JP2012151383A - Manufacturing method of solar battery - Google Patents

Manufacturing method of solar battery Download PDF

Info

Publication number
JP2012151383A
JP2012151383A JP2011010466A JP2011010466A JP2012151383A JP 2012151383 A JP2012151383 A JP 2012151383A JP 2011010466 A JP2011010466 A JP 2011010466A JP 2011010466 A JP2011010466 A JP 2011010466A JP 2012151383 A JP2012151383 A JP 2012151383A
Authority
JP
Japan
Prior art keywords
silicon substrate
solar cell
dopant
manufacturing
impurity diffusion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2011010466A
Other languages
Japanese (ja)
Inventor
Michio Otsubo
道夫 大坪
Keisuke Ohira
圭祐 大平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sharp Corp
Original Assignee
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sharp Corp filed Critical Sharp Corp
Priority to JP2011010466A priority Critical patent/JP2012151383A/en
Publication of JP2012151383A publication Critical patent/JP2012151383A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/546Polycrystalline silicon PV cells

Landscapes

  • Photovoltaic Devices (AREA)

Abstract

PROBLEM TO BE SOLVED: To reduce variations in sheet resistance in a silicon substrate surface and improve solar battery characteristics.SOLUTION: A manufacturing method of a solar battery includes a process in which an impurity diffusion region is formed. The impurity diffusion region formation process includes: a process in which a silicon substrate is rotated and a dopant solution including at least alcohol and a compound including a dopant is dropped to be applied to an outer peripheral part on one surface of the silicon substrate; a process in which a dopant solution is dropped around the center of the one surface of the silicon substrate and the silicon substrate is rotated to allow the dopant solution to be applied thereto; and a process in which the silicon substrate is subject to thermal treatment.

Description

本発明は、太陽電池の製造方法、特に、太陽電池の受光面側の構造の製造に関する。   The present invention relates to a method for manufacturing a solar cell, and more particularly to manufacturing a structure on a light receiving surface side of a solar cell.

太陽光エネルギを直接電気エネルギに変換する太陽電池は、近年、特に地球環境問題の観点から、次世代のエネルギ源としての期待が急速に高まっている。太陽電池としては、化合物半導体または有機材料を用いたものなど様々な種類があるが、現在、主流となっているのは、シリコン結晶を用いたものである。   In recent years, solar cells that directly convert solar energy into electric energy have been rapidly expected as next-generation energy sources, particularly from the viewpoint of global environmental problems. There are various types of solar cells, such as those using compound semiconductors or organic materials, but the mainstream is currently using silicon crystals.

図3は、特許文献1に開示されているシリコン結晶を用いた太陽電池の製造フローである。図3に示すように模式的断面図を参照して説明する。   FIG. 3 is a manufacturing flow of a solar cell using a silicon crystal disclosed in Patent Document 1. This will be described with reference to a schematic sectional view as shown in FIG.

まず、図3(a)に示すように、エッチング処理により凹凸構造を形成したp型シリコン基板2の一表面である入射光側となる面(以下「p型シリコン基板の受光面」という。)に、ドーパントであるリンを含むリン化合物と、アルコールとを少なくとも含む溶液であるPSG(Phospho Slicate Glass)液3をp型シリコン基板2の受光面の中心付近に滴下し、PSG液3の厚みが均一になるようにp型シリコン基板2を回転させて塗布するスピン塗布を行う。その後、p型シリコン基板2を乾燥する。なお、図3では、受光面側の凹凸構造を省略している。   First, as shown in FIG. 3A, the surface on the incident light side, which is one surface of the p-type silicon substrate 2 having a concavo-convex structure formed by etching (hereinafter referred to as “light-receiving surface of the p-type silicon substrate”). In addition, a PSG (phosphosilicate glass) solution 3, which is a solution containing at least a phosphorus compound containing phosphorus as a dopant and an alcohol, is dropped in the vicinity of the center of the light receiving surface of the p-type silicon substrate 2. Spin coating is performed in which the p-type silicon substrate 2 is rotated and coated so as to be uniform. Thereafter, the p-type silicon substrate 2 is dried. In FIG. 3, the uneven structure on the light receiving surface side is omitted.

次に、図3(b)に示すように、熱処理によって、p型シリコン基板2の受光面に、n型ドーパントであるリンが拡散して、不純物拡散領域であるn領域4が形成される。さらに、p型シリコン基板2の受光面と反対側の面である裏面(以下「p型シリコン基板の裏面」という。)には、オートドープによるn領域4よりもリン濃度が低いn領域5が形成される。 Next, as shown in FIG. 3B, the heat treatment diffuses phosphorus, which is an n-type dopant, into the light-receiving surface of the p-type silicon substrate 2, thereby forming an n + region 4 which is an impurity diffusion region. . Further, the back surface (hereinafter referred to as “the back surface of the p-type silicon substrate”) opposite to the light-receiving surface of the p-type silicon substrate 2 is an n region having a lower phosphorus concentration than the n + region 4 formed by autodoping. 5 is formed.

次に、図3(c)に示すように、p型シリコン基板2の裏面に形成されたn領域5をエッチングにより除去する。その後、p型シリコン基板2の受光面に、反射防止膜6として窒化シリコン膜をCVD法等により形成する。 Next, as shown in FIG. 3C, the n region 5 formed on the back surface of the p-type silicon substrate 2 is removed by etching. Thereafter, a silicon nitride film is formed as the antireflection film 6 on the light receiving surface of the p-type silicon substrate 2 by a CVD method or the like.

次に、図3(d)に示すように、p型シリコン基板2の裏面に、アルミニウム導電性ペーストおよび銀導電性ペーストをスクリーン等のパターニングに合わせ塗布し乾燥する。さらに、反射防止膜6の上に銀導電性ペーストをスクリーン等のパターニングに合わせ塗布し乾燥する。その後、p型シリコン基板2を焼成することで、アルミニウム電極7、p領域であるBSF(Back Surface Field)領域8、裏面銀電極9、および受光面銀電極10が形成される。ここで、受光面銀電極10は形成時、焼成により銀導電性ペーストが反射防止膜6を突きぬけn領域4と接続する。最後にレーザー等でp型シリコン基板2の外周縁部のn領域4を削り、接合分離を行う。このようにして、太陽電池1が作製される。 Next, as shown in FIG. 3D, an aluminum conductive paste and a silver conductive paste are applied to the back surface of the p-type silicon substrate 2 in accordance with patterning such as a screen and dried. Further, a silver conductive paste is applied on the antireflection film 6 in accordance with patterning such as a screen and dried. Thereafter, the p-type silicon substrate 2 is baked to form an aluminum electrode 7, a BSF (Back Surface Field) region 8, which is a p + region, a back surface silver electrode 9, and a light receiving surface silver electrode 10. Here, when the light-receiving surface silver electrode 10 is formed, the silver conductive paste penetrates the antireflection film 6 and is connected to the n + region 4 by firing. Finally, the n + region 4 at the outer peripheral edge of the p-type silicon substrate 2 is shaved with a laser or the like to perform junction separation. Thus, the solar cell 1 is produced.

特開2010−114345号公報(平成22年5月20日公開)JP 2010-114345 A (published on May 20, 2010)

しかしながら、太陽電池に用いるシリコン基板は、矩形または略矩形であり、また、シリコン基板の受光面には、凹凸構造が形成されているので、上記のように、PSG液をスピン塗布で行った場合、シリコン基板の外周縁部で、PSG液の塗布ムラが発生することがある。この塗布ムラと、その後の熱処理でシリコン基板面内のシート抵抗のばらつきが起こり、受光面銀電極とn領域間のコンタクト抵抗のシリコン基板面内のばらつきが発生する。また、発生する塗布ムラによっては、pn接合欠損が生じることもある。 However, since the silicon substrate used for the solar cell is rectangular or substantially rectangular, and the light receiving surface of the silicon substrate has a concavo-convex structure, as described above, when the PSG liquid is applied by spin coating In some cases, uneven coating of the PSG liquid may occur at the outer peripheral edge of the silicon substrate. The unevenness of coating and the subsequent heat treatment cause variations in sheet resistance within the silicon substrate surface, resulting in variations in contact resistance between the light receiving surface silver electrode and the n + region within the silicon substrate surface. Further, pn junction defects may occur depending on the coating unevenness that occurs.

本発明は、上記の問題に鑑みてなされたものであり、その目的は、PSG液に代表されるドーパント剤を含むドーパント溶液をスピン塗布して熱処理し不純物拡散領域を形成する際、塗布ムラを抑えることで、熱処理後のシリコン基板面内のシート抵抗のばらつきを低減させ、太陽電池特性を向上させる太陽電池の製造方法を提供することにある。   The present invention has been made in view of the above-mentioned problems, and the object thereof is to apply coating unevenness when spin-coating a dopant solution containing a dopant agent typified by PSG liquid to form an impurity diffusion region by heat treatment. By suppressing, it is providing the manufacturing method of the solar cell which reduces the dispersion | variation in the sheet resistance in the silicon substrate surface after heat processing, and improves a solar cell characteristic.

本発明の太陽電池の製造方法は、シリコン基板の一表面に、不純物拡散領域を形成する工程を備えた太陽電池の製造方法において、不純物拡散領域を形成する工程は、シリコン基板を回転させて、シリコン基板の一表面の外周縁部に、ドーパントを含む化合物とアルコールとを少なくとも含むドーパント溶液を滴下して塗布する第1工程と、シリコン基板の一表面の中心付近にドーパント溶液を滴下し、シリコン基板を回転させてドーパント溶液を塗布する第2工程と、シリコン基板を熱処理する第3工程とを備える。   The method for producing a solar cell of the present invention is a method for producing a solar cell comprising a step of forming an impurity diffusion region on one surface of a silicon substrate, wherein the step of forming the impurity diffusion region comprises rotating the silicon substrate, A first step of dropping and applying a dopant solution containing at least a compound containing a dopant and an alcohol to the outer peripheral edge of one surface of the silicon substrate; and dropping the dopant solution near the center of one surface of the silicon substrate; A second step of applying the dopant solution by rotating the substrate; and a third step of heat-treating the silicon substrate.

ここで、本発明の太陽電池の製造方法は、第2工程のドーパント溶液のドーパント濃度は、第1工程のドーパント溶液のドーパント濃度よりも高くてもよい。   Here, as for the manufacturing method of the solar cell of this invention, the dopant concentration of the dopant solution of a 2nd process may be higher than the dopant concentration of the dopant solution of a 1st process.

また、本発明の太陽電池の製造方法は、第2工程の後に、シリコン基板を乾燥させる第4工程を備えてもよい。   Moreover, the manufacturing method of the solar cell of this invention may be equipped with the 4th process of drying a silicon substrate after a 2nd process.

また、本発明の太陽電池の製造方法は、シリコン基板の一表面は、シリコン基板の受光面であってもよい。   In the method for manufacturing a solar cell of the present invention, one surface of the silicon substrate may be a light receiving surface of the silicon substrate.

また、本発明の太陽電池の製造方法は、不純物拡散領域は、n型不純物拡散領域であってもよい。   In the method for manufacturing a solar cell of the present invention, the impurity diffusion region may be an n-type impurity diffusion region.

また、本発明の太陽電池の製造方法は、ドーパントは、リンであってもよい。   In the method for manufacturing a solar cell of the present invention, the dopant may be phosphorus.

また、本発明の太陽電池の製造方法は、ドーパント溶液は、PSG液であってもよい。   In the method for manufacturing a solar cell of the present invention, the dopant solution may be a PSG liquid.

本発明によれば、シリコン基板の外周縁部のドーパント溶液のスピン塗布を、別に行うことにより、シリコン基板の外周縁部で発生する塗布ムラを抑えることで、シリコン基板面内において、不純物拡散領域のシート抵抗のばらつきが低減するため、太陽電池特性を向上させることができる。   According to the present invention, by performing spin coating of the dopant solution on the outer peripheral edge of the silicon substrate separately, application unevenness generated at the outer peripheral edge of the silicon substrate is suppressed, so that the impurity diffusion region is formed in the silicon substrate surface. Since the variation in sheet resistance is reduced, the solar cell characteristics can be improved.

本発明のシリコン基板のPSG液塗布面を上から見た模式図である。It is the schematic diagram which looked at the PSG liquid application surface of the silicon substrate of the present invention from the top. シリコン基板のシート抵抗を測定した箇所を示す模式図である。It is a schematic diagram which shows the location which measured the sheet resistance of the silicon substrate. 太陽電池の製造フローの一例を示す図である。It is a figure which shows an example of the manufacturing flow of a solar cell.

以下に、太陽電池の本発明の製造方法の一例を示す。太陽電池の本発明の製造方法は、n領域4の形成工程が異なる以外は、図3に示した製造フローと同様であるので、下記に示す実施例は、いずれもp型シリコン基板の受光面に形成したn領域4である不純物拡散領域の形成工程のみを示す。 Below, an example of the manufacturing method of this invention of a solar cell is shown. Since the manufacturing method of the present invention for a solar cell is the same as the manufacturing flow shown in FIG. 3 except that the formation process of the n + region 4 is different, all the examples shown below receive light from a p-type silicon substrate. Only the step of forming the impurity diffusion region which is the n + region 4 formed on the surface is shown.

図1は、p型シリコン基板2のPSG液塗布面を上から見た模式図である。p型シリコン基板2は、150mm角でPSG液塗布面側に凹凸構造が形成されている。   FIG. 1 is a schematic view of the PSG liquid application surface of the p-type silicon substrate 2 as viewed from above. The p-type silicon substrate 2 is 150 mm square and has a concavo-convex structure on the PSG liquid application surface side.

リン化合物として五酸化リン濃度が5%のPSG液α、および五酸化リン濃度が10%のPSG液βを用いた。p型シリコン基板2を回転させ、PSG液αをp型シリコン基板2の中心AよりXmm離れた滴下箇所Bに滴下し塗布を行い、その後、回転を止める。次に、p型シリコン基板2の中心AにPSG液βを滴下しp型シリコン基板2を回転させて塗布を行う。その後、p型シリコン基板2を乾燥させた。次に、窒素雰囲気で熱処理を行い、p型シリコン基板2の受光面に、n型ドーパントであるリンが拡散したn領域を形成した。ここで、PSG液αの塗布は、p型シリコン基板2を回転させながら滴下して行ったので、滴下箇所Bよりも外側に塗布させることができた。なお、上記乾燥は、上記熱処理で兼ねることが可能である。 As the phosphorus compound, PSG liquid α having a phosphorus pentoxide concentration of 5% and PSG liquid β having a phosphorus pentoxide concentration of 10% were used. The p-type silicon substrate 2 is rotated, and the PSG liquid α is dropped and applied to a dropping portion B that is X mm away from the center A of the p-type silicon substrate 2, and then the rotation is stopped. Next, the PSG liquid β is dropped on the center A of the p-type silicon substrate 2, and the p-type silicon substrate 2 is rotated to perform coating. Thereafter, the p-type silicon substrate 2 was dried. Next, heat treatment was performed in a nitrogen atmosphere, and an n + region in which phosphorus as an n-type dopant was diffused was formed on the light-receiving surface of the p-type silicon substrate 2. Here, since the application of the PSG liquid α was performed while the p-type silicon substrate 2 was rotated, the PSG liquid α could be applied to the outside of the dropping portion B. The drying can also be performed by the heat treatment.

実施例1:PSG液αの滴下箇所B → X=30mm
実施例2:PSG液αの滴下箇所B → X=50mm
実施例3:PSG液αの滴下箇所B → X=70mm
(比較例)
実施例1〜3で用いたp型シリコン基板2を使用して、p型シリコン基板2の受光面側にn領域を形成した。リン化合物として五酸化リン濃度が10%のPSG液βを用い、p型シリコン基板2の中心Aに滴下しp型シリコン基板2を回転させて塗布して、p型シリコン基板2を乾燥させた。その後、窒素雰囲気で熱処理を行い、p型シリコン基板2の受光面に、n型ドーパントであるリンが拡散したn領域を形成した。
Example 1: Dropping point B of PSG liquid α → X = 30 mm
Example 2: Dropping point B of PSG liquid α → X = 50 mm
Example 3: PSG liquid α dripping point B → X = 70 mm
(Comparative example)
Using the p-type silicon substrate 2 used in Examples 1 to 3, an n + region was formed on the light-receiving surface side of the p-type silicon substrate 2. A PSG solution β having a phosphorous pentoxide concentration of 10% was used as the phosphorus compound, dropped onto the center A of the p-type silicon substrate 2, applied by rotating the p-type silicon substrate 2, and the p-type silicon substrate 2 was dried. . Thereafter, heat treatment was performed in a nitrogen atmosphere, and an n + region in which phosphorus as an n-type dopant was diffused was formed on the light-receiving surface of the p-type silicon substrate 2.

実施例1、実施例2、実施例3、および比較例のシート抵抗値の測定結果を表1に示す。また、実施例1、実施例2、実施例3、および比較例の方法でn領域を作製した場合の太陽電池の変換効率を表2に示す。表1、2の値は、それぞれ、5サンプルについて測定を行い、その平均値とした。なお、図2に表1の測定箇所を示す。測定箇所は、5箇所であり、p型シリコン基板2の中心と、p型シリコン基板2の対角線上にp型シリコン基板2の中心から23mm、46mm、69mm、92mmである。また、表2の太陽電池の変換効率は、比較例を1.000とした場合の実施例1、2、3の値である。 Table 1 shows the measurement results of the sheet resistance values of Example 1, Example 2, Example 3, and Comparative Example. In addition, Table 2 shows the conversion efficiency of the solar cell in the case where the n + region was produced by the methods of Example 1, Example 2, Example 3, and Comparative Example. The values in Tables 1 and 2 were measured for 5 samples, respectively, and were averaged. In addition, the measurement location of Table 1 is shown in FIG. There are five measurement points, which are 23 mm, 46 mm, 69 mm, and 92 mm from the center of the p-type silicon substrate 2 and the center of the p-type silicon substrate 2 on the diagonal line of the p-type silicon substrate 2. Moreover, the conversion efficiency of the solar cell of Table 2 is the value of Example 1, 2, 3 when a comparative example is set to 1.000.

表1の結果から、比較例では、p型シリコン基板2の面内で35Ω/□〜55Ω/□であったのに対し、実施例2では、p型シリコン基板2の面内で45Ω/□〜55Ω/□内で収まるようになり、シート抵抗のばらつきを低減することができた。また、実施例1、3においても、比較例よりもシート抵抗のばらつきを低減することができた。これから、シリコン基板の外周縁部のPSG液のスピン塗布を、別に行うことで、シリコン基板の外周縁部で発生する塗布ムラを抑え、シリコン基板面内のシート抵抗のばらつきを低減することができた。   From the results of Table 1, in the comparative example, it was 35Ω / □ to 55Ω / □ in the plane of the p-type silicon substrate 2, whereas in Example 2, it was 45Ω / □ in the plane of the p-type silicon substrate 2. It was within the range of ~ 55Ω / □, and variation in sheet resistance could be reduced. Moreover, also in Examples 1 and 3, variation in sheet resistance could be reduced as compared with the comparative example. From this, by performing spin coating of PSG liquid on the outer peripheral edge of the silicon substrate separately, uneven coating occurring at the outer peripheral edge of the silicon substrate can be suppressed, and variations in sheet resistance within the silicon substrate surface can be reduced. It was.

さらに、表2の結果から、比較例に比べて、実施例2では1%の変換効率の向上が確認でき、実施例1、3でも0.5%の変換効率の向上が確認できた。したがって、上記より、シート抵抗のシリコン基板面内のばらつきを低減することで、受光面銀電極とn領域間のコンタクト抵抗のシリコン基板面内のばらつきを抑えることができるため、太陽電池の特性を向上させることができる。また、塗布ムラの発生が低減できるので、これによるpn接合欠損の発生も抑えることができる。さらにまた、シリコン基板が円形の場合でも、シート抵抗のシリコン基板面内のばらつきを低減するために、上記に示すPSG液塗布方法が有効であることを確認した。 Furthermore, from the results of Table 2, it was confirmed that the conversion efficiency was improved by 1% in Example 2 as compared with the comparative example, and the conversion efficiency was improved by 0.5% in Examples 1 and 3. Therefore, by reducing the variation in sheet resistance in the silicon substrate surface from the above, the variation in contact resistance between the light receiving surface silver electrode and the n + region in the silicon substrate surface can be suppressed. Can be improved. Further, since the occurrence of uneven coating can be reduced, the occurrence of pn junction defects due to this can also be suppressed. Furthermore, even when the silicon substrate is circular, it has been confirmed that the PSG liquid coating method described above is effective in order to reduce the variation in sheet resistance in the silicon substrate surface.

今回、リン化合物を含むPSG液について示したが、他のドーパントを用いた溶液をシリコン基板の一表面にスピン塗布し、熱処理により不純物拡散領域を形成する場合も同様の結果が得られる。さらに、受光面と裏面に電極が形成された太陽電池について記載したが、裏面にのみ電極が形成された裏面電極型太陽電池に不純物拡散領域を形成する場合も同様である。   Although a PSG solution containing a phosphorus compound is shown here, the same result can be obtained when a solution using other dopant is spin-coated on one surface of a silicon substrate to form an impurity diffusion region by heat treatment. Furthermore, although the solar cell in which the electrodes are formed on the light receiving surface and the back surface has been described, the same applies to the case where the impurity diffusion region is formed in the back electrode type solar cell in which the electrode is formed only on the back surface.

1 太陽電池、2 p型シリコン基板、3 PSG液、4 n領域、5 n領域、6 反射防止膜、7 アルミニウム電極、8 BSF領域、9 裏面銀電極、10 受光面銀電極。
1 the solar cell, 2 p-type silicon substrate, 3 PSG solution, 4 n + region, 5 n - region 6 antireflection film 7 of aluminum electrodes, 8 BSF region 9 rear surface silver electrode, 10 a light receiving surface silver electrode.

Claims (7)

シリコン基板の一表面に、不純物拡散領域を形成する工程を備えた太陽電池の製造方法において、
前記不純物拡散領域を形成する工程は、
前記シリコン基板を回転させて、前記シリコン基板の一表面の外周縁部に、ドーパントを含む化合物とアルコールとを少なくとも含むドーパント溶液を滴下して塗布する第1工程と、
前記シリコン基板の一表面の中心付近に前記ドーパント溶液を滴下し、前記シリコン基板を回転させて前記ドーパント溶液を塗布する第2工程と、
前記シリコン基板を熱処理する第3工程とを備えた太陽電池の製造方法。
In a method for manufacturing a solar cell comprising a step of forming an impurity diffusion region on one surface of a silicon substrate,
The step of forming the impurity diffusion region includes:
A first step of rotating the silicon substrate and dropping and applying a dopant solution containing at least a compound containing a dopant and an alcohol to the outer peripheral edge of one surface of the silicon substrate;
Dropping the dopant solution near the center of one surface of the silicon substrate, rotating the silicon substrate and applying the dopant solution; and
And a third step of heat-treating the silicon substrate.
前記第2工程のドーパント溶液のドーパント濃度は、前記第1工程のドーパント溶液のドーパント濃度よりも高い請求項1に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein the dopant concentration of the dopant solution in the second step is higher than the dopant concentration of the dopant solution in the first step. 前記第2工程の後に、前記シリコン基板を乾燥させる第4工程を備えた請求項1または2に記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, further comprising a fourth step of drying the silicon substrate after the second step. 前記シリコン基板の一表面は、前記シリコン基板の受光面である請求項1〜3のいずれかに記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein one surface of the silicon substrate is a light receiving surface of the silicon substrate. 前記不純物拡散領域は、n型不純物拡散領域である請求項1〜4のいずれかに記載の太陽電池の製造方法。   The method for manufacturing a solar cell according to claim 1, wherein the impurity diffusion region is an n-type impurity diffusion region. 前記ドーパントは、リンである請求項1〜5のいずれかに記載の太陽電池の製造方法。   The said dopant is phosphorus, The manufacturing method of the solar cell in any one of Claims 1-5. 前記ドーパント溶液は、PSG液である請求項1〜6のいずれかに記載の太陽電池の製造方法。
The said dopant solution is a PSG liquid, The manufacturing method of the solar cell in any one of Claims 1-6.
JP2011010466A 2011-01-21 2011-01-21 Manufacturing method of solar battery Pending JP2012151383A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011010466A JP2012151383A (en) 2011-01-21 2011-01-21 Manufacturing method of solar battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011010466A JP2012151383A (en) 2011-01-21 2011-01-21 Manufacturing method of solar battery

Publications (1)

Publication Number Publication Date
JP2012151383A true JP2012151383A (en) 2012-08-09

Family

ID=46793335

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011010466A Pending JP2012151383A (en) 2011-01-21 2011-01-21 Manufacturing method of solar battery

Country Status (1)

Country Link
JP (1) JP2012151383A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945008B2 (en) * 2012-12-28 2016-07-05 京セラ株式会社 Solar cell element and method for manufacturing solar cell element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5945008B2 (en) * 2012-12-28 2016-07-05 京セラ株式会社 Solar cell element and method for manufacturing solar cell element
JPWO2014104058A1 (en) * 2012-12-28 2017-01-12 京セラ株式会社 Solar cell element and method for manufacturing solar cell element

Similar Documents

Publication Publication Date Title
US7741225B2 (en) Method for cleaning a solar cell surface opening made with a solar etch paste
TWI408816B (en) A solar cell manufacturing method, a solar cell, and a method of manufacturing a semiconductor device
JP5737204B2 (en) Solar cell and manufacturing method thereof
JP6003791B2 (en) Manufacturing method of solar cell
JP5991945B2 (en) Solar cell and solar cell module
Yadav et al. c-Si solar cells formed from spin-on phosphoric acid and boric acid
WO2015114922A1 (en) Photoelectric conversion device and method for manufacturing photoelectric conversion device
KR101165915B1 (en) Method for fabricating solar cell
WO2015087472A1 (en) Production method for solar cells and solar cell obtained by said production method
JP2012019029A (en) Method of manufacturing solar cell
JP2012151383A (en) Manufacturing method of solar battery
JP2010027744A (en) Method for forming diffusion layer on substrate
JP6392717B2 (en) Method for manufacturing solar battery cell
WO2011048656A1 (en) Method for roughening substrate surface, and method for manufacturing photovoltaic device
JP2014154619A (en) Method for manufacturing photoelectric conversion element
JP2011243726A (en) Solar cell manufacturing method
JP5715509B2 (en) Solar cell and method for manufacturing solar cell
WO2016072048A1 (en) Solar cell and method for manufacturing same
WO2016098368A1 (en) Method for producing photovoltaic device
JP2016004916A (en) Solar battery and method of manufacturing the same
KR20120085067A (en) Manufacturing method of solar cell
JP2012253253A (en) Method of manufacturing solar battery
KR20170003511A (en) Manufacturing method of solar cell
KR20120085074A (en) Solar cell and fabrication method thereof

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130131