KR102600506B1 (ko) * 2021-04-12 2023-11-09 주식회사 포스콤 흔들림을 감지하는 x선 촬영 장치

Also Published As

Publication number Publication date
JP5451816B2 (ja) 2014-03-26

Similar Documents

Publication Publication Date Title
JP6081726B2 (ja) 多重露出フュージョン基盤でゴーストブラーを除去したhdr映像生成装置及び方法
JP5335313B2 (ja) X線画像撮影装置、x線画像撮影システム、x線撮影制御装置、制御方法及びプログラム
US20090123051A1 (en) Radiographic image capturing apparatus and radiographic image capturing method
US7683328B2 (en) Photographing control apparatus and method
JP5043595B2 (ja) 撮影装置および内視鏡システム
JP5451816B2 (ja) 放射線撮影制御装置及び放射線撮影制御方法
JP4898382B2 (ja) 放射線画像処理装置及びその方法
US20160213226A1 (en) Data reception device, capsule endoscope system, data reception method, and non-transitory computer-readable storage medium
JP2006243527A (ja) フォーカス制御装置、撮像装置、フォーカス制御方法
JP5241316B2 (ja) 画像処理装置及び画像処理方法
RU2020135979A (ru) Способ и система наведения для формирования изображений телестоматологии
JP2008219654A (ja) 画像処理装置及び画像処理方法
JP5241335B2 (ja) X線画像診断装置及び画像処理方法
JP2009279042A (ja) 放射線画像処理装置、放射線画像処理方法及びプログラム
JP2008228914A (ja) 放射線画像撮影制御装置及び放射線画像撮影装置の制御方法
US8014489B2 (en) Radiographic imaging apparatus and method for controlling the same
JP2007097711A (ja) 電子内視鏡装置
JP5006732B2 (ja) 放射線撮影装置及びその制御方法
US20160073865A1 (en) Image pickup system and control method of image pickup system
JP2014064608A (ja) 放射線撮影装置、その制御方法及びプログラム
JP2014171532A (ja) 表示制御装置、表示制御方法及びプログラム
JP2008311850A (ja) 画像処理装置およびこれを備えた内視鏡装置
JP2019122492A (ja) 内視鏡装置、内視鏡装置の作動方法およびプログラム
WO2017073181A1 (ja) 内視鏡装置
JP5489577B2 (ja) 放射線撮像システム及びその制御方法、メイン制御ユニット及びその制御方法、並びに、プログラム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120621

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120905

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131202

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131226

R151 Written notification of patent or utility model registration

Ref document number: 5451816

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151